JPH0331643A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH0331643A
JPH0331643A JP1167580A JP16758089A JPH0331643A JP H0331643 A JPH0331643 A JP H0331643A JP 1167580 A JP1167580 A JP 1167580A JP 16758089 A JP16758089 A JP 16758089A JP H0331643 A JPH0331643 A JP H0331643A
Authority
JP
Japan
Prior art keywords
pressure
temperature
compressor
heat exchanger
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1167580A
Other languages
Japanese (ja)
Inventor
Shuichi Tani
秀一 谷
Koji Ishikawa
石川 孝治
Masahiko Sugino
雅彦 杉野
Noriaki Hayashida
林田 徳明
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1167580A priority Critical patent/JPH0331643A/en
Publication of JPH0331643A publication Critical patent/JPH0331643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent an erroneous decision of a freezing preventing means caused by a temporary reduction in evaporation temperature when an energization is started by a method wherein in case of performing a cooling operation under a condition in which a sucking air temperature of an outdoor heat exchanger is low, an air blower arranged in the outdoor heat exchanger is stopped to increase a discharging pressure. CONSTITUTION:In case of starting a cooling operation, a sucking air temperature at an outdoor heat exchanger 3 is sensed by a temperature sensor 12, the sensed temperature is compared with a predetermined set temperature and decided. In case that the sensed temperature is lower than the set value, a compressor 1 is started while an air blower 4 provided in the outdoor heat exchanger 3 is being stopped, a discharging pressure of the compressor I after energization is sensed by a pressure sensor 11. The sensed pressure is compared with a predetermined set pressure and decided and in case that the sensed pressure is higher than the set pressure, or in case a specified time elapses from the starting of the compressor 1, the air blower 4 is operated. with such an arrangement, in case of a cooling operation in which a suction air temperature of the outdoor heat exchanger 3 is low, an amount of refrigerant flowing in an expansion mechanism 5 is increased and a temporary reduction in evaporating temperature is prevented and an erroneous decision of the freezing preventing means 24 can be avoided and a continuous operation of the compressor 1 can be carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は室内側熱交換器と、室外側熱交換器と電気式
膨張弁と、圧縮機によって構成される空気調和装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an air conditioner comprising an indoor heat exchanger, an outdoor heat exchanger, an electric expansion valve, and a compressor.

〔従来の技術〕[Conventional technology]

第7図は従来の空気調和装置の冷媒回路図の一例である
。図において(1)は圧縮機、(2)は四方切換弁、(
3)は送風機(4)を備えた室外側熱交換器、(6目よ
膨張機構、(6)は送風機(7)を備えた室内側熱交換
器、(8月よアキュムレータであり、これらを順次冷媒
配管で連結し冷凍サイクルを構成している。
FIG. 7 is an example of a refrigerant circuit diagram of a conventional air conditioner. In the figure, (1) is the compressor, (2) is the four-way switching valve, (
3) is an outdoor heat exchanger equipped with a blower (4), (6th is an expansion mechanism, (6) is an indoor heat exchanger with a blower (7), and (August is an accumulator). They are connected sequentially through refrigerant piping to form a refrigeration cycle.

また(ホ)は空気調和装置の運転、停止を選択する選択
手段、(7)は圧縮機(1)の作動、送風機(4J (
73の作動を制御する制御手段である。空気調和装置の
運転が選択手段@1こて選択されると、制御手段(イ)
によって、送風機(4) (7)が作動し、圧縮機(1
)が作動し、空気調和装置が運転状態となる。空気調和
装置の運転が選択手段(2)にて選択されなくなると、
制御手段(7)によって、送風機(4) (7)が停止
し、圧縮機(1)が停止し、空気調和装置が停止状態と
なる。
In addition, (e) is a selection means for selecting operation or stop of the air conditioner, and (7) is for operation of the compressor (1), air blower (4J (
This is a control means for controlling the operation of 73. When the operation of the air conditioner is selected by the selection means @1, the control means (a)
The blowers (4) and (7) operate, and the compressor (1
) is activated, and the air conditioner becomes operational. When the operation of the air conditioner is no longer selected by the selection means (2),
The control means (7) causes the blower (4) (7) to stop, the compressor (1) to stop, and the air conditioner to be in a stopped state.

また、(至)は室内側熱交換器(7)に取り付けられ、
冷房運転時は蒸発温度を、暖房運転時は凝縮温度を検出
する温度検出器であり、勾は冷房運転時に温度検出器口
の検出温度とあらかじめ設定した凍結防止温度を比較し
、検出温度が低い場合は凍結防止ieを出力し、−旦凍
結防止信号を出方したあとは、凍結防止温度より高く設
定した凍結解除温度と温度検出器口の検出温度を比較し
、検出温度が高い場合は凍結解除信号を出力する凍結判
定手段である。制御手段(7)は凍結防止信9゛を受け
て圧縮機(1)、送風m (4Jを停止させ、凍結解除
信号を受けて圧媚機(1)、送風機(4)を運転さぜる
In addition, (to) is attached to the indoor heat exchanger (7),
This is a temperature detector that detects the evaporation temperature during cooling operation and the condensation temperature during heating operation.The slope is determined by comparing the detected temperature at the temperature sensor port during cooling operation with the preset anti-freezing temperature, and detects when the detected temperature is low. If the detected temperature is higher, the anti-freezing signal is output, and after the anti-freezing signal is output, the de-freezing temperature set higher than the anti-freezing temperature is compared with the detected temperature at the temperature sensor port, and if the detected temperature is higher, the freezing is stopped. It is a freeze determination means that outputs a release signal. The control means (7) stops the compressor (1) and the blower (4J) upon receiving the antifreeze signal 9, and operates the compressor (1) and the blower (4) upon receiving the defreezing signal. .

従来の空気調和装置は上記のように構成されていたため
、例えば冷房M転時、及びデフロスト運転時、圧縮機(
1)より吐出された高温高圧の冷媒は四方切換弁(2)
をへて、室外側熱交換器(3)に送られ、送風tlA 
C4)より送られる空気と熱交換しここで液化される。
Since conventional air conditioners were configured as described above, for example, when turning on cooling M or during defrost operation, the compressor (
1) The high temperature and high pressure refrigerant discharged from the four-way switching valve (2)
The air is sent to the outdoor heat exchanger (3), and the air is blown tlA.
It exchanges heat with the air sent from C4) and is liquefied here.

次に、この液化された冷媒、即ち液冷媒は膨張機構(5
)で減圧され室内側熱交換器(6Jで送風機(7)より
送られる空気と熱交換し再び気化される。
Next, this liquefied refrigerant, that is, liquid refrigerant, is transferred to an expansion mechanism (5
) and exchanges heat with the air sent from the indoor heat exchanger (6J blower (7)) and is vaporized again.

気化された冷媒は四方切換弁(2^、アキュムレータ(
8)を通ったのら、圧縮’! (1)へと吸入される。
The vaporized refrigerant is transferred to the four-way switching valve (2^) and the accumulator (
8) If it passes, compress it! (1) is inhaled.

