JP2005241169A - Refrigerant circuit of air conditioner - Google Patents

Refrigerant circuit of air conditioner Download PDF

Info

Publication number
JP2005241169A
JP2005241169A JP2004053069A JP2004053069A JP2005241169A JP 2005241169 A JP2005241169 A JP 2005241169A JP 2004053069 A JP2004053069 A JP 2004053069A JP 2004053069 A JP2004053069 A JP 2004053069A JP 2005241169 A JP2005241169 A JP 2005241169A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
pressure
valve
refrigerant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004053069A
Other languages
Japanese (ja)
Inventor
Mitsuru Nakamura
満 中村
Shinichi Isozumi
晋一 五十住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004053069A priority Critical patent/JP2005241169A/en
Publication of JP2005241169A publication Critical patent/JP2005241169A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant circuit of an air conditioner which can be stably operated at a low manufacturing cost. <P>SOLUTION: In the refrigerant circuit of the air conditioner in which a compressor 2, condenser 3 (or 5), an expansion valve 7b (or 7a) and an evaporator 5 (or 3) are sequentially connected by a refrigerant flow passage, a flow passage L for bypassing a space B between the evaporator 5 and the compressor 2 and a space A between the condenser 3 and the expansion valve 7b are provided and an electromagnetic opening/closing valve 10 and a capillary tube 9 are provided at the bypassing flow passage L with the capillary tube 9 on the B side and the electromagnetic opening/closing valve 10 on the A side. A pressure sensor 11 is provided between the electromagnetic opening/closing valve 10 and the capillary tube 9 and "fixed evaporating pressure control" is conducted during cooling operation and "fixed condensing pressure control" is conducted during heating operation by work control of the electromagnetic opening/closing valve 10. In addition, in the case that temperature of discharging refrigerant from the compressor 2 abnormally rises, liquid refrigerant is introduced to the compressor 2 through the bypassing flow passage for cooling down the compressor 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、安定運転が可能な空気調和機の冷媒回路に関する。   The present invention relates to a refrigerant circuit of an air conditioner capable of stable operation.

図4は、室内空調に利用する従来の蒸気圧縮式空気調和機の冷媒回路の概略構成図である。以下に、この冷媒回路の冷凍サイクルについて説明する。   FIG. 4 is a schematic configuration diagram of a refrigerant circuit of a conventional vapor compression air conditioner used for indoor air conditioning. Below, the refrigerating cycle of this refrigerant circuit is demonstrated.

冷媒回路は、冷房時及び暖房時における冷媒回路内の冷媒流れを制御する四方弁21と、圧縮機22と、冷房時に蒸発器として作用すると共に暖房時に凝縮器として作用する室内熱交換器23と、この室内熱交換器23に風を送り込むための室内ファン24と、冷房時に凝縮器として作用すると共に暖房時に蒸発器として作用する室外熱交換器25と、この室外熱交換器25に風を送り込む室外ファン26と、冷房時に膨張弁として作用すると共に暖房時に全開状態となり配管の一部となる膨張弁27aと、冷房時に全開状態となり配管の一部となると共に暖房時に膨張弁として作用する膨張弁27bと、アキュームレータ28と、これらを接続する配管とからなる。   The refrigerant circuit includes a four-way valve 21 that controls the refrigerant flow in the refrigerant circuit during cooling and heating, a compressor 22, and an indoor heat exchanger 23 that functions as an evaporator during cooling and as a condenser during heating. The indoor fan 24 for sending wind to the indoor heat exchanger 23, the outdoor heat exchanger 25 acting as a condenser during cooling and as an evaporator during heating, and sending the wind into the outdoor heat exchanger 25 The outdoor fan 26, an expansion valve 27a that acts as an expansion valve during cooling and is fully opened during heating and becomes part of the piping, and an expansion valve that is fully opened during cooling and becomes part of the piping and acts as an expansion valve during heating. 27b, an accumulator 28, and piping connecting them.

また、冷媒回路の安定な運転を目的として、熱交換器23,25にはサーミスタ温度検出器29a,29bが設けられており、凝縮温度又は蒸発温度を検出することにより、凝縮圧力又は蒸発圧力を推測して、圧縮機22の回転数やファン24,26等を制御している。   For the purpose of stable operation of the refrigerant circuit, the heat exchangers 23 and 25 are provided with thermistor temperature detectors 29a and 29b, and the condensation pressure or the evaporation pressure is detected by detecting the condensation temperature or the evaporation temperature. By presuming, the rotation speed of the compressor 22 and the fans 24 and 26 are controlled.

冷房時は四方弁21を実線状態に設定することにより圧縮機22から吐出された冷媒は実線矢印のように室外熱交換器25から室内熱交換器23の方向に流れる。一方、暖房時は四方弁21を破線状態に設定することにより圧縮機22から吐出された冷媒は破線矢印のように、冷房のときと逆方向に流れる。   During cooling, the four-way valve 21 is set to a solid line state, whereby the refrigerant discharged from the compressor 22 flows from the outdoor heat exchanger 25 to the indoor heat exchanger 23 as indicated by a solid line arrow. On the other hand, during heating, the four-way valve 21 is set in a broken line state so that the refrigerant discharged from the compressor 22 flows in the opposite direction to that during cooling, as indicated by a broken line arrow.

次に、図5に示すモリエル線図を参照して、上記冷凍サイクルでの冷媒の状態変化について説明する。図5では縦軸に圧力、横軸にエンタルピをとっている。なお、同図において、xは冷媒の気相状態、液相状態および気液2相状態の境界を示す曲線であり、頂点yは臨界点を示し、これより右側の曲線部分は飽和蒸気線を示し、左側の曲線部分は飽和液線を示し、その内部は気相状態の冷媒と液相状態の冷媒が混合した気液2相状態の湿り蒸気を示している。飽和蒸気線の右側は過熱蒸気域であり、飽和液線の左側は過冷却された液領域である。   Next, the state change of the refrigerant in the refrigeration cycle will be described with reference to the Mollier diagram shown in FIG. In FIG. 5, the vertical axis represents pressure and the horizontal axis represents enthalpy. In the figure, x is a curve indicating the boundary between the gas phase state, the liquid phase state and the gas-liquid two-phase state of the refrigerant, the vertex y indicates the critical point, and the curve portion on the right side of this indicates the saturated vapor line. The curve portion on the left shows a saturated liquid line, and the inside thereof shows gas-liquid two-phase wet steam in which a gas-phase refrigerant and a liquid-phase refrigerant are mixed. The right side of the saturated vapor line is a superheated steam region, and the left side of the saturated liquid line is a supercooled liquid region.

湿り蒸気の範囲では、圧力一定のとき温度も一定であり、1対1の対応関係が有る。この関係は、発明の実施形態において詳細に説明する温度を測定して圧力を間接的に知る方法、すなわち、圧力の間接測定方法の根拠である。   In the wet steam range, the temperature is constant when the pressure is constant, and there is a one-to-one correspondence. This relationship is the basis of a method of measuring the temperature, which will be described in detail in the embodiments of the invention, to indirectly know the pressure, that is, a method of indirectly measuring the pressure.

図中a−b間では、冷媒は圧縮機22で圧縮されることによって、高温高圧の過熱蒸気となっている。また、図中b−c間では、冷媒は凝縮器23(暖房時)又は25(冷房時)内で凝縮されることによって、過熱蒸気状態から2相状態を経て過冷却された液体状態になる。そして、図中c−d間では、冷媒は膨張弁27a(冷房時)又は27b(暖房時)で減圧されることによって、低温低圧の気液2相状態(液状冷媒とガス冷媒との混合状態)の湿り度が大きい2相冷媒となる。図中d−a間では、湿り冷媒は蒸発器25(暖房時)又は23(冷房時)内で周囲から熱を奪うことによって蒸発して湿り度が低下(乾き度が増大)し、やがて若干過熱した過熱蒸気となる。そして、過熱蒸気となった冷媒が、アキュームレータ28を介して、再び圧縮機22内へ送り込まれることになる。   Between a and b in the figure, the refrigerant is compressed by the compressor 22 to become high-temperature and high-pressure superheated steam. Moreover, between bc in a figure, a refrigerant | coolant is condensed in the condenser 23 (at the time of heating) or 25 (at the time of air_conditioning | cooling), and becomes a supercooled liquid state from a superheated steam state through a two-phase state. . And between cd in a figure, a refrigerant | coolant is pressure-reduced by the expansion valve 27a (at the time of cooling) or 27b (at the time of heating), and is a low-temperature low-pressure gas-liquid two-phase state (mixed state of a liquid refrigerant and a gas refrigerant) ) Is a two-phase refrigerant with a high wetness. Between da in the figure, the wet refrigerant evaporates by removing heat from the surroundings in the evaporator 25 (during heating) or 23 (during cooling), and the wetness decreases (dryness increases). It becomes superheated superheated steam. Then, the refrigerant that has become superheated steam is sent again into the compressor 22 via the accumulator 28.

