JPH0285647A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0285647A
JPH0285647A JP63235428A JP23542888A JPH0285647A JP H0285647 A JPH0285647 A JP H0285647A JP 63235428 A JP63235428 A JP 63235428A JP 23542888 A JP23542888 A JP 23542888A JP H0285647 A JPH0285647 A JP H0285647A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
expansion valve
indoor heat
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63235428A
Other languages
Japanese (ja)
Other versions
JP2692894B2 (en
Inventor
Kazuaki Sakaino
境野 一秋
Yuji Amamiya
雨宮 雄二
Kiyoshi Tamura
清 田村
Masakazu Nakajima
仲島 正和
Kazuo Abe
一雄 阿部
Kazuhiro Shimura
一廣 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63235428A priority Critical patent/JP2692894B2/en
Publication of JPH0285647A publication Critical patent/JPH0285647A/en
Application granted granted Critical
Publication of JP2692894B2 publication Critical patent/JP2692894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve air conditioning performance by installing a control means which adjusts the opening of an electrically actuated expansion valve so that an excess cooling degree of an indoor heat exchanger may drop in proportion to a rise in an indoor temperature or the temperature of an indoor heat exchanger or the pressure of refrigerant during heating operation. CONSTITUTION:During heating, a refrigerant flows from a compressor 1 to an indoor heat exchanger 3, an electrically actuated expansion valve 4, and an outdoor heat exchanger 6 by way of a refrigerating passage comprising a four-way valve 2. In this case, Temperature sensors T1 and T2 are installed in the middle and the outlet of the indoor heat exchanger 3 so as to detected an excess cooling degree based on a differential temperature. Based on the thus detected temperature, the electrically actuated expansion valve 4 is designed to operate, conforming to a specified operating line under the control of a control means 8, which adopts a greater excess cooling degree under a lower indoor temperature and thereby increases its heating capacity and reduces its excess cooling degree as a room temperature approaches a specified temperature and thereby decreases its heating capacity.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は分離型の空気−和機に関するものである。[Detailed description of the invention] <Industrial application field> The present invention relates to a separate type air conditioner.

く従来の技術〉 従来用いられている冷凍サイクルをもつこの種の空気調
和機とは、定出力コンプレッサの冷媒制御はキャピラリ
ーチューブ又は膨脹弁を採用していた(例えば、特公昭
62−37307号公報参照)。
Conventional technology> This type of air conditioner with a refrigeration cycle that has been used conventionally uses a capillary tube or an expansion valve to control the refrigerant of a constant output compressor (for example, Japanese Patent Publication No. 37307/1983). reference).

〈発明が解決しようとする課題〉 しかしながら、この場合のキャピラリーチューブは制御
範囲が限られており、室内・外気温の各種条件に対応で
きず、他の制御との組Jj合せで制御していた。また、
この膨脹弁においては、過熱度のみの制御となり、より
きめ細かな制御は不可能であった。
<Problem to be solved by the invention> However, the capillary tube in this case has a limited control range, cannot respond to various indoor and outdoor temperature conditions, and is controlled in combination with other controls. . Also,
In this expansion valve, only the degree of superheating was controlled, and more detailed control was not possible.

本発明は上記実情に鑑み、暖房の立上り特性の改善、冷
房の立上り特性の改善、配管長の変化に対しても冷媒制
御を可能とし、空調性の改善を図る空気調和機を提供す
ることを[1的と〔たものである。
In view of the above-mentioned circumstances, it is an object of the present invention to provide an air conditioner that improves the heating start-up characteristics, improves the cooling start-up characteristics, and enables refrigerant control even with changes in piping length, thereby improving air conditioning performance. [It is one thing].

く課題を解決するだめの手段〉 本発明は、圧縮機と冷暖流路切換弁と室内熱交換器と電
気式膨脂弁と室外熱交換器とで冷凍サイクルを構成した
ヒートポンプ式空気調和機において、暖房運転時に室内
温度又は室内熱交換器の温度若しくは冷媒圧力が上昇す
るにつれて室内熱交換器の過冷却度が下がるように前記
電気式膨脂弁の弁開度を調整する制御手段を設けたもの
である。
Means for Solving the Problems The present invention provides a heat pump air conditioner in which a refrigeration cycle is configured by a compressor, a cooling/heating flow path switching valve, an indoor heat exchanger, an electric fat expansion valve, and an outdoor heat exchanger. A control means is provided for adjusting the valve opening degree of the electric fat expansion valve so that the degree of subcooling of the indoor heat exchanger decreases as the indoor temperature, the temperature of the indoor heat exchanger, or the refrigerant pressure increases during heating operation. It is something.