また、暖房運転時は、圧j1機(1)より吐出された高
温高圧の冷媒は四方切換弁+21をへて室内側熱交換器
(6月ζ送られ、送風f!A (7)より送られる空気
と熱交換しここで液化される。次に、この液化された冷
媒、即ち液冷媒は膨張機構(6)で減圧されぬ。減圧さ
れた冷媒は室外側熱交換器(3)で送風機(4)より送
られる空気と熱交換し再び気化される。気化された冷媒
は四方切換弁(2)、アキュムレータ(8)を通ったの
ら、圧縮fl (1)へと吸入される。このようにして
冷凍サイクルを形成する。
In addition, during heating operation, the high-temperature, high-pressure refrigerant discharged from the pressure j1 unit (1) passes through the four-way switching valve +21, is sent to the indoor heat exchanger (June ζ), and is sent from the air blower f!A (7). The liquefied refrigerant, that is, the liquid refrigerant, is then depressurized in the expansion mechanism (6).The depressurized refrigerant is sent to the outdoor heat exchanger (3), where it is liquefied. (4) It exchanges heat with the air sent from the refrigerant and is vaporized again.The vaporized refrigerant passes through the four-way switching valve (2) and the accumulator (8), and then is sucked into the compression fl (1). In this way, a refrigeration cycle is formed.

〔発明が解決しようとする課題〕 上記のような従来の空気調和装置においては、室外側熱
交換器(3)の吸込空気温度が低い場合の冷房運転にお
いては、吐出圧力が起動待上昇するまで、膨張機構(5
)の前後の圧力差が小さいため膨張機構(5]を流れる
冷媒量が少なく、−時的に蒸発温度が低下し、室内側熱
交換器(6)が凍結したと凍結防止判定手段(財)が誤
判定し、圧縮機(1)が停止する問題点があった。
[Problems to be Solved by the Invention] In the conventional air conditioner as described above, during cooling operation when the temperature of the intake air of the outdoor heat exchanger (3) is low, the discharge pressure rises until the start-up time. , expansion mechanism (5
), the amount of refrigerant flowing through the expansion mechanism (5) is small, and the evaporation temperature temporarily decreases, causing the indoor heat exchanger (6) to freeze. There was a problem that the compressor (1) would be stopped due to incorrect determination.

この発明は上記のような問題点を解消するためになされ
たもので、室外側熱交換器(3)の吸込空気温度が低い
場合の冷房運転の起動時の一時的な蒸発温度の低下によ
る凍結防止手段の誤判定を防ぎ、圧縮機(1)が連続運
転することができる空気調和装置を得ることを目的とす
る。
This invention was made in order to solve the above-mentioned problems, and is caused by freezing due to a temporary drop in evaporation temperature at the time of starting cooling operation when the temperature of the intake air of the outdoor heat exchanger (3) is low. It is an object of the present invention to provide an air conditioner in which a compressor (1) can operate continuously while preventing erroneous determination by a prevention means.

〔課題を解決するための手段」 下記目的を達成するために、本発明の空気調和装置にお
いては、圧縮機、送風機を備えた室外側熱交換器、膨張
機構、及び室内側熱交換器から構成された冷媒回路と、
上記室外側熱交換器の吸込空気温度を検出する温度検出
器と1、上記温度検出器の検出温度とあらかじめ設定し
た設定温度とを比較判定し上記検出温度の方が低い場合
は低外気温度信号を出力する外気温度判定手段と、上記
圧I縮機の吐出側冷媒圧力を検出する圧力検出器と、上
記圧力検出器の検出圧力とあらかじめ設定した設定圧力
とを比較判定し上記検出圧力の方が高い場合は圧力上昇
信号を出力する圧力上昇判定手段、及び冷房運転時の起
動時に上記外気温度判定手段から出力された上記低外気
温度信号によって上記室外側熱交換器に備えた上記送風
機を停止し、上記圧力上昇判定手段から出力された上記
圧力上昇信号、または上記圧縮機起動から一定時間経過
後のいずれかにより、上記送風機を運転させる制御手段
とを設けたものである。
[Means for Solving the Problems] In order to achieve the following objects, the air conditioner of the present invention includes a compressor, an outdoor heat exchanger equipped with a blower, an expansion mechanism, and an indoor heat exchanger. refrigerant circuit,
A temperature detector detects the intake air temperature of the outdoor heat exchanger and 1. Compare and judge the temperature detected by the temperature detector and a preset temperature, and if the detected temperature is lower, a low outside temperature signal is sent. a pressure detector that detects the refrigerant pressure on the discharge side of the compressor I compressor, and a pressure detector that compares and determines the detected pressure of the pressure detector with a preset set pressure, and determines which one is the detected pressure. If the temperature is high, the pressure increase determination means outputs a pressure increase signal, and the low outside air temperature signal output from the outside air temperature determination means at the time of startup during cooling operation stops the blower provided in the outdoor heat exchanger. The air blower is further provided with a control means for operating the blower in response to either the pressure increase signal outputted from the pressure increase determination means or after a predetermined period of time has elapsed since the start of the compressor.

また、圧縮機、送風機を備えた室外側熱交換器、膨張機
構、及び室内側熱交換器から構成された冷媒回路と、上
記圧縮機の吐出圧力を検出する圧力検出器と、上記圧縮
機の起動前の上記圧力検出器の検出圧力とあらかじめ設
定したff1lの設定圧力とを比較判定し上記検出圧力
の方が低い場合は圧力低下13号を出力し、上記圧縮機
の起動後の上記圧力検出器の検出圧力と第1の設定圧力
より高く設定した第2の設定圧力を比較判定し上記検出
圧力の方が高い場合は圧力上昇信号を出力する圧力判定
手段、及び冷房運転時の起動時に上記圧力判定手段の上
記圧力低下信号によって上記室外側熱交換器に備えた送
風機を停止し、上記圧力判定手段の上記圧力上昇信号ま
たは上記圧縮機起動から一定時間経過後のいずれかによ
り、上記送風機を運転させる制御手段とを設けたことに
より上記目的を達成することができる。
The refrigerant circuit includes a compressor, an outdoor heat exchanger equipped with a blower, an expansion mechanism, and an indoor heat exchanger, a pressure detector that detects the discharge pressure of the compressor, and a pressure detector that detects the discharge pressure of the compressor. The pressure detected by the pressure detector before startup is compared with the preset pressure of ff1l, and if the detected pressure is lower, a pressure reduction number 13 is output, and the pressure is detected after the compressor is started. a pressure determination means that compares and judges the detected pressure of the device and a second set pressure set higher than the first set pressure, and outputs a pressure increase signal if the detected pressure is higher; The blower provided in the outdoor heat exchanger is stopped by the pressure decrease signal from the pressure determination means, and the blower is stopped by either the pressure increase signal from the pressure determination means or after a certain period of time has elapsed since the start of the compressor. The above object can be achieved by providing a control means for operating the apparatus.