実際には蒸発器25(暖房時)又は23(冷房時)からの吐出戻り冷媒は、上述したように冷媒全てが過熱蒸気とならず、一部液状態の冷媒が存在する場合がある。したがって、この液状冷媒が圧縮機22に戻って圧縮機22が損傷するのを防止するためにアキュームレータ28で気液分離してガス冷媒のみを圧縮機22に供給している。   Actually, as described above, the refrigerant returned from the evaporator 25 (during heating) or 23 (during cooling) may not be superheated steam as described above, and may be partially in the liquid state. Therefore, in order to prevent the liquid refrigerant from returning to the compressor 22 and damaging the compressor 22, the gas refrigerant is separated by the accumulator 28 and only the gas refrigerant is supplied to the compressor 22.

熱交換器の内部を流通する冷媒は、ガス冷媒から気液2相状態、液状冷媒へと変化、または逆に液状冷媒から気液2相状態、ガス冷媒へと変化する。サーミスタ温度検出器29aは、室外熱交換器25のベンド、特に冷媒が気液2相状態となっている箇所に相当するベンドに設けられている。また、サーミスタ温度検出器29bは、室内熱交換器23のベンド、特に冷媒が気液2相状態となっている箇所に相当するベンドに設けられている。   The refrigerant flowing through the heat exchanger changes from a gas refrigerant to a gas-liquid two-phase state and a liquid refrigerant, or conversely changes from a liquid refrigerant to a gas-liquid two-phase state and a gas refrigerant. The thermistor temperature detector 29a is provided in the bend of the outdoor heat exchanger 25, particularly in the bend corresponding to the location where the refrigerant is in a gas-liquid two-phase state. The thermistor temperature detector 29b is provided on the bend of the indoor heat exchanger 23, particularly on the bend corresponding to the location where the refrigerant is in a gas-liquid two-phase state.

冷房運転時には、室外熱交換器25は凝縮器として機能し、室内熱交換器23は蒸発器として機能するため、サーミスタ温度検出器29aは凝縮温度を、サーミスタ温度検出器29bは蒸発温度を検出する。検出した各温度から凝縮圧力、蒸発圧力を間接測定して、冷媒の蒸発圧力を所定の一定圧力に維持し安定した冷房能力を確保する制御、すなわち「蒸発圧力一定制御」を行い、比較的安定した運転を実現している。温度を介して圧力を間接測定できる理由は、先のモリエル線図の説明で明らかである。   During the cooling operation, the outdoor heat exchanger 25 functions as a condenser, and the indoor heat exchanger 23 functions as an evaporator. Therefore, the thermistor temperature detector 29a detects the condensation temperature, and the thermistor temperature detector 29b detects the evaporation temperature. . It is relatively stable by performing indirect measurement of the condensation pressure and evaporation pressure from each detected temperature and maintaining the refrigerant evaporation pressure at a predetermined constant pressure to ensure stable cooling capacity, that is, "evaporation pressure constant control". Has been realized. The reason why the pressure can be indirectly measured through the temperature is clear from the description of the Mollier diagram.

また、暖房運転時には、室内熱交換器23は凝縮器として機能し、室外熱交換器25は蒸発器として機能するため、サーミスタ温度検出器29bは凝縮温度を、サーミスタ温度検出器29aは蒸発温度を検出する。検出した各温度から凝縮圧力、蒸発圧力を間接測定して、冷媒の凝縮圧力を所定の一定圧力に維持し安定した暖房能力を確保する制御、すなわち「凝縮圧力一定制御」を行い、比較的安定した運転を実現している。   Further, during the heating operation, the indoor heat exchanger 23 functions as a condenser, and the outdoor heat exchanger 25 functions as an evaporator. Therefore, the thermistor temperature detector 29b indicates the condensation temperature, and the thermistor temperature detector 29a indicates the evaporation temperature. To detect. Indirect measurement of condensing pressure and evaporating pressure from each detected temperature, and control to maintain stable heating capacity by maintaining the condensing pressure of the refrigerant at a predetermined constant pressure, that is, "Condensing pressure constant control", is relatively stable Has been realized.

上述するように、空気調和機の運転制御上の要求を実現するためには、運転中に冷媒圧力を知ることが必要不可欠である。すなわち、冷房運転時には圧縮機22の吸込側の冷媒圧力(以下、「低圧圧力」という)を、暖房運転時には圧縮機22の吐出側の冷媒圧力(以下、「高圧圧力」という)を知ることが必要となる。   As described above, it is indispensable to know the refrigerant pressure during operation in order to realize the operational control requirements of the air conditioner. That is, the refrigerant pressure on the suction side of the compressor 22 (hereinafter referred to as “low pressure”) during the cooling operation, and the refrigerant pressure on the discharge side of the compressor 22 (hereinafter referred to as “high pressure”) during the heating operation. Necessary.

特開2002−350004号公報JP 2002-350004 A

しかしながら、従来のサーミスタ温度検出器により冷媒圧力を間接測定する方法では、装置の運転開始や圧縮機の負荷変動等に対してサーミスタ温度検出器の応答性が遅いため、過渡状態の制御は困難であった。   However, in the conventional method of indirectly measuring the refrigerant pressure using the thermistor temperature detector, it is difficult to control the transient state because the response of the thermistor temperature detector is slow with respect to the start of operation of the apparatus and the load fluctuation of the compressor. there were.

また、サーミスタ温度検出器による圧力の間接測定方式では熱交換器において冷媒が気液2相状態であると想定される箇所に設置されるものの、運転状態によって気液2相状態を形成する部分には変動があり、気液2相状態の位置が変動してサーミスタ温度検出器の設置箇所からずれた場合には、正確に冷媒圧力を間接測定することが困難となるという不安定性があった。   Further, in the pressure indirect measurement method using the thermistor temperature detector, the refrigerant is installed in the heat exchanger where the refrigerant is assumed to be in the gas-liquid two-phase state, but in the portion that forms the gas-liquid two-phase state depending on the operating state. When the position of the gas-liquid two-phase state fluctuates and deviates from the installation location of the thermistor temperature detector, there is instability that it is difficult to accurately indirectly measure the refrigerant pressure.

また、熱交換器における凝縮温度又は蒸発温度から冷媒圧力を間接測定しても、冷媒回路を構成する配管のレイアウトによっては圧力損失が生じ、実際の圧縮機前後における低圧圧力又は高圧圧力の値とは異なるおそれもある。   In addition, even if the refrigerant pressure is indirectly measured from the condensation temperature or evaporation temperature in the heat exchanger, pressure loss may occur depending on the layout of the pipes that make up the refrigerant circuit, and the actual low and high pressure values before and after the compressor May be different.

これに対して、圧縮機の前後の配管に圧力センサを設置して、低圧圧力及び高圧圧力を直接検出するという方法も考えられるが、この場合には比較的高価な圧力センサを2つ必要とすることから、コストアップを招来するといった問題があった。   On the other hand, a method of directly detecting low pressure and high pressure by installing pressure sensors in the pipes before and after the compressor is also conceivable, but in this case, two relatively expensive pressure sensors are required. Therefore, there has been a problem of incurring a cost increase.

本発明は、上記状況に鑑みてなされたものであり、製造コストを抑えつつ、低圧圧力及び高圧圧力を測定して安定な運転制御が可能な空気調和機の冷媒回路を提供することを目的とする。   The present invention has been made in view of the above situation, and an object thereof is to provide a refrigerant circuit of an air conditioner capable of stably controlling operation by measuring a low pressure and a high pressure while suppressing manufacturing costs. To do.