また、圧縮機と室外熱交換器と電気式膨脂弁と室内熱交
換器とで冷凍サイクルを構成した空気調和機において、
冷房運転時に室外熱交換器の温度若しくは冷媒圧力が上
昇するにつれて室外熱交換器の過冷却度が下がるように
、前記電気式膨脂弁の弁開度を調節する制御手段を設け
たものである。
In addition, in an air conditioner that has a refrigeration cycle composed of a compressor, an outdoor heat exchanger, an electric fat expansion valve, and an indoor heat exchanger,
A control means is provided for adjusting the valve opening degree of the electric fat expansion valve so that the degree of subcooling of the outdoor heat exchanger decreases as the temperature or refrigerant pressure of the outdoor heat exchanger increases during cooling operation. .

く作用〉 上記のような構成のために、暖房時の冷媒の流は圧縮機
から四方弁よりなる冷暖流路を介し室内熱交換器、電気
式膨脹弁、室外熱交換器へと流れる。この場合、室内熱
交換器の中間と出口にセンサーを取付けその温度差で過
冷却度を検知し、これに伴い電気式膨脂弁を、制御手段
をもって所定の動作線に従い制御し、室温が低い状態で
は過冷却を大きく取り暖房能力を増大させ、室温が設定
温度に接近するに従い過冷却度を小さくし暖房能力を減
少させる。また、室内、室外ユニット間の配管長の変化
に対しても室外熱交換器の中間と出口のセンサーとの温
度差(冷房運転時)で過冷却を検知し、電気式膨脂弁を
制御し所定の冷房能力を得るようにする。
Due to the above-described configuration, the refrigerant flow during heating flows from the compressor to the indoor heat exchanger, the electric expansion valve, and the outdoor heat exchanger via a cooling/heating flow path consisting of a four-way valve. In this case, a sensor is installed between the middle and the outlet of the indoor heat exchanger to detect the degree of supercooling based on the temperature difference, and accordingly, the electric fat expansion valve is controlled by a control means according to a predetermined operating line, so that the room temperature is low. In this state, supercooling is increased to increase heating capacity, and as the room temperature approaches the set temperature, the degree of supercooling is reduced and heating capacity is reduced. In addition, when the pipe length changes between the indoor and outdoor units, supercooling is detected based on the temperature difference between the intermediate and outlet sensors of the outdoor heat exchanger (during cooling operation), and the electric fat expansion valve is controlled. Ensure that the specified cooling capacity is obtained.

また、暖房時の微風運転における吹田空気温度の高まり
に対しても、電気式膨脂弁の開度を大きくし前記温度を
適宜下げることもできる。
Furthermore, in response to an increase in Suita air temperature during gentle wind operation during heating, the temperature can be appropriately lowered by increasing the opening degree of the electric fat expansion valve.

〈実施例〉 以下、本発明を実施例の図面に基ずいて説明すれば、次
の通りである。
<Example> The present invention will be described below based on the drawings of the example.

第1図は冷暖房用空気調和機の冷媒回路図であり、1は
室外ユニットA内の冷媒の圧縮機で、この吐出管部に四
方弁となる冷暖流路切換弁2を接続し、該冷暖流路切換
弁2の一方に室内ユニットBの室内熱交換器3を接続し
、この他端に電気式膨脂弁4を接続し、該電気式膨脂弁
4の他端を室外ユニットA側のキャピラリーチューブ5
を介し室外熱交換器6に接続し、この他端を前記冷暖流
路切換弁2の他方を経て気液分離器7に導き圧縮機1に
戻る循環路を形成するものである。8は室内ユニットA
に設けた制御手段で、該制御手段8には、室内熱交換器
3の中間に設けたセンサーT、と暖房時の出口のセンサ
ーT2及電気式膨脹弁4の出口のセンサーT町を接続す
ると共に、室外熱交換器6の中間に設けたセンサーT、
と入口のセンサーT4を接続しており、制御手段8から
発せられる制御信号により電気式膨脂弁4の弁開度が調
整される。
FIG. 1 is a refrigerant circuit diagram of an air conditioner for air conditioning and heating. 1 is a refrigerant compressor in an outdoor unit A, and a cooling/heating flow path switching valve 2 serving as a four-way valve is connected to this discharge pipe section. The indoor heat exchanger 3 of the indoor unit B is connected to one end of the flow path switching valve 2, the electric fat expansion valve 4 is connected to the other end of the flow path switching valve 2, and the other end of the electric fat expansion valve 4 is connected to the outdoor unit A side. capillary tube 5
The other end is connected to the outdoor heat exchanger 6 via the cooling/heating flow path switching valve 2, and is led to the gas-liquid separator 7 to form a circulation path back to the compressor 1. 8 is indoor unit A
The control means 8 is connected to a sensor T provided in the middle of the indoor heat exchanger 3, a sensor T2 at the outlet during heating, and a sensor T2 at the outlet of the electric expansion valve 4. In addition, a sensor T provided in the middle of the outdoor heat exchanger 6,
and an inlet sensor T4, and the valve opening degree of the electric fat expansion valve 4 is adjusted by a control signal issued from the control means 8.

