JP5989534B2 - Refrigeration system apparatus and air conditioner - Google Patents

Refrigeration system apparatus and air conditioner Download PDF

Info

Publication number
JP5989534B2
JP5989534B2 JP2012273677A JP2012273677A JP5989534B2 JP 5989534 B2 JP5989534 B2 JP 5989534B2 JP 2012273677 A JP2012273677 A JP 2012273677A JP 2012273677 A JP2012273677 A JP 2012273677A JP 5989534 B2 JP5989534 B2 JP 5989534B2
Authority
JP
Japan
Prior art keywords
flow rate
compressor
pressure side
temperature
rate adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012273677A
Other languages
Japanese (ja)
Other versions
JP2014119159A (en
Inventor
昭 杉山
昭 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012273677A priority Critical patent/JP5989534B2/en
Publication of JP2014119159A publication Critical patent/JP2014119159A/en
Application granted granted Critical
Publication of JP5989534B2 publication Critical patent/JP5989534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷媒回路を循環する冷媒の量を調整するレシーバ及び流量調整装置を備えた冷凍システム装置およびこれを備えた空気調和機に関するものである。   The present invention relates to a refrigeration system apparatus including a receiver that adjusts the amount of refrigerant circulating in a refrigerant circuit and a flow rate adjusting apparatus, and an air conditioner including the same.

この種の空気調和機として、特許文献1には、圧縮機、凝縮器、高圧側絞り装置、レシーバ、低圧側絞り装置、および蒸発器が順次配管で接続されてなる冷凍システム装置が開示されている。この冷凍システム装置では、冷房運転と暖房運転とで冷媒回路を流れる最適な冷媒量が異なってくるので、冷房または暖房等の運転状態に応じて冷媒を最適な冷媒量で循環させるために、冷媒を溜めるレシーバとその両側に絞り装置とを設け、絞り装置の開口面積を変化させることで、レシーバに冷媒を溜めたり、レシーバから冷媒回路に冷媒を戻したりして、循環する冷媒量を調整している。   As this type of air conditioner, Patent Document 1 discloses a refrigeration system device in which a compressor, a condenser, a high-pressure side throttle device, a receiver, a low-pressure side throttle device, and an evaporator are connected in series by a pipe. Yes. In this refrigeration system apparatus, the optimum amount of refrigerant flowing through the refrigerant circuit differs between the cooling operation and the heating operation. Therefore, in order to circulate the refrigerant with the optimum amount of refrigerant according to the operation state such as cooling or heating, the refrigerant By adjusting the opening area of the throttle device and changing the opening area of the throttle device, the refrigerant is stored in the receiver or returned from the receiver to the refrigerant circuit to adjust the amount of refrigerant circulating. ing.

そして、特許文献1では、冷凍装置の運転状態を検出するために、冷凍サイクルの過冷却特性値を検出する過冷却検出部と、過熱特性値を検出する過熱検出部とが設けられ、制御部では、過冷却検出部および過熱検出部の各検出結果を目標値に近付けるように、高圧側および低圧側の絞り装置の開口面積を調整することで、常に運転効率の良い冷凍サイクル状態で安定した運転状態を維持する、経済的でかつ信頼性の高い冷凍システム装置およびその制御方法が開示されている。   And in patent document 1, in order to detect the driving | running state of a freezing apparatus, the supercooling detection part which detects the supercooling characteristic value of a refrigerating cycle, and the superheat detection part which detects a superheating characteristic value are provided, and the control part Then, by adjusting the opening area of the expansion device on the high-pressure side and the low-pressure side so that the detection results of the supercooling detection unit and the superheat detection unit are close to the target value, the refrigeration cycle is always stable with good operating efficiency. An economical and highly reliable refrigeration system apparatus that maintains an operating state and a control method thereof are disclosed.

さらに、特許文献1では、冷凍システム装置の運転状態が変化した後、冷凍サイクルの安定化のために、圧縮機の吐出温度が所定温度以上になったとき、あるいは所定時間経過後に高圧側および低圧側の絞り装置の開口面積を制御する方法が採用されている。   Further, in Patent Document 1, after the operating state of the refrigeration system apparatus is changed, when the discharge temperature of the compressor becomes equal to or higher than a predetermined temperature or after a predetermined time elapses, the high pressure side and the low pressure are decreased in order to stabilize the refrigeration cycle. A method of controlling the opening area of the aperture device on the side is employed.

特許第3334507号公報Japanese Patent No. 3334507

ところで、特許文献1では、室外機の設置環境や圧縮機の回転数の変化が考慮されていないため、冷媒量可変制御が不安定になるおそれがあった。すなわち、一般に、圧縮機や室外熱交換器を内装する室外機の設置環境(例えば外気温)が変化すれば、圧縮機の冷媒吐出温度も変化する。例えば、外気温が高くなれば圧縮機の冷媒吐出温度も高くなる。また、圧縮機の回転数が変化すれば圧縮機の冷媒吐出温度も変化することになる。例えば、圧縮機の回転数が高くなれば、圧縮機からの冷媒吐出温度も高くなる。   By the way, in patent document 1, since the change of the installation environment of an outdoor unit and the rotation speed of a compressor is not considered, there existed a possibility that refrigerant | coolant amount variable control might become unstable. That is, generally, when the installation environment (for example, the outside air temperature) of the outdoor unit that houses the compressor and the outdoor heat exchanger changes, the refrigerant discharge temperature of the compressor also changes. For example, if the outside air temperature increases, the refrigerant discharge temperature of the compressor also increases. Moreover, if the rotation speed of a compressor changes, the refrigerant | coolant discharge temperature of a compressor will also change. For example, if the rotation speed of the compressor increases, the refrigerant discharge temperature from the compressor also increases.

このような室外機の設置環境や圧縮機の回転数の変化により、圧縮機の吐出温度が変化し、これに伴って、冷凍サイクルの安定化に要する時間も変化すると考えられる。しかし、特許文献1においては、絞り装置の開口制御を行なう前の待機時間(所定時間)を一定にしているので、この所定時間を短く設定すれば、外気温の変化や圧縮機の回転数の変化に伴い、いまだ安定した運転状態になっていない状態で絞り装置の開口面積を制御することになる可能性がある。また、一般的には、安全性を考慮した待機時間を画一的に決める場合、どうしても長い所定時間を設定してしまう。そのため、余分な待機時間となる可能性もあり、良好な運転状態を効率良く上げることができないという課題があった。   It is considered that the discharge temperature of the compressor changes due to such changes in the installation environment of the outdoor unit and the rotation speed of the compressor, and accordingly, the time required for stabilization of the refrigeration cycle also changes. However, in Patent Document 1, since the waiting time (predetermined time) before the opening control of the expansion device is made constant, if this predetermined time is set short, the change in the outside air temperature and the rotation speed of the compressor Along with the change, there is a possibility that the aperture area of the expansion device will be controlled in a state where the operation state is not yet stable. In general, when the standby time considering safety is determined uniformly, a long predetermined time is inevitably set. For this reason, there is a possibility that it becomes an extra standby time, and there is a problem that it is not possible to efficiently raise a good operation state.

本発明は、上記に鑑み、運転状態に応じて冷媒量を調整することで、運転効率を改善し、この場合、室外機の設置環境や冷凍サイクルの運転状態の変化が発生した場合でも、常に安定した制御が行えるようにした冷凍システム装置および空気調和機の提供を目的としている。   In view of the above, the present invention improves the operation efficiency by adjusting the amount of refrigerant according to the operation state, and in this case, even when a change in the installation environment of the outdoor unit or the operation state of the refrigeration cycle occurs, An object of the present invention is to provide a refrigeration system apparatus and an air conditioner that can perform stable control.