上記課題を解決する本発明に係る空気調和機の冷媒回路は、
圧縮機と凝縮器と膨張弁と蒸発器とを順次冷媒流路で接続してなる空気調和機の冷媒回路において、
前記蒸発器と前記圧縮機との間の吸入管と、前記凝縮器と前記膨張弁との間の液管とをバイパスする流路を設けるとともに、
当該バイパス流路に、開閉弁と減圧手段とを、当該減圧手段が前記蒸発器と前記圧縮機との間の吸入管側に、当該開閉弁が前記凝縮器と前記膨張弁との間の液管側に、それぞれ位置するようにして設け、更に前記開閉弁と前記減圧手段との間に圧力センサを配置したことを特徴とする空気調和機の冷媒回路である。
The refrigerant circuit of the air conditioner according to the present invention for solving the above problems is as follows.
In the refrigerant circuit of the air conditioner in which the compressor, the condenser, the expansion valve, and the evaporator are sequentially connected by the refrigerant flow path,
Providing a flow path that bypasses the suction pipe between the evaporator and the compressor and the liquid pipe between the condenser and the expansion valve;
The bypass channel has an on-off valve and a pressure reducing means, the pressure reducing means is on the suction pipe side between the evaporator and the compressor, and the on-off valve is a liquid between the condenser and the expansion valve. A refrigerant circuit for an air conditioner, wherein the refrigerant circuit is provided so as to be positioned on the pipe side, and a pressure sensor is further disposed between the on-off valve and the pressure reducing means.

上記課題を解決する本発明に係る他の空気調和機の冷媒回路は、
上記空気調和機の冷媒回路において、
前記バイパス流路には、更に前記減圧手段よりも前記蒸発器と前記圧縮機との間の吸入管側に温度検出手段が設けられ、
当該温度検出手段により検出された冷媒温度に基づいて蒸発圧力を間接測定して制御する機能を有することを特徴とする空気調和機の冷媒回路である。
The refrigerant circuit of another air conditioner according to the present invention that solves the above problems is as follows.
In the refrigerant circuit of the air conditioner,
The bypass flow path is further provided with temperature detection means on the suction pipe side between the evaporator and the compressor than the decompression means,
An air conditioner refrigerant circuit having a function of indirectly measuring and controlling an evaporation pressure based on a refrigerant temperature detected by the temperature detecting means.

上記課題を解決する本発明に係る他の調和機の冷媒回路は、
圧縮機と凝縮器と膨張弁と蒸発器とを順次冷媒流路で接続してなる空気調和機の冷媒回路において、
前記蒸発器と前記圧縮機との間の吸入管と、前記凝縮器と前記膨張弁との間の液管とをバイパスする流路を設けるとともに、
当該バイパス流路に、開閉弁と減圧手段とを、当該開閉弁が前記蒸発器と前記圧縮機との間の吸入管側に、当該減圧手段が前記凝縮器と前記膨張弁との間の液管側に、それぞれ位置するようにして設け、更に前記開閉弁と前記減圧手段との間に圧力センサを配置したことを特徴とする空気調和機の冷媒回路である。
The refrigerant circuit of another conditioner according to the present invention that solves the above problems is as follows.
In the refrigerant circuit of the air conditioner in which the compressor, the condenser, the expansion valve, and the evaporator are sequentially connected by the refrigerant flow path,
Providing a flow path that bypasses the suction pipe between the evaporator and the compressor and the liquid pipe between the condenser and the expansion valve;
An opening / closing valve and a pressure reducing means are provided in the bypass flow path, the opening / closing valve is disposed on the suction pipe side between the evaporator and the compressor, and the pressure reducing means is provided between the condenser and the expansion valve. A refrigerant circuit for an air conditioner, wherein the refrigerant circuit is provided so as to be positioned on the pipe side, and a pressure sensor is further disposed between the on-off valve and the pressure reducing means.

上記課題を解決する本発明に係る他の空気調和機の冷媒回路は、
圧縮機と凝縮器と膨張弁と蒸発器とを順次冷媒流路で接続してなる空気調和機の冷媒回路において、
前記蒸発器と前記圧縮機との間の吸入管と、前記凝縮器と前記膨張弁との間に設けられた受液器の底部とをバイパスする流路を設けるとともに、
当該バイパス流路に、開閉弁と減圧手段とを、当該開閉弁が前記蒸発器と前記圧縮機との間の吸入管側に、当該減圧手段が前記凝縮器と前記膨張弁との間の液管側に、それぞれ位置するようにして設け、更に前記開閉弁と前記減圧手段との間に圧力センサを配置し、
前記受液器の底部に温度検出手段を設け、当該温度検出手段により検出された冷媒温度に基づいて凝縮圧力を間接測定して制御する機能を有することを特徴とする空気調和機の冷媒回路である。
The refrigerant circuit of another air conditioner according to the present invention that solves the above problems is as follows.
In the refrigerant circuit of the air conditioner in which the compressor, the condenser, the expansion valve, and the evaporator are sequentially connected by the refrigerant flow path,
Providing a flow path that bypasses the suction pipe between the evaporator and the compressor and the bottom of the liquid receiver provided between the condenser and the expansion valve;
An opening / closing valve and a pressure reducing means are provided in the bypass flow path, the opening / closing valve is disposed on the suction pipe side between the evaporator and the compressor, and the pressure reducing means is provided between the condenser and the expansion valve. Provided on the pipe side so as to be located respectively, and further arranged a pressure sensor between the on-off valve and the pressure reducing means,
A refrigerant circuit for an air conditioner, characterized in that a temperature detection means is provided at the bottom of the liquid receiver, and the condensation pressure is indirectly measured and controlled based on the refrigerant temperature detected by the temperature detection means. is there.

本発明に係る空気調和機の冷媒回路によれば、
圧縮機と凝縮器と膨張弁と蒸発器とを順次冷媒流路で接続してなる空気調和機の冷媒回路において、
前記蒸発器と前記圧縮機との間の吸入管と、前記凝縮器と前記膨張弁との間の液管とをバイパスする流路を設けるとともに、
当該バイパス流路に、開閉弁と減圧手段とを、当該減圧手段が前記蒸発器と前記圧縮機との間の吸入管側に、当該開閉弁が前記凝縮器と前記膨張弁との間の液管側に、それぞれ位置するようにして設け、更に前記開閉弁と前記減圧手段との間に圧力センサを配置したので、
冷房運転では、冷媒の蒸発圧力を所定の一定圧力に維持し安定した冷房能力を確保する制御、すなわち「蒸発圧力一定制御」を行うことができるとともに、暖房運転では、冷媒の凝縮圧力を所定の一定圧力に維持し安定した暖房能力を確保する制御、すなわち「凝縮圧力一定制御」を行うことができる。また、圧縮機からの吐出冷媒の温度が異常に上昇した場合には、冷房運転及び暖房運転にかかわりなく、開閉弁を開弁状態とすることにより、バイパス流路を通じて液状冷媒を圧縮機に導入してこれを冷却することができる。すなわち、開閉弁が開状態のときは高圧を、閉状態のときは低圧を測定できるので、圧力センサ1個で高圧及び低圧測定できるため、圧力センサを減らすことができる。これにより、低いコストで製造することができる。
According to the refrigerant circuit of the air conditioner according to the present invention,
In the refrigerant circuit of the air conditioner in which the compressor, the condenser, the expansion valve, and the evaporator are sequentially connected by the refrigerant flow path,
Providing a flow path that bypasses the suction pipe between the evaporator and the compressor and the liquid pipe between the condenser and the expansion valve;
The bypass channel has an on-off valve and a pressure reducing means, the pressure reducing means is on the suction pipe side between the evaporator and the compressor, and the on-off valve is a liquid between the condenser and the expansion valve. Since it is provided so as to be located on the pipe side, and a pressure sensor is further arranged between the on-off valve and the pressure reducing means,
In the cooling operation, the refrigerant evaporating pressure can be maintained at a predetermined constant pressure to perform stable control, that is, "evaporation pressure constant control" can be performed. In the heating operation, the refrigerant condensing pressure is set to a predetermined value. Control that maintains a constant pressure and secures stable heating capability, that is, "condensation pressure constant control" can be performed. In addition, when the temperature of refrigerant discharged from the compressor rises abnormally, liquid refrigerant is introduced into the compressor through the bypass channel by opening the on-off valve regardless of the cooling operation and heating operation. This can be cooled. That is, since the high pressure can be measured when the on-off valve is in the open state and the low pressure can be measured when the on-off valve is in the closed state, the pressure sensor can be reduced because high pressure and low pressure can be measured with one pressure sensor. Thereby, it can manufacture at low cost.

本発明に係る他の空気調和機の冷媒回路によれば、
上記空気調和機の冷媒回路において、
前記バイパス流路には、更に前記減圧手段よりも前記蒸発器と前記圧縮機との間の吸入管側に温度検出手段が設けられ、
当該温度検出手段により検出された冷媒温度に基づいて蒸発圧力を間接測定して制御する機能を有することとしたので、
上記効果に加えて、開閉弁を開弁状態として、高圧圧力を検出する必要がある場合や、液状冷媒を圧縮機に導入してこれを冷却する必要がある場合であっても、これらと同時に低圧圧力を利用した制御を行うことができ、より安定な運転制御が可能な空気調和機の冷媒回路とすることができる。
According to the refrigerant circuit of another air conditioner according to the present invention,
In the refrigerant circuit of the air conditioner,
The bypass flow path is further provided with temperature detection means on the suction pipe side between the evaporator and the compressor than the decompression means,
Since it has a function of indirectly measuring and controlling the evaporation pressure based on the refrigerant temperature detected by the temperature detection means,
In addition to the above effects, even when it is necessary to detect the high pressure with the on-off valve opened, or when it is necessary to cool the liquid refrigerant by introducing it into the compressor, Control using low pressure can be performed, and a refrigerant circuit of an air conditioner capable of more stable operation control can be obtained.

本発明に係る他の空気調和機の冷媒回路によれば、
圧縮機と凝縮器と膨張弁と蒸発器とを順次冷媒流路で接続してなる空気調和機の冷媒回路において、
前記蒸発器と前記圧縮機との間の吸入管と、前記凝縮器と前記膨張弁との間の液管とをバイパスする流路を設けるとともに、
当該バイパス流路に、開閉弁と減圧手段とを、当該開閉弁が前記蒸発器と前記圧縮機との間の吸入管側に、当該減圧手段が前記凝縮器と前記膨張弁との間の液管側に、それぞれ位置するようにして設け、更に前記開閉弁と前記減圧手段との間に圧力センサを配置したので、
冷房運転では、冷媒の蒸発圧力を所定の一定圧力に維持し安定した冷房能力を確保する制御、すなわち「蒸発圧力一定制御」を行うことができるとともに、暖房運転では、冷媒の凝縮圧力を所定の一定圧力に維持し安定した暖房能力を確保する制御、すなわち「凝縮圧力一定制御」を行うことができる。また、圧縮機からの吐出冷媒の温度が異常に上昇した場合には、冷房運転及び暖房運転にかかわりなく、開閉弁を開弁状態とすることにより、バイパス流路を通じて液状冷媒を圧縮機に導入してこれを冷却することができる。また、圧力センサを多く必要としないため、低いコストで製造することができる。
According to the refrigerant circuit of another air conditioner according to the present invention,
In the refrigerant circuit of the air conditioner in which the compressor, the condenser, the expansion valve, and the evaporator are sequentially connected by the refrigerant flow path,
Providing a flow path that bypasses the suction pipe between the evaporator and the compressor and the liquid pipe between the condenser and the expansion valve;
An opening / closing valve and a pressure reducing means are provided in the bypass flow path, the opening / closing valve is disposed on the suction pipe side between the evaporator and the compressor, and the pressure reducing means is provided between the condenser and the expansion valve. Since it is provided so as to be located on the pipe side, and a pressure sensor is further arranged between the on-off valve and the pressure reducing means,
In the cooling operation, the refrigerant evaporating pressure can be maintained at a predetermined constant pressure to perform stable control, that is, "evaporation pressure constant control" can be performed. In the heating operation, the refrigerant condensing pressure is set to a predetermined value. Control that maintains a constant pressure and secures stable heating capability, that is, "condensation pressure constant control" can be performed. In addition, when the temperature of refrigerant discharged from the compressor rises abnormally, liquid refrigerant is introduced into the compressor through the bypass channel by opening the on-off valve regardless of the cooling operation and heating operation. This can be cooled. Moreover, since many pressure sensors are not required, it can manufacture at low cost.

本発明に係る他の空気調和機の冷媒回路によれば、
圧縮機と凝縮器と膨張弁と蒸発器とを順次冷媒流路で接続してなる空気調和機の冷媒回路において、
前記蒸発器と前記圧縮機との間の吸入管と、前記凝縮器と前記膨張弁との間に設けられた受液器の底部とをバイパスする流路を設けるとともに、
当該バイパス流路に、開閉弁と減圧手段とを、当該開閉弁が前記蒸発器と前記圧縮機との間の吸入管側に、当該減圧手段が前記凝縮器と前記膨張弁との間の液管側に、それぞれ位置するようにして設け、更に前記開閉弁と前記減圧手段との間に圧力センサを配置し、
前記受液器の底部に温度検出手段を設け、当該温度検出手段により検出された冷媒温度に基づいて凝縮圧力を間接測定して制御する機能を有することとしたので、
上記効果に加えて、開閉弁を開弁状態として、低圧圧力を検出する必要がある場合や、液状冷媒を圧縮機に導入してこれを冷却する必要がある場合であっても、これらと同時に高圧圧力を利用した制御を行うことができ、より安定な運転制御が可能な空気調和機の冷媒回路とすることができる。
According to the refrigerant circuit of another air conditioner according to the present invention,
In the refrigerant circuit of the air conditioner in which the compressor, the condenser, the expansion valve, and the evaporator are sequentially connected by the refrigerant flow path,
Providing a flow path that bypasses the suction pipe between the evaporator and the compressor and the bottom of the liquid receiver provided between the condenser and the expansion valve;
An opening / closing valve and a pressure reducing means are provided in the bypass flow path, the opening / closing valve is disposed on the suction pipe side between the evaporator and the compressor, and the pressure reducing means is provided between the condenser and the expansion valve. Provided on the pipe side so as to be located respectively, and further arranged a pressure sensor between the on-off valve and the pressure reducing means,
Since the temperature detection means is provided at the bottom of the liquid receiver, and it has the function of indirectly measuring and controlling the condensation pressure based on the refrigerant temperature detected by the temperature detection means,
In addition to the above effects, even when it is necessary to detect the low pressure with the open / close valve opened, or when it is necessary to cool the liquid refrigerant by introducing it into the compressor, Control using high pressure can be performed, and a refrigerant circuit of an air conditioner capable of more stable operation control can be provided.

<第1の実施形態>
図1は、第1の実施形態に係る空気調和機の冷媒回路の概略構成図である。以下に、この冷媒回路の冷凍サイクルについて説明する。
<First Embodiment>
FIG. 1 is a schematic configuration diagram of a refrigerant circuit of the air conditioner according to the first embodiment. Below, the refrigerating cycle of this refrigerant circuit is demonstrated.

冷媒回路は、冷房時及び暖房時における冷媒回路内の冷媒流れを制御する四方弁1と、圧縮機2と、冷房時に蒸発器として作用すると共に暖房時に凝縮器として作用する室内熱交換器3と、この室内熱交換器3に風を送り込むための室内ファン4と、冷房時に凝縮器として作用すると共に暖房時に蒸発器として作用する室外熱交換器5と、この室外熱交換器5に風を送り込む室外ファン6と、冷房時に膨張弁として作用すると共に暖房時に全開状態となり配管の一部となる膨張弁7aと、冷房時に全開状態となり配管の一部となると共に暖房時に膨張弁として作用する膨張弁7bと、アキュームレータ8と、これらを接続する配管と、更には、凝縮器と膨張弁との間の液管側(冷房時は5と7aとの間、暖房時は3と7bとの間)Aと圧縮機2の吸入管側B(具体的には圧縮機2とアキュームレータ8との間)とをバイパスする流路Lとからなる。   The refrigerant circuit includes a four-way valve 1 that controls the refrigerant flow in the refrigerant circuit during cooling and heating, a compressor 2, and an indoor heat exchanger 3 that functions as an evaporator during cooling and as a condenser during heating. The indoor fan 4 for sending wind to the indoor heat exchanger 3, the outdoor heat exchanger 5 acting as a condenser during cooling and acting as an evaporator during heating, and sending the wind into the outdoor heat exchanger 5 The outdoor fan 6, an expansion valve 7a that acts as an expansion valve during cooling and is fully opened during heating and becomes part of the piping, and an expansion valve that is fully opened during cooling and becomes part of the piping and acts as an expansion valve during heating 7b, accumulator 8, piping connecting them, and the liquid pipe side between the condenser and the expansion valve (between 5 and 7a during cooling and between 3 and 7b during heating) A and compressor (Specifically between the compressor 2 and the accumulator 8) of the suction pipe side B consists of a flow path L to bypass the.

凝縮器と膨張弁との間の液管側Aと圧縮機2とアキュームレータ8との間の吸入管側Bをバイパスする流路Lには、電磁開閉弁10と、所定の通路抵抗を有するキャピラリチューブ9(減圧手段)とを、電磁開閉弁10がA側に、キャピラリチューブ9がB側に、それぞれ位置するようにして設け、更にこの電磁開閉弁10とキャピラリチューブ9との間に圧力センサ11を介設している。   In a flow path L that bypasses the liquid pipe side A between the condenser and the expansion valve and the suction pipe side B between the compressor 2 and the accumulator 8, an electromagnetic on-off valve 10 and a capillary having a predetermined passage resistance are provided. A tube 9 (pressure reducing means) is provided so that the electromagnetic opening / closing valve 10 is located on the A side and the capillary tube 9 is located on the B side. Further, a pressure sensor is provided between the electromagnetic opening / closing valve 10 and the capillary tube 9. 11 is interposed.

この場合、開閉弁が「開状態」にすると、液冷媒は絞り要素であるキャピラリチューブ9を経て吸入側に流れるが、圧力損失は圧倒的にキャピラリチューブ9で起きるので高圧を測定することになる。一方、開閉弁が「閉状態」のときは、絞り要素であるキャピラリチューブ9は連通管として作用するから、低圧を測定することになる。   In this case, when the on-off valve is in the “open state”, the liquid refrigerant flows to the suction side through the capillary tube 9 that is a throttling element, but pressure loss occurs predominantly in the capillary tube 9, so that a high pressure is measured. . On the other hand, when the on-off valve is in the “closed state”, the capillary tube 9 serving as the throttle element acts as a communication pipe, and thus the low pressure is measured.

冷房時は四方弁1を実線状態に設定することにより圧縮機2から吐出された冷媒は実線矢印のように流れる。一方、暖房時は四方弁1を破線状態に設定することにより圧縮機2から吐出された冷媒は破線矢印のように流れる。   At the time of cooling, the refrigerant discharged from the compressor 2 flows as indicated by solid line arrows by setting the four-way valve 1 to the solid line state. On the other hand, at the time of heating, the refrigerant discharged from the compressor 2 flows as indicated by broken line arrows by setting the four-way valve 1 to the broken line state.

冷凍サイクルでの冷媒の状態変化については、従来と同様であり、図1及び図5を参照して説明すると、図中a−b間では、冷媒は圧縮機2で圧縮されることによって、高温高圧の過熱蒸気となっている。また、図中b−c間では、冷媒は凝縮器3(暖房時)又は5(冷房時)内で凝縮されることによって、過熱蒸気状態から過冷却された液体状態になる。そして、図中c−d間では、冷媒は膨張弁7a(冷房時)又は7b(暖房時)で減圧されることによって、低温低圧の気液2相状態(液状冷媒とガス冷媒との混合状態)の2相冷媒となる。図中d−a間では、2相状態の冷媒は蒸発器5(暖房時)又は3(冷房時)内で周囲から熱を奪うことによって蒸発し、次第に乾き度を増しやがて適度に過熱した過熱蒸気となる。そして、過熱蒸気となった冷媒が、アキュームレータ8を介して、再び圧縮機2内へ送り込まれることになる。   About the state change of the refrigerant | coolant in a refrigerating cycle, it is the same as that of the past, and if it demonstrates with reference to FIG.1 and FIG.5, between a and ab in a figure, a refrigerant | coolant is compressed by the compressor 2, and it is high temperature. High pressure superheated steam. Moreover, between bc in a figure, a refrigerant | coolant is condensed in the condenser 3 (at the time of heating) or 5 (at the time of air_conditioning | cooling), and becomes a supercooled liquid state from a superheated steam state. And between cd in a figure, a refrigerant | coolant is pressure-reduced with the expansion valve 7a (at the time of cooling) or 7b (at the time of heating), and is a low-temperature low-pressure gas-liquid two-phase state (mixed state of a liquid refrigerant and a gas refrigerant) ). Between da in the figure, the refrigerant in the two-phase state evaporates by taking heat away from the surroundings in the evaporator 5 (during heating) or 3 (during cooling), and gradually increases its dryness and overheats moderately. It becomes steam. Then, the refrigerant that has become superheated steam is sent again into the compressor 2 via the accumulator 8.

ここで、本実施形態では、凝縮器と膨張弁との間の液管側Aと圧縮機2の吸入管側Bとをバイパスする流路Lが設けられている。この流路Lにおける電磁開閉弁10の作動形態を以下説明するように設定することにより、冷房運転及び暖房運転において安定な運転制御を実現している。   Here, in the present embodiment, a flow path L that bypasses the liquid pipe side A between the condenser and the expansion valve and the suction pipe side B of the compressor 2 is provided. By setting the operation mode of the electromagnetic on-off valve 10 in the flow path L as described below, stable operation control is realized in the cooling operation and the heating operation.

すなわち、電磁開閉弁10は、冷房運転時においては閉弁状態のまま保持される一方、暖房運転時においては閉弁状態を通常の状態として所定のタイミングで一時的に開弁状態とされる。さらに、冷房運転及び暖房運転にかかわりなく、冷媒回路の負荷状態が変化して圧縮機2からの吐出冷媒の温度が異常に上昇した場合には、電磁開閉弁10を開弁状態のまま保持する。   That is, the electromagnetic on-off valve 10 is kept in the closed state during the cooling operation, and is temporarily opened at a predetermined timing with the closed state being the normal state during the heating operation. Furthermore, regardless of the cooling operation and the heating operation, when the load state of the refrigerant circuit changes and the temperature of the refrigerant discharged from the compressor 2 rises abnormally, the electromagnetic on-off valve 10 is held in the open state. .

上述するように冷房運転では、冷媒の蒸発圧力を所定の一定圧力に維持し安定した冷房能力を確保する制御、すなわち「蒸発圧力一定制御」を行うため、低圧圧力を知ることが必要となる。電磁開閉弁10を閉弁状態で保持することにより、流路Lにおける圧力センサ11には圧縮機2に吸込まれる冷媒の低圧圧力がキャピラリチューブ9を介して作用し、圧力センサ11によって冷媒の低圧圧力が検出される。この検出される低圧圧力に基づいて圧縮機2の回転数制御が行われることで、室内熱交換器3における冷媒の蒸発圧力を一定にする「蒸発圧力一定制御」が実現され、室内熱交換器3における蒸発作用が安定し、安定な冷房運転が実現される。   As described above, in the cooling operation, it is necessary to know the low-pressure pressure in order to perform a control for maintaining a stable cooling capacity by maintaining the evaporation pressure of the refrigerant at a predetermined constant pressure, that is, “evaporation pressure constant control”. By holding the electromagnetic on-off valve 10 in a closed state, the low pressure pressure of the refrigerant sucked into the compressor 2 acts on the pressure sensor 11 in the flow path L via the capillary tube 9, and the pressure sensor 11 A low pressure is detected. By performing the rotational speed control of the compressor 2 based on the detected low pressure, “evaporation pressure constant control” for making the evaporation pressure of the refrigerant in the indoor heat exchanger 3 constant is realized, and the indoor heat exchanger 3 is stable, and a stable cooling operation is realized.

また、上述するように暖房運転では、冷媒の凝縮圧力を所定の一定圧力に維持し安定した暖房能力を確保する制御、すなわち「凝縮圧力一定制御」を行うため、高圧圧力を知ることが必要となる。電磁開閉弁10を所定のタイミングで一時的に開弁状態とすることにより、流路Lにおける圧力センサ11には圧縮機2から吐出された冷媒がAから導入されるとともにキャピラリチューブ9によって所定の通路抵抗が付与されていることから、高圧圧力が作用し、圧力センサ11によって冷媒の高圧圧力が検出される。   Further, as described above, in the heating operation, it is necessary to know the high-pressure pressure in order to perform control for maintaining stable heating capacity by maintaining the refrigerant condensing pressure at a predetermined constant pressure, that is, “constant condensing pressure control”. Become. By temporarily opening the electromagnetic on-off valve 10 at a predetermined timing, the refrigerant discharged from the compressor 2 is introduced into the pressure sensor 11 in the flow path L from the A, and the capillary tube 9 Since the passage resistance is applied, a high pressure is applied, and the high pressure of the refrigerant is detected by the pressure sensor 11.

なお、Aにおける冷媒サンプリングによって、高圧圧力が検出できる理由は、Aを通過する冷媒は膨張弁7bにおいて減圧される前の冷媒が流れ、圧力低下はもっぱら絞り要素であるキャピラリチューブ9で生じるため、圧縮機2から吐出された状態の圧力を検出できるからである。また、暖房運転において電磁開閉弁10を常に開弁状態としない理由は、B側よりもA側の方が高圧状態であるため、圧縮機2の吸入側Bに高圧冷媒が必要以上に導入されると能力損失をきたすので、これを抑制するためである。   The reason why the high pressure can be detected by sampling the refrigerant in A is that the refrigerant passing through A flows before the pressure is reduced in the expansion valve 7b, and the pressure drop is caused exclusively in the capillary tube 9 which is a throttle element. This is because the pressure discharged from the compressor 2 can be detected. In addition, the reason why the electromagnetic on-off valve 10 is not always opened in the heating operation is that the A side is in a higher pressure state than the B side, so that the high pressure refrigerant is introduced more than necessary into the suction side B of the compressor 2. This causes a loss of capacity, and is to suppress this.

圧力センサ11によって検出される高圧圧力に基づいて圧縮機2の回転数制御が行われることで、室内熱交換器3における冷媒の凝縮圧力を一定にする「凝縮圧力一定制御」が実現され、室内熱交換器3における凝縮作用が安定し、安定な暖房運転が実現される。   By performing the rotational speed control of the compressor 2 based on the high pressure detected by the pressure sensor 11, “constant condensation pressure constant control” that makes the condensation pressure of the refrigerant in the indoor heat exchanger 3 constant is realized. The condensation action in the heat exchanger 3 is stabilized, and a stable heating operation is realized.

基本的には冷房運転及び暖房運転に応じて、電磁開閉弁10に対して上述する開閉制御を行うが、冷媒回路の負荷状態が変化して圧縮機2からの吐出冷媒の温度が異常に上昇した場合には、冷房運転及び暖房運転にかかわりなく、電磁開閉弁10を開弁状態のまま保持する。B側よりもA側の方が高圧状態であるため、電磁開閉弁10を開弁状態とすることにより、流路Lを通じてA側の液状冷媒を圧縮機2に導入してこれを冷却することができる。   Basically, the above-described opening / closing control is performed on the electromagnetic opening / closing valve 10 according to the cooling operation and the heating operation. However, the load state of the refrigerant circuit changes and the temperature of the refrigerant discharged from the compressor 2 abnormally increases. In this case, the electromagnetic on-off valve 10 is held in the open state regardless of the cooling operation and the heating operation. Since the A side is at a higher pressure than the B side, the A-side liquid refrigerant is introduced into the compressor 2 through the flow path L to cool it by opening the electromagnetic on-off valve 10. Can do.

なお、冷房運転では「蒸発圧力一定制御」、暖房運転では「凝縮圧力一定制御」を安定運転のための基本制御としているが、冷房運転において高圧圧力を検出して、これに基づいて凝縮圧力を制御したり、暖房運転において低圧圧力を検出して、これに基づいて蒸発圧力を制御したりできれば、より安定な運転を実現することができる。   The basic control for stable operation is “evaporation pressure constant control” in cooling operation and “condensation pressure constant control” in heating operation, but the high pressure is detected in the cooling operation, and the condensation pressure is determined based on this. If it is possible to control or detect the low pressure in the heating operation and control the evaporation pressure based on this, it is possible to realize a more stable operation.

そこで、冷房運転においても常に電磁開閉弁10を閉弁状態で保持するのではなく、所定のタイミングで一時的に開弁状態とすることにより、高圧圧力を検出するようにしてもよい。ただし、上述するように「蒸発圧力一定制御」は圧縮機2の回転数により制御しているため、検出した高圧圧力に基づいて凝縮圧力を制御する場合には、室外ファン6の回転数を制御することにより室外熱交換器5の凝縮効率を変化させて行う。   Therefore, the high pressure may be detected by temporarily opening the electromagnetic on-off valve 10 in a closed state during the cooling operation instead of holding the electromagnetic on-off valve 10 at a predetermined timing. However, since the “evaporation pressure constant control” is controlled by the rotation speed of the compressor 2 as described above, the rotation speed of the outdoor fan 6 is controlled when the condensation pressure is controlled based on the detected high pressure. Thus, the condensation efficiency of the outdoor heat exchanger 5 is changed.

また、暖房運転時においては電磁開閉弁10を開弁状態とするタイミング以外のときに低圧圧力を検出して、これ基づいて蒸発圧力を制御してもよい。ただし、上述するように「凝縮圧力一定制御」は圧縮機2の回転数により制御しているため、検出した低圧圧力に基づいて蒸発圧力を制御する場合には、室外ファン6の回転数を制御することにより室外熱交換器5の蒸発効率を変化させて行う。   Further, during the heating operation, the low pressure pressure may be detected at a time other than the timing when the electromagnetic on-off valve 10 is opened, and the evaporation pressure may be controlled based on the low pressure. However, since the “condensation pressure constant control” is controlled by the rotation speed of the compressor 2 as described above, the rotation speed of the outdoor fan 6 is controlled when the evaporation pressure is controlled based on the detected low pressure. By doing this, the evaporation efficiency of the outdoor heat exchanger 5 is changed.

なお、冷媒圧力の制御は圧縮機2の回転数又は室外ファン6の回転数を変化させることにより行うことができるが、圧縮機2の回転数を制御する方がより直接的に圧力制御が行えるので、運転状態によって主として制御したい圧力をコントロールするために圧縮機2を用い、従として制御したい圧力をコントロールするために室外ファン6を用いるようにすればよい。   The refrigerant pressure can be controlled by changing the rotation speed of the compressor 2 or the rotation speed of the outdoor fan 6, but the pressure control can be performed more directly by controlling the rotation speed of the compressor 2. Therefore, the compressor 2 may be used mainly to control the pressure to be controlled depending on the operating state, and the outdoor fan 6 may be used to control the pressure to be controlled as a slave.

<第2の実施形態>
図2は、第2の実施形態に係る空気調和機の冷媒回路の概略構成図である。以下に、この冷媒回路の冷凍サイクルについて説明する。なお、本実施形態に係る空気調和機の冷媒回路は、第1の実施形態を基本としているため、同じ機能を有する部材には同じ符号を付し、重複する説明は省略する。
<Second Embodiment>
FIG. 2 is a schematic configuration diagram of a refrigerant circuit of the air conditioner according to the second embodiment. Below, the refrigerating cycle of this refrigerant circuit is demonstrated. In addition, since the refrigerant circuit of the air conditioner which concerns on this embodiment is based on 1st Embodiment, the same code | symbol is attached | subjected to the member which has the same function, and the overlapping description is abbreviate | omitted.

本実施形態においては、凝縮器と膨張弁との間Aと圧縮機2とアキュームレータ8との間Bをバイパスする流路Lにおいて、キャピラリチューブ9よりもB側に温度検出手段であるサーミスタ12を設置してある。   In the present embodiment, a thermistor 12 serving as a temperature detecting means is provided on the B side of the capillary tube 9 in the flow path L that bypasses A between the condenser and the expansion valve and B between the compressor 2 and the accumulator 8. It is installed.

第1の実施形態で説明するように、圧力センサ11は電磁開閉弁10の開閉により低圧圧力及び高圧圧力の両方を検出することができる機能を有している。しかしながら、これは、一方の圧力を検出しているときは他方の圧力を検出することができないことを意味しており、一定時間、両方の圧力を検出したい場合などには、電磁開閉弁10の開閉を頻繁に行うことが要求される。   As described in the first embodiment, the pressure sensor 11 has a function capable of detecting both a low pressure and a high pressure by opening and closing the electromagnetic on-off valve 10. However, this means that when one pressure is detected, the other pressure cannot be detected. When it is desired to detect both pressures for a certain period of time, the electromagnetic on-off valve 10 It is required to open and close frequently.

これに対して、本実施形態では、サーミスタ12によりキャピラリチューブ9で絞り膨張した後の温度を測定し、その温度により蒸発圧力を間接測定する。キャピラリチューブ9では、図5に示すように、Hdが一定で蒸発圧力まで膨張する。したがって、蒸発器を出たガス冷媒と混合する前の状態では、図5のd点に示す飽和温度を検出することができる。これにより、蒸発圧力を間接的に検出でき、制御信号として利用できる。その結果、低圧圧力を間接測定することができる。間接測定した低圧圧力を用いて蒸発圧力を制御する方法としては、上述する通りである。   On the other hand, in this embodiment, the temperature after being squeezed and expanded by the capillary tube 9 by the thermistor 12 is measured, and the evaporation pressure is indirectly measured by the temperature. In the capillary tube 9, as shown in FIG. 5, Hd is constant and expands to the evaporation pressure. Therefore, in the state before mixing with the gas refrigerant exiting the evaporator, the saturation temperature shown at point d in FIG. 5 can be detected. Thereby, the evaporation pressure can be indirectly detected and used as a control signal. As a result, the low pressure can be indirectly measured. The method for controlling the evaporation pressure using the indirectly measured low pressure is as described above.

すなわち、本実施形態では、電磁開閉弁10を開弁状態として、高圧圧力を検出する必要がある場合や、液状冷媒を圧縮機2に導入してこれを冷却する必要がある場合であっても、これらと同時に低圧圧力を利用した制御を行うことができ、より安定な運転制御が可能な空気調和機の冷媒回路を提供することができる。   That is, in this embodiment, even when the electromagnetic on-off valve 10 is in the open state and it is necessary to detect a high pressure or when it is necessary to cool the liquid refrigerant by introducing it into the compressor 2. At the same time, it is possible to provide a refrigerant circuit of an air conditioner that can perform control using low-pressure and can perform more stable operation control.

<第3の実施形態>
図3は、第3の実施形態に係る空気調和機の冷媒回路の概略構成図である。以下に、この冷媒回路の冷凍サイクルについて説明する。なお、本実施形態に係る空気調和機の冷媒回路は、第1の実施形態を基本としているため、同じ機能を有する部材には同じ符号を付し、重複する説明は省略する。
<Third Embodiment>
FIG. 3 is a schematic configuration diagram of a refrigerant circuit of an air conditioner according to the third embodiment. Below, the refrigerating cycle of this refrigerant circuit is demonstrated. In addition, since the refrigerant circuit of the air conditioner which concerns on this embodiment is based on 1st Embodiment, the same code | symbol is attached | subjected to the member which has the same function, and the overlapping description is abbreviate | omitted.

本実施形態においては、凝縮器と膨張弁との間Aと圧縮機2とアキュームレータ8との間Bをバイパスする流路Lが設けられ、この流路Lには、電磁開閉弁16と、所定の通路抵抗を有するキャピラリチューブ15(減圧手段)とを、キャピラリチューブ15がA側に、電磁開閉弁16がB側に、それぞれ位置するようにして設け、更にこの電磁開閉弁16とキャピラリチューブ15との間に圧力センサ17を介設している。また、流路Lにおいて、キャピラリチューブ15よりもA側に温度検出手段であるサーミスタ18を設置してある。   In the present embodiment, a flow path L that bypasses A between the condenser and the expansion valve and B between the compressor 2 and the accumulator 8 is provided. The capillary tube 15 (pressure reducing means) having the passage resistance is provided so that the capillary tube 15 is located on the A side and the electromagnetic opening / closing valve 16 is located on the B side. A pressure sensor 17 is interposed therebetween. Further, in the flow path L, a thermistor 18 as a temperature detecting means is installed on the A side of the capillary tube 15.

本実施形態では、電磁開閉弁16を閉弁状態とすることにより、流路Lにおける圧力センサ17には圧縮機2から吐出された冷媒がAからキャピラリチューブ15を介して導入されることから、高圧圧力が作用し、圧力センサ17によって冷媒の高圧圧力が検出される。一方、電磁開閉弁16を開弁状態とすることにより、流路Lにおける圧力センサ17には圧縮機2に吸込まれる低圧冷媒がBから導入されるとともにキャピラリチューブ15によって所定の通路抵抗が付与されていることから、低圧圧力が作用し、圧力センサ17によって冷媒の低圧圧力が検出される。   In this embodiment, since the electromagnetic on-off valve 16 is closed, the refrigerant discharged from the compressor 2 is introduced from the A through the capillary tube 15 into the pressure sensor 17 in the flow path L. The high pressure acts, and the high pressure of the refrigerant is detected by the pressure sensor 17. On the other hand, by opening the electromagnetic opening / closing valve 16, low pressure refrigerant sucked into the compressor 2 is introduced from the B into the pressure sensor 17 in the flow path L, and a predetermined passage resistance is given by the capillary tube 15. Therefore, the low pressure acts, and the low pressure of the refrigerant is detected by the pressure sensor 17.

上述するようにして検出された高圧圧力または低圧圧力に基づいて、圧縮機2の回転数制御が行われることで、室内熱交換器3における冷媒の凝縮圧力を一定にする「凝縮圧力一定制御」又は、室内熱交換器3における冷媒の蒸発圧力を一定にする「蒸発圧力一定制御」が実現され、安定な冷房運転又は暖房運転が実現される。この制御方法については、上述する通りである。また、電磁開閉弁17を開弁状態とすることにより、液状冷媒を圧縮機2に導入してこれを冷却することもできる。   “Condensation pressure constant control” that makes the condensation pressure of the refrigerant in the indoor heat exchanger 3 constant by performing the rotational speed control of the compressor 2 based on the high pressure or the low pressure detected as described above. Or "evaporation pressure constant control" which makes the evaporation pressure of the refrigerant in the indoor heat exchanger 3 constant is realized, and a stable cooling operation or heating operation is realized. This control method is as described above. Further, by opening the electromagnetic on-off valve 17, the liquid refrigerant can be introduced into the compressor 2 to cool it.

また、記述の如く図3に示す冷媒回路に対して受液器(レシーバ)30を設け、その底部からバイパス配管を設けると共に、底部の温度を測定するようにすれば(図4を参照。)、サーミスタ18は凝縮圧力に対応する飽和温度を検出する。その結果、高圧圧力を間接測定することができる。間接測定した高圧圧力を用いて凝縮圧力を制御する方法としては、上述する通りである。   Further, as described, if a liquid receiver (receiver) 30 is provided for the refrigerant circuit shown in FIG. 3, a bypass pipe is provided from the bottom, and the temperature at the bottom is measured (see FIG. 4). The thermistor 18 detects a saturation temperature corresponding to the condensation pressure. As a result, the high pressure can be indirectly measured. The method for controlling the condensation pressure using the indirectly measured high pressure is as described above.

すなわち、本実施形態では、電磁開閉弁16を開弁状態として、低圧圧力を検出する必要がある場合や、液状冷媒を圧縮機2に導入してこれを冷却する必要がある場合であっても、これらと同時に高圧圧力を利用した制御を行うことができ、より安定な運転制御が可能な空気調和機の冷媒回路を提供することができる。   That is, in the present embodiment, even when the electromagnetic on-off valve 16 is in the open state and it is necessary to detect the low pressure or when it is necessary to cool the liquid refrigerant by introducing it into the compressor 2. At the same time, it is possible to provide a refrigerant circuit for an air conditioner that can perform control using high pressure and can perform more stable operation control.

第1の実施形態に係る空気調和機の冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit of the air conditioner which concerns on 1st Embodiment. 第2の実施形態に係る空気調和機の冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit of the air conditioner which concerns on 2nd Embodiment. 第3の実施形態に係る空気調和機の冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit of the air conditioner which concerns on 3rd Embodiment. 第3の実施形態の変形例に係る空気調和機の冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit of the air conditioner which concerns on the modification of 3rd Embodiment. 従来の蒸気圧縮式空気調和機の冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit of the conventional vapor compression type air conditioner. モリエル線図である。It is a Mollier diagram.

符号の説明Explanation of symbols

1 四方弁
2 圧縮機
3 室内熱交換器
4 室内ファン
5 室外熱交換器
6 室外ファン
7a,7b 膨張弁
8 アキュームレータ
9,15 キャピラリチューブ
10,16 電磁開閉弁
11,17 圧力センサ
12,18 サーミスタ

21 四方弁
22 圧縮機
23 室内熱交換器
24 室内ファン
25 室外熱交換器
26 室外ファン
27a,27b 膨張弁
28 アキュームレータ
29a,29b サーミスタ温度検出器
30 受液器(レシーバ)
DESCRIPTION OF SYMBOLS 1 Four-way valve 2 Compressor 3 Indoor heat exchanger 4 Indoor fan 5 Outdoor heat exchanger 6 Outdoor fan 7a, 7b Expansion valve 8 Accumulator 9, 15 Capillary tube 10, 16 Electromagnetic on-off valve 11, 17 Pressure sensor 12, 18 Thermistor

21 Four-way valve 22 Compressor 23 Indoor heat exchanger 24 Indoor fan 25 Outdoor heat exchanger 26 Outdoor fan
27a, 27b Expansion valve 28 Accumulator
29a, 29b Thermistor temperature detector 30 Receiver

Claims (4)

圧縮機と凝縮器と膨張弁と蒸発器とを順次冷媒流路で接続してなる空気調和機の冷媒回路において、
前記蒸発器と前記圧縮機との間の吸入管と、前記凝縮器と前記膨張弁との間の液管とをバイパスする流路を設けるとともに、
当該バイパス流路に、開閉弁と減圧手段とを、当該減圧手段が前記蒸発器と前記圧縮機との間の吸入管側に、当該開閉弁が前記凝縮器と前記膨張弁との間の液管側に、それぞれ位置するようにして設け、更に前記開閉弁と前記減圧手段との間に圧力センサを配置したことを特徴とする空気調和機の冷媒回路。
In the refrigerant circuit of the air conditioner in which the compressor, the condenser, the expansion valve, and the evaporator are sequentially connected by the refrigerant flow path,
Providing a flow path that bypasses the suction pipe between the evaporator and the compressor and the liquid pipe between the condenser and the expansion valve;
The bypass channel has an on-off valve and a pressure reducing means, the pressure reducing means is on the suction pipe side between the evaporator and the compressor, and the on-off valve is a liquid between the condenser and the expansion valve. A refrigerant circuit for an air conditioner, wherein the refrigerant circuit is provided on a pipe side so as to be positioned, and a pressure sensor is further disposed between the on-off valve and the pressure reducing means.
請求項1に記載する空気調和機の冷媒回路において、
前記バイパス流路には、更に前記減圧手段よりも前記蒸発器と前記圧縮機との間の吸入管側に温度検出手段が設けられ、
当該温度検出手段により検出された冷媒温度に基づいて蒸発圧力を間接測定して制御する機能を有することを特徴とする空気調和機の冷媒回路。
In the refrigerant circuit of the air conditioner according to claim 1,
The bypass flow path is further provided with temperature detection means on the suction pipe side between the evaporator and the compressor than the decompression means,
A refrigerant circuit for an air conditioner having a function of indirectly measuring and controlling an evaporation pressure based on a refrigerant temperature detected by the temperature detection means.
圧縮機と凝縮器と膨張弁と蒸発器とを順次冷媒流路で接続してなる空気調和機の冷媒回路において、
前記蒸発器と前記圧縮機との間の吸入管と、前記凝縮器と前記膨張弁との間の液管とをバイパスする流路を設けるとともに、
当該バイパス流路に、開閉弁と減圧手段とを、当該開閉弁が前記蒸発器と前記圧縮機との間の吸入管側に、当該減圧手段が前記凝縮器と前記膨張弁との間の液管側に、それぞれ位置するようにして設け、更に前記開閉弁と前記減圧手段との間に圧力センサを配置したことを特徴とする空気調和機の冷媒回路。
In the refrigerant circuit of the air conditioner in which the compressor, the condenser, the expansion valve, and the evaporator are sequentially connected by the refrigerant flow path,
Providing a flow path that bypasses the suction pipe between the evaporator and the compressor and the liquid pipe between the condenser and the expansion valve;
An opening / closing valve and a pressure reducing means are provided in the bypass flow path, the opening / closing valve is disposed on the suction pipe side between the evaporator and the compressor, and the pressure reducing means is provided between the condenser and the expansion valve. A refrigerant circuit for an air conditioner, wherein the refrigerant circuit is provided on a pipe side so as to be positioned, and a pressure sensor is further disposed between the on-off valve and the pressure reducing means.
圧縮機と凝縮器と膨張弁と蒸発器とを順次冷媒流路で接続してなる空気調和機の冷媒回路において、
前記蒸発器と前記圧縮機との間の吸入管と、前記凝縮器と前記膨張弁との間に設けられた受液器の底部とをバイパスする流路を設けるとともに、
当該バイパス流路に、開閉弁と減圧手段とを、当該開閉弁が前記蒸発器と前記圧縮機との間の吸入管側に、当該減圧手段が前記凝縮器と前記膨張弁との間の液管側に、それぞれ位置するようにして設け、更に前記開閉弁と前記減圧手段との間に圧力センサを配置し、
前記受液器の底部に温度検出手段を設け、当該温度検出手段により検出された冷媒温度に基づいて凝縮圧力を間接測定して制御する機能を有することを特徴とする空気調和機の冷媒回路。
In the refrigerant circuit of the air conditioner in which the compressor, the condenser, the expansion valve, and the evaporator are sequentially connected by the refrigerant flow path,
Providing a flow path that bypasses the suction pipe between the evaporator and the compressor and the bottom of the liquid receiver provided between the condenser and the expansion valve;
An opening / closing valve and a pressure reducing means are provided in the bypass flow path, the opening / closing valve is disposed on the suction pipe side between the evaporator and the compressor, and the pressure reducing means is provided between the condenser and the expansion valve. Provided on the pipe side so as to be located respectively, and further arranged a pressure sensor between the on-off valve and the pressure reducing means,
A refrigerant circuit for an air conditioner, characterized in that a temperature detection means is provided at the bottom of the liquid receiver, and the condensation pressure is indirectly measured and controlled based on the refrigerant temperature detected by the temperature detection means.
JP2004053069A 2004-02-27 2004-02-27 Refrigerant circuit of air conditioner Withdrawn JP2005241169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053069A JP2005241169A (en) 2004-02-27 2004-02-27 Refrigerant circuit of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053069A JP2005241169A (en) 2004-02-27 2004-02-27 Refrigerant circuit of air conditioner

Publications (1)

Publication Number Publication Date
JP2005241169A true JP2005241169A (en) 2005-09-08

Family

ID=35023083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053069A Withdrawn JP2005241169A (en) 2004-02-27 2004-02-27 Refrigerant circuit of air conditioner

Country Status (1)

Country Link
JP (1) JP2005241169A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211723A (en) * 2011-03-31 2012-11-01 Nakano Refrigerators Co Ltd Freezer and method for detecting refrigerant leakage in the freezer
US9057548B2 (en) 2009-10-14 2015-06-16 Carrier Corporation Receiver with flow metering device
WO2021098552A1 (en) * 2019-11-21 2021-05-27 青岛海尔空调器有限总公司 Heat pump type air-conditioning system and control method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057548B2 (en) 2009-10-14 2015-06-16 Carrier Corporation Receiver with flow metering device
JP2012211723A (en) * 2011-03-31 2012-11-01 Nakano Refrigerators Co Ltd Freezer and method for detecting refrigerant leakage in the freezer
WO2021098552A1 (en) * 2019-11-21 2021-05-27 青岛海尔空调器有限总公司 Heat pump type air-conditioning system and control method therefor

Similar Documents

Publication Publication Date Title
JP5063347B2 (en) Refrigeration air conditioner
JP5446064B2 (en) Heat exchange system
JP5452138B2 (en) Refrigeration air conditioner
JP4884365B2 (en) Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device
WO2007110908A9 (en) Refrigeration air conditioning device
EP3587948B1 (en) Air conditioner
EP2224191A2 (en) Air conditioner and method of controlling the same
EP2196746B1 (en) Refrigeration apparatus
JP6223469B2 (en) Air conditioner
JP4462435B2 (en) Refrigeration equipment
JP2008224135A (en) Refrigerating device
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP2005076933A (en) Refrigeration cycle system
JP4418936B2 (en) Air conditioner
JP4462436B2 (en) Refrigeration equipment
JP2008232588A (en) Air conditioner
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP4767340B2 (en) Heat pump control device
JP5989534B2 (en) Refrigeration system apparatus and air conditioner
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
JP2005241169A (en) Refrigerant circuit of air conditioner
JP2013053849A (en) Heat pump device, and outdoor unit thereof
JP2013217574A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501