次にこの作用を説明すれば、先ず暖房時、圧縮機1にて
圧縮された高圧冷媒は、冷暖流路切換弁2から室内熱交
換器3に流れ、電気式膨脂弁4を経て室外側のキャピラ
リーチューブ5゜室外熱交換器6から前記冷暖流路切換
弁2の一方より気液分離器7を経て圧縮機1に戻り、前
記室内熱交換器3の冷媒凝縮熱で室内を暖めるものであ
る。
Next, to explain this effect, first, during heating, the high-pressure refrigerant compressed by the compressor 1 flows from the cooling/heating flow path switching valve 2 to the indoor heat exchanger 3, passes through the electric fat expansion valve 4, and then goes to the outdoor side. The capillary tube 5° returns from the outdoor heat exchanger 6 to one side of the cooling/heating flow path switching valve 2 through the gas-liquid separator 7 to the compressor 1, and heats the room with the refrigerant condensation heat of the indoor heat exchanger 3. be.

ここにおいて、室温が低い状態では、過冷却を大きくと
り暖房能力を増大させ、室温が設定温度に接近するに従
い過冷却度を小さくし暖房能力を減少させねばならない
。このため、第4図に示すように、凝縮温度(凝縮圧力
又は室内温度でも良い)を室内熱交換器3の中間のセン
サーT1で検出して、このセンサーT1とセンサーT2
の温度差で過冷却度(TI  72)を検知し、第3図
に示す過冷却制御動作図に従って電気式膨脂弁4を制御
手段8て制御する。かかる過冷却制御として、常連はY
、とY2の動作範囲内に納まるよう膨張弁4がコントロ
ールされるが、室温が設定値に近づいたらYl。
Here, when the room temperature is low, the heating capacity must be increased by increasing supercooling, and as the room temperature approaches the set temperature, the degree of supercooling must be reduced and the heating capacity must be reduced. Therefore, as shown in FIG. 4, the condensing temperature (condensing pressure or indoor temperature may be used) is detected by the sensor T1 located between the indoor heat exchanger 3 and the sensor T1 and the sensor T2.
The degree of supercooling (TI 72) is detected based on the temperature difference between , and the electric fat expansion valve 4 is controlled by the control means 8 according to the supercooling control operation diagram shown in FIG. As such supercooling control, Y
, and the expansion valve 4 is controlled to stay within the operating range of Y2, but when the room temperature approaches the set value, Yl.

Y2からy、、y4動作線に移し、このY3゜Y4の移
動範囲内に納まるように膨張弁4がコントロールされる
と更に好ましい。
It is more preferable that the expansion valve 4 is controlled so as to move from Y2 to y, y4 operation line and stay within the movement range of Y3°Y4.

一方、ユニット間配管9a、9bの長さが短く冷媒充填
量が充分にある場合は、冷房運転時に第4図の示すよう
に凝縮温度若しくは凝縮圧力を室外熱交換器6の中間の
センサーT3で検出してセンサーT4との温度差で過冷
却(T 3−T4)を検知し、第3図のY、、Y2の動
作線(この場合、第3図の横軸は凝縮温度又は凝縮圧力
のみとなる)に従って電気式膨脹弁4を制御する。この
ようにすると冷房能力が増大する。但し、冷房時の冷媒
流れは、第1図において圧縮機1から冷暖流路切換弁2
を経て室外熱交換器6.キャピラリーチューブ5.電気
式膨脹弁4.室内熱交換器3を通り、前記冷暖流路切換
弁2.気液分離器7へと流れる。
On the other hand, if the length of the inter-unit piping 9a, 9b is short and there is a sufficient amount of refrigerant charged, the condensing temperature or condensing pressure is measured by the sensor T3 located in the middle of the outdoor heat exchanger 6 as shown in FIG. 4 during cooling operation. The operating line of Y, Y2 in Fig. 3 (in this case, the horizontal axis in Fig. 3 is only the condensing temperature or condensing pressure). The electric expansion valve 4 is controlled according to the following. This increases the cooling capacity. However, the refrigerant flow during cooling is from the compressor 1 to the cooling/heating flow path switching valve 2 in Fig. 1.
6. Through the outdoor heat exchanger. Capillary tube5. Electric expansion valve 4. Passing through the indoor heat exchanger 3, the heating/cooling flow path switching valve 2. It flows to the gas-liquid separator 7.

この冷房運転時の制御は、第2図に示す冷房専用の空気
調和機にも適用できる。この場合の空気1調和機は、室
外ユニットAに圧縮機1から室外熱交換器6.電気式膨
脹弁4を接続し、該電気式膨脹弁4に室内ユニットBの
キャピラリーチューブ5.室内熱交換器3を接続し、更
にこの先に前記室外ユニットAの気液分離器7から圧縮
機1に戻る循環路を構成し、冷媒は圧縮機1から室外熱
交換器6.電気式膨脹弁4.キャピラリーチューブ5.
室内熱交換器3へと流れる。
This control during cooling operation can also be applied to the cooling-only air conditioner shown in FIG. In this case, the air conditioner 1 connects the outdoor unit A with the compressor 1 and the outdoor heat exchanger 6. Connect the electric expansion valve 4 to the capillary tube 5 of the indoor unit B. The indoor heat exchanger 3 is connected, and further a circulation path is formed which returns from the gas-liquid separator 7 of the outdoor unit A to the compressor 1, and the refrigerant is passed from the compressor 1 to the outdoor heat exchanger 6. Electric expansion valve 4. Capillary tube5.
It flows to the indoor heat exchanger 3.

また、配管長の変化に対して冷房制御を可能とする。先
ず予めユニット内に冷媒を多めにチャージし長配管時も
現地で追加チャージをさせないとき、その冷媒チャージ
を極力少なくするためには、配管内の冷媒状態を液がス
ニ相流とする必要がある。しかし、配管内の圧力を低圧
とすると長配管の場合圧力損失の影響が大きい。
It also enables cooling control with respect to changes in pipe length. First of all, if you charge a large amount of refrigerant in the unit in advance and do not require additional charging on-site even when using long piping, in order to minimize the refrigerant charge, the refrigerant state in the piping must be in a monophase flow. . However, if the pressure inside the piping is kept low, the effect of pressure loss will be large in the case of long piping.

この場合、室外ユニットA、室内ユニッl−Bの両方に
絞り機構を設け、その内生なくとも一方に電気式膨脹弁
4を利用してユニット間配管内を中間圧力とし、長配管
時にも圧力損失を極力少なくし、しかも現地での冷媒追
加チャージを不要とする。このようにユニット配管内の
圧力を電気式膨脹弁4でコントロールし適切な中間圧力
とする。このときは、室内側又は室外側のユニオン部の
パイプ温度(センサーT、)を検知しそれを圧力換算し
て電気式膨脹弁4を調節する。
In this case, a throttling mechanism is provided in both the outdoor unit A and the indoor unit I-B, and an electric expansion valve 4 is used in at least one of them to maintain an intermediate pressure in the piping between the units, even when the piping is long. It minimizes losses and eliminates the need for additional refrigerant charging on site. In this way, the pressure inside the unit piping is controlled by the electric expansion valve 4 to maintain an appropriate intermediate pressure. At this time, the pipe temperature (sensor T) of the union section on the indoor side or the outdoor side is detected, converted into pressure, and the electric expansion valve 4 is adjusted.