上記目的を達成するため、本発明では、圧縮機、凝縮器、高圧側流量調整装置、レシーバ、低圧側流量調整装置、および蒸発器が順次配管で接続されて構成された冷凍装置と、冷凍装置の過冷却特性値を検出する過冷却検出部と、冷凍装置の過熱特性値を検出する過熱検出部と、前記過冷却検出部および過熱検出部の各検出結果を目標値に近付けるように、前記高圧側流量調整装置および低圧側流量調整装置の開口面積を調整する制御部とを備え、前記圧縮機の吐出温度を検出する吐出温度検出部と、圧縮機の回転数を検出する回転数検出部と、外気温を検出する外気温検出部とが設けられ、前記制御部では、冷凍装置の運転状態の変化に応じて前記高圧側流量調整装置および/または低圧側流量調整装置の開口面積を調整するとき、圧縮機の吐出温度と外気温との温度差の時間変化が所定値の範囲内になるまで、前記開口面積の調整動作を待機し、前記時間変化が所定値の範囲内になったときに冷凍装置が安定したと判断して、前記流量調整装置の開口面積の調整動作を開始することを特徴とする。   In order to achieve the above object, in the present invention, a compressor, a condenser, a high pressure side flow rate adjustment device, a receiver, a low pressure side flow rate adjustment device, and an evaporator are sequentially connected by a pipe, and a refrigeration device The supercooling detection unit for detecting the supercooling characteristic value of the refrigeration apparatus, the overheating detection unit for detecting the superheating characteristic value of the refrigeration apparatus, and the detection results of the supercooling detection unit and the superheating detection unit are brought close to the target value. A control unit that adjusts the opening area of the high-pressure side flow rate adjustment device and the low-pressure side flow rate adjustment device, a discharge temperature detection unit that detects the discharge temperature of the compressor, and a rotation speed detection unit that detects the rotation speed of the compressor And an outside air temperature detecting unit for detecting the outside air temperature, and the control unit adjusts an opening area of the high pressure side flow rate adjusting device and / or the low pressure side flow rate adjusting device according to a change in the operating state of the refrigeration apparatus. When the compressor The adjustment of the opening area is waited until the time change of the temperature difference between the discharge temperature and the outside air temperature is within the predetermined value range, and the refrigeration apparatus is stable when the time change is within the predetermined value range. It is determined that the adjustment of the opening area of the flow rate adjusting device is started.

本発明によると、冷凍装置の運転状態が変化した後、高圧側および/または低圧側流量調整装置の開口面積を制御する際に、吐出温度と回転数と外気温から構成される任意の式から求めた飽和曲線を用いて安定性を判定しているので、従来に比べて信頼性の高い冷凍システム装置を提供することができる。   According to the present invention, when the opening area of the high-pressure side and / or low-pressure side flow control device is controlled after the operating state of the refrigeration apparatus is changed, from an arbitrary expression composed of the discharge temperature, the rotation speed, and the outside air temperature. Since stability is determined using the obtained saturation curve, it is possible to provide a refrigeration system apparatus that is more reliable than conventional ones.

本発明の実施形態である冷房運転時の冷凍システム装置の構成図である。It is a block diagram of the refrigeration system apparatus at the time of air_conditionaing | cooling operation which is embodiment of this invention. 同じく暖房運転時の冷凍システム装置の構成図である。It is a block diagram of the refrigeration system apparatus at the time of heating operation similarly. 流量調整装置の開口面積の制御フローチャートである。It is a control flowchart of the opening area of a flow regulating device. 同じく安定化判定のフローチャートである。It is a flowchart of stabilization determination similarly. 冷凍システム装置のモリエール線図である。It is a Mollier chart of a refrigeration system apparatus. (a)〜(c)は判定フロー用の式を作成するときの参照グラフである。(A)-(c) is a reference graph when creating the formula for determination flows. (a)(b)は図6に続いて判定フロー用の式を作成するときの参照グラフである。(A) and (b) are reference graphs when creating a formula for determination flow following FIG.

以下、本発明を空気調和機の冷凍システム装置に適用した実施形態を図面に基づいて説明する。図1は冷房運転時の冷凍システム装置の構成図であり、図2は暖房運転時の冷凍システム装置の構成図である。   Hereinafter, an embodiment in which the present invention is applied to a refrigeration system apparatus for an air conditioner will be described with reference to the drawings. FIG. 1 is a configuration diagram of a refrigeration system apparatus during cooling operation, and FIG. 2 is a configuration diagram of the refrigeration system apparatus during heating operation.

図1,2に示すように、本実施形態の空気調和機の冷凍システム装置は、1つの室内機1と1つの室外機2とを冷媒配管3により接続したもので、室外機2側には、圧縮機4、冷媒の流路を切り替える四方弁5、室外熱交換器6及び絞り装置7を備え、室内機1には、室内熱交換器8を備えている。また、図示しないが、室内熱交換器に対面して室内ファンが配置され、また、室外熱交換器に対面して室外ファンが配置される。   As shown in FIGS. 1 and 2, the refrigeration system apparatus for an air conditioner according to the present embodiment has one indoor unit 1 and one outdoor unit 2 connected by a refrigerant pipe 3. The compressor 4 includes a four-way valve 5 for switching the refrigerant flow path, the outdoor heat exchanger 6 and the expansion device 7, and the indoor unit 1 includes an indoor heat exchanger 8. Moreover, although not shown in figure, an indoor fan is arrange | positioned facing an indoor heat exchanger, and an outdoor fan is arrange | positioned facing an outdoor heat exchanger.

この冷凍システム装置において、冷房運転時には、図1に示すように、圧縮機4から吐出された冷媒は、四方弁5から室外熱交換器6、絞り装置7、室内熱交換器8を通って圧縮機4に戻る順方向の流れとなる。また、暖房運転時には、図2に示すように、圧縮機4から吐出された冷媒は、四方弁5から室内熱交換器8、絞り装置7、室外熱交換器6を通って圧縮機4に戻る逆方向の流れとなる。   In this refrigeration system apparatus, during cooling operation, the refrigerant discharged from the compressor 4 is compressed from the four-way valve 5 through the outdoor heat exchanger 6, the expansion device 7, and the indoor heat exchanger 8 as shown in FIG. The forward flow returns to the machine 4. In the heating operation, as shown in FIG. 2, the refrigerant discharged from the compressor 4 returns from the four-way valve 5 to the compressor 4 through the indoor heat exchanger 8, the expansion device 7, and the outdoor heat exchanger 6. The flow is in the opposite direction.

したがって、本例の冷凍システム装置において、冷房運転時には室外熱交換器6が凝縮器として機能し、室内熱交換器8が蒸発器として機能する。暖房運転時には、室内熱交換器8が凝縮器として機能し、室外熱交換器6が蒸発器として機能する。このような冷房運転時及び暖房運転時の冷凍システム装置は、可逆サイクルの冷媒回路であり、冷媒の流れ方向は、図1,2の矢印で示すように、圧縮機4、四方弁5、凝縮器、絞り装置7、蒸発器の順を追って流れ、冷媒回路10が構成される。   Therefore, in the refrigeration system apparatus of this example, the outdoor heat exchanger 6 functions as a condenser and the indoor heat exchanger 8 functions as an evaporator during cooling operation. During the heating operation, the indoor heat exchanger 8 functions as a condenser, and the outdoor heat exchanger 6 functions as an evaporator. The refrigeration system apparatus during such cooling operation and heating operation is a reversible cycle refrigerant circuit, and the flow direction of the refrigerant is as shown by the arrows in FIGS. The refrigerant circuit 10 is configured by flowing in the order of the condenser, the expansion device 7, and the evaporator.

なお、本例では、図1及び図2に示すように、室外熱交換器6と並列に冷媒回路10の冷媒の一部を圧縮機側に戻す開閉弁11付きのバイパス路12が接続されているが、これら開閉弁付きバイパス路がない冷媒回路であってもよい。   In this example, as shown in FIGS. 1 and 2, a bypass path 12 with an on-off valve 11 is connected in parallel with the outdoor heat exchanger 6 to return a part of the refrigerant in the refrigerant circuit 10 to the compressor side. However, it may be a refrigerant circuit without these bypass passages with on-off valves.

そして、本例では、冷媒回路10を流れる冷媒の流量を調整する流量調整部13が、
絞り装置7と並列に接続されて、冷媒回路10に流れる冷媒を最適な流量となるように制御される。流量調整部13は、絞り装置7の前後の高圧側から低圧側に流れる冷媒の圧力を利用して冷媒を溜めるレシーバ14と、冷媒回路10における絞り装置7の高圧側分岐部とレシーバ14とを接続する高圧側の連結管、および、前記冷媒回路10における絞り装置7の低圧側の分岐部とレシーバ14とを接続する低圧側の連結管の夫々に介在される高圧側及び低圧側の流量調整装置15,16とを備えている。
In this example, the flow rate adjustment unit 13 that adjusts the flow rate of the refrigerant flowing through the refrigerant circuit 10 includes:
The refrigerant connected to the expansion device 7 in parallel is controlled so that the refrigerant flowing through the refrigerant circuit 10 has an optimum flow rate. The flow rate adjusting unit 13 includes a receiver 14 that accumulates the refrigerant using the pressure of the refrigerant flowing from the high pressure side before and after the expansion device 7 to the low pressure side, and the high pressure side branch portion of the expansion device 7 in the refrigerant circuit 10 and the receiver 14. The high-pressure side and the low-pressure side flow rate adjustment respectively interposed between the high-pressure side connecting pipe to be connected and the low-pressure side connecting pipe connecting the receiver 14 with the low-pressure side branch of the expansion device 7 in the refrigerant circuit 10. Devices 15 and 16.

これらの流量調整装置15,16は、その開口面積を調整することにより、レシーバ14に溜まる冷媒量を調整し、冷媒回路10に流れる冷媒の流量を最適な流量に調整する。流量調整装置15,16は、膨張弁や絞り装置7と同様に、冷媒が通る開口の面積を可変して、レシーバ14に入る冷媒量を調整する機能を有している。   These flow rate adjusting devices 15 and 16 adjust the amount of refrigerant accumulated in the receiver 14 by adjusting the opening area thereof, and adjust the flow rate of the refrigerant flowing through the refrigerant circuit 10 to an optimum flow rate. Like the expansion valve and the throttle device 7, the flow rate adjustment devices 15 and 16 have a function of adjusting the amount of refrigerant entering the receiver 14 by changing the area of the opening through which the refrigerant passes.

本例では、絞り装置7と並列に流量調整部13を接続した例を示したが、これに限らず、レシーバ14と高圧側および低圧側の流量調整装置15,16とからなる流量調整部のみを備え、絞り装置7を設けない冷凍システム装置であってもよい。   In this example, an example in which the flow rate adjusting unit 13 is connected in parallel with the expansion device 7 is shown, but this is not limiting, and only the flow rate adjusting unit including the receiver 14 and the high-pressure side and low-pressure side flow rate adjusting devices 15 and 16 is shown. And a refrigeration system device that does not include the expansion device 7 may be used.

本例のように、絞り装置7と流量調整部13とを並列接続した冷凍システム装置では、通常、運転初期段階で絞り装置7を初期設定の開口面積で起動し、これにより冷凍装置の冷媒圧力等が安定した段階で、流量調整部13の流量調整装置15,16の開口面積を調整する制御が行われる。すなわち、起動時の外気温や設定温度により、絞り装置7の絞り量を予め設定された値で制御し、その後、外気温の変化や室温の変化に応じて圧縮機の回転数を可変する場合など、冷凍装置の運転状態を可変する場合には、冷媒回路10を循環する冷媒を最適な冷媒量に微調整するために、流量調整装置15,16の開口面積を制御してレシーバ14に溜める冷媒量を調整する。すなわち、大まかな制御は絞り装置7で行い、細かい制御は流量調整装置15,16で行なうことになる。したがって、各目的に応じて絞り装置7および流量調整部13を制御する。   As in this example, in the refrigeration system apparatus in which the expansion device 7 and the flow rate adjustment unit 13 are connected in parallel, the expansion device 7 is normally activated at the initial opening area at the initial operation stage, thereby the refrigerant pressure of the refrigeration device. Etc., the control for adjusting the opening areas of the flow rate adjusting devices 15 and 16 of the flow rate adjusting unit 13 is performed. That is, when the throttle amount of the throttle device 7 is controlled by a preset value according to the outside air temperature or set temperature at the start-up, and then the rotation speed of the compressor is varied in accordance with the change in the outside air temperature or the room temperature For example, when the operating state of the refrigeration apparatus is varied, the opening area of the flow rate adjustment devices 15 and 16 is controlled and stored in the receiver 14 in order to finely adjust the refrigerant circulating in the refrigerant circuit 10 to the optimum refrigerant amount. Adjust the amount of refrigerant. That is, rough control is performed by the throttle device 7 and fine control is performed by the flow rate adjusting devices 15 and 16. Therefore, the expansion device 7 and the flow rate adjusting unit 13 are controlled according to each purpose.

そして、本例では、上記のような運転状態を可変する必要性が生じ、高圧側および/又は低圧側の流量調整装置の開口面積を微調整する必要がある場合において、冷凍装置の運転状態が安定してから、流量調整装置の開口面積を調整しようとするものである。   In this example, the necessity of changing the operation state as described above arises, and when it is necessary to finely adjust the opening area of the high-pressure side and / or low-pressure side flow rate adjustment device, the operation state of the refrigeration apparatus is After the stabilization, an attempt is made to adjust the opening area of the flow rate adjusting device.

すなわち、本例の制御部20では、圧縮機4の吐出温度と外気温との温度差の時間変化が所定値の範囲内になるまで、流量調整装置15,16の開口面積の調整動作を待機し、前記時間変化が所定値の範囲内になったときに冷凍装置が安定したと判断して、前記流量調整装置15,16の開口面積の調整動作を開始する。   That is, the control unit 20 of this example waits for the adjustment operation of the opening areas of the flow rate adjusting devices 15 and 16 until the time change of the temperature difference between the discharge temperature of the compressor 4 and the outside air temperature is within a predetermined value range. Then, when the time change falls within a predetermined value range, it is determined that the refrigeration apparatus is stable, and the adjustment operation of the opening areas of the flow rate adjusting devices 15 and 16 is started.

以下、具体的構成を例示する。なお、冷媒は冷房運転時と暖房運転時とでは可逆サイクルで流れるため、高圧側及び低圧側の流量調整装置15,16は、冷房運転時と暖房運転時とで冷媒の流れる方向が異なることになる。すなわち、流量調整部13では、図1に示すように、絞り装置7の室外熱交換器6側の連結管に介在される第1の流量調整装置15と、絞り装置7よりも室内熱交換器8側の連結管に介在される第2の流量調整装置16とを備えているが、冷房運転サイクル等、右から左へ向かう冷媒の流れがあるとき、第1の流量調整装置15は高圧側の流量調整装置として機能し、第2の流量調整装置16は低圧側の流量調整装置として機能する。また、図2に示すように、暖房運転サイクル等、左から右へ向かう冷媒の流れがあるとき、第2の流量調整装置16は高圧側の流量調整装置として機能し、第1の流量調整装置15は低圧側の流量調整装置として機能する。   Hereinafter, a specific configuration will be exemplified. Since the refrigerant flows in a reversible cycle between the cooling operation and the heating operation, the high-pressure side and low-pressure side flow control devices 15 and 16 have different refrigerant flow directions during the cooling operation and the heating operation. Become. That is, in the flow rate adjustment unit 13, as shown in FIG. 1, the first flow rate adjustment device 15 interposed in the connecting pipe on the outdoor heat exchanger 6 side of the expansion device 7 and the indoor heat exchanger than the expansion device 7. The second flow rate adjustment device 16 interposed in the 8-side connecting pipe is provided. When there is a refrigerant flow from right to left, such as in the cooling operation cycle, the first flow rate adjustment device 15 is on the high pressure side. The second flow rate adjusting device 16 functions as a low pressure side flow rate adjusting device. Also, as shown in FIG. 2, when there is a refrigerant flow from left to right, such as in a heating operation cycle, the second flow rate adjustment device 16 functions as a high-pressure side flow rate adjustment device, and the first flow rate adjustment device Reference numeral 15 functions as a low-pressure flow rate adjusting device.

絞り装置7は、冷媒回路10の凝縮、蒸発圧力を調整するもので、その流路の前後に圧力差が生じる。この圧力差を利用して、流量調整部13のレシーバ14に冷媒回路10内の冷媒の一部を凝縮させて溜め、また、レシーバ14内の冷媒を冷媒回路に戻すようにしている。   The expansion device 7 adjusts the condensation and evaporation pressure of the refrigerant circuit 10, and a pressure difference is generated before and after the flow path. By utilizing this pressure difference, a part of the refrigerant in the refrigerant circuit 10 is condensed and stored in the receiver 14 of the flow rate adjusting unit 13, and the refrigerant in the receiver 14 is returned to the refrigerant circuit.

図1に示す冷房運転サイクルの冷媒回路10では、圧縮機4から吐出された高温高圧の冷媒は凝縮器として機能する室外熱交換器6で熱交換された後、絞り装置7を通って減圧され、ガス冷媒となって蒸発器として機能する室内熱交換器8に入り、ここで熱交換されて圧縮機4に戻る。図2に示す暖房運転サイクルの冷媒回路10では、圧縮機4から吐出された高温高圧の冷媒は凝縮器として機能する室内熱交換器8で熱交換された後、絞り装置7を通って減圧され、ガス冷媒となって蒸発器として機能する室外熱交換器6に入り、ここで熱交換されて圧縮機4に戻る。   In the refrigerant circuit 10 of the cooling operation cycle shown in FIG. 1, the high-temperature and high-pressure refrigerant discharged from the compressor 4 is heat-exchanged by the outdoor heat exchanger 6 functioning as a condenser, and then depressurized through the expansion device 7. Then, it enters into the indoor heat exchanger 8 that functions as an evaporator as a gas refrigerant, where heat is exchanged and returns to the compressor 4. In the refrigerant circuit 10 of the heating operation cycle shown in FIG. 2, the high-temperature and high-pressure refrigerant discharged from the compressor 4 is heat-exchanged by the indoor heat exchanger 8 functioning as a condenser, and then depressurized through the expansion device 7. Then, it enters into the outdoor heat exchanger 6 that functions as an evaporator as a gas refrigerant, where heat is exchanged and returns to the compressor 4.

このような冷房運転サイクル及び暖房運転サイクルにおいて、流量調整部13では、高圧の液冷媒が高圧側の流量調整装置から入り、減圧されて液冷媒の状態でレシーバ14に溜められる。減圧される程度は流量調整装置15,16の開度(開口面積)に影響される。一方、レシーバ14内の液冷媒は接続口から低圧側の流量調整装置に入り、減圧されてガスと液との混合冷媒となり、冷媒回路10に戻される。   In such a cooling operation cycle and a heating operation cycle, in the flow rate adjustment unit 13, the high-pressure liquid refrigerant enters from the high-pressure side flow rate adjustment device, is decompressed, and is stored in the receiver 14 in a liquid refrigerant state. The degree of pressure reduction is affected by the opening degree (opening area) of the flow rate adjusting devices 15 and 16. On the other hand, the liquid refrigerant in the receiver 14 enters the low-pressure side flow rate adjusting device from the connection port, is reduced in pressure to become a mixed refrigerant of gas and liquid, and is returned to the refrigerant circuit 10.

図1に示す冷房運転サイクルにおける冷媒の流れの場合、第1の流量調整装置15が高圧側の流量調整装置となり、第2の流量調整装置16が低圧側の流量調整装置となる。また、図2に示す暖房運転サイクルにおける冷媒の流れの場合、第2の流量調整装置16が高圧側の流量調整装置となり、第1の流量調整装置15が低圧側の流量調整装置となる。   In the case of the refrigerant flow in the cooling operation cycle shown in FIG. 1, the first flow rate adjustment device 15 becomes a high-pressure side flow rate adjustment device, and the second flow rate adjustment device 16 becomes a low-pressure side flow rate adjustment device. In the case of the refrigerant flow in the heating operation cycle shown in FIG. 2, the second flow rate adjustment device 16 becomes a high-pressure side flow rate adjustment device, and the first flow rate adjustment device 15 becomes a low-pressure side flow rate adjustment device.

図5は本実施形態における冷凍システム装置のモリエール線図である。図中、A−Dおよびa−dは冷凍サイクルの各位置における各部冷媒の特性状態値を説明するために付された符号である。この冷凍システム装置では、圧縮機4に吸入された冷媒(Aの状態)が圧縮機4で圧縮され(Bの状態)、凝縮器(冷房運転では室外熱交換器6、暖房運転では室内熱交換器8)で凝縮されて液冷媒(Cの状態)となり、絞り装置7により絞られて圧力が下がり(Dの状態)、蒸発器(冷房運転では室内熱交換器、暖房運転では室外熱交換器)で蒸発して、再び圧縮機4へ吸入される(Aの状態)。   FIG. 5 is a Mollier chart of the refrigeration system apparatus in the present embodiment. In the figure, AD and a-d are symbols assigned for explaining the characteristic state values of the respective refrigerants at the respective positions of the refrigeration cycle. In this refrigeration system apparatus, the refrigerant (in the state A) sucked into the compressor 4 is compressed in the compressor 4 (in the state B), and the condenser (the outdoor heat exchanger 6 in the cooling operation, the indoor heat exchange in the heating operation). The refrigerant 8 is condensed to become a liquid refrigerant (state C), and is squeezed by the expansion device 7 to reduce the pressure (state D), and the evaporator (the indoor heat exchanger in the cooling operation, the outdoor heat exchanger in the heating operation). ) And is again sucked into the compressor 4 (state A).

このとき、絞り装置7の絞り量や流量調整装置15,16の開口面積が変化すると、凝縮圧力および蒸発圧力が変化し、凝縮器の出口側冷媒の過冷却度および圧縮機4の吸入側の冷媒過熱度が変化する。また、外気温の変動や室温の変化に合わせて圧縮機の回転数を可変した場合や、外気温の変動によって圧縮機の冷媒の吐出温度も変動することになる。このような変動要因により圧縮機の回転数を可変させた場合や上述のように絞り装置や流量調整装置の開口面積を変化させると、凝縮器出口側の冷媒の過冷却度および圧縮機の吸入側の冷媒過熱度が変化し、図5に示すモリエール線図が変化することになる。   At this time, if the throttle amount of the throttle device 7 or the opening areas of the flow rate adjusting devices 15 and 16 change, the condensation pressure and the evaporation pressure change, the degree of supercooling of the refrigerant on the outlet side of the condenser, and the suction side of the compressor 4 The degree of refrigerant superheat changes. Further, when the rotation speed of the compressor is varied in accordance with the change in the outside air temperature or the change in the room temperature, or the refrigerant discharge temperature of the compressor also fluctuates due to the change in the outside air temperature. When the rotational speed of the compressor is varied due to such a variation factor, or when the opening area of the throttle device or the flow rate adjusting device is changed as described above, the degree of refrigerant supercooling on the outlet side of the condenser and the suction of the compressor The refrigerant superheat degree on the side changes, and the Mollier chart shown in FIG. 5 changes.

そこで、本例では、冷凍装置の過冷却特性値を検出する過冷却検出部と、冷凍装置の過熱特性値を検出する過熱検出部と、前記過冷却検出部および過熱検出部の各検出結果を目標値に近付けるように、前記高圧側の流量調整装置および低圧側の流量調整装置の開口面積を調整し、冷媒流量を最適なものに制御する制御部20とが設けられている。   Therefore, in this example, the supercooling detection unit for detecting the supercooling characteristic value of the refrigeration apparatus, the overheating detection unit for detecting the superheating characteristic value of the refrigeration apparatus, and the detection results of the supercooling detection part and the superheating detection part A control unit 20 is provided that adjusts the opening areas of the high-pressure side flow rate adjustment device and the low-pressure side flow rate adjustment device so as to approach the target value and controls the refrigerant flow rate to an optimum value.

過冷却検出部は、凝縮器の出口側温度を検出する温度検出センサと、凝縮器中央付近の温度を検出する中央温度検出センサとの組み合わせから構成され、両温度センサから検出された温度の偏差値を過冷却度とする。凝縮器中央付近の温度を検出するのは、この付近の温度が凝縮器の冷媒圧力と対応した冷媒の飽和温度に相当すると考えられるからである。   The subcooling detection unit consists of a combination of a temperature detection sensor that detects the outlet side temperature of the condenser and a central temperature detection sensor that detects the temperature near the center of the condenser, and the temperature deviation detected from both temperature sensors. The value is the degree of supercooling. The reason for detecting the temperature near the center of the condenser is that the temperature near this is considered to correspond to the saturation temperature of the refrigerant corresponding to the refrigerant pressure in the condenser.

過熱検出部は、蒸発器の入口側温度を検出する温度センサと蒸発器の出口側温度を検出する温度センサとの組み合わせから構成され、両温度センサから検出された温度の偏差値を冷媒過熱度とする。   The overheat detection unit is composed of a combination of a temperature sensor that detects the temperature on the inlet side of the evaporator and a temperature sensor that detects the temperature on the outlet side of the evaporator, and calculates the deviation value of the temperature detected from both temperature sensors. And

なお、室外熱交換器6および室内熱交換器8は、冷媒の流れる方向により、凝縮器または蒸発器になるので、図1および図2においては、室外熱交換器6または室内熱交換器8の出入口および中央付近に温度センサ22〜27を図示するにとどめた。したがって、冷房運転サイクルや暖房運転サイクルに応じて、各温度センサ22〜27からの温度情報を集め、流量調整装置15,16の開口面積を調整することになる。   Note that the outdoor heat exchanger 6 and the indoor heat exchanger 8 become condensers or evaporators depending on the direction in which the refrigerant flows. In FIGS. 1 and 2, the outdoor heat exchanger 6 and the indoor heat exchanger 8 Only the temperature sensors 22 to 27 are illustrated in the vicinity of the entrance and the center. Therefore, the temperature information from the temperature sensors 22 to 27 is collected according to the cooling operation cycle or the heating operation cycle, and the opening areas of the flow rate adjusting devices 15 and 16 are adjusted.

制御部20は、一般的なマイクロコンピュータから構成され、過冷却検出部および過熱検出部の各検出結果を予め記憶された目標値に近付けるように、高圧側の流量調整装置および/または低圧側の流量調整装置の開口面積を調整し、冷媒流量を最適なものに制御している。   The control unit 20 is composed of a general microcomputer, and the high-pressure side flow rate adjustment device and / or the low-pressure side flow rate adjusting device and / or the low-pressure side so as to bring the detection results of the supercooling detection unit and the superheat detection unit close to the target value stored in advance. The opening area of the flow rate adjusting device is adjusted to control the refrigerant flow rate to an optimum value.

さらに、制御部20では、圧縮機4の吐出温度を検出する吐出温度検出部30と、圧縮機4の回転数を検出する回転数検出部31と、室外機の設置環境を検出するために外気温を検出する外気温検出部32とが設けられ、これらの検出情報に基づいて、冷凍装置が安定か否かを判定するようにしている。吐出温度検出部30は、本来的には圧縮機の吐出側で冷媒流路に設置されるものであるが、本例では、代替処置として、圧縮機4の吐出管の外面側に設置し、吐出管表面温度を検出するようにしている。本例の圧縮機の回転数検出部31は、圧縮機モータのロータ位置を検出することにより回転数を検出している。さらに、外気温検出部32は、室外機から外部に露出した温度センサにより外気温を検出するようにしている。   Further, the control unit 20 detects the discharge temperature of the compressor 4, a discharge temperature detection unit 30, a rotation number detection unit 31 that detects the rotation number of the compressor 4, and an external unit for detecting the installation environment of the outdoor unit. An outside air temperature detecting unit 32 that detects the air temperature is provided, and it is determined whether or not the refrigeration apparatus is stable based on the detected information. Although the discharge temperature detection unit 30 is originally installed in the refrigerant flow path on the discharge side of the compressor, in this example, as an alternative measure, it is installed on the outer surface side of the discharge pipe of the compressor 4, The discharge pipe surface temperature is detected. The compressor rotation speed detector 31 of this example detects the rotation speed by detecting the rotor position of the compressor motor. Further, the outside air temperature detection unit 32 detects the outside air temperature by a temperature sensor exposed to the outside from the outdoor unit.

そして、制御部20では、冷凍装置の運転状態の変化に応じて高圧側の流量調整装置および/または低圧側の流量調整装置の開口面積を調整するとき、圧縮機4の吐出温度、圧縮機4の回転数及び外気温を入力して、圧縮機4の吐出温度と外気温との温度差の時間変化が所定値の範囲内になるまで、流量調整装置15,16の開口面積の調整動作を待機させ、前記時間変化が所定値の範囲内になったときに冷凍装置が安定したと判断して、前記流量調整装置の開口面積の調整動作を開始するようにしている。   When the controller 20 adjusts the opening area of the high-pressure side flow rate adjustment device and / or the low-pressure side flow rate adjustment device according to the change in the operating state of the refrigeration apparatus, the discharge temperature of the compressor 4, the compressor 4 And adjusting the opening area of the flow rate adjusting devices 15 and 16 until the time change of the temperature difference between the discharge temperature of the compressor 4 and the outside air temperature is within a predetermined value range. It is made to stand by, and when the said time change becomes in the range of a predetermined value, it judges that the freezing apparatus was stabilized, and starts the adjustment operation of the opening area of the said flow control apparatus.

具体的には、制御部20は、圧縮機の回転数、圧縮機の吐出温度および外気温をパラメータとして、圧縮機の吐出温度と外気温との温度差の関数式を設定記憶しておき、この関数式を用いて冷凍装置の安定性を判断する。   Specifically, the control unit 20 sets and stores a functional expression of a temperature difference between the compressor discharge temperature and the outside air temperature, using the compressor rotation speed, the compressor discharge temperature, and the outside air temperature as parameters. The stability of the refrigeration apparatus is judged using this function formula.

制御部20における流量調整装置15,16の開口面積の調整は、以下のように行われる。まず、凝縮器出口の冷媒過冷却度および圧縮機4の吸入冷媒過熱度の目標値と両者の測定値もしくは推定値との偏差値を制御部20で演算して求め、この求めた偏差値と、高圧側の流量調整装置および低圧側の流量調整装置の開口面積の変化割合とを対応付ける関係式を、理論および実験結果から予め作成して記憶させているので、この関係式から各測定値と各目標値との過冷却度および過熱度の偏差値に基づいて、各流量調整装置4の開口面積の変化割合を演算し、この演算結果から高圧側流量調整装置および低圧側流量調整装置の開口面積を制御部で制御するようにする。このようにして、凝縮器出口の冷媒過冷却度と圧縮機の吸入冷媒過熱度の両者を予め設定された冷凍装置の運転状態に対応した目標値に近付けることができる。   Adjustment of the opening areas of the flow rate adjusting devices 15 and 16 in the control unit 20 is performed as follows. First, the controller 20 calculates a deviation value between a target value of the refrigerant supercooling degree at the outlet of the condenser and a target value of the refrigerant superheated degree of the compressor 4 and a measured value or an estimated value thereof, and the obtained deviation value and Since the relational expression that correlates the change rate of the opening area of the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device is created and stored in advance from the theoretical and experimental results, each measured value and Based on the degree of subcooling and the degree of superheat from each target value, the change rate of the opening area of each flow rate adjustment device 4 is calculated, and the opening of the high pressure side flow rate adjustment device and low pressure side flow rate adjustment device is calculated from this calculation result. The area is controlled by the control unit. In this way, both the refrigerant supercooling degree at the outlet of the condenser and the suction refrigerant superheating degree of the compressor can be brought close to the target value corresponding to the preset operating state of the refrigeration apparatus.

次に、冷凍装置の安定性を判断する制御は以下のように行われる。図3は全体処理の流れを示す全体フローチャートである。冷凍サイクルの状態特性値を示す圧縮機吸入冷媒過熱度と凝縮器出口冷媒過冷却度を制御する場合、まず、圧縮機4の運転が開始されると、予め試験結果または計算結果から設定された初期起動開口面積になるように絞り装置7の絞り量を調整する(S1)。   Next, the control for determining the stability of the refrigeration apparatus is performed as follows. FIG. 3 is an overall flowchart showing the flow of the entire process. When controlling the compressor intake refrigerant superheat degree and the condenser outlet refrigerant supercool degree indicating the state characteristic value of the refrigeration cycle, when the operation of the compressor 4 is started, it is set in advance from a test result or a calculation result. The diaphragm amount of the diaphragm device 7 is adjusted so as to be the initial activation opening area (S1).

次に、冷凍装置の運転状態の変化に応じて高圧側の流量調整装置および/または低圧側の流量調整装置の開口面積を調整するとき、冷凍装置の安定性の判定処理を行なう(S2)。安定性の判定処理後に安定か否かを判断し(S3)、その結果、冷凍装置安定と判断されたならば、流量調整装置15,16の開口面積を制御し、冷凍システムの運転状態に応じて、冷凍サイクルの状態特性値、例えば圧縮機の吸入冷媒過熱度と凝縮器出口の冷媒過冷却度を、冷凍システムの運転効率が最も良くなるように、予め試験して求められた試験結果または計算結果から求められた各部の冷媒状態量の目安となる圧縮機の吸入冷媒過熱度及び凝縮器出口の冷媒過冷却度の目標値を演算し、その目標値になるように、高圧側の流量調整装置および/または低圧側の流量調整装置の開口面積を制御する(S4)。この処理は吸入冷媒過熱度及び凝縮器出口の冷媒過冷却度の目標値になるまで続けられる(S5)。   Next, when adjusting the opening area of the high pressure side flow rate adjustment device and / or the low pressure side flow rate adjustment device in accordance with the change in the operating state of the refrigeration device, a determination process of the stability of the refrigeration device is performed (S2). After the stability determination process, it is determined whether or not it is stable (S3). As a result, if it is determined that the refrigeration apparatus is stable, the opening areas of the flow control devices 15 and 16 are controlled, and according to the operating state of the refrigeration system. The refrigeration cycle state characteristic values, for example, the intake refrigerant superheat degree of the compressor and the refrigerant subcooling degree of the condenser outlet are tested in advance so as to obtain the best operating efficiency of the refrigeration system, or Calculate target values of the refrigerant superheat degree of the compressor and the refrigerant subcooling degree at the outlet of the condenser, which serve as a guide for the refrigerant state quantity of each part obtained from the calculation results, and adjust the flow rate on the high pressure side so that the target values are obtained. The opening area of the adjusting device and / or the flow adjusting device on the low pressure side is controlled (S4). This process is continued until the target values of the refrigerant superheat degree and the refrigerant supercool degree at the condenser outlet are reached (S5).

そして、運転状態が変化したか否かを判断し(S6)、運転状態が変化した場合、ステップS2に戻って安定性判定処理を行ない(S2)、以後、冷凍装置が安定と判断されたならば、流量調整装置15,16の開口面積を制御する処理を繰り返す(S4〜S6)。   Then, it is determined whether or not the operating state has changed (S6). If the operating state has changed, the process returns to step S2 to perform the stability determination process (S2). Thereafter, if it is determined that the refrigeration apparatus is stable. For example, the process of controlling the opening area of the flow rate adjusting devices 15 and 16 is repeated (S4 to S6).

図4は安定化判定処理のフローチャートである。図4に示すように、まず、安定性判定処理においては、圧縮機の吐出管表面温度の時間的変化を実測し、予め設定記憶された関数式A1と実測値とから近似式A2を作成し(S7)、近似式A2に外気温および圧縮機の回転数を入力する(S8)。そして、圧縮機4の吐出温度と外気温との温度差ΔTの時間変化が所定値δの範囲内か否かを判定する(S9)。この処理を繰り返し、温度差ΔTの時間変化が所定値δの範囲内になったときに冷凍装置が安定したと判断して(S10)、安定化判定処理を終了し、図3のステップS3に戻って、安定と判断した後、流量調整装置15,16の開口面積の調整動作を開始する。   FIG. 4 is a flowchart of the stabilization determination process. As shown in FIG. 4, first, in the stability determination process, a temporal change in the discharge pipe surface temperature of the compressor is measured, and an approximate expression A2 is created from the function expression A1 and the measured value that are set and stored in advance. (S7), the outside air temperature and the rotation speed of the compressor are input to the approximate expression A2 (S8). Then, it is determined whether or not the time change of the temperature difference ΔT between the discharge temperature of the compressor 4 and the outside air temperature is within the range of the predetermined value δ (S9). This process is repeated, and when the time change of the temperature difference ΔT falls within the range of the predetermined value δ, it is determined that the refrigeration apparatus is stable (S10), the stabilization determination process is terminated, and the process proceeds to step S3 in FIG. After returning and judging that it is stable, the adjustment operation of the opening areas of the flow rate adjusting devices 15 and 16 is started.

近似式A2の具体的作成手順を図6(a)〜(c)及び図7(a)(b)に基づいて説明する。ステップS11では、外気温Tout1のときに回転数f1、回転数f2で回転させたときの安定時吐出管表面温度Td11、Td12、および回転数f2で回転させたときの吐出管表面温度の時間変化を測定する。図6(a)は縦軸に吐出管表面温度と外気温との温度差ΔTを、横軸に時間tを表わしたグラフである。図6(a)のグラフには、圧縮機を回転数f2で回転させたときの[吐出管表面温度−外気温の温度差]の実測値(×印)と、参考までに、圧縮機を回転数f1で回転させたときの[吐出管表面温度−外気温の温度差]の実測値(●印)と、回転数f1で回転させた場合の[安定時吐出管表面温度Td11−Tout]をΔT1として、回転数f2で回転させた場合の[安定時吐出管表面温度Td12−Tout]をΔT2として表わす。Toutは任意の外気温を示す。吐出管表面温度は圧縮機の冷媒の吐出温度を検出するためのもので、吐出温度センサによって検出される。このプロットした実測値から明らかなように、温度差関数ΔT(t)は、時間の経過と共にそれぞれΔT1およびΔT2に収束する形になる。   A specific procedure for creating the approximate expression A2 will be described with reference to FIGS. 6 (a) to 6 (c) and FIGS. 7 (a) and 7 (b). In step S11, when the outside air temperature Tout1 is changed, the discharge pipe surface temperature Td11, Td12 at the stable time when rotating at the rotation speed f1 and the rotation speed f2, and the time change of the discharge pipe surface temperature when rotating at the rotation speed f2. Measure. FIG. 6A is a graph in which the vertical axis represents the temperature difference ΔT between the discharge pipe surface temperature and the outside air temperature, and the horizontal axis represents time t. In the graph of FIG. 6 (a), the measured value (x mark) of [the discharge pipe surface temperature−the temperature difference of the outside air temperature] when the compressor is rotated at the rotation speed f2, and the compressor for reference. Actual value (● mark) of [Discharge pipe surface temperature-temperature difference between outside air temperature] when rotated at rotation speed f1 and [Stable discharge pipe surface temperature Td11-Tout] when rotated at rotation speed f1 Is represented by ΔT1, and [stable discharge pipe surface temperature Td12−Tout] when rotated at a rotational speed f2 is represented by ΔT2. Tout indicates an arbitrary outside temperature. The discharge pipe surface temperature is for detecting the discharge temperature of the refrigerant of the compressor, and is detected by a discharge temperature sensor. As is apparent from the plotted actual measurement values, the temperature difference function ΔT (t) converges to ΔT1 and ΔT2 with time.

そこで、数式1に示す関数式A1を作成し、これを制御部20の記憶部に記憶しておく。関数式A1は圧縮機の回転数による変化率を加味した式である。

Figure 0005989534
Therefore, a function formula A1 shown in Formula 1 is created and stored in the storage unit of the control unit 20. The function formula A1 is a formula that takes into account the rate of change due to the rotational speed of the compressor.
Figure 0005989534

この関数式A1を使って安定化の判定処理を行なう。ステップS12では、数式1に示す所定回転数としてf=f2を代入して数式2を得る。数式2は数式1から作成される圧縮機4の吐出温度と外気温との温度差ΔTの時間変化曲線の上限値を表わす。   Stabilization determination processing is performed using this function equation A1. In step S12, Formula 2 is obtained by substituting f = f2 as the predetermined rotational speed shown in Formula 1. Formula 2 represents the upper limit value of the time change curve of the temperature difference ΔT between the discharge temperature of the compressor 4 and the outside air temperature created from Formula 1.

Figure 0005989534

ΔT(t):吐出管表面温度−Tout
f:任意の回転数
f1:回転数1
f2:回転数2
τ:パラメータ
Figure 0005989534

ΔT (t): Discharge pipe surface temperature-Tout
f: Arbitrary rotation speed
f1: Number of revolutions 1
f2: Number of revolutions 2
τ: Parameter

ステップS13では、ステップS11の測定結果と最小二乗法によりパラメータτを決定する。図5(b)は回転数f2におけるΔT2の時間変化曲線である。この図から明らかなように、パラメータτの値により飽和曲線の傾きが大きく異なる。図6(b)には、τ=1.5、τ=3.5、τ=7.0の三種類の曲線を例示している。図6(b)では、プロットした測定値に最も近似する曲線として、パラメータτ=3.5の曲線が挙げられる。   In step S13, the parameter τ is determined by the measurement result of step S11 and the least square method. FIG. 5B is a time variation curve of ΔT2 at the rotation speed f2. As is apparent from this figure, the slope of the saturation curve varies greatly depending on the value of the parameter τ. FIG. 6B illustrates three types of curves of τ = 1.5, τ = 3.5, and τ = 7.0. In FIG. 6B, a curve with the parameter τ = 3.5 is given as a curve that most closely approximates the plotted measurement values.

同様にして、ステップ14では、数式1の所定回転数f=f1として数式1から数式3を作成する。ステップ11での測定結果からパラメータτを決定する。そして、図6(a)でプロットした測定値に最も近似する曲線を作成する。図6(c)は回転数f2と回転数f1とで作成された飽和曲線を点線で示す。回転数f2による曲線は上限値を表わし、回転数f1による曲線は下限値を表わす。両曲線で挟まれた領域内で、数式1で作成される飽和曲線は回転数fによって変化する。したがって、数式1の関数式A1を呼び出し、回転数fを代入して時間と共に変化する実測値が、所定の温度差ΔTに収束するときを探し出す。   Similarly, in step 14, Formula 1 to Formula 3 are created with the predetermined rotation speed f = f1 of Formula 1. The parameter τ is determined from the measurement result in step 11. Then, a curve that most closely approximates the measurement values plotted in FIG. FIG. 6C shows a saturation curve created by the rotation speed f2 and the rotation speed f1 by a dotted line. The curve with the rotational speed f2 represents the upper limit value, and the curve with the rotational speed f1 represents the lower limit value. Within the region sandwiched between the two curves, the saturation curve created by Equation 1 varies with the rotational speed f. Therefore, the function formula A1 of Formula 1 is called, and the time when the actually measured value that changes with time by substituting the rotational speed f converges to a predetermined temperature difference ΔT is found.

数式3はこれまでの手順により値が決まった項をアンダーラインにより示す。この数式3は未知数(回転数)fによって曲線が変わることを示している。

Figure 0005989534
Equation 3 shows the terms whose values have been determined by the above procedures by underlining. Equation 3 shows that the curve changes depending on the unknown number (rotation number) f.
Figure 0005989534

ステップS15以降では、数式3のΔT(t)において、外気温が圧縮機の吐出温度に及ぼす影響を加味して、ΔT1及びΔT2を補正することによって、より正確な近似式A2を得ようとするものである。すなわち、ステップS15では、外気温をTout2に変え、回転数f1と回転数f2で回転させたときの安定時吐出管表面温度Td21,Td22の時間変化を測定する。そして、ステップS16では、回転数f=f1の測定結果を数式4に代入し、また、ステップS17では、回転数f=f2の測定結果を数式5に代入する。数式4および数式5は、外気温による変化率を加味した式である。   In step S15 and subsequent steps, in ΔT (t) of Equation 3, an attempt is made to obtain a more accurate approximate expression A2 by correcting ΔT1 and ΔT2 in consideration of the influence of the outside air temperature on the discharge temperature of the compressor. Is. That is, in step S15, the change in time of the stable discharge pipe surface temperatures Td21 and Td22 when the outside air temperature is changed to Tout2 and rotated at the rotation speed f1 and the rotation speed f2 is measured. In step S16, the measurement result of the rotation speed f = f1 is substituted into Equation 4, and in Step S17, the measurement result of the rotation speed f = f2 is substituted into Equation 5. Equations 4 and 5 are equations that take into account the rate of change due to the outside air temperature.

Figure 0005989534
Figure 0005989534
Figure 0005989534
Figure 0005989534

そして、ステップS18では、数式4および数式5のΔT1およびΔT2を数式1に代入して数式6を作成する。太字で表わされるΔT2およびΔT1は、ステップS16で得られた数式4、ステップS17で得られた数式5を使用して、数式1を作成している。図7(a)はこのときの数式4および数式5による補正幅をもった飽和曲線を示す。すなわち、外気温によって飽和曲線も変わることを示している。

Figure 0005989534
In step S18, ΔT1 and ΔT2 of Equation 4 and Equation 5 are substituted into Equation 1 to create Equation 6. For ΔT2 and ΔT1 expressed in bold, Formula 1 is created using Formula 4 obtained in Step S16 and Formula 5 obtained in Step S17. FIG. 7A shows a saturation curve having a correction width according to Equation 4 and Equation 5 at this time. That is, the saturation curve also changes depending on the outside air temperature.
Figure 0005989534

そして、数式6を用いて安定状態か否かの判定を行なう。具体的には、任意の回転数fと外気温Toutをそれぞれ代入した数式1において、ΔT(t)の時間変化率が閾値δよりも小さくなったときに安定状態とする(図7(b)参照)。閾値δは、例えば、±0.1℃/minとしてもよい。±0.1℃/minはあくまでも例示であって、これに限定されるものではない。   And it is determined whether it is a stable state using Formula 6. Specifically, in Formula 1 in which an arbitrary number of revolutions f and an outside air temperature Tout are substituted, a stable state is established when the time change rate of ΔT (t) becomes smaller than the threshold δ (FIG. 7B). reference). The threshold δ may be, for example, ± 0.1 ° C./min. ± 0.1 ° C./min is merely an example, and is not limited to this.

以上の実施形態の説明から明らかなように、本発明は、圧縮機、凝縮器、高圧側流量調整装置、レシーバ、低圧側流量調整装置、および蒸発器が順次配管で接続されて構成された冷凍装置と、冷凍装置の過冷却特性値を検出する過冷却検出部と、冷凍装置の過熱特性値を検出する過熱検出部と、前記過冷却検出部および過熱検出部の各検出結果を目標値に近付けるように、前記高圧側流量調整装置および低圧側流量調整装置の開口面積を調整する制御部とを備え、前記圧縮機の吐出温度を検出する吐出温度検出部と、圧縮機の回転数を検出する回転数検出部と、外気温を検出する外気温検出部とが設けられ、前記制御部では、冷凍装置の運転状態の変化に応じて前記高圧側流量調整装置および/または低圧側流量調整装置の開口面積を調整するとき、圧縮機の吐出温度と外気温との温度差の時間変化が所定値の範囲内になるまで、前記開口面積の調整動作を待機し、前記時間変化が所定値の範囲内になったときに冷凍装置が安定したと判断して、前記流量調整装置の開口面積の調整動作を開始することを特徴とする。   As is apparent from the above description of the embodiment, the present invention is a refrigeration system in which a compressor, a condenser, a high-pressure side flow rate adjustment device, a receiver, a low-pressure side flow rate adjustment device, and an evaporator are sequentially connected by piping. A supercooling detection unit for detecting the supercooling characteristic value of the refrigeration apparatus, an overheating detection unit for detecting the superheating characteristic value of the refrigeration apparatus, and the detection results of the supercooling detection unit and the overheating detection unit as target values A control unit that adjusts the opening area of the high-pressure side flow rate adjustment device and the low-pressure side flow rate adjustment device so as to approach, a discharge temperature detection unit that detects a discharge temperature of the compressor, and a rotation number of the compressor A rotation speed detection unit that detects the outside air temperature, and an outside air temperature detection unit that detects the outside air temperature. The control unit controls the high-pressure side flow rate adjustment device and / or the low-pressure side flow rate adjustment device according to a change in the operating state of the refrigeration apparatus. Adjust the opening area of When the time change of the temperature difference between the discharge temperature of the compressor and the outside air temperature is within the predetermined value range, the adjustment operation of the opening area is waited, and the time change is within the predetermined value range. Then, it is determined that the refrigeration apparatus is stable, and the adjustment operation of the opening area of the flow rate adjustment apparatus is started.

上記構成によると、冷凍装置の運転状態の変化に応じて前記高圧側流量調整装置および/または低圧側流量調整装置の開口面積を調整するとき、圧縮機の吐出温度と外気温との温度差の時間変化が所定値の範囲内になるまで、前記開口面積の調整動作を待機し、前記時間変化が所定値の範囲内になったときに冷凍装置が安定したと判定して、前記開口面積の調整動作を開始するので、従来に比べて信頼性の高い冷凍システム装置を提供することができる。   According to the above configuration, when adjusting the opening area of the high pressure side flow rate adjustment device and / or the low pressure side flow rate adjustment device according to the change in the operating state of the refrigeration apparatus, the temperature difference between the discharge temperature of the compressor and the outside air temperature The adjustment of the opening area is waited until the time change is within a predetermined value range, and when the time change is within the predetermined value range, it is determined that the refrigeration apparatus is stable, and the opening area is adjusted. Since the adjustment operation is started, it is possible to provide a refrigeration system apparatus having higher reliability than the conventional one.

また、制御部は、圧縮機の回転数、圧縮機の吐出温度および外気温をパラメータとして、圧縮機の吐出温度と外気温との温度差の関数式を設定記憶しておき、この関数式を用いて冷凍装置の安定性を判断する構成を採用することができる。   Further, the control unit sets and stores a function equation of a temperature difference between the compressor discharge temperature and the outside air temperature, using the compressor rotation speed, the compressor discharge temperature and the outside air temperature as parameters, and stores the function equation. The structure which uses and judges the stability of a freezing apparatus can be employ | adopted.

上記構成によると、予め記憶した関数式に基づいて、圧縮機の吐出温度と外気温との温度差の時間変化が所定値以内に入るか否かで冷凍装置の安定性を判断しているので、従来のように、必要以上に安定待ち時間を採る必要がなく、かつ応答性も向上することができる。   According to the above configuration, the stability of the refrigeration apparatus is determined based on whether or not the time change of the temperature difference between the discharge temperature of the compressor and the outside air temperature falls within a predetermined value based on a function expression stored in advance. As in the prior art, it is not necessary to take a stable waiting time more than necessary, and the responsiveness can be improved.

また、本発明に係る冷凍装置において、高圧側流量調整装置、レシーバ及び低圧側流量調整装置からなる流量調整部と、凝縮器出口から蒸発器入口に至る流路の開口面積を変化させて過冷却度を変化させる絞り装置とが並列に接続された構成を採用してもよい。   Further, in the refrigeration apparatus according to the present invention, the supercooling is performed by changing the flow area from the high pressure side flow control device, the receiver and the low pressure side flow control device, and the opening area of the flow path from the condenser outlet to the evaporator inlet. You may employ | adopt the structure with which the diaphragm | throttle device which changes a degree was connected in parallel.

なお、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments can be appropriately combined. Such embodiments are also included in the technical scope of the present invention.

1 室内機
2 室外機
3 冷媒配管
4 圧縮機
5 四方弁
6 室外熱交換器
7 絞り装置
8 室内熱交換器
10 冷媒回路
11 開閉弁
13 流量調整部
14 レシーバ
15 第1の流量調整装置
16 第2の流量調整装置
20 制御部
22〜27 温度センサ
30 吐出温度検出部
31 回転数検出部
32 外気温検出部
DESCRIPTION OF SYMBOLS 1 Indoor unit 2 Outdoor unit 3 Refrigerant piping 4 Compressor 5 Four-way valve 6 Outdoor heat exchanger 7 Throttle device 8 Indoor heat exchanger 10 Refrigerant circuit 11 On-off valve 13 Flow rate adjustment part 14 Receiver 15 1st flow rate adjustment device 16 2nd Flow rate adjusting device 20 Control unit 22 to 27 Temperature sensor 30 Discharge temperature detection unit 31 Rotational speed detection unit 32 Outside air temperature detection unit

Claims (3)

圧縮機、凝縮器、高圧側流量調整装置、レシーバ、低圧側流量調整装置、および蒸発器が順次配管で接続されて構成された冷凍装置と、冷凍装置の過冷却特性値を検出する過冷却検出部と、冷凍装置の過熱特性値を検出する過熱検出部と、前記過冷却検出部および過熱検出部の各検出結果を目標値に近付けるように、前記高圧側流量調整装置および低圧側流量調整装置の開口面積を調整する制御部とを備え、
前記圧縮機の吐出温度を検出する吐出温度検出部と、圧縮機の回転数を検出する回転数検出部と、外気温を検出する外気温検出部とが設けられ、
前記制御部では、冷凍装置の運転状態の変化に応じて前記高圧側流量調整装置および/または低圧側流量調整装置の開口面積を調整するとき、圧縮機の吐出温度と外気温との温度差の時間変化が所定値の範囲内になるまで、前記開口面積の調整動作を待機し、前記時間変化が所定値の範囲内になったときに冷凍装置が安定したと判断して、前記流量調整装置の開口面積の調整動作を開始することを特徴とする冷凍システム装置。
Compressor, condenser, high-pressure side flow control device, receiver, low-pressure side flow control device, and evaporator are connected by piping in sequence, and supercooling detection that detects the supercooling characteristic value of the refrigeration device An overheat detection unit that detects an overheat characteristic value of the refrigeration apparatus, and the high pressure side flow rate adjustment device and the low pressure side flow rate adjustment device so that the detection results of the overcooling detection unit and the overheat detection unit are brought close to target values. And a controller for adjusting the opening area of
A discharge temperature detection unit for detecting the discharge temperature of the compressor, a rotation number detection unit for detecting the rotation number of the compressor, and an outside air temperature detection unit for detecting the outside air temperature;
In the control unit, when adjusting the opening area of the high pressure side flow rate adjustment device and / or the low pressure side flow rate adjustment device according to a change in the operating state of the refrigeration apparatus, the temperature difference between the discharge temperature of the compressor and the outside air temperature is adjusted. The adjustment of the opening area is waited until the time change falls within a predetermined value range, and when the time change falls within the predetermined value range, the refrigeration apparatus is determined to be stable, and the flow rate adjustment device The refrigeration system apparatus characterized by starting the adjustment operation of the opening area of the refrigeration system.
前記制御部は、圧縮機の回転数、圧縮機の吐出温度および外気温をパラメータとして、圧縮機の吐出温度と外気温との温度差の関数式を設定記憶しておき、この関数式を用いて冷凍装置の安定性を判断することを特徴とする請求項1に記載の冷凍システム装置。 The control unit sets and stores a function equation of a temperature difference between the compressor discharge temperature and the outside air temperature using the compressor rotation speed, the compressor discharge temperature and the outside air temperature as parameters, and uses this function equation. The refrigeration system apparatus according to claim 1, wherein stability of the refrigeration apparatus is determined. 前記冷凍装置において、高圧側流量調整装置、レシーバ及び低圧側流量調整装置からなる流量調整部と、凝縮器出口から蒸発器入口に至る流路の開口面積を変化させて過冷却度を変化させる絞り装置とが並列に接続された請求項1又は2に記載の冷凍システム装置。 In the refrigeration apparatus, a flow rate adjustment unit including a high-pressure side flow rate adjustment device, a receiver, and a low-pressure side flow rate adjustment device, and a throttle that changes the degree of supercooling by changing the opening area of the flow path from the condenser outlet to the evaporator inlet. The refrigeration system apparatus according to claim 1 or 2, wherein the apparatus is connected in parallel.
JP2012273677A 2012-12-14 2012-12-14 Refrigeration system apparatus and air conditioner Active JP5989534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012273677A JP5989534B2 (en) 2012-12-14 2012-12-14 Refrigeration system apparatus and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012273677A JP5989534B2 (en) 2012-12-14 2012-12-14 Refrigeration system apparatus and air conditioner

Publications (2)

Publication Number Publication Date
JP2014119159A JP2014119159A (en) 2014-06-30
JP5989534B2 true JP5989534B2 (en) 2016-09-07

Family

ID=51174149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012273677A Active JP5989534B2 (en) 2012-12-14 2012-12-14 Refrigeration system apparatus and air conditioner

Country Status (1)

Country Link
JP (1) JP5989534B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090177A (en) * 2014-11-07 2016-05-23 東芝キヤリア株式会社 Refrigeration cycle device
WO2020101176A1 (en) * 2018-11-15 2020-05-22 이동원 Heat pump having improved efficiency
CN111853928B (en) * 2020-07-20 2021-08-24 珠海格力电器股份有限公司 Control method and device for awakening outdoor unit by indoor unit, indoor unit and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334507B2 (en) * 1996-09-13 2002-10-15 三菱電機株式会社 Refrigeration system device and control method for refrigeration system device
JP4716937B2 (en) * 2006-06-28 2011-07-06 三洋電機株式会社 Refrigeration cycle apparatus, heat pump water heater, and control method for refrigeration cycle apparatus
JP2012072920A (en) * 2010-09-27 2012-04-12 Hitachi Appliances Inc Refrigeration apparatus

Also Published As

Publication number Publication date
JP2014119159A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
US8220280B2 (en) Air conditioning apparatus and method for determining the amount of refrigerant of air-conditioning apparatus
US9797639B2 (en) Method for operating a vapour compression system using a subcooling value
US7856836B2 (en) Refrigerating air conditioning system
EP3545241B1 (en) A method for handling fault mitigation in a vapour compression system
JP7257782B2 (en) air conditioning system
WO2014170982A1 (en) Heat pump device and air-conditioning system
JP2016003848A (en) Air conditioning system and control method for the same
EP3591311B1 (en) Refrigeration cycle device
JP5989534B2 (en) Refrigeration system apparatus and air conditioner
JP4711852B2 (en) Temperature adjusting device and refrigeration cycle
WO2017086343A1 (en) Refrigeration cycle for vehicular air-conditioning device, and vehicle equipped therewith
JP2008232588A (en) Air conditioner
KR102500807B1 (en) Air conditioner and a method for controlling the same
KR101144806B1 (en) Air conditioner and Control method of the same
JP3791444B2 (en) Air conditioner
KR101936215B1 (en) Control method for air conditioning apparatus
CN113915806B (en) Refrigerant sound reduction control system, method, air conditioner and computer readable medium
KR20200009765A (en) An air conditioning system and a method for controlling the same
CN106403201B (en) The control method and air conditioner of the fresh air machine heat exchanger hydrops of air conditioner
KR101500730B1 (en) Controlling method of an air conditioner
KR100565995B1 (en) Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit
JPH1038398A (en) Controller of electric expansion valve
JP6092606B2 (en) Air conditioner
KR20170087752A (en) Air conditioner and Controlling method for the same
JP2008249240A (en) Condensing unit and refrigerating device comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160810

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5989534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150