さらに、圧縮機、室外側熱交換器、電気式膨張弁、及び
室内側熱交換器から構成された冷媒回路と、上記室外側
熱交換器の吸込空気温度を検出する温度検出器と、上記
温度検出器の検出温度とあらかじめ設定した設定温度を
比較判定し上記検出温度の方が低い場合は低外気温度信
号を出力する外気温度判定手段、及び冷房運転の起動時
に上記外気温度判定手段が上記低外気温度信号を出力し
ていない場合は上記電気式膨張弁に一定時間第1の初期
開度を出力し、上記外気温度判定手段が上記低外気温度
信号を出力している場合は上記電気式膨張弁に一定時間
、上記第1の初期開度を出力する制御手段とを設けたこ
とにより上記目的を達成するものである。
Furthermore, the refrigerant circuit includes a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger, a temperature detector that detects the temperature of air taken into the outdoor heat exchanger, and an outside air temperature determination means that compares and judges the detected temperature of the detector and a preset temperature and outputs a low outside temperature signal if the detected temperature is lower; If the outside air temperature signal is not output, the first initial opening degree is output for a certain period of time to the electric expansion valve, and if the outside air temperature determining means is outputting the low outside air temperature signal, the electric expansion valve is outputted. The above object is achieved by providing the valve with a control means for outputting the first initial opening degree for a certain period of time.

〔作用」 この発明においては、冷房運転の起動時に室外側熱交換
器の吸込空気温度を温度検出器Cζて検出し、その検出
温度とあらかじめ設定した設定温度とを比較判定し、検
出温度の方が低い場合は室外側熱交換器に備えた送風機
を停止した状態で圧縮機を起動させ、起動後圧縮機の吐
出圧力を検出する圧力検出器Cζて検出し、その検出圧
力とあらかじめ設定した設定圧力を比較判定し、検出圧
力の方が高い場合、あるいは圧縮機起動から一定時間経
過後のいずれかにより上記送風機を運転させる。
[Operation] In this invention, the temperature of the intake air of the outdoor heat exchanger is detected by the temperature sensor Cζ at the start of cooling operation, and the detected temperature is compared with a preset temperature, and the detected temperature is determined. If the pressure is low, the compressor is started with the blower installed in the outdoor heat exchanger stopped, and after startup, the pressure detector Cζ detects the discharge pressure of the compressor, and the detected pressure and the preset settings are detected. The pressures are compared and determined, and the blower is operated either when the detected pressure is higher or after a certain period of time has passed since the compressor was started.

これにより、室外側熱交換器の吸込空気温度が低い場合
の冷房運転においては、室外側熱交換器Iこ備えた送風
機を停止させて吐出圧力を上昇させることで、膨張機構
の前後の圧力差が大きくなり膨張機構を流れる冷媒量が
増えて、−時的な蒸発温度の低下を防止し、凍結防止手
段の誤判定を回避し、圧縮機を連続運転させる。
As a result, during cooling operation when the intake air temperature of the outdoor heat exchanger is low, by stopping the blower equipped with the outdoor heat exchanger I and increasing the discharge pressure, the pressure difference before and after the expansion mechanism is increased. As the amount of refrigerant increases, the amount of refrigerant flowing through the expansion mechanism increases, thereby preventing a temporary drop in evaporation temperature, avoiding erroneous determination by the anti-freezing means, and allowing the compressor to operate continuously.

また、圧力検出器にて起動前の冷媒回路のバランス圧力
を検出し、冷房運転の起動時に、その検出圧力とあらか
じめ設定した第1の設定圧力を比較判定し、検出圧力の
方が低い場合は室外側熱交換器に備えた送風機を停止し
た状態で圧縮機を起動させ、起動後圧縮機の吐出圧力を
圧力検出器にて検出し、その検出圧力と第1の設定圧力
より高く設定した第2の設定圧力を比較判定し、検出圧
力の方が高い場合、あるいは圧縮機起動から一定時間経
過後のいずれかにより上記送風機を運転させる。これに
より、起動前の冷媒回路のバランス圧力が低くなる室外
側熱交換器の吸込空気温度が低い場合の冷房運転におい
ては、室外側熱交換器に備えた送風機を停止させて吐出
圧力を上昇させることで、膨張機構の前後の圧力差が大
きくなり膨張機構を流れる冷媒量が増えて、−時的な蒸
発温度の低下を防止し、凍結防止手段の誤判定を回避し
、圧縮機を連続運転させる。
In addition, a pressure detector detects the balance pressure of the refrigerant circuit before startup, and at the time of startup of cooling operation, the detected pressure is compared with a preset first set pressure, and if the detected pressure is lower, The compressor is started with the blower installed in the outdoor heat exchanger stopped, and after startup, the discharge pressure of the compressor is detected with a pressure detector, and the detected pressure and the first set pressure are set higher than the first set pressure. The two set pressures are compared and determined, and the blower is operated either when the detected pressure is higher or after a certain period of time has passed since the compressor was started. As a result, the balance pressure of the refrigerant circuit before startup is low. During cooling operation when the temperature of the intake air of the outdoor heat exchanger is low, the blower installed in the outdoor heat exchanger is stopped to increase the discharge pressure. As a result, the pressure difference before and after the expansion mechanism increases, and the amount of refrigerant flowing through the expansion mechanism increases, which prevents a temporary drop in evaporation temperature, avoids misjudgment of the anti-freezing means, and allows the compressor to operate continuously. let

さらに、冷房運転の起動時に温度検出器により検出され
た室外側熱交換器の吸込空気温度とあらかじめ設定した
設定温度とを比較判定し、検出温度の方が低い場合は、
第2の初期開度に電気式膨張弁の初期開度を設定した状
態で圧縮機を起動させ、一定時間この開度に固定して運
転させる。これにより、室外側熱交換器の吸込空気温度
が低い場合の冷房運転においては、圧縮機の起動時に一
定時間電気式膨張弁の初期開度を大きくし固定すること
で、電気式膨張弁を流れる冷媒量が増えて、圧縮機の吸
入側へ供給される冷媒量が増え、−時的な蒸発温度の低
下を防止し、冷結防止手段の誤判定を回避し、圧縮機を
連続運転させる。
Furthermore, when the cooling operation is started, the temperature of the intake air of the outdoor heat exchanger detected by the temperature detector is compared with the preset temperature, and if the detected temperature is lower,
The compressor is started with the initial opening degree of the electric expansion valve set to the second initial opening degree, and is operated while being fixed at this opening degree for a certain period of time. As a result, during cooling operation when the intake air temperature of the outdoor heat exchanger is low, the initial opening of the electric expansion valve is increased and fixed for a certain period of time when the compressor is started, so that the air flowing through the electric expansion valve is The amount of refrigerant increases, and the amount of refrigerant supplied to the suction side of the compressor increases, thereby preventing a temporary drop in evaporation temperature, avoiding erroneous determination by the refrigeration prevention means, and allowing the compressor to operate continuously.

〔実施例〕〔Example〕

第1図はこの発明の一実施例による空気調和装置の冷媒
回路図である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.

第1図において(1)〜に)は上記従来装置と全く同一
のものである。東は圧縮機(1)と四方切換弁(2]の
あいだの冷媒配管に接続して圧縮機(1)の吐出圧力を
検出する圧力検出器、四は室外側熱交換器(3)の吸込
空気温度を検出する温度検出器、(2)は圧縮機(1)
の作動、送風機(4)(7)の作動を制御する制御手段
、(2)はあらかじめ設定した設定温度より温度検出器
四で検出した温度の方が低い場合に低外気温度信号を出
力する外気温度判定手段、に)はあらかじめ設定した設
定圧力より圧力検出器東で検出した圧力の方が高い場合
に圧力上前信号を出力する圧力上昇判定手段である。
In FIG. 1, (1) to 3) are exactly the same as the conventional device described above. East is a pressure detector that connects to the refrigerant pipe between the compressor (1) and the four-way switching valve (2) to detect the discharge pressure of the compressor (1), and 4 is the suction of the outdoor heat exchanger (3). Temperature detector that detects air temperature, (2) is compressor (1)
(2) is an outside air controller that outputs a low outside temperature signal when the temperature detected by temperature detector 4 is lower than the preset temperature. The temperature determining means (2) is a pressure rise determining means that outputs a pressure increase signal when the pressure detected by the pressure detector east is higher than a preset set pressure.

第2図に制御手段(財)のフローチャートを示す。FIG. 2 shows a flowchart of the control means (goods).

ステップODにて空気調和装置の運転が選択されている
かを判断し、選択されている場合はステップ(至)に、
選択されていない場合はステップ(ロ)へ進む・ステッ
プ(2)にて低外気温度信号が出力されているかいなか
を判断し、出力されている場合はステップ−にて圧縮機
(1)及び送風機(7)を作動させ、送風機(4)は停
止させる。次にステップ−では圧力上昇信号が出力され
ているかを判断し、出力されている場合はステップ(至
)に、出力されていない場合はステップ国へ進む。ステ
ップ(至)では圧縮機(1)が起動してから一定時間経
過したかを判定し、経過していればステップ−へ進み、
経過していなければステップ(至)に戻る。ステップ−
では、送風機(4)を作動させて、ステップ0υに戻る
。ステップ(ロ)では圧縮機(1)、送風機(4)及び
送風機(7)を停止させて、ステップOpに戻る。
It is determined whether operation of the air conditioner is selected in step OD, and if it is selected, in step (to),
If it is not selected, proceed to step (b). In step (2), determine whether a low outside temperature signal is being output. If it is, then in step -, the compressor (1) and blower are (7) is activated, and the blower (4) is stopped. Next, in step -, it is determined whether a pressure increase signal is being outputted, and if it is being outputted, the process proceeds to step (to), and if it is not being outputted, the process proceeds to step country. In step (to), it is determined whether a certain period of time has elapsed since the compressor (1) was started, and if it has elapsed, the process proceeds to step -.
If the elapsed time has not elapsed, return to step (to). step-
Now, operate the blower (4) and return to step 0υ. In step (b), the compressor (1), blower (4), and blower (7) are stopped, and the process returns to step Op.

上記のように構成された空気調和装置においては冷房運
転の起動時に室外側熱交換器(3)の吸込空気温度を温
度検出器四にて検出し、その検出温度とあらかじめ設定
し、た設定温度を比較判定し、検出温度の方が低い場合
は室外側熱交換器(3)に備えた送風機(4)を停止し
た状態で圧縮機(1)を起動させ、起動後圧縮機(1)
の吐出圧力を検出する圧力検出器aυにて検出し、その
検出圧力とあらかじめ設定した設定圧力を比較判定し、
検出圧力の方が高い場合、あるいは圧縮機(1)起動か
ら一定時間経過後のいずれかにより上記送風機(4)を
運転させる。これにより、室外側熱交換器(3)の吸込
空気温度が低い場合の冷房運転においては、室外側熱交
換器(3)に備えた送風機(4)を停止させて圧縮機(
1)の吐出圧力を上昇させることで、膨張機構(旬の前
後の圧力差が大きくなり膨張機構(51を流れる冷媒量
が増えて、−時的な蒸発温度の低下を防止し、凍結防止
手段−の誤判定を回避し、圧縮機(1)を連続運転させ
ることができる。
In the air conditioner configured as described above, when the cooling operation is started, the temperature of the intake air of the outdoor heat exchanger (3) is detected by the temperature detector 4, and the detected temperature is set in advance and the set temperature is set. If the detected temperature is lower, the compressor (1) is started with the blower (4) provided in the outdoor heat exchanger (3) stopped, and after startup, the compressor (1)
The discharge pressure is detected by the pressure detector aυ, and the detected pressure is compared with the preset set pressure,
The blower (4) is operated either when the detected pressure is higher or after a certain period of time has passed since the compressor (1) was started. As a result, during cooling operation when the intake air temperature of the outdoor heat exchanger (3) is low, the blower (4) provided in the outdoor heat exchanger (3) is stopped and the compressor (
1) By increasing the discharge pressure of the expansion mechanism (51), the pressure difference before and after the expansion mechanism (51) increases and the amount of refrigerant flowing through the expansion mechanism (51) increases, preventing a temporary drop in evaporation temperature and preventing freezing. - It is possible to avoid the erroneous determination and operate the compressor (1) continuously.

第3図は、起動前の冷媒圧力を圧力検出器anで検出し
、この検出された圧力が第1の設定圧力より低い場合、
室外側熱交換器に備えた送風機(4)を停止させて圧縮
機(1)を起動し、吐出側圧力を上昇させることにより
、蒸発温度の低下を防止し、凍結防止判定手段(財)の
誤判定を回、避させ得る空気調和装置の一実施例を示す
ものである。aηは圧縮機(1)と四方切換弁(2)の
あいだの冷媒配管に接続して圧縮機(1)の吐出圧力を
圧縮機(1)の運転・停止にかかわらず常時検出する圧
力検出器、(2)は圧縮機(1)の作動、送風機(4)
(7)の作動を制御する制御手段、儲は圧力検出器(ロ
)で検出した圧縮機(1)の起動前の圧力の方があらか
じめ設定した第1の設定圧力より低い場合に圧力低下信
号を出力し、圧力検出器anで検出した圧縮機(1)の
起動後の圧力の方が第1の設定圧力より高く設定した第
2の設定圧力より高い場合に圧力上昇信号を出力する圧
力判定手段である。
FIG. 3 shows that the refrigerant pressure before startup is detected by a pressure detector an, and when the detected pressure is lower than the first set pressure,
By stopping the blower (4) provided in the outdoor heat exchanger and starting the compressor (1) to increase the pressure on the discharge side, a drop in the evaporation temperature is prevented and the freezing prevention determination means (foundation) is activated. This is an example of an air conditioner that can avoid erroneous determinations. aη is a pressure detector that is connected to the refrigerant pipe between the compressor (1) and the four-way switching valve (2) and constantly detects the discharge pressure of the compressor (1) regardless of whether the compressor (1) is running or stopping. , (2) is the operation of the compressor (1), the blower (4)
A control means for controlling the operation of (7) is used to signal a pressure drop when the pressure detected by the pressure detector (b) before starting the compressor (1) is lower than the first set pressure set in advance. and outputs a pressure increase signal when the pressure after starting the compressor (1) detected by the pressure detector an is higher than the second set pressure, which is set higher than the first set pressure. It is a means.

第4図に制御手段(2)のフローチャートを示す。FIG. 4 shows a flowchart of the control means (2).

ステップ(2)にて空気調和装置の運転が選択されてい
るかを判断し、選択されている場合はステップ(2)に
、選択されていない場合はステップ−へ進む。
In step (2), it is determined whether the operation of the air conditioner is selected, and if it is selected, the process proceeds to step (2), and if it is not selected, the process proceeds to step -.

ステップ(至)にて圧力低下信号が出力されているかを
判断し、出力されている場合はステップ關に、出力され
ていない場合はステップ(至)へ進む。ステップ(至)
にて圧縮機(1)及び送風機(7)を作動させ、送風機
(4)は停止させる。ステップ(財)では圧力上昇信号
が出力されているかを判断し、出力されている場合はス
テップ−に、出力されていない場合はステップ(至)へ
進む。ステップ(至)では圧縮機(1)が起動してから
一定時間経過したかを判定し、経過していればステップ
翰へ進み、経過していなければステップ−に戻る。ステ
ップ−では、送風機(4)を作動させて、ステップ(2
)に戻る。ステップ(ロ)では圧縮機(1)、送風機(
4)及び送風機(7)を停止させて、ステップ((])
lこ戻る。ステップ■では圧縮機(1)、送風機(4)
及び送風機(7)を作動させて、ステップG1)に戻る
In step (to), it is determined whether a pressure drop signal is being outputted, and if it is being output, the process proceeds to step (to), and if it is not being output, the process proceeds to step (to). step (to)
The compressor (1) and the blower (7) are operated, and the blower (4) is stopped. In step (good), it is determined whether a pressure increase signal is being outputted, and if it is being outputted, the process proceeds to step -, and if it is not being outputted, the process proceeds to step (to). In step (to), it is determined whether a certain period of time has elapsed since the compressor (1) was started, and if it has elapsed, the process advances to step 1, and if it has not elapsed, it returns to step -. In step -, the blower (4) is operated and step (2)
). In step (B), the compressor (1), the blower (
4) and the blower (7), and step (())
I'm back. In step ■, compressor (1), blower (4)
Then, operate the blower (7) and return to step G1).

上記のように構成された空気調和装置においては、冷房
運転の起動時に圧力検出器四にて起動前の冷媒回路のバ
ランス圧力を検出し、その検出圧力とあらかじめ設定し
た第1の設定圧力を比較判定し、検出圧力の方が低い場
合は室外側熱交換器(3)に備えた送風機(4)を停止
した状態で圧縮機(1)を起動させ、起動後圧縮機(1
)の吐出圧力を圧力検出器四にて検出し、その検出圧力
と第1の設定圧力より高く設定した第2の設定圧力を比
較判定し、検出圧力の方が高い場合、あるいは圧縮機(
1)起動から一定時間後のいずれかにより上記送風機(
4)を運転させる。これにより、起動前の冷媒回路のバ
ランス圧力が低い場合の冷房運転においては、室外側熱
交換器(3)に備えた送風機(4)を停止させて圧縮機
(1)の吐出圧力を上昇させることで、膨張@!11(
5)の前後の圧力差が大きくなり膨張機構(旬を流れる
冷媒量が増えて、−時的な蒸発温度の低下を防止し、凍
結防止手段(財)の誤判定を回避し、圧縮機(1)を連
続運転させることができる。
In the air conditioner configured as described above, when starting cooling operation, pressure detector 4 detects the balance pressure of the refrigerant circuit before starting, and compares the detected pressure with the first set pressure set in advance. If the detected pressure is lower, the compressor (1) is started with the blower (4) provided in the outdoor heat exchanger (3) stopped, and after startup, the compressor (1) is
) is detected by pressure detector 4, and the detected pressure is compared with a second set pressure set higher than the first set pressure.
1) The above blower (
4) Let it run. As a result, during cooling operation when the balance pressure of the refrigerant circuit before startup is low, the blower (4) provided in the outdoor heat exchanger (3) is stopped to increase the discharge pressure of the compressor (1). So, expansion @! 11(
5) As the pressure difference before and after the expansion mechanism increases, the amount of refrigerant flowing through the expansion mechanism increases, which prevents a temporary drop in evaporation temperature, avoids misjudgment of the anti-freezing means, and increases the amount of refrigerant flowing through the expansion mechanism. 1) can be operated continuously.

第5図に示す実施例では、起動時、室外側熱交換器(3
)の吸込空気温度があらかじめ設定した設定温度より低
い場合、一定時間、電気式膨張弁(5a)の弁開度を第
2の初期開度で起動することにより、蒸発温度の低下を
防止し、凍結防止判定手段(財)の誤判定を回避させ得
る空気調和装置の一実施例を示している。図において、
(1)〜(4) (6) (7) (8)曽(2)(2
)は第7図に示す従来装置と同様のものである。Q4は
圧縮機(1)と四方切換弁(2)のあいだの冷媒配管に
接続して圧縮機(1)の吐出圧力を検出する圧力検出器
、四は室外側熱交換機(3ンの吸込空気温度を検出する
温度検出器、(2)は圧縮機(1)の作動、送風機(4
)(7)の作動、電気式膨張弁(5a)の開度を制御す
る制御手段である。
In the embodiment shown in FIG. 5, at startup, the outdoor heat exchanger (3
) is lower than the preset temperature, the electric expansion valve (5a) is opened at a second initial opening for a certain period of time to prevent the evaporation temperature from decreasing; 1 shows an embodiment of an air conditioner that can avoid erroneous determination by the antifreeze determination means. In the figure,
(1)-(4) (6) (7) (8) Zeng (2) (2
) is similar to the conventional device shown in FIG. Q4 is a pressure detector connected to the refrigerant pipe between the compressor (1) and the four-way switching valve (2) to detect the discharge pressure of the compressor (1), and 4 is the outdoor heat exchanger (3) A temperature sensor (2) detects the temperature, the operation of the compressor (1), and the blower (4).
) (7) and the opening degree of the electric expansion valve (5a).

第6図に制御手段(ロ)のフローチャートを示す。FIG. 6 shows a flowchart of the control means (b).

ステップ0ηにて空気調和装置の運転が選択されている
かを判断し、通訳されている場合はステップに)に、選
択されていない場合はステップ(6)へ進む。
At step 0η, it is determined whether operation of the air conditioner has been selected, and if it has been interpreted, the process proceeds to step (), and if it has not been selected, the process proceeds to step (6).

ステップ(2)では低外気温度信号が出力されているか
を判断し、出力されている場合はステップ瞥に、出力さ
れていない場合はステップ−へ進む。ステップ(至)に
て圧縮機(1)及び送風機(4)(7)を作動させ、第
2の初期開度を出力する。ステップ−にて圧縮機(1)
及び送風機(4) (73を作動させ、第1の初期開度
を出力する。ステップ(至)にて圧縮機(1)が起動し
てから一定時間経過したかを判定し、経過していなけえ
ばステップ(至)へ進み、経過していればステップr3
ηへ進む。ステップ−では温度検出器(イ)で検出した
温度と圧力検出器α◆で検出した圧力の飽和温度の差が
あらかじめ設定した設定値より大きいか小さいかを判定
し、大きい場合はステップ(至)へ進み、小さい場合は
ステップ四へ進み、等しい場合はステップ(2)に戻る
。ステップ(至)では、電気式膨張弁(5a)の開度を
大きくシ、ステップc(珍に戻る。
In step (2), it is determined whether a low outside temperature signal is being outputted, and if it is being outputted, the process goes to step 1; if it is not being outputted, the process goes to step -. In step (to), the compressor (1) and the blowers (4) and (7) are operated to output the second initial opening degree. Step-in compressor (1)
and blower (4) (73) and outputs the first initial opening degree.In step (to), it is determined whether a certain period of time has elapsed since the compressor (1) was started, and if it has not elapsed. For example, proceed to step (to), and if it has elapsed, proceed to step r3
Proceed to η. In step -, it is determined whether the difference between the saturation temperature of the temperature detected by temperature detector (a) and the pressure detected by pressure detector α◆ is larger or smaller than a preset setting value, and if it is larger, step (to) is determined. If they are smaller, go to step 4; if they are equal, go back to step (2). In step (to), the opening degree of the electric expansion valve (5a) is increased, and the process returns to step c (until).

ステップ四では、電気式膨張弁(5a)の開度を小さく
シ、ステップ6pに戻る。ステップ顛では圧縮機(1)
、送風機(4)及び送風機(7)を停止させて、ステッ
プOpに戻る。
In step 4, the opening degree of the electric expansion valve (5a) is decreased and the process returns to step 6p. In the step sequence, compressor (1)
, the blower (4) and the blower (7) are stopped, and the process returns to step Op.

上記のように構成された空気調和装置においては、冷房
運転の起動時に室外側熱交換器(3)の吸込空気温度を
温度検出器曹にて検出し、その検出温度とあらかじめ設
定した設定温度を比較判定し、検出温度の方が低い場合
は、検出温度の方が高い場合に設定される第1の初期開
度より大きい第2の初期開度に電気式膨張弁(5a)の
初期開度を設定した状態で圧縮機(1)を起動させ、一
定時間Cの開度に電気式膨張弁(5m)の開度を固定し
て運転させる。これにより、室外側熱交換器(3)の吸
込空気温度が低い場合の冷房運転においては、圧縮機(
1)の起動時に一定時間電気式膨張弁(li)の初期開
度を大きくし固定することで、電気式膨張力、る冷媒量
が増えて、圧縮機(1)の吸入側へ供給される冷媒量が
増えて、−時的な蒸発温度の低下を防止し、凍結防止手
段の誤判定を回避し、圧縮機(1)を連続運転させるこ
とができる。
In the air conditioner configured as described above, the temperature of the intake air of the outdoor heat exchanger (3) is detected by the temperature sensor at the time of starting the cooling operation, and the detected temperature and the preset temperature are detected. After comparing and determining, if the detected temperature is lower, the initial opening of the electric expansion valve (5a) is set to a second initial opening that is larger than the first initial opening that is set when the detected temperature is higher. With this setting, the compressor (1) is started, and the electric expansion valve (5 m) is operated with the opening degree fixed at the opening degree C for a certain period of time. As a result, the compressor (
By increasing and fixing the initial opening of the electric expansion valve (li) for a certain period of time at the time of 1) startup, the electric expansion force increases the amount of refrigerant that is supplied to the suction side of the compressor (1). By increasing the amount of refrigerant, it is possible to prevent a temporary drop in the evaporation temperature, avoid erroneous determination by the anti-freeze means, and allow the compressor (1) to operate continuously.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したようCζ纏成されているので、以
下に記載するような効果を奏する。圧縮機、送風機を備
えた室外側熱交換器、膨張機構、及び室内側熱交換器か
ら構成された冷媒回路と、上記室外側熱交換器の吸込空
気温度を検出する温度検出器と、上記温度検出器の検出
温度とあらかじめ設定した設定温度とを比較判定し上記
検出温段の低い場合は区外9cm変信号を出力する外気
温度判定手段と、上記圧縮機の吐出圧力を検出する圧力
検出器と、上記圧力検出器の検出圧力とあらかじめ設定
した設定圧力とを比較判定し上記検出圧力の方が高い場
合は圧力上昇信号を出力する圧力上昇判定手段、及び冷
房運転時の起動時に、上記外気温度判定手段から出力さ
れた上記低外気温度信号によって上記室外側熱交換器に
備えた送風機を停止し、上記圧力上昇判定手段の上記圧
力上昇信号、または上記圧縮機起動から一定時間経過後
のいずれかにより、上記送風機を運転させる制御手段を
設けたこと檻より、室外側熱交換器の吸込空気温度が低
い場合の冷房運転の起動時の一時的な蒸発温度の低下1
こよる凍結防止手段の誤判定を防ぎ、圧縮機を連続運転
させることができる。
Since the present invention is composed of Cζ as described above, it produces the effects described below. a refrigerant circuit composed of an outdoor heat exchanger equipped with a compressor, an air blower, an expansion mechanism, and an indoor heat exchanger; a temperature detector that detects the temperature of air sucked into the outdoor heat exchanger; an outside air temperature determining means that compares and determines the temperature detected by the detector with a preset temperature and outputs an out-of-zone 9 cm change signal if the detected temperature stage is low; and a pressure detector that detects the discharge pressure of the compressor. and a pressure increase determination means that compares and determines the detected pressure of the pressure detector with a preset set pressure and outputs a pressure increase signal if the detected pressure is higher, and a pressure increase determination means that outputs a pressure increase signal when the detected pressure is higher, and The blower provided in the outdoor heat exchanger is stopped in response to the low outside air temperature signal outputted from the temperature determining means, and the blower provided in the outdoor heat exchanger is stopped in response to the pressure increase signal from the pressure increase determining means, or either after a certain period of time has elapsed from the start of the compressor. Accordingly, a control means for operating the blower is provided.The temporary reduction in evaporation temperature at the time of starting the cooling operation when the temperature of the intake air of the outdoor heat exchanger is low1.
It is possible to prevent such erroneous determination of the anti-freezing means and to allow continuous operation of the compressor.

また、圧縮機、送風機を備えた室外側熱交換器、膨張機
構、及び室内側熱交換器から構成された冷媒回路と、上
記圧縮機の吐出圧力を検出する圧力検出器と、上記圧縮
機の検出圧力とあらかじめ設定した第1の設定圧力とを
比較判定し上記検出圧力の方が低い場合は圧力低下信号
を出力し、上記圧縮機の起動後の検出圧力と第1の設定
圧力より高く設定した第2の設定圧力とを比較判定し上
記検出圧力の方が高い場合は圧力上昇信号を出力する圧
力判定手段、冷房運転の起動時に上記圧力判定手段の上
記圧力低下信号によって上記室外側熱交換器に備えた上
記送風機を停止し、上記圧力判定手段の上記圧力上昇信
号、または上記圧縮機起動から一定時間経過後のいずれ
かにより、上記送風機を運転させる制御手段を設けたこ
とにより、圧W3機起動前のバランス圧力が低い場合の
冷房運転の起動時の一時的な蒸発温度の低下による凍結
防止手段の誤判定を防ぎ、圧縮機を連続運転することが
できる。
The refrigerant circuit includes a compressor, an outdoor heat exchanger equipped with a blower, an expansion mechanism, and an indoor heat exchanger, a pressure detector that detects the discharge pressure of the compressor, and a pressure detector that detects the discharge pressure of the compressor. The detected pressure is compared and determined with a first set pressure set in advance, and if the detected pressure is lower, a pressure drop signal is output, and the pressure is set higher than the detected pressure after starting the compressor and the first set pressure. A pressure determining means compares and determines the detected pressure with a second set pressure, and outputs a pressure increase signal when the detected pressure is higher, and the outdoor heat exchanger receives the pressure decrease signal from the pressure determining means at the time of starting the cooling operation. By providing a control means for stopping the blower provided in the compressor and operating the blower in response to either the pressure increase signal from the pressure determining means or after a certain period of time has elapsed since the start of the compressor, the pressure W3 can be reduced. It is possible to prevent erroneous determination by the anti-freeze means due to a temporary drop in evaporation temperature at the time of starting cooling operation when the balance pressure before starting the engine is low, and to allow continuous operation of the compressor.

また、圧縮機、室外側熱交換器、電気式膨張弁、及び室
内側熱交換器から構成された冷媒回路と、上記室外側熱
交換器の吸込空気温度を検出する温度検出器と、上記温
度検出器の検出温度とあらかじめ設定した設定温度とを
比較判定し上記検出温度の方が低い場合は低外気温度信
号を出力する外気温度判定手段、あらかじめ設定した第
1の初期開度及び第1の初期開度より大きく設定した第
2の初期開度を備え、冷房運転起動時に上記外気温度判
定手段が上記低外気温度信号を出力していない場合は上
記電気式膨張弁に一定時間第1の初期赤変を出力し、上
記外気温度判定手段が上記低外気温度信号を出力してい
る場合は上記電気式膨張弁に一定時間第2の初期開度を
出力する制御手段を設けたことにより、室外側熱交換器
の吸込空気温度が低い場合の冷房運転の起動時の一時的
な蒸発温度の低下による凍結防止手段の誤判定を防ぎ、
圧縮機を連続運転させることができるものである。
Further, the refrigerant circuit includes a compressor, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger, a temperature detector that detects the temperature of air taken into the outdoor heat exchanger, and an outside air temperature determination means that compares and determines the detected temperature of the detector and a preset set temperature and outputs a low outside air temperature signal if the detected temperature is lower; A second initial opening degree is set larger than the initial opening degree, and if the outside air temperature determining means does not output the low outside air temperature signal at the time of starting the cooling operation, the electric expansion valve is set to the first initial opening degree for a certain period of time. By providing a control means for outputting a second initial opening degree for a certain period of time to the electric expansion valve when the outside air temperature determination means outputs the low outside air temperature signal, Prevents misjudgment of anti-freeze measures due to a temporary drop in evaporation temperature when starting cooling operation when the intake air temperature of the outside heat exchanger is low.
The compressor can be operated continuously.

【図面の簡単な説明】[Brief explanation of drawings]

第1、第3、第5図はそれぞれこの発明の一実施例Cζ
よる空気調和装置の全体構成図、M2、第4、第6図は
それぞれ第1、第3、第5図に示す制御手段の動作を示
すフローチャート、第7図は従来の空気調和装置の全体
構成図である。 これらの図において、(1)は圧縮機、(3)は室外側
熱交換器、(4)は室外側熱交換器用送風機、(6)は
膨張機構、(5a)は電気式膨張弁、(6目よ室内側熱
交換器、0は圧力検出器、韓は温度検出器、(財)は制
御手段、に)は外気温度判定手段、(至)は圧力上昇判
定手段である。 なお、各図中同一符号は同一または相当部分を示す。
1, 3, and 5 are each an embodiment of the present invention Cζ
Figures M2, 4, and 6 are flowcharts showing the operation of the control means shown in Figures 1, 3, and 5, respectively, and Figure 7 is the overall configuration of a conventional air conditioner. It is a diagram. In these figures, (1) is a compressor, (3) is an outdoor heat exchanger, (4) is a blower for the outdoor heat exchanger, (6) is an expansion mechanism, (5a) is an electric expansion valve, ( Number 6 is the indoor heat exchanger, 0 is the pressure detector, 0 is the temperature detector, (goods) is the control means, ni) is the outside air temperature determination means, and (to) is the pressure rise determination means. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮機、送風機を備えた室外側熱交換器、膨張機
構、及び室内側熱交換器から構成された冷媒回路、上記
室外側熱交換器の吸込空気温度を検出する温度検出器、
上記温度検出器の検出温度とあらかじめ設定した設定温
度とを比較判定し、上記検出温度の方が低い場合は低外
気温度信号を出力する外気温度判定手段、上記圧縮機の
吐出側冷媒圧力を検出する圧力検出器、上記圧力検出器
の検出圧力とあらかじめ設定した設定圧力とを比較判定
し上記検出圧力の方が高い場合は圧力上昇信号を出力す
る圧力上昇判定手段、及び冷房運転時の起動時に上記外
気温度判定手段から出力された上記低外気温度信号によ
つて上記室外側熱交換器に備えた上記送風機を停止し、
上記圧縮機起動後上記圧力上昇判定手段から出力された
上記圧力上昇信号、または上記圧縮機起動から一定時間
経過後のいずれかにより、上記送風機を運転させる制御
手段を設けたことを特徴とする空気調和装置。
(1) A refrigerant circuit composed of a compressor, an outdoor heat exchanger equipped with a blower, an expansion mechanism, and an indoor heat exchanger, a temperature detector that detects the temperature of the air sucked into the outdoor heat exchanger,
Outside air temperature determination means that compares and judges the temperature detected by the temperature detector and a preset temperature, and outputs a low outside air temperature signal if the detected temperature is lower; detects the refrigerant pressure on the discharge side of the compressor; a pressure detector that compares the detected pressure of the pressure detector with a preset set pressure and outputs a pressure increase signal if the detected pressure is higher; and a pressure increase determination means that outputs a pressure increase signal when the detected pressure is higher; stopping the blower provided in the outdoor heat exchanger based on the low outside air temperature signal output from the outside air temperature determining means;
The air blower is further provided with a control means for operating the blower in response to either the pressure increase signal output from the pressure increase determination means after the compressor is started, or after a certain period of time has elapsed since the compressor was started. harmonization device.
(2)圧縮機、送風機を備えた室外側熱交換機、膨張機
構、及び室内側熱交換器から構成された冷媒回路、上記
圧縮機の吐出側冷媒圧力を検出する圧力検出器、上記圧
縮機の起動前の上記圧力検出器の検出圧力とあらかじめ
設定した第1の設定圧力とを比較判定し上記検出圧力の
方が低い場合は圧力低下信号を出力し、上記圧縮機起動
後の上記圧力検出器の検出圧力と第1の設定圧力より高
く設定した第2の設定圧力とを比較判定し上記検出圧力
の方が高い場合は圧力上昇信号を出力する圧力判定手段
、及び冷房運転の起動時に上記圧力判定手段から出力さ
れた上記圧力低下信号によつて上記室外側熱交換器に備
えた上記送風機を停止し、上記圧縮機起動後に上記圧力
判定手段から出力された上記圧力上昇信号、または上記
圧縮機起動から一定時間経過後のいずれかにより、上記
送風機を運転させる制御手段を設けたことを特徴とする
空気調和装置。
(2) A refrigerant circuit composed of a compressor, an outdoor heat exchanger equipped with a blower, an expansion mechanism, and an indoor heat exchanger, a pressure detector that detects the refrigerant pressure on the discharge side of the compressor, and a pressure detector that detects the refrigerant pressure on the discharge side of the compressor; Comparing and determining the detected pressure of the pressure detector before startup with a preset first setting pressure, and if the detected pressure is lower, a pressure decrease signal is output, and the pressure detector detects the pressure after starting the compressor. a pressure determination means that compares and determines the detected pressure with a second set pressure set higher than the first set pressure and outputs a pressure increase signal if the detected pressure is higher; The blower provided in the outdoor heat exchanger is stopped in response to the pressure decrease signal outputted from the determination means, and the pressure increase signal outputted from the pressure determination means after the compressor is started, or the compressor An air conditioner comprising: a control means for operating the blower at any time after a predetermined period of time has elapsed from activation.
(3)圧縮機、室外側熱交換器、電気式膨張弁、及び窒
内側交換器から構成あれた冷媒回路、上記室外側熱交換
器の吸込空気温度を検出する温度検出器、上記温度検出
器の検出温度とあらかじめ設定した設定温度とを比較判
定し上記検出温度の方が低い場合は低外気温度信号を出
力する外気温度判定手段、冷房運転の起動時に上記外気
温度判定手段が上記低外気温度信号を出力していない場
合は上記電気式膨張弁に一定時間第1の初期開度を出力
し、上記外気温度判定手段が上記低外気温度信号を出力
している場合は上記電気式膨張弁に一定時間上記第1の
初期開度より大きい第2の初期開度を出力する制御手段
を設けたことを特徴とする空気調和装置。
(3) A refrigerant circuit consisting of a compressor, an outdoor heat exchanger, an electric expansion valve, and a nitrous inner exchanger, a temperature detector that detects the temperature of the intake air of the outdoor heat exchanger, and the temperature detector an outside air temperature determination means that compares and determines the detected temperature with a preset temperature and outputs a low outside temperature signal if the detected temperature is lower; If the signal is not output, the first initial opening degree is output for a certain period of time to the electric expansion valve, and if the outside air temperature determining means is outputting the low outside temperature signal, the electric expansion valve is outputted. An air conditioner comprising: a control means for outputting a second initial opening degree that is larger than the first initial opening degree for a certain period of time.
JP1167580A 1989-06-29 1989-06-29 Air conditioning apparatus Pending JPH0331643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167580A JPH0331643A (en) 1989-06-29 1989-06-29 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167580A JPH0331643A (en) 1989-06-29 1989-06-29 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH0331643A true JPH0331643A (en) 1991-02-12

Family

ID=15852386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167580A Pending JPH0331643A (en) 1989-06-29 1989-06-29 Air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH0331643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132818A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Control method for refrigerating cycle device, and refrigerating cycle device using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198942A (en) * 1981-06-02 1982-12-06 Sanyo Electric Co Ltd Air conditioner
JPS6160046A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Telegraphic message security system at fault in store and forward exchange system
JPS61143645A (en) * 1984-12-18 1986-07-01 Mitsubishi Electric Corp Air conditioner
JPS6160046B2 (en) * 1982-08-30 1986-12-19 Kyoshin Kk
JPS63290368A (en) * 1987-05-21 1988-11-28 松下冷機株式会社 Heat pump type air conditioner
JPH01225852A (en) * 1988-03-03 1989-09-08 Daikin Ind Ltd High pressure controller for air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198942A (en) * 1981-06-02 1982-12-06 Sanyo Electric Co Ltd Air conditioner
JPS6160046B2 (en) * 1982-08-30 1986-12-19 Kyoshin Kk
JPS6160046A (en) * 1984-08-31 1986-03-27 Fujitsu Ltd Telegraphic message security system at fault in store and forward exchange system
JPS61143645A (en) * 1984-12-18 1986-07-01 Mitsubishi Electric Corp Air conditioner
JPS63290368A (en) * 1987-05-21 1988-11-28 松下冷機株式会社 Heat pump type air conditioner
JPH01225852A (en) * 1988-03-03 1989-09-08 Daikin Ind Ltd High pressure controller for air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132818A (en) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd Control method for refrigerating cycle device, and refrigerating cycle device using the same

Similar Documents

Publication Publication Date Title
US7360372B2 (en) Refrigeration system
JP2017142039A (en) Air conditioner
US20200271344A1 (en) Air-conditioning apparatus
US20190301780A1 (en) A method for handling fault mitigation in a vapour compression system
JP2017142038A (en) Refrigeration cycle device
WO2006051853A1 (en) Freezing apparatus
KR20190040671A (en) Air conditioner and control method thereof
KR101677031B1 (en) Air conditioner and Control method of the same
GB2533042A (en) Air conditioner
KR102500807B1 (en) Air conditioner and a method for controlling the same
US20220186988A1 (en) Refrigeration apparatus
JPH0331643A (en) Air conditioning apparatus
JPH0730979B2 (en) Air conditioner
US20220146165A1 (en) Air conditioning apparatus
WO2018037466A1 (en) Refrigeration cycle device
GB2533041A (en) Air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JP3303689B2 (en) Binary refrigeration equipment
JPH10132406A (en) Refrigerating system
JPH07243726A (en) Two-stage cooler
US20220221208A1 (en) Heat source unit and refrigeration apparatus
JP2003294292A (en) Air conditioner
JP2882172B2 (en) Air conditioner
JPH08128747A (en) Controller for air conditioner
JP4023385B2 (en) Refrigeration equipment