更に、空調性については、暖房時、弱風運転すると吹出
空気温度が高くなり上昇気流となって暖気が床まで届か
ず、部屋の温度分布が悪くなる。また、その暖気が直接
吸い込まれてエアーショートとなり各種の障害を引き起
こす原因となる。このことは、第5図の冷房、暖房運転
開始のフローチャートでも分かる。同図中t1は冷気ド
ラフトを感じさせない吹出し空気温度で、1.の饋は風
量の大小によって変えておく。
Furthermore, regarding air conditioning, if the room is operated with low wind during heating, the temperature of the blown air will be high, creating an upward airflow that will prevent the warm air from reaching the floor, resulting in poor temperature distribution in the room. Moreover, the warm air is directly sucked in, causing an air short and causing various problems. This can also be seen in the flowchart of FIG. 5 for starting cooling and heating operations. In the figure, t1 is the temperature of the blown air at which no cold air draft is felt; 1. Change the amount of air flow depending on the amount of airflow.

また、t2は暖気の所定の位置まで達するに必要な最大
の吐出し温度で、該t2は風量の大小によって変えてお
くものである。
Further, t2 is the maximum discharge temperature necessary for the warm air to reach a predetermined position, and t2 is changed depending on the magnitude of the air volume.

〈発明の効果〉 上述のように本発明の空気調和機は、暖房運転時には室
内温度又は室内熱交換器の温度若しくは冷媒圧力が上昇
するにつれて室内熱交換器の過冷却度か下がるように、
また、冷房運転時には室外熱交換器の温度若しくは冷媒
圧力が上昇するにつれて室外熱交換器の過冷却度がドが
るように制御手段で電気式膨脹弁の弁開度を調節するよ
うにしたことにより、暖房能力及び冷房能力を増大させ
暖房立上り特性及び冷房立上り特性を向上させることが
できる。
<Effects of the Invention> As described above, in the air conditioner of the present invention, during heating operation, as the indoor temperature or the temperature or refrigerant pressure of the indoor heat exchanger increases, the degree of subcooling of the indoor heat exchanger decreases.
Further, during cooling operation, the valve opening degree of the electric expansion valve is adjusted by the control means so that the degree of subcooling of the outdoor heat exchanger decreases as the temperature or refrigerant pressure of the outdoor heat exchanger increases. As a result, heating capacity and cooling capacity can be increased, and heating start-up characteristics and cooling start-up characteristics can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は冷暖用空
気調和機の冷媒回路図、第2図は冷房専用空気調和機の
冷媒回路図、第3図は過冷却制御の動作図、第4図は同
フローチャート、第5図は冷房、暖房運転のフローチャ
ートである。 1・・・圧縮機、2・・・冷暖流路切換弁、3・・・室
内熱交換器、4・・・電気式膨脹弁、5・・・キャピラ
リーチューブ、6・・・室外熱交換器、7・・・気液分
離器、8・・・制御手段、T+ 、T2 、Ts 、T
5・・・センサー。 第1図 第2図 第3図 室温又は凝縮温度(冷媒圧力) 第4 図 第5図
The drawings show an embodiment of the present invention, and Fig. 1 is a refrigerant circuit diagram of an air conditioner for cooling and heating, Fig. 2 is a refrigerant circuit diagram of an air conditioner exclusively for cooling, and Fig. 3 is an operation diagram of supercooling control. , FIG. 4 is a flowchart of the same, and FIG. 5 is a flowchart of cooling and heating operations. 1...Compressor, 2...Cooling/heating flow path switching valve, 3...Indoor heat exchanger, 4...Electric expansion valve, 5...Capillary tube, 6...Outdoor heat exchanger , 7... Gas-liquid separator, 8... Control means, T+, T2, Ts, T
5...Sensor. Figure 1 Figure 2 Figure 3 Room temperature or condensing temperature (refrigerant pressure) Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、圧縮機と冷暖流路切換弁と室内熱交換器と電気式膨
脹弁と室外熱交換器とで冷凍サイクルを構成したヒート
ポンプ式空気調和機において、暖房運転時に室内温度又
は室内熱交換器の温度若しくは冷媒圧力が上昇するにつ
れて室内熱交換器の過冷却度が下がるように前記電気式
膨脹弁の弁開度を調整する制御手段を設けたことを特徴
とする空気調和機。 2、圧縮機と室外熱交換器と電気式膨脹弁と室内熱交換
器とで冷凍サイクルを構成した空気調和機において、冷
房運転時に室外熱交換器の温度若しくは冷媒圧力が上昇
するにつれて室外熱交換器の過冷却度が下がるように前
記電気式膨脹弁の弁開度を調節する制御手段を設けたこ
とを特徴とする空気調和機。
[Scope of Claims] 1. In a heat pump air conditioner in which a refrigeration cycle is configured by a compressor, a cooling/heating flow path switching valve, an indoor heat exchanger, an electric expansion valve, and an outdoor heat exchanger, the indoor temperature is adjusted during heating operation. Alternatively, an air conditioner comprising a control means for adjusting the valve opening of the electric expansion valve so that the degree of subcooling of the indoor heat exchanger decreases as the temperature or refrigerant pressure of the indoor heat exchanger increases. Machine. 2. In an air conditioner that has a refrigeration cycle composed of a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger, outdoor heat exchange occurs as the temperature or refrigerant pressure of the outdoor heat exchanger increases during cooling operation. An air conditioner comprising: a control means for adjusting the opening degree of the electric expansion valve so as to reduce the degree of supercooling of the air conditioner.
JP63235428A 1988-09-20 1988-09-20 Air conditioner Expired - Fee Related JP2692894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63235428A JP2692894B2 (en) 1988-09-20 1988-09-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63235428A JP2692894B2 (en) 1988-09-20 1988-09-20 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0285647A true JPH0285647A (en) 1990-03-27
JP2692894B2 JP2692894B2 (en) 1997-12-17

Family

ID=16985964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63235428A Expired - Fee Related JP2692894B2 (en) 1988-09-20 1988-09-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP2692894B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137690A (en) * 1992-10-26 1994-05-20 Hitachi Ltd Air conditioner
KR100413307B1 (en) * 1995-12-29 2004-02-14 산요덴키가부시키가이샤 Air Conditioner
JP2010048494A (en) * 2008-08-22 2010-03-04 Toshiba Carrier Corp Air conditioner
JP2018077037A (en) * 2016-10-25 2018-05-17 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
WO2020110213A1 (en) * 2018-11-28 2020-06-04 三菱電機株式会社 Air-conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142358A (en) * 1983-02-03 1984-08-15 株式会社デンソー Refrigerator
JPS61145258U (en) * 1985-02-28 1986-09-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142358A (en) * 1983-02-03 1984-08-15 株式会社デンソー Refrigerator
JPS61145258U (en) * 1985-02-28 1986-09-08

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137690A (en) * 1992-10-26 1994-05-20 Hitachi Ltd Air conditioner
KR100413307B1 (en) * 1995-12-29 2004-02-14 산요덴키가부시키가이샤 Air Conditioner
JP2010048494A (en) * 2008-08-22 2010-03-04 Toshiba Carrier Corp Air conditioner
JP2018077037A (en) * 2016-10-25 2018-05-17 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
WO2020110213A1 (en) * 2018-11-28 2020-06-04 三菱電機株式会社 Air-conditioner
JPWO2020110213A1 (en) * 2018-11-28 2021-09-02 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2692894B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP5780280B2 (en) Air conditioning system and control method thereof
JPS6334459A (en) Air conditioner
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
US7578137B2 (en) Air-conditioning system with multiple indoor and outdoor units and control system therefor
KR20030095614A (en) Multi-type air conditioner for cooling/heating the same time and method for controlling the same
US20060150667A1 (en) Heat exchanger and air conditioner using the same
JP2908013B2 (en) Air conditioner
US6038873A (en) Air conditioner capable of controlling an amount of bypassed refrigerant according to a temperature of circulating refrigerant
JPH06257828A (en) Multi-chamber type air conditioning system
JPH0285647A (en) Air conditioner
KR20210093560A (en) Air Conditioner System for Simultaneous Cooling, Heating and hot water supplying and Control Method of the Same
JPS602505Y2 (en) air conditioner
KR950012148B1 (en) Airconditioner
JP2974381B2 (en) Air conditioner
JP2955401B2 (en) Air conditioner
JP2522371B2 (en) Air conditioner
JP2503701B2 (en) Air conditioner
JPH02223756A (en) Air conditioner
KR101064372B1 (en) Apparatus for controlling a refrigerant of multi air conditioner
JPS5856507Y2 (en) air conditioner
JPS63290368A (en) Heat pump type air conditioner
JPS6241170Y2 (en)
JPH0579894B2 (en)
JPS63135749A (en) Refrigeration cycle
JPH0245796B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees