JP3619533B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP3619533B2
JP3619533B2 JP27871593A JP27871593A JP3619533B2 JP 3619533 B2 JP3619533 B2 JP 3619533B2 JP 27871593 A JP27871593 A JP 27871593A JP 27871593 A JP27871593 A JP 27871593A JP 3619533 B2 JP3619533 B2 JP 3619533B2
Authority
JP
Japan
Prior art keywords
heat exchange
heat exchanger
refrigerant
condenser
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27871593A
Other languages
Japanese (ja)
Other versions
JPH07127942A (en
Inventor
正和 仲島
慎一 西川
雄二 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27871593A priority Critical patent/JP3619533B2/en
Publication of JPH07127942A publication Critical patent/JPH07127942A/en
Application granted granted Critical
Publication of JP3619533B2 publication Critical patent/JP3619533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、熱交換器の熱交換パイプ(例えばU字管)にセンサを取り付けるようにした冷凍装置に関する。
【0002】
【従来の技術】
熱交換器のU字管にセンサを設けるようにした空気調和機(冷凍装置)を示したものとして、実公平5−19725号公報がある。
この公報で示された空気調和機は、熱交換器の側方のU字管に筒状のセンサホルダを取り付け、そのホルダ内にセンサを挿入するというものである。
【0003】
このようにして、センサを熱交換器に取り付けて、このセンサで熱交換器の温度を検知して、空気調和機内を流れる冷媒の量を制御している。
【0004】
【発明が解決しようとする課題】
ここで、上下に段積み状態に熱交換パイプを配置した熱交換器を凝縮器として用いるようにすると共に、前述のセンサを下段側の熱交換パイプへ取り付けた場合は次のような不具合が生じることがわかった。
すなわち、熱交換パイプの出口側には集合管が備えられるものの、この集合管の管路抵抗並びに重力等によって下段側の熱交換パイプ内の冷媒圧力は、上段側の熱交換パイプ内の冷媒圧力よりも低くなる。
【0005】
従って、この熱交換器内で凝縮した液冷媒は上段側の熱交換パイプよりも下段側の熱交換パイプに溜まりやすくなる。このように凝縮液冷媒が溜まりやすい下段側の熱交換パイプにセンサを設けたのでは、熱交換器のガス冷媒の温度を正確に検出することはできない。言い換えれば、液冷媒の温度変化はガス冷媒の温度変化よりも少ないため、このセンサの検出値に基づいた膨張弁の開度制御では、開度の大きさの幅を十分にとることができなかった。
【0006】
しかも、液冷媒がこの熱交換器に溜まり込むと、この溜まり込んだ部分における熱交換率は、ガス冷媒が溜まり込んでいる部分の熱交換率よりも極端に劣るため、この熱交換器の能力低下は否めなかった。
本発明は、上下複数段に段積み状態に熱交換パイプを配置した熱交換器を凝縮器として用いるようにした場合に、この熱交換器内への液冷媒の貯溜を少なくすると共に、この熱交換器の熱交換効率の低下を少なく抑えることを目的としたものである。
【0007】
【課題を解決するための手段】
この目的を達成するために、本発明は、圧縮機から吐出されたガス冷媒を分流器を介して凝縮器の夫々の熱交換パイプへ流し、これら熱交換パイプで凝縮された冷媒を集合管でまとめた後、膨張弁にて減圧して蒸発器へ導びく冷凍装置において、これら熱交換パイプは前記凝縮器内においてほぼ同一形状に蛇行しておりかつこれら熱交換パイプは上下に段積み状態に配置すると共に、前記集合管につながる上段側の熱交換パイプには前記膨張弁の開度を制御するためのセンサを設け、このセンサで検出された値に基づいて膨張弁の開度を制御するようにしたものである。
【0008】
【作用】
このセンサで検出される冷媒はガス状であるため、冷媒の温度変化をすばやく検知して膨張弁の開度を制御する。この制御によって液冷媒は凝縮器に溜まりにくくなる。
【0009】
【実施例】
図1において、1は天井裏に設置されるビルトイン型空気調和機(冷凍装置)の室内ユニットで、図2で示す室外ユニット2と冷媒管3を介してつながれている。
この室内ユニット1には送風機4と、この送風機の風下側に位置する室内熱交換器5と、分流器6と、集合管7と電動式の膨張弁8と、ドレンパン9とが内蔵されている。10は吐出口で、ダクト(図示せず)を取り付けるための筒状のフランジ部材11が備えられている。12は吸込口である。13は天井面14に沿って配置されるパネルで、吸込口12とつながる吸込グリル15が設けられている。
【0010】
前記室内熱交換器5、分流器6、集合管7等の冷媒配管関係については後述する。
そして、送風機4の運転によって、室内空気は実線矢印のように流れ、室内熱交換器5で調温(冷却、加温)された後、吐出口10から吐出され、図示しないダクトを介して室内へ導びかれるようになっている。
【0011】
図2において、室外ユニット2には、圧縮機20と、四方弁21と、室外熱交換器22と、分流器23と、集合管24と、アキュムレータ25とが収納されている。
そして、冷房時は四方弁21を実線状態に設定することによって、圧縮機22から吐出された冷媒は実線矢印のように流れる。そして、室外熱交換器22が凝縮器として、室内熱交換器5が蒸発器として夫々作用し、この室内熱交換器5の作用によって室内は冷房される。
【0012】
一方、暖房時は四方弁21を破線状態に設定することによって、圧縮機20から吐出された冷媒は破線矢印のように流れる。そして、室内熱交換器5が凝縮器として、室外熱交換器22が蒸発器として夫々作用し、この室内熱交換器5の作用によって室内は暖房される。
ここで、一般的に日本国内における空気調和機は、日本の風土から冷房能力よりも暖房能力の方が大きく設定されている。このように設定するためには暖房時の室外熱交換器22の蒸発能力すなわち熱のくみ上げ量を大きくする必要から、室外熱交換器22の方が室内熱交換器5よりも大きくしている。
【0013】
具体的には室外熱交換器22の熱交換パイプの内径を9.52mmとし、室内熱交換器5の熱交換器パイプの内径を7mmとすると共に、全体的に室外熱交換器22の方が室内熱交換器5よりも大きく設定されている。
言い換えれば、室内熱交換器5の方が室外熱交換器22よりも小さいため、暖房時にこの室内熱交換器5においてはなるべく凝縮液冷媒が溜まり込まないようにして、ガス冷媒が多くなることが必要となる。これは、凝縮液冷媒が多くなると、この液冷媒が溜った部分は、ガス冷媒の溜っている部分よりも熱交換能力が低下するためである。
【0014】
ここで本発明の特徴は、凝縮器として作用している室内熱交換器5に、多量の凝縮液冷媒が溜まらないよう膨張弁8の開度を制御することによって、この室内熱交換器5での凝縮能力を最大限に発揮させることである。
図3において、30a,30b,30c,30d,30e,30fは内径が7mm(前述)の熱交換パイプで、上下6段に段積み状態に配置されている。そして、これら6本の熱交換パイプ30a〜30fの入口側(暖房時)には分流器6が、出口側(暖房時)には集合管7がつながれている。31は電動式の膨張弁8を制御するための制御器である。32は2段(上段)側の熱交換パイプ30bに取り付けられた温度センサで、このセンサで熱交換パイプ30b内を流れている冷媒の温度を検出して、その値を制御器31へ送り、制御器31はこの値に基づいて開度を設定し、電動式の膨張弁8へ伝えるものである。
【0015】
夫々の熱交換パイプ30a〜30f内の圧力状態を考えると次のとおりである。すなわち、6段(下段)側の熱交換パイプ30fは1段もしくは2段(上段)側の熱交換パイプ30a,30bよりも集合管7の出口33に近いため、この6段(下段)側の熱交換パイプ30f内の圧力Fが低く、1段もしくは2段(上段)側の熱交換パイプ30a,30b内の圧力A,Bが高くなる。これは、集合管7内の管路抵抗や重力並びに冷媒の流れ方向によるためである。
【0016】
従って分流器6で分配されて各熱交換パイプ30a〜30f内に流入したガス状の冷媒は、これら熱交換パイプ30a〜30f内で凝縮して液化するものの上段側の熱交換パイプ30a,30b内においては冷媒の圧力A,Bが下段側の熱交換器パイプ30f内の冷媒圧力Fよりも高いため、この上段側の熱交換パイプ30a,30b内の液冷媒はスムーズに集合管7に導びかれる。しかしながら下段側の熱交換パイプ30f内の液冷媒は上述したように圧力Fが低いためこのパイプ30f内に貯まりやすくなる。
【0017】
このような状態において、本発明はセンサ32を上段側の熱交換パイプ30bに設けたので、確実にガス冷媒の温度を検出することができ、この検出に基づいて膨張弁8の開度を制御する。すなわち、ガス冷媒の温度が低下してきた場合には制御器31を介して電動式の膨張弁8の開度を大きく(開きぎみ)することによって、室内熱交換器5に溜まり込んでいる冷媒を室外熱交換器22へ強制的に流す。これによって、室内熱交換器(凝縮器)5内はガス冷媒のみとなり、凝縮器5の熱交換能力の上昇を図ることができる。
【0018】
特にこのような制御を、この実施例のようなヒートポンプ式の空気調和機に用いた場合は、暖房時に凝縮器として作用される室内熱交換器5の熱交換能力を十分に発揮することができ、冷房能力よりも暖房能力が多く要求される日本の風土にマッチしたものとすることができる。
尚、本発明は、上記のヒートポンプ式空気調和機に限定されるものではなく通常の冷凍装置にも適応できることは言うまでもない。
【0019】
【発明の効果】
以上述べたように、本発明は、圧縮機から吐出されたガス冷媒を分流器を介して凝縮器の夫々の熱交換パイプへ流し、これら熱交換パイプで凝縮された冷媒を集合管でまとめた後、膨張弁にて減圧して蒸発器へ導びく冷凍装置において、これら熱交換パイプは前記凝縮器内においてほぼ同一形状に蛇行しておりかつこれら熱交換パイプは上下に段積み状態に配置すると共に、前記集合管につながる上段側の熱交換パイプには前記膨張弁の開度を制御するためのセンサを設け、このセンサで検出された値に基づいて膨張弁の開度を制御するようにしたので、この凝縮器において液冷媒が溜まりにくくなり、凝縮器の能力を十分に発揮することができる。又、これによって凝縮器の小型化を推進することもできる。
【図面の簡単な説明】
【図1】本発明の空気調和機(冷凍装置)の内部構造を示す断面図である。
【図2】図1に示した空気調和機の冷媒回路図である。
【図3】図2に示した室内熱交換器の暖房時の冷媒の流れを示す説明図である。
【符号の説明】
5 凝縮器
6 分流器
8 膨張弁
20 圧縮機
30a〜30f 熱交換パイプ
32 センサ
[0001]
[Industrial application fields]
The present invention relates to a refrigeration apparatus in which a sensor is attached to a heat exchange pipe (for example, a U-shaped tube) of a heat exchanger.
[0002]
[Prior art]
Japanese Utility Model Publication No. 5-19725 discloses an air conditioner (refrigeration apparatus) in which a sensor is provided in a U-shaped tube of a heat exchanger.
In the air conditioner shown in this publication, a cylindrical sensor holder is attached to a U-shaped tube on the side of a heat exchanger, and the sensor is inserted into the holder.
[0003]
In this way, the sensor is attached to the heat exchanger, the temperature of the heat exchanger is detected by this sensor, and the amount of refrigerant flowing in the air conditioner is controlled.
[0004]
[Problems to be solved by the invention]
Here, when the heat exchanger in which the heat exchange pipes are stacked in the upper and lower stages is used as a condenser, and the above-described sensor is attached to the lower heat exchange pipe, the following problems occur. I understood it.
That is, although a collecting pipe is provided on the outlet side of the heat exchange pipe, the refrigerant pressure in the lower heat exchange pipe is reduced by the pressure resistance of the upper heat exchange pipe due to the pipe resistance and gravity of the collecting pipe. Lower than.
[0005]
Therefore, the liquid refrigerant condensed in the heat exchanger is more likely to accumulate in the lower heat exchange pipe than in the upper heat exchange pipe. Thus, if the sensor is provided in the lower heat exchange pipe in which the condensate refrigerant tends to accumulate, the temperature of the gas refrigerant in the heat exchanger cannot be accurately detected. In other words, since the temperature change of the liquid refrigerant is smaller than the temperature change of the gas refrigerant, the opening degree control of the expansion valve based on the detection value of this sensor cannot take a sufficient range of the opening degree. It was.
[0006]
In addition, when the liquid refrigerant accumulates in this heat exchanger, the heat exchange rate in the accumulated portion is extremely inferior to the heat exchange rate in the portion where the gas refrigerant accumulates. The decline could not be denied.
In the present invention, when a heat exchanger having heat exchange pipes arranged in a stacked state in a plurality of upper and lower stages is used as a condenser, the amount of liquid refrigerant stored in the heat exchanger is reduced and the heat The purpose is to suppress a decrease in the heat exchange efficiency of the exchanger.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the present invention allows the gas refrigerant discharged from the compressor to flow to the respective heat exchange pipes of the condenser via the flow divider, and the refrigerant condensed by these heat exchange pipes is collected in the collecting pipe. In the refrigeration system that is decompressed by the expansion valve and led to the evaporator after the compilation , these heat exchange pipes meander in the same shape in the condenser, and these heat exchange pipes are stacked up and down. A sensor for controlling the opening degree of the expansion valve is provided in the upper heat exchange pipe connected to the collecting pipe, and the opening degree of the expansion valve is controlled based on a value detected by the sensor. It is what I did.
[0008]
[Action]
Since the refrigerant detected by this sensor is gaseous, the temperature of the refrigerant is quickly detected to control the opening of the expansion valve. This control makes it difficult for liquid refrigerant to accumulate in the condenser.
[0009]
【Example】
In FIG. 1, 1 is an indoor unit of a built-in type air conditioner (refrigeration apparatus) installed behind the ceiling, and is connected via an outdoor unit 2 and a refrigerant pipe 3 shown in FIG.
The indoor unit 1 includes a blower 4, an indoor heat exchanger 5 located on the leeward side of the blower, a flow divider 6, a collecting pipe 7, an electric expansion valve 8, and a drain pan 9. . Reference numeral 10 denotes a discharge port, which is provided with a cylindrical flange member 11 for attaching a duct (not shown). Reference numeral 12 denotes a suction port. 13 is a panel arranged along the ceiling surface 14, and a suction grill 15 connected to the suction port 12 is provided.
[0010]
The refrigerant piping relationship of the indoor heat exchanger 5, the flow divider 6, the collecting pipe 7, etc. will be described later.
And by operation | movement of the air blower 4, indoor air flows like a solid line arrow, and after adjusting temperature (cooling and heating) with the indoor heat exchanger 5, it discharges from the discharge port 10, and passes through a duct which is not shown in figure. Has been led to.
[0011]
In FIG. 2, the outdoor unit 2 contains a compressor 20, a four-way valve 21, an outdoor heat exchanger 22, a flow divider 23, a collecting pipe 24, and an accumulator 25.
During cooling, the four-way valve 21 is set to a solid line state, so that the refrigerant discharged from the compressor 22 flows as indicated by a solid line arrow. The outdoor heat exchanger 22 functions as a condenser and the indoor heat exchanger 5 functions as an evaporator, and the indoor heat exchanger 5 cools the room.
[0012]
On the other hand, during heating, the refrigerant discharged from the compressor 20 flows as indicated by broken line arrows by setting the four-way valve 21 to the broken line state. The indoor heat exchanger 5 acts as a condenser and the outdoor heat exchanger 22 acts as an evaporator, and the room is heated by the action of the indoor heat exchanger 5.
Here, in general, an air conditioner in Japan has a larger heating capacity than a cooling capacity due to the Japanese climate. In order to set in this way, the outdoor heat exchanger 22 is made larger than the indoor heat exchanger 5 because it is necessary to increase the evaporation capacity of the outdoor heat exchanger 22 during heating, that is, the amount of heat generated.
[0013]
Specifically, the inner diameter of the heat exchange pipe of the outdoor heat exchanger 22 is set to 9.52 mm, the inner diameter of the heat exchanger pipe of the indoor heat exchanger 5 is set to 7 mm, and the outdoor heat exchanger 22 as a whole is more It is set larger than the indoor heat exchanger 5.
In other words, because the indoor heat exchanger 5 is smaller than the outdoor heat exchanger 22, the indoor heat exchanger 5 may increase the amount of gas refrigerant so that the condensate refrigerant does not accumulate in the indoor heat exchanger 5 as much as possible. Necessary. This is because when the amount of the condensate refrigerant increases, the heat exchange capacity of the portion where the liquid refrigerant is accumulated is lower than the portion where the gas refrigerant is accumulated.
[0014]
Here, the feature of the present invention is that the indoor heat exchanger 5 acting as a condenser controls the opening degree of the expansion valve 8 so that a large amount of condensate refrigerant does not accumulate in the indoor heat exchanger 5. Is to maximize the condensing capacity.
In FIG. 3, 30a, 30b, 30c, 30d, 30e, and 30f are heat exchange pipes having an inner diameter of 7 mm (described above), and are arranged in a stacked state in six stages. A shunt 6 is connected to the inlet side (at the time of heating) of these six heat exchange pipes 30a to 30f, and a collecting pipe 7 is connected to the outlet side (at the time of heating). 31 is a controller for controlling the electric expansion valve 8. 32 is a temperature sensor attached to the heat exchange pipe 30b on the second stage (upper stage) side, detects the temperature of the refrigerant flowing in the heat exchange pipe 30b with this sensor, sends the value to the controller 31, The controller 31 sets the opening based on this value and transmits it to the electric expansion valve 8.
[0015]
Considering the pressure state in each heat exchange pipe 30a-30f, it is as follows. That is, the heat exchange pipe 30f on the 6th (lower) side is closer to the outlet 33 of the collecting pipe 7 than the heat exchange pipes 30a and 30b on the 1st or 2nd (upper) side. The pressure F in the heat exchange pipe 30f is low, and the pressures A and B in the heat exchange pipes 30a and 30b on the first stage or the second stage (upper stage) are increased. This is because the pipe resistance in the collecting pipe 7, gravity, and the flow direction of the refrigerant.
[0016]
Therefore, the gaseous refrigerant distributed by the flow divider 6 and flowing into the heat exchange pipes 30a to 30f is condensed in the heat exchange pipes 30a to 30f and is liquefied, and the heat exchange pipes 30a and 30b on the upper stage side. Since the refrigerant pressures A and B are higher than the refrigerant pressure F in the lower heat exchanger pipe 30f, the liquid refrigerant in the upper heat exchange pipes 30a and 30b is smoothly led to the collecting pipe 7. It is burned. However, the liquid refrigerant in the lower heat exchange pipe 30f is easily stored in the pipe 30f because the pressure F is low as described above.
[0017]
In such a state, since the sensor 32 is provided in the upper heat exchange pipe 30b in this state, the temperature of the gas refrigerant can be reliably detected, and the opening degree of the expansion valve 8 is controlled based on this detection. To do. That is, when the temperature of the gas refrigerant decreases, the opening degree of the electric expansion valve 8 is increased (opened) via the controller 31 so that the refrigerant accumulated in the indoor heat exchanger 5 is reduced. The air is forced to flow to the outdoor heat exchanger 22. Thereby, the inside of the indoor heat exchanger (condenser) 5 becomes only a gas refrigerant, and the heat exchange capability of the condenser 5 can be increased.
[0018]
In particular, when such a control is used for a heat pump type air conditioner as in this embodiment, the heat exchange capability of the indoor heat exchanger 5 that acts as a condenser during heating can be sufficiently exhibited. It can be matched to the Japanese climate, which requires more heating capacity than cooling capacity.
Needless to say, the present invention is not limited to the above-described heat pump air conditioner, and can also be applied to a normal refrigeration apparatus.
[0019]
【The invention's effect】
As described above, the present invention flows the gas refrigerant discharged from the compressor to each heat exchange pipe of the condenser via the flow divider, and collects the refrigerant condensed by these heat exchange pipes in the collecting pipe. After that, in the refrigeration system that depressurizes with an expansion valve and leads to the evaporator, these heat exchange pipes meander in the same shape in the condenser, and these heat exchange pipes are arranged in a stacked state vertically. In addition, a sensor for controlling the opening degree of the expansion valve is provided in the upper heat exchange pipe connected to the collecting pipe, and the opening degree of the expansion valve is controlled based on a value detected by the sensor. As a result, liquid refrigerant is less likely to accumulate in this condenser, and the capacity of the condenser can be fully exhibited. This can also promote downsizing of the condenser.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an internal structure of an air conditioner (refrigeration apparatus) according to the present invention.
FIG. 2 is a refrigerant circuit diagram of the air conditioner shown in FIG.
FIG. 3 is an explanatory diagram showing a refrigerant flow during heating of the indoor heat exchanger shown in FIG. 2;
[Explanation of symbols]
5 Condenser 6 Divider 8 Expansion Valve 20 Compressors 30a-30f Heat Exchange Pipe 32 Sensor

Claims (1)

圧縮機から吐出されたガス冷媒を分流器を介して凝縮器の夫々の熱交換パイプへ流し、これら熱交換パイプで凝縮された冷媒を集合管でまとめた後、膨張弁にて減圧して蒸発器へ導びく冷凍装置において、これら熱交換パイプは前記凝縮器内においてほぼ同一形状に蛇行しておりかつこれら熱交換パイプは上下に段積み状態に配置すると共に、前記集合管につながる上段側の熱交換パイプには前記膨張弁の開度を制御するためのセンサを設けたことを特徴とする冷凍装置。The gas refrigerant discharged from the compressor is caused to flow to the respective heat exchange pipes of the condenser via the flow divider, and the refrigerant condensed in these heat exchange pipes is collected in the collecting pipe, and then decompressed by the expansion valve and evaporated. In the refrigeration system leading to the condenser , these heat exchange pipes meander in substantially the same shape in the condenser, and these heat exchange pipes are arranged in a stacked state in the upper and lower sides, and on the upper stage side connected to the collecting pipe A refrigeration apparatus, wherein a heat exchange pipe is provided with a sensor for controlling the opening degree of the expansion valve.
JP27871593A 1993-11-08 1993-11-08 Refrigeration equipment Expired - Fee Related JP3619533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27871593A JP3619533B2 (en) 1993-11-08 1993-11-08 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27871593A JP3619533B2 (en) 1993-11-08 1993-11-08 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH07127942A JPH07127942A (en) 1995-05-19
JP3619533B2 true JP3619533B2 (en) 2005-02-09

Family

ID=17601188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27871593A Expired - Fee Related JP3619533B2 (en) 1993-11-08 1993-11-08 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3619533B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164047B2 (en) * 2013-10-31 2017-07-19 ダイキン工業株式会社 Heat exchanger and air conditioner
JP6307028B2 (en) * 2015-01-29 2018-04-04 ダイキン工業株式会社 Air conditioner
JP6552721B2 (en) * 2016-03-28 2019-07-31 三菱電機株式会社 Air conditioner
US20200072517A1 (en) * 2017-01-24 2020-03-05 Mitsubishi Electric Corporation Heat source-side unit and refrigeration cycle apparatus

Also Published As

Publication number Publication date
JPH07127942A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
EP2711652B1 (en) Integral air conditioning system for heating and cooling
JP3925545B2 (en) Refrigeration equipment
JP3798374B2 (en) Air conditioner control system and control method thereof
US8424333B2 (en) Air conditioner
WO2015056477A1 (en) Air conditioning device
WO1997044625A1 (en) Heat pump systems and methods incorporating subcoolers for conditioning air
JP6880204B2 (en) Air conditioner
US6711909B2 (en) Outdoor fan control system of air conditioner and control method thereof
EP2835589A2 (en) Air conditioner
CN101600919A (en) Multi-pass heat exchangers with different multichannel pipelines
EP3722687B1 (en) Air conditioning apparatus
JP2557577B2 (en) Air conditioner
CN112377986A (en) Air conditioner and control method thereof
JP2908013B2 (en) Air conditioner
JP5028927B2 (en) Air conditioner
KR20060070885A (en) Air conditioner
JP3619533B2 (en) Refrigeration equipment
KR20140017865A (en) Air conditioner and method of controlling the same
KR101227477B1 (en) Air conditioner having volume variableness type condenser and method of control thereof
CN211903076U (en) Indoor unit and air conditioner
JP3723824B2 (en) Air conditioner
JPH03164661A (en) Air conditioner
KR101457592B1 (en) Air conditioner
KR101404105B1 (en) Air conditioner
JP2000234818A (en) Refrigerant supercooling mechanism of air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees