JP3334507B2 - Refrigeration system device and control method for refrigeration system device - Google Patents

Refrigeration system device and control method for refrigeration system device

Info

Publication number
JP3334507B2
JP3334507B2 JP24376396A JP24376396A JP3334507B2 JP 3334507 B2 JP3334507 B2 JP 3334507B2 JP 24376396 A JP24376396 A JP 24376396A JP 24376396 A JP24376396 A JP 24376396A JP 3334507 B2 JP3334507 B2 JP 3334507B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
pressure side
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24376396A
Other languages
Japanese (ja)
Other versions
JPH1089780A (en
Inventor
浩司 山下
文雄 松岡
利彰 吉川
浩招 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24376396A priority Critical patent/JP3334507B2/en
Publication of JPH1089780A publication Critical patent/JPH1089780A/en
Application granted granted Critical
Publication of JP3334507B2 publication Critical patent/JP3334507B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、凝縮器と蒸発器と
の間に設けられ、冷媒を貯流するレシーバタンク前後に
設置した各調整手段の開口面積を制御して、冷凍サイク
ルを最適に維持する冷凍システム装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention controls an opening area of each adjusting means provided between a condenser and an evaporator and disposed before and after a receiver tank for storing a refrigerant to optimize a refrigeration cycle. The present invention relates to a refrigeration system device to be maintained.

【0002】[0002]

【従来の技術】図19は例えば特開平6−257828
号公報に示された従来の冷凍システム装置であり、図に
おいて、3は圧縮機、4は室外熱交換器、5は四方弁、
6a、6b、6c室内熱交換器、11a、11b、11
cはレシーバタンク、電動膨張弁、12はレシーバタン
ク、13は主電動膨張弁、14は吸入管である。
2. Description of the Related Art FIG.
In the figure, reference numeral 3 denotes a compressor, 4 denotes an outdoor heat exchanger, 5 denotes a four-way valve,
6a, 6b, 6c indoor heat exchangers, 11a, 11b, 11
c is a receiver tank, an electric expansion valve, 12 is a receiver tank, 13 is a main electric expansion valve, and 14 is a suction pipe.

【0003】次に、動作について説明する。例えば、暖
房時は、圧縮機3で圧縮された冷媒は各室内熱交換器6
a〜cを通り、各電動膨張弁11a〜cで絞られ、レシ
ーバタンク12を通った後、主電動膨張弁13を介して
室外熱交換器4へ送られ、その後圧縮機3に吸入され
る。この際、主電動膨張弁13の開口面積を室外熱交換
器4の出口側冷媒温度の過熱度に基づいて調整すること
により、レシーバタンク12内に余剰冷媒を溜めながら
圧縮機の吸入冷媒過熱度や圧縮機吐出冷媒温度などを制
御する。また、レシーバタンク12を挟んで前後に、主
電動膨張弁13と各電動膨張弁11a、11b、11c
の両者が存在することにより、冷房時でも同様の制御を
行うことができる。
Next, the operation will be described. For example, during heating, the refrigerant compressed by the compressor 3 is supplied to each indoor heat exchanger 6.
After passing through a to c, the throttles are throttled by the respective electric expansion valves 11 a to 11 c, passed through the receiver tank 12, sent to the outdoor heat exchanger 4 via the main electric expansion valve 13, and then sucked into the compressor 3. . At this time, by adjusting the opening area of the main electric expansion valve 13 based on the superheat degree of the refrigerant temperature on the outlet side of the outdoor heat exchanger 4, the superheat degree of the suction refrigerant superheat of the compressor while accumulating the surplus refrigerant in the receiver tank 12 And the temperature of the refrigerant discharged from the compressor. Further, before and after the receiver tank 12, the main electric expansion valve 13 and the electric expansion valves 11a, 11b, 11c are arranged.
The same control can be performed even during cooling due to the presence of both.

【0004】[0004]

【発明が解決しようとする課題】従来の冷凍システム装
置は以上のように構成されているので、圧縮機の吸入冷
媒ガス温度の過熱度や圧縮機の冷媒吐出温度などに基づ
いて、レシーバタンク前後の膨張弁(圧力または流量を
調整する調整手段)の開口面積をそれぞれ制御している
ため、運転効率の良くない冷凍サイクルで運転すると言
う問題点があった。また、特に、多室型冷凍サイクルに
おける冷・暖房運転時の室内機の運転台数が変化した時
などは、レシーバタンク前後の膨張弁(調整手段)がお
互いにそれぞれの動作に影響を与え、ハンチングしてし
まい、なかなかシステムの冷凍サイクルが安定しない
か、あるいは安定するまでに長い時間がかかってしまと
言う問題点があった。
Since the conventional refrigeration system apparatus is constructed as described above, it is necessary to determine whether the temperature of the receiver tank is higher or lower based on the degree of superheating of the refrigerant gas suction temperature of the compressor or the refrigerant discharge temperature of the compressor. Since the opening areas of the expansion valves (adjustment means for adjusting the pressure or the flow rate) are controlled respectively, there is a problem that the operation is performed in a refrigeration cycle having poor operation efficiency. In particular, when the number of operating indoor units during the cooling / heating operation in the multi-room refrigeration cycle changes, the expansion valves (adjustment means) in front and behind the receiver tank affect each other's operation, and hunting occurs. As a result, there has been a problem that the refrigeration cycle of the system is not easily stabilized or it takes a long time to stabilize.

【0005】この発明は上記のような問題点を解決する
ためになされたもので、常に運転効率の良い冷凍サイク
ル状態で、安定した運転状態を維持する経済的で信頼性
の高い冷凍システム装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an economical and highly reliable refrigeration system apparatus that maintains a stable operation state in a refrigeration cycle state with always high operation efficiency. The purpose is to gain.

【0006】また、冷凍システム装置の運転状態が変化
した場合(例えば、多室型冷凍システム装置において室
内機の運転台数が変化した場合など)でも、冷凍サイク
ルのハンチング(サイクル内の冷媒流量や圧力が短時間
のうちに、大きく変動すること)を防止し、短時間で運
転効率の良い冷凍サイクルに到達させ、年間の平均運転
効率を大幅に向上させ、経済的で、安定した運転を維持
する信頼性の高い冷凍システム装置を得ることを目的と
している。
Further, even when the operating state of the refrigeration system device changes (for example, when the number of operating indoor units in a multi-room refrigeration system device changes), hunting of the refrigeration cycle (refrigerant flow rate and pressure in the cycle). To prevent large fluctuations in a short period of time), reach a refrigeration cycle with high operating efficiency in a short time, greatly improve the annual average operating efficiency, and maintain economical and stable operation The purpose is to obtain a reliable refrigeration system device.

【0007】[0007]

【課題を解決するための手段】この発明に係る冷凍シス
テム装置は、圧縮機、凝縮器、高圧側絞り装置、レシー
バタンク、低圧側絞り装置、および蒸発器が順次配管で
接続されて構成された冷凍装置と、この冷凍装置の凝縮
器出口冷媒の過冷却度に相当する過冷却特性値を検知す
る過冷却検知手段と、前記圧縮機の吸入冷媒の過熱度に
相当する過熱特性値を検知する過熱検知手段と、現在の
前記高圧側および低圧側絞り装置の開口面積を基に前記
過冷却検知手段および過熱検知手段の各検知結果を目標
値に近づけるように前記高圧側および低圧側絞り装置の
開口面積を補正する制御手段と、を備えたものである。
A refrigeration system according to the present invention comprises a compressor, a condenser, a high-pressure-side expansion device, a receiver tank, a low-pressure-side expansion device, and an evaporator which are sequentially connected by piping. A refrigerating device, supercooling detecting means for detecting a subcooling characteristic value corresponding to a degree of subcooling of a refrigerant at a condenser outlet of the refrigerating device, and detecting a superheat characteristic value corresponding to a degree of superheating of a refrigerant sucked into the compressor. Overheating detection means, and the high-pressure side and low-pressure side expansion device so that each detection result of the supercooling detection means and the overheating detection means is close to a target value based on the current opening area of the high-pressure side and low-pressure side expansion device. Control means for correcting the opening area.

【0008】圧縮機、凝縮器、高圧側絞り装置、レシー
バタンク、低圧側絞り装置、および蒸発器が順次配管で
接続されて構成された冷凍装置と、この冷凍装置の凝縮
器出口冷媒の過冷却度に相当する過冷却特性値を検知す
る過冷却検知手段と、前記圧縮機の吸入冷媒の過熱度に
相当する過熱特性値を検知する過熱検知手段と、前記過
冷却検知手段および過熱検知手段の各検知結果と前記冷
凍装置の運転状態に対応した目標過冷却特性値および目
標過熱特性値との各偏差値を演算する演算手段と、この
演算手段の演算結果に基づいて前記高圧側および低圧側
絞り装置の開口面積を互いに相関性を持たせて制御する
制御手段と、を備えたものである。
[0008] A refrigeration system in which a compressor, a condenser, a high-pressure-side expansion device, a receiver tank, a low-pressure-side expansion device, and an evaporator are sequentially connected by piping, and supercooling of refrigerant at the condenser outlet of the refrigeration system. Supercooling detecting means for detecting a supercooling characteristic value corresponding to the temperature, superheat detecting means for detecting a superheat characteristic value corresponding to the degree of superheating of the suction refrigerant of the compressor, and the supercooling detecting means and the superheat detecting means. Calculating means for calculating each deviation value between each detection result and a target supercooling characteristic value and a target superheating characteristic value corresponding to the operation state of the refrigeration apparatus; and the high-pressure side and the low-pressure side based on the calculation results of the calculating means. And control means for controlling the aperture areas of the aperture device with a correlation therebetween.

【0009】また、前記高圧側および低圧側絞り装置の
開口面積を同時に制御する制御手段を備えたものであ
る。
Further, the apparatus is provided with control means for simultaneously controlling the opening areas of the high-pressure side and low-pressure side throttle devices.

【0010】また、前記制御手段が、前記冷凍装置の運
転状態が変化してから所定時間後に前記高圧側または、
および低圧側絞り装置の開口面積を制御するものであ
る。
[0010] Further, the control means may control the high-pressure side or
And the opening area of the low-pressure side throttle device.

【0011】また、冷媒戻し配管が、前記レシーバタン
クと前記圧縮機の吸入側部位との間に設けられ、前記レ
シーバタンクの冷媒圧力を絞りながら前記圧縮機へ導く
ものである。
Further, a refrigerant return pipe is provided between the receiver tank and a suction side portion of the compressor, and guides the refrigerant pressure to the compressor while reducing the refrigerant pressure of the receiver tank.

【0012】また、前記冷媒戻し配管が、そのレシーバ
タンク側の一端を前記レシーバタンクの上部近辺の部位
に接続され、前記レシーバタンクの上部近辺の冷媒ガス
を絞りながら前記圧縮機へ導くものである。
Further, the refrigerant return pipe has one end on the receiver tank side connected to a portion near the upper portion of the receiver tank, and guides the refrigerant gas to the compressor while restricting the refrigerant gas near the upper portion of the receiver tank. .

【0013】また、制御弁が、前記冷媒戻し配管に取り
付けられ、前記圧縮機の吐出冷媒温度に基づいて前記冷
媒ガスの圧力を制御するものである。
[0013] Further, a control valve is attached to the refrigerant return pipe, and controls a pressure of the refrigerant gas based on a temperature of refrigerant discharged from the compressor.

【0014】また、熱交換手段が、前記圧縮機へ吸入さ
れる低圧冷媒と前記凝縮器から低圧側絞り装置までの高
圧又は中圧冷媒のいずれかとを熱交換させるように設け
られたものである。
Further, the heat exchange means is provided so as to exchange heat between the low-pressure refrigerant sucked into the compressor and one of the high-pressure or medium-pressure refrigerant from the condenser to the low-pressure side expansion device. .

【0015】また、前記凝縮器から前記低圧側絞り装置
までのいずれかの部位と前記圧縮機の吸入側部位との間
に設けられ、前記いずれかの部位の冷媒を前記圧縮機の
吸入側へ導く冷媒戻し配管と、この冷媒戻し配管に取り
付けられ、前記圧縮機の吐出冷媒温度に基づいて前記冷
媒の圧力を制御する絞り装置と、この絞り装置が制御し
た冷媒と前記いずれかの部位の冷媒とを熱交換させる熱
交換手段と、を備えたものである。
The compressor is provided between any part from the condenser to the low-pressure side throttling device and a part on the suction side of the compressor, and transfers the refrigerant in any part to the suction side of the compressor. A refrigerant return pipe for guiding, a throttle device attached to the refrigerant return pipe, for controlling the pressure of the refrigerant based on the refrigerant temperature discharged from the compressor; a refrigerant controlled by the throttle device; And a heat exchange means for exchanging heat with the heat exchange means.

【0016】また、前記過熱検知手段が、前記過熱特性
値として前記蒸発器出口冷媒の過熱度を検知するもので
ある。
Further, the overheating detecting means detects the degree of superheating of the refrigerant at the evaporator outlet as the overheating characteristic value.

【0017】また、この発明に係る冷凍システム装置
は、圧縮機、凝縮器、高圧側絞り装置、レシーバタン
ク、低圧側絞り装置、および蒸発器が順次配管で接続さ
れて構成された冷凍装置と、この冷凍装置の凝縮器にお
ける冷媒の凝縮圧力により過冷却度を検知する過冷却検
知手段と、前記蒸発器における冷媒の蒸発圧力により過
熱度を検知する過熱検知手段と、現在の前記高圧側およ
び低圧側絞り装置の開口面積を基に前記過冷却検知手段
および過熱検知手段の各検知結果を目標値に近づけるよ
うに前記高圧側および低圧側絞り装置の開口面積を補正
する制御手段と、を備えたものである。
Further, a refrigeration system according to the present invention comprises: a refrigeration system in which a compressor, a condenser, a high-pressure side expansion device, a receiver tank, a low-pressure side expansion device, and an evaporator are sequentially connected by piping; Supercooling detection means for detecting the degree of supercooling by the condensing pressure of the refrigerant in the condenser of the refrigerating apparatus; superheating detecting means for detecting the degree of superheating by the evaporating pressure of the refrigerant in the evaporator; Control means for correcting the opening areas of the high-pressure side and low-pressure side throttle devices based on the opening area of the side throttle device so as to make each detection result of the supercooling detection means and the overheat detection means close to a target value. Things.

【0018】また、この発明に係る冷凍システム装置
は、圧縮機、凝縮器、高圧側絞り装置、レシーバタン
ク、低圧側絞り装置、および蒸発器が順次配管で接続さ
れて構成された冷凍装置と、前記凝縮器における冷媒の
凝縮圧力と前記蒸発器における冷媒の蒸発圧力との中間
圧力である前記レシーバタンクの冷媒の圧力を検知する
中間圧力検知手段と、現在の前記高圧側および低圧側絞
り装置の開口面積を基に前記中間圧力検知手段の各検知
結果を目標値に近づけるように前記高圧側および低圧側
絞り装置の開口面積を補正する制御手段と、を備えたも
のである。
A refrigeration system according to the present invention includes a refrigeration system in which a compressor, a condenser, a high-pressure side expansion device, a receiver tank, a low-pressure side expansion device, and an evaporator are sequentially connected by piping. Intermediate pressure detecting means for detecting the pressure of the refrigerant in the receiver tank, which is an intermediate pressure between the condensation pressure of the refrigerant in the condenser and the evaporation pressure of the refrigerant in the evaporator; and And control means for correcting the opening areas of the high-pressure side and low-pressure side throttle devices so that each detection result of the intermediate pressure detecting means approaches a target value based on the opening area.

【0019】また、この発明に係る冷凍システム装置
は、圧縮機、凝縮器、高圧側絞り装置、レシーバタン
ク、低圧側絞り装置、および蒸発器が順次配管で接続さ
れて構成された冷凍装置と、過冷却特性値として前記圧
縮機の吐出冷媒温度を検知する過冷却検知手段と、過熱
特性値として前記圧縮機の吸入冷媒温度を検知する過熱
検知手段と、現在の前記高圧側および低圧側絞り装置の
開口面積を基に前記過冷却検知手段および過熱検知手段
の各検知結果を目標値に近づけるように前記高圧側およ
び低圧側絞り装置の開口面積を補正する制御手段と、を
備えたものである。
A refrigeration system device according to the present invention includes a refrigeration system in which a compressor, a condenser, a high-pressure side expansion device, a receiver tank, a low-pressure side expansion device, and an evaporator are sequentially connected by piping. Supercooling detecting means for detecting a refrigerant discharge temperature of the compressor as a supercooling characteristic value, overheating detecting means for detecting a suction refrigerant temperature of the compressor as a superheat characteristic value, and a current high-pressure side and low-pressure side expansion device Control means for correcting the opening areas of the high-pressure side and low-pressure side expansion devices so that each detection result of the supercooling detection means and the overheating detection means approaches a target value based on the opening area of .

【0020】また、前記過熱検知手段が、前記過熱特性
値として前記圧縮機吸入冷媒の過熱度を検知するもので
ある。
Further, the overheat detecting means detects the degree of superheat of the refrigerant drawn into the compressor as the overheat characteristic value.

【0021】また、前記過熱検知手段が、前記過熱特性
値として前記蒸発器出口冷媒の過熱度を検知するもので
ある。
Further, the overheat detecting means detects the degree of superheat of the refrigerant at the evaporator outlet as the overheat characteristic value.

【0022】また、前記凝縮器または蒸発器の少なくと
もいずれかが並列に複数個設けられ、これらの設けられ
た凝縮器または蒸発器のそれぞれに対応した前記高圧側
絞り装置または低圧側絞り装置を有するものである。ま
た、この発明に係る冷凍システム装置の制御方法は、圧
縮機、凝縮器、高圧側絞り装置、レシーバタンク、低圧
側絞り装置、および蒸発器が順次配管で接続されて構成
された冷凍装置において、この冷凍装置の凝縮器出口冷
媒の過冷却度の相当する過冷却特性値および前記圧縮機
の吸入冷媒の過熱度に相当する過熱特性値を検出して、
前記冷凍装置の運転状態に対応した目標過冷却特性値お
よび目標過熱特性値とのそれぞれの偏差値を演算するス
テップと、現在の前記高圧側および低圧側絞り装置の開
口面積に対して前記過冷却特性および過熱特性の偏差値
から前記開口面積の変化量を前記高圧側および低圧側絞
り装置の開口面積に加えて補正するステップと、前記レ
シーバタンクの両側に配設された高圧側および低圧側絞
り装置を前記補正された開口面積に制御するステップ
と、を備えたものである。また、前記高圧側および低圧
側絞り装置を、同時に互いに相関性を持たせて制御する
ステップを備えたものである。
Further, at least one of the condenser and the evaporator is provided in parallel, and the high-pressure side restriction device or the low-pressure side restriction device corresponding to each of the condenser or the evaporator provided is provided. Things. Further, the control method of the refrigeration system device according to the present invention, the compressor, a condenser, a high-pressure side expansion device, a receiver tank, a low-pressure side expansion device, and a refrigeration system configured by sequentially connected by piping, The supercooling characteristic value corresponding to the degree of supercooling of the condenser outlet refrigerant of the refrigerating apparatus and the superheating characteristic value corresponding to the degree of superheating of the suction refrigerant of the compressor are detected.
Calculating respective deviation values between a target supercooling characteristic value and a target superheat characteristic value corresponding to an operation state of the refrigerating device; and the subcooling with respect to a current opening area of the high-pressure side and the low-pressure side expansion device. Correcting the amount of change in the opening area from the deviation values of the characteristics and the overheating characteristics, in addition to the opening areas of the high-pressure side and low-pressure side throttle devices, and high-pressure side and low-pressure side throttles disposed on both sides of the receiver tank Controlling the device to the corrected opening area. In addition, the method further comprises a step of controlling the high-pressure side and the low-pressure side expansion devices simultaneously with a correlation therebetween.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の実施の形態1を図1、
2を用いて説明する。図1は本発明の一実施例を示す冷
凍システム装置の概略構成を示す図で、この図の3は圧
縮機、5は冷房時と暖房時とで、冷媒の流れを変更する
四方弁、12は冷媒を貯留するレシーバタンク、14は
吸入管、21は室外熱交換である凝縮器、22は室内熱
交換器である蒸発器、23は凝縮器21とレシーバタン
ク12の間に取り付けられ、その間の圧力または流量を
調整する高圧側の調整手段(冷房運転時における冷媒流
れの順番では2段絞りの高圧側に位置する調整手段。以
下、高圧側絞り装置と略す)、24はレシーバタンクと
蒸発器の間に取り付けられ、低圧力または蒸発器への冷
媒流量を調整する低段側の調整手段(冷房運転時におけ
る2段絞りの低段側に位置する調整手段。以下、低圧側
絞り装置と略す)、25は凝縮器21の圧力を検知する
圧力検知手段、26は凝縮器21の出口温度を検知する
温度検知手段、27は蒸発器22の入口温度を検知する
温度検知手段、28は圧縮機吸入温度を検知する温度検
知手段、29はこれらの25から28までの各検知手段
の検知データから冷凍サイクルにおける各部冷媒の特性
値を演算する演算器、30はこの演算器29の演算結果
から各調整手段23、24の開口面積を制御する制御手
段である制御器である。また、図2は本発明の冷媒の流
れ動作を示すモリエル線図(温度・圧力ーエンタルピー
線図)であり、図中のイ〜ホ、イ’〜ホ’、およびニ”
は冷凍サイクルの各位置における各部冷媒の特性状態値
を説明するために付した付号である。
Embodiment 1 FIG. Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG.
2 will be described. FIG. 1 is a diagram showing a schematic configuration of a refrigeration system apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 3 denotes a compressor, 5 denotes a four-way valve for changing the flow of refrigerant between cooling and heating, and 12 Is a receiver tank for storing a refrigerant, 14 is a suction pipe, 21 is a condenser for outdoor heat exchange, 22 is an evaporator which is an indoor heat exchanger, and 23 is mounted between the condenser 21 and the receiver tank 12. High-pressure side adjusting means for adjusting the pressure or flow rate (adjusting means located on the high-pressure side of the two-stage throttle in the order of refrigerant flow during cooling operation; hereinafter, abbreviated as high-pressure side throttle device); Adjusting means (lower-stage adjusting means located at the lower stage side of the two-stage throttle during the cooling operation, which is attached between the compressors and adjusts the low pressure or the flow rate of the refrigerant to the evaporator. Abbreviated), 25 is the condenser 21 Pressure detecting means for detecting a force, 26 is a temperature detecting means for detecting an outlet temperature of the condenser 21, 27 is a temperature detecting means for detecting an inlet temperature of the evaporator 22, and 28 is a temperature detecting means for detecting a compressor suction temperature. , 29 are arithmetic units for calculating the characteristic values of the respective refrigerants in the refrigeration cycle from the detection data of each of the detection units 25 to 28, and 30 is the opening area of each adjusting unit 23, 24 based on the calculation result of the arithmetic unit 29. Is a controller that is a control means for controlling. FIG. 2 is a Mollier diagram (temperature / pressure-enthalpy diagram) showing the flow operation of the refrigerant of the present invention, wherein A to E, A 'to E', and D "in the drawing.
Is an affixed to explain the characteristic state value of each refrigerant at each position of the refrigeration cycle.

【0024】この発明における冷凍システム装置におい
て、圧縮機3に吸入された冷媒(イの状態)は圧縮機3
で圧縮され(ロの状態)、凝縮器21で凝縮して液冷媒
(ハの状態)となり、高圧側絞り装置23により一旦絞
られて少し圧力が下がって(ニの状態で)レシーバタン
ク12へ入り、低圧側絞り装置24で再び絞られて(ホ
の状態で)、蒸発器22で蒸発し、吸入管14を介して
圧縮機3へ吸入される(イの状態)。このような冷凍サ
イクルの動作において、今例えば、高圧側絞り装置23
と低圧側絞り装置24がある開口面積に制御され、図2
の実線に示すように、レシーバタンク12には余剰冷媒
液が溜り、その溜まった液面が安定した状態を保ってい
るとする(図2の実線)。この時、高圧側絞り装置23
から低圧側絞り装置24に至るレシーバタンク12を含
む流路内の冷媒圧力は凝縮圧力(高圧)と蒸発圧力(低
圧)の間の圧力、いわば中圧となっており、かつモリエ
ル線図では飽和液線上に位置する飽和液となっている
(ニの状態)。
In the refrigeration system according to the present invention, the refrigerant (state A) sucked into the compressor 3 is
(State B), is condensed by the condenser 21 to become a liquid refrigerant (state C), and is once throttled by the high-pressure side throttle device 23 to slightly reduce the pressure (state D) to the receiver tank 12. Then, it is throttled again by the low-pressure side throttle device 24 (in the state of E), evaporated in the evaporator 22, and sucked into the compressor 3 via the suction pipe 14 (state of A). In the operation of such a refrigeration cycle, for example, the high-pressure side expansion device 23
And the low-pressure side throttle device 24 is controlled to have a certain opening area.
As shown by the solid line, it is assumed that the surplus refrigerant liquid accumulates in the receiver tank 12, and the accumulated liquid level keeps a stable state (solid line in FIG. 2). At this time, the high pressure side throttle device 23
The refrigerant pressure in the flow path including the receiver tank 12 extending from the outlet to the low-pressure side expansion device 24 is a pressure between the condensing pressure (high pressure) and the evaporation pressure (low pressure), that is, a medium pressure, and is saturated in the Mollier diagram. The saturated liquid is located on the liquid line (state d).

【0025】なお、圧縮機吸入冷媒過熱度は、圧縮機吸
入冷媒温度検知手段28および蒸発器入口冷媒温度検知
手段27がそれぞれ検知した温度からその偏差値を、演
算器29が演算して求める。(なお、この偏差値を過熱
度と呼ぶ。) また、凝縮器出口冷媒過冷却度は、凝縮器冷媒圧力検知
手段25が検知した圧力と対応した冷媒の飽和温度と凝
縮器出口冷媒温度検知手段26が検知した検知温度との
差を、演算器29が演算して求める。(なお、この偏差
値を過冷却度と呼ぶ。)
The superheat degree of the compressor suction refrigerant is obtained by calculating a deviation value from the temperatures detected by the compressor suction refrigerant temperature detecting means 28 and the evaporator inlet refrigerant temperature detecting means 27, respectively, by the calculator 29. (This deviation value is referred to as the degree of superheat.) The degree of supercooling of the refrigerant at the condenser outlet is determined by the saturation temperature of the refrigerant corresponding to the pressure detected by the condenser refrigerant pressure detecting means 25 and the refrigerant temperature of the condenser outlet refrigerant. A calculator 29 calculates and calculates a difference between the detected temperature and the detected temperature. (Note that this deviation value is called the degree of supercooling.)

【0026】なお、凝縮器出口冷媒の過冷却度に相当す
る過冷却特性値を検知する過冷却検知手段としては、凝
縮器出口冷媒温度を検知する温度検知手段26と、凝縮
器冷媒圧力検知手段25が検知した圧力と対応した冷媒
の飽和温度に相当する凝縮器中央付近の温度を検知する
凝縮器中央温度検知手段(図示せず)との組合せから成
り、凝縮器中央付近の冷媒温度と凝縮器出口冷媒温度と
の偏差値を過冷却度としても良い。また、圧縮機の吸入
冷媒の過熱度に相当する過熱特性値を過冷却特性値を検
知する過熱度検知手段としては、蒸発器出口冷媒温度を
検知する蒸発器出口温度検知手段(図示せず)と、蒸発
器入口冷媒温度を検知する蒸発器入口温度検知手段(2
7)との組合せから成り、この蒸発器の出入口温度の偏
差値を過熱度としても良い。即ち、冷媒の圧力は冷媒の
飽和温度であるから、温度の換わりに圧力を、圧力の換
わりに温度を検知しても良い。
The subcooling detecting means for detecting the subcooling characteristic value corresponding to the degree of subcooling of the refrigerant at the outlet of the condenser includes a temperature detecting means 26 for detecting the refrigerant temperature at the outlet of the condenser, a condenser refrigerant pressure detecting means. And a condenser temperature detecting means (not shown) for detecting a temperature near the center of the condenser corresponding to the saturation temperature of the refrigerant corresponding to the detected pressure. The deviation value from the temperature of the outlet refrigerant may be set as the degree of supercooling. The superheat degree detecting means for detecting the superheat characteristic value corresponding to the superheat degree of the refrigerant suctioned into the compressor may be an evaporator outlet temperature detecting means (not shown) for detecting the evaporator outlet refrigerant temperature. And evaporator inlet temperature detecting means (2) for detecting the evaporator inlet refrigerant temperature.
7), and the deviation value of the inlet / outlet temperature of the evaporator may be used as the degree of superheat. That is, since the pressure of the refrigerant is the saturation temperature of the refrigerant, the pressure may be detected instead of the temperature, and the temperature may be detected instead of the pressure.

【0027】ここで、高圧側絞り装置23を少し絞ると
高圧側絞り装置23の出口では圧力(中圧)が下がり、
冷媒は気・液二相の状態となって(ニ”の状態で)レシ
ーバタンク12へ流入する。この時、レシーバタンク1
2内では重力の作用・効果により、ガス冷媒は上部に、
液冷媒は下部に分離されるため、レシーバタンク12の
入口管・出口管ともレシーバタンク12の下部に配置し
ておけば、低圧側絞り装置24へは常に液冷媒のみが送
られる。また、冷媒の気・液二相化により、気化した冷
媒がレシーバタンク12内の余剰液冷媒を減少させ、液
面を低下させる。そして、レシーバタンク12から冷凍
サイクル中に放出された液冷媒は凝縮器21の出口に押
し出されて溜るため、冷凍サイクルにおける過冷却度が
大きくなる。(ハ→ハ’状態)。
Here, when the high-pressure throttle device 23 is slightly reduced, the pressure (medium pressure) at the outlet of the high-pressure throttle device 23 decreases,
The refrigerant enters a gas-liquid two-phase state (in the state of "d") and flows into the receiver tank 12. At this time, the receiver tank 1
The gas refrigerant in the upper part due to the action and effect of gravity in 2,
Since the liquid refrigerant is separated at the lower part, if both the inlet pipe and the outlet pipe of the receiver tank 12 are arranged at the lower part of the receiver tank 12, only the liquid refrigerant is always sent to the low-pressure side expansion device 24. Further, due to the gas-liquid two-phase of the refrigerant, the vaporized refrigerant reduces the excess liquid refrigerant in the receiver tank 12 and lowers the liquid level. Then, the liquid refrigerant discharged from the receiver tank 12 during the refrigeration cycle is pushed out and accumulated at the outlet of the condenser 21, so that the degree of supercooling in the refrigeration cycle increases. (C → C 'state).

【0028】また、この時、冷媒の圧力が中圧となって
いるため、低圧側絞り装置24を通る冷媒流量が少なく
なり、圧縮機3への吸入冷媒の過熱度も大きくなる(イ
→イ’)。そして、高圧側絞り装置23の出口からレシ
ーバタンク12を経て低圧側絞り装置24へ至る流路内
の冷媒が丁度飽和液冷媒になった所(イ’)で、この変
化は止まり、冷凍サイクルが安定する(図2の一サイク
ル鎖線)。これは冷媒が飽和液線を越えて、一部の冷媒
がガス化されて、単位体積あたりの重量が小さいガス冷
媒が低圧側絞り装置に供給されると、冷媒が極端に蒸発
器22側へ供給されなくなり、冷媒が凝縮器側に集ま
り、この集まった冷媒は前述したように凝縮器で凝縮さ
れ、その出口で過剰に過冷却された液冷媒となり、この
過冷却された比重量の大きい液冷媒を次にレシーバタン
クを介して蒸発器に供給して、常に冷凍サイクル内の各
部位の冷媒量をバランスさせようとする所謂、冷凍サイ
クルの自助作用が働くためである。
At this time, since the pressure of the refrigerant is medium pressure, the flow rate of the refrigerant passing through the low-pressure side expansion device 24 decreases, and the degree of superheat of the refrigerant sucked into the compressor 3 also increases (A → A). '). Then, when the refrigerant in the flow path from the outlet of the high-pressure-side expansion device 23 to the low-pressure-side expansion device 24 via the receiver tank 12 has just become a saturated liquid refrigerant (A ′), this change stops, and the refrigeration cycle is stopped. Stabilizes (dashed line in FIG. 2). This is because when the refrigerant crosses the saturated liquid line and a part of the refrigerant is gasified, and the gas refrigerant having a small weight per unit volume is supplied to the low-pressure side expansion device, the refrigerant extremely moves to the evaporator 22 side. No longer supplied, the refrigerant collects on the condenser side, and the collected refrigerant is condensed by the condenser as described above, and becomes an excessively supercooled liquid refrigerant at the outlet thereof. This is because the so-called self-help function of the refrigeration cycle works, in which the refrigerant is then supplied to the evaporator via the receiver tank to constantly balance the amount of the refrigerant in each part in the refrigeration cycle.

【0029】なお、このようなガス状の冷媒が供給され
る運転状態では、凝縮器21出口の冷媒過冷却度の方が
圧縮機3の吸入冷媒過熱度よりも大きく変化する。ま
た、このような変化は、高圧側絞り装置23の開口面積
を小さくした場合や低圧側絞り装置24の開口面積を変
化させた時に起こる。つまり、高圧側絞り装置23ある
いは低圧側絞り装置24の開口面積を変化させると、各
調整手段23、24に流れる冷媒量が変化し、圧縮機3
の吸入冷媒過熱度および凝縮器21出口の冷媒過冷却度
が共に変化するからである。
In such an operation state in which the gaseous refrigerant is supplied, the degree of supercooling of the refrigerant at the outlet of the condenser 21 changes more than the degree of superheating of the refrigerant sucked into the compressor 3. Such a change occurs when the opening area of the high-pressure throttle device 23 is reduced or when the opening area of the low-pressure throttle device 24 is changed. In other words, when the opening area of the high-pressure-side expansion device 23 or the low-pressure-side expansion device 24 is changed, the amount of refrigerant flowing through each of the adjusting units 23 and 24 changes, and the compressor 3
This is because both the degree of superheating of the suction refrigerant and the degree of supercooling of the refrigerant at the outlet of the condenser 21 change.

【0030】そこで、凝縮器21出口の冷媒過冷却度お
よび圧縮機3の吸入冷媒過熱度の目標値と両者の測定値
もしくは推定値との偏差値を演算器29で求める。次
に、この求めた偏差値と、高圧側絞り装置23および低
圧側絞り装置24の開口面積の変化割合とを対応付ける
関係式を、理論および実験結果から予め作成して演算器
29に記憶させているので、この関係式から演算器29
は前述の演算された各測定値と各目標値との過冷却度お
よび過熱度の偏差値に基づいて、各調整弁23、24の
開口面積の変化割合を演算し、この演算結果から高圧側
絞り装置23および低圧側絞り装置24の開口面積を制
御器30が制御するようにする。このようにして、凝縮
器21出口の冷媒過冷却度と圧縮機3の吸入冷媒過熱度
の両者を予め設定された冷凍装置の運転状態に対応した
目標値に近付ける。
Therefore, a deviation value between a target value of the degree of supercooling of the refrigerant at the outlet of the condenser 21 and a target value of the degree of superheating of the refrigerant sucked into the compressor 3 and a measured value or an estimated value thereof is obtained by the calculator 29. Next, a relational expression for associating the obtained deviation value with the change rate of the opening area of the high-pressure side throttle device 23 and the low-pressure side throttle device 24 is created in advance from the theoretical and experimental results, and is stored in the calculator 29. Since the relational expression
Calculates the change rate of the opening area of each of the regulating valves 23 and 24 based on the supercooling degree and the superheat degree deviation value between each of the measured values and each target value calculated as described above. The controller 30 controls the opening areas of the expansion device 23 and the low-pressure side expansion device 24. In this way, both the degree of supercooling of the refrigerant at the outlet of the condenser 21 and the degree of superheating of the refrigerant sucked into the compressor 3 are brought closer to the target values corresponding to the preset operating state of the refrigeration system.

【0031】次に、処理の流れを、図3の全体処理の流
れを示す全体フローチャート図、および図4の通常制御
(冷凍サイクルの状態特性値を示す圧縮機吸入冷媒過熱
度と凝縮器出口冷媒過冷却度を制御する場合)のフロー
チャート図により説明する。まず図3に示すように、圧
縮機の運転が開始されると(ST1)、起動後、絞り装
置23、24の開口面積が大きい(絞らなかった)場合
は、圧縮機へ冷媒液が多く流れ過ぎ(液バック現象)た
り、あるいは圧縮機の負荷が大きくなり過ぎて圧縮機が
故障したり、また逆に、絞り装置23、24の開口面積
が小さい(絞り過ぎた)場合は、蒸発圧力を引き込み過
ぎて冷・暖房能力が低下したりするのを避けるために、
予め試験結果または計算結果から設定された初期起動開
口面積を演算器29から読み出す(ST2)。次に、こ
の読み出した初期起動開口面積になるように、制御器3
0が高圧側絞り装置と低圧側絞り装置の開口面積を制御
する起動制御に入る(ST3)。
Next, the flow of the processing will be described with reference to the overall flowchart of FIG. 3 showing the overall processing flow, and the normal control of FIG. 4 (the superheat degree of the compressor suction refrigerant and the refrigerant outlet refrigerant indicating the state characteristic value of the refrigeration cycle). The case of controlling the degree of supercooling will be described with reference to a flowchart. First, as shown in FIG. 3, when the operation of the compressor is started (ST1), if the opening areas of the expansion devices 23 and 24 are large (not throttled) after startup, a large amount of refrigerant liquid flows into the compressor. If the compressor pressure is too high (liquid back phenomenon), or if the load on the compressor becomes too large and the compressor breaks down, or if the opening areas of the expansion devices 23 and 24 are small (too small), the evaporation pressure is reduced. In order to avoid cooling and heating capacity dropping due to overdrawing,
An initial starting opening area set in advance from a test result or a calculation result is read from the arithmetic unit 29 (ST2). Next, controller 3
0 enters the start control for controlling the opening areas of the high-pressure side expansion device and the low-pressure side expansion device (ST3).

【0032】その後、圧縮機の吐出温度が規定温度(所
定温度)よりも高くなったら(ST4)、前述の起動制
御(ST3)を抜け、システムの運転状態(暖房/冷
房、多室型冷凍システム装置の場合の室内機の運転台数
等)に応じて、冷凍サイクルの状態特性値(例えば圧縮
機吸入冷媒過熱度と凝縮器出口冷媒過冷却度)をシステ
ムの運転効率が最も良くなるように、予め試験して求め
られた試験結果または計算結果から求められた各部の冷
媒状態量の目安となる圧縮機吸入冷媒過熱度及び凝縮器
出口冷媒過冷却度の各初期目標値を演算器29から呼び
出す(ST5)。
After that, when the discharge temperature of the compressor becomes higher than the specified temperature (predetermined temperature) (ST4), the above-mentioned start control (ST3) is exited, and the operation state of the system (heating / cooling, multi-room refrigeration system) Depending on the number of indoor units operating in the case of the device, etc.), the state characteristic values of the refrigeration cycle (for example, the degree of superheating of the refrigerant suctioned by the compressor and the degree of supercooling of the refrigerant at the condenser outlet) are set so that the operating efficiency of the system becomes the best. The initial target values of the compressor suction refrigerant superheat degree and the condenser outlet refrigerant supercool degree, which are indications of the refrigerant state quantity of each part obtained from the test result or the calculation result obtained in advance by the test, are called from the computing unit 29. (ST5).

【0033】次に、この呼び出した目標値になるように
高圧側絞り装置と低圧側絞り装置の開口面積を制御器3
0が制御する(ST6)。そして、通常制御(ST7)
に入り、その後は、システムの運転状態が変化しない間
は、外気温や室内負荷状態が変化しても冷凍サイクルの
状態特性値が常に目標値になっているように制御する通
常制御を繰り返し実行する(ST7〜ST8)。そし
て、後に詳述するシステムの運転状態に変化(例えば、
暖房/冷房、多室型冷凍システム装置の場合の室内機の
運転台数等の変化)が起きたときは、再び(ST5)に
戻り、この変化したシステムの運転状態に対応した各部
の冷媒状態量の目安となる目標(過熱度、過冷却度)値
を演算器29から呼び出し、この呼び出した目標値と対
応した高圧側・低圧側絞り装置の開口面積になるように
制御し、そのシステムの運転状態が変化しなければ、そ
の制御を繰り返す(ST7〜ST8)。
Next, the opening areas of the high-pressure throttle device and the low-pressure throttle device are controlled by the controller 3 so as to reach the called target values.
0 controls (ST6). Then, the normal control (ST7)
After that, as long as the operating state of the system does not change, normal control is repeatedly performed so that the state characteristic value of the refrigeration cycle always remains at the target value even if the outdoor temperature or indoor load state changes. (ST7-ST8). Then, the operation state of the system described in detail below changes (for example,
(Heating / cooling, change in the number of operating indoor units in the case of a multi-room refrigeration system), the flow returns to (ST5) again, and the refrigerant state quantity of each part corresponding to the changed operating state of the system. Target values (degrees of superheat and supercooling) which are guidelines for the above are called from the calculator 29, and controlled so that the opening areas of the high-pressure side and the low-pressure side expansion device corresponding to the called target values are obtained, and the operation of the system is performed. If the state does not change, the control is repeated (ST7 to ST8).

【0034】次に、通常制御フローについて図4を用い
て詳細に説明する。通常制御(図3のST7である図4
のSTART)に移ると、まず、一定時間待機する(S
T7a)。これは、調整手段の開口面積を変化させた後
すぐに制御すると、システムがハンチング(サイクル内
を流れる冷媒流量や圧力が急激に増減し、この急激な増
減変化に各制御機器が追従できない現象が発生)し、冷
凍サイクルのバランスが崩れてしまい。安定した運転制
御ができなくなるからである。従って、例えば、冷媒流
量や圧力が落ち着くまでの時間、約3分間待機してから
各機器を制御するようにすれば、安定した制御運転が得
られる。
Next, the normal control flow will be described in detail with reference to FIG. Normal control (FIG. 4 showing ST7 in FIG. 3)
First, the process waits for a certain period of time (S
T7a). This is because if the control is performed immediately after changing the opening area of the adjusting means, the system will hunt (the flow rate and pressure of the refrigerant flowing in the cycle will rapidly increase and decrease, and each control device will not be able to follow this sudden increase or decrease. Occurs), and the balance of the refrigeration cycle is lost. This is because stable operation control cannot be performed. Therefore, for example, a stable control operation can be obtained by controlling each device after waiting for about 3 minutes until the refrigerant flow rate and pressure settle down.

【0035】その後、測定もしくは推定された圧縮機吸
入冷媒過熱度および凝縮器出口冷媒過冷却度とそれぞれ
の目標値との偏差値を演算手段により演算する(ST7
b)。そして、圧縮機吸入冷媒過熱度・凝縮器出口冷媒
過冷却度の偏差値と高圧側・低圧側絞り装置の開口面積
変化量とを対応させる理論または経験結果から作成され
た関係式を用い、先に演算した圧縮機吸入冷媒過熱度・
凝縮器出口冷媒過冷却度の目標値と計測値との偏差値が
ゼロに近付くように、高圧側・低圧側絞り装置の開口面
積の変化量を求める。
Thereafter, a deviation value between the measured or estimated compressor suction refrigerant superheat degree and condenser outlet refrigerant supercooling degree and their respective target values is calculated by the calculation means (ST7).
b). Then, using a relational expression created from a theory or an empirical result that associates the deviation value of the superheat degree of the refrigerant suctioned by the compressor / the supercooled degree of the refrigerant at the condenser outlet with the opening area change amount of the high-pressure / low-pressure throttle device, and Calculated compressor superheat degree
The amount of change in the opening area of the high-pressure / low-pressure side throttle device is determined so that the deviation between the target value and the measured value of the degree of subcooling of the refrigerant at the outlet of the condenser approaches zero.

【0036】次に、この求めた開口面積変化量を現在の
それぞれの調整手段の開口面積に加えて、各高圧側・低
圧側絞り装置の開口面積を演算し、この演算結果を演算
器29が制御器30へ出力するので、この出力結果に基
づいて制御器30が各調整弁23、24の開口面積を制
御する(ST7c)。この制御結果で、計測された過熱
度および過冷却度がともに目標値に達するまで、即ち偏
差値がゼロになるまでループを繰り返す(ST7〜ST
9)。ただし、図3でも説明したように、制御途中でシ
ステムの運転状態に変化(暖房/冷房、多室型冷凍シス
テム装置の場合の室内機の運転台数等の変化)が起きた
場合(ST5)は、通常制御を抜け、図3のST5へ戻
る。
Next, the obtained opening area change amount is added to the current opening area of each adjusting means, and the opening area of each of the high-pressure side and low-pressure side throttling devices is calculated. Since the output is provided to the controller 30, the controller 30 controls the opening areas of the respective regulating valves 23 and 24 based on the output result (ST7c). As a result of this control, the loop is repeated until the measured superheat degree and supercool degree both reach the target values, that is, the deviation value becomes zero (ST7 to ST7).
9). However, as described in FIG. 3, when a change occurs in the operation state of the system (change in the number of operating indoor units in the case of a heating / cooling system or a multi-room refrigeration system device) during the control (ST5). Then, the process exits the normal control and returns to ST5 in FIG.

【0037】以上説明したように、これらの各ステップ
を繰り返し(即ち、各ステップをループ)ながら、冷凍
サイクルの状態特性値(例えば、圧縮機吸入冷媒過熱度
と凝縮器出口冷媒過冷却度)を目標値になるように制御
しているので、運転効率が非常に良く、経済的な冷凍シ
ステム装置が得られる。また、高圧側および低段側の調
整手段を理論式または経験式に基づいて制御しているの
で、短時間でシステムの運転状態を安定させることがで
き、年間の平均効率も従来より大幅に向上させることが
できるため、経済的で信頼性の高い冷凍システム装置が
得られる。
As described above, while repeating each of these steps (ie, looping each step), the state characteristic values of the refrigeration cycle (for example, the degree of superheating of the refrigerant sucked into the compressor and the degree of subcooling of the refrigerant at the condenser outlet) are changed. Since the control is performed to achieve the target value, the operation efficiency is very good, and an economical refrigeration system can be obtained. In addition, because the high-pressure side and low-stage side adjustment means are controlled based on theoretical or empirical formulas, the operating state of the system can be stabilized in a short time, and the annual average efficiency is significantly improved compared to the past. Therefore, an economical and highly reliable refrigeration system device can be obtained.

【0038】次に、圧縮機吸入冷媒過熱度・凝縮器出口
冷媒過冷却度の偏差値と高圧側・低圧側絞り装置の開口
面積変化量とを対応させる理論および経験則に基づいて
作成された関係式について具体的に説明する。通常、冷
媒が配管中を流れておりその配管に絞りがある場合、冷
媒の運動量保存式を絞りの前後に適用することにより、
絞り前後の圧力差を△P、流体の密度をρ、絞り部の開
口面積をS2、比例定数をkとした時、冷媒の質量流量G
が次式(1)のように表現されることは明らかである。 G=k・√(ρ)・S2・√(△P) ・・・(1) ここで、高圧側調整手段および低圧側調整手段は配管中
に設置された絞り装置であり、それぞれの絞りの前後に
おいて(1)式が成り立つ。
Next, it was created on the basis of theory and empirical rules for associating deviation values of the degree of superheating of the refrigerant suctioned by the compressor and the degree of supercooling of the refrigerant at the outlet of the condenser with the change in the opening area of the high-pressure side and low-pressure side expansion devices. The relational expression will be specifically described. Normally, when the refrigerant is flowing in the pipe and there is a throttle in the pipe, by applying the momentum conservation formula of the refrigerant before and after the throttle,
When the pressure difference before and after the throttle is ΔP, the density of the fluid is ρ, the opening area of the throttle is S 2 , and the proportional constant is k, the mass flow rate G of the refrigerant
Is obviously expressed as the following equation (1). G = k · √ (ρ) · S 2 · √ (△ P) (1) Here, the high-pressure side adjusting means and the low-pressure side adjusting means are throttle devices installed in the piping, and each throttle is Equation (1) holds before and after.

【0039】また、高圧側絞り装置と低圧側絞り装置の
それぞれを流れる冷媒の質量流量は明らかに等しいた
め、それぞれの開口面積をSHおよびSL、凝縮器圧力を
H、中圧をPM、蒸発器圧力をPLとし、比例定数をk1
3と置くと、高圧側・低圧側絞り装置の両者に(1)
式を適用することができる。また、簡易的に冷媒の密度
変化をほとんど無視することができるので、次式
(2)、(3)が成り立つ(なお、密度変化を無視して
求めた質量流量の値も大きくなる、小さくなるという傾
向は密度変化と同じになるため、ほとんど演算結果に与
える影響は無視できる)。 G=k1・SH・√(PH−PM) ・・・(2) G=k3・SL・√(PM−PL) ・・・(3)
Further, since the mass flow rates of the refrigerant flowing through the high-pressure side throttle device and the low-pressure side throttle device are clearly equal, the opening areas of the refrigerant are S H and S L , the condenser pressure is P H , and the intermediate pressure is P H. M , the evaporator pressure is P L , the proportionality constant is k 1 ,
Placing a k 3, to both the high pressure side and low pressure side throttle device (1)
Expressions can be applied. Further, since the change in the density of the refrigerant can be almost neglected in a simple manner, the following equations (2) and (3) hold (the value of the mass flow rate obtained by ignoring the change in the density also increases or decreases). Since the tendency is the same as the density change, the effect on the calculation result can be almost ignored.) G = k 1 · S · H (P H -P M ) (2) G = k 3 · S L · √ (P M -P L ) (3)

【0040】これを展開すると、以下の2式になる。 √(PH−PM)=G/(k1・SH) ・・・(4) √(PM−PL)=G/(k3・SL) ・・・(5) そして、G、k3、k1を消去するために、(5)式を
(4)式で除すと、k1≒k3なので、 √(PM−PL)/√(PH−PM)≒SH/SL=C1 ∴C1=SH/SL ・・・(6) となる。
When this is expanded, the following two equations are obtained. √ (P H -P M ) = G / (k 1 · S H ) (4) √ (P M -P L ) = G / (k 3 · S L ) (5) G, k 3, k 1 to clear the, dividing equation (5) with (4), since k 1 ≒ k 3, √ ( P M -P L) / √ (P H -P M ) ≒ S H / S L = C 1 ∴C 1 = S H / S L (6)

【0041】また、PH−PLを得るために(4)式の2
乗と(5)式の2乗との和をとると、次式が成り立つ。 (1)2: PH−PM=G2/(k1・SH2 (2)2: PM−PL=G2/(k3・SL2 ∴PH−PL=G2・{1/(k1・SH2+1/(k3・SL2} ≒(G2/k1 2)・(1/SH 2+1/SL 2) =C2 ∴C3=1/SH 2+1/SL 2 ・・・(7)
In order to obtain P H -P L , 2
Taking the sum of the power and the square of equation (5), the following equation holds. (1) 2 : P H -P M = G 2 / (k 1 · S H ) 2 (2) 2 : P M -P L = G 2 / (k 3 · S L ) 2 ∴P H -P L = G 2 · {1 / (k 1 · S H ) 2 + 1 / (k 3 · S L ) 2 } ≒ (G 2 / k 1 2 ) · (1 / SH 2 + 1 / S L 2 ) = C 2 ∴C 3 = 1 / S H 2 + 1 / S L 2 ··· (7)

【0042】さて、この導いた(6)式(7)式の意味
をその導出過程より考えてみる。まず、(7)式におい
てC2、即ち、C3を一定にすると言うことは、凝縮器圧
力PHと蒸発器圧力PLの差が一定になることを意味して
おり、(7)式に基づいて高圧側絞り装置の開口面積S
Hおよび低圧側絞り装置の開口面積SLを変化させるとい
うことは、取りも直さず、その変化させた各開口面積に
対応したPHおよびPLが決定されたということである。
Now, the meaning of the derived equations (6) and (7) will be considered from the derivation process. First, (7) C 2 in, i.e., be said to the C 3 constant, the difference between the condenser pressure P H evaporator pressure P L it is indicative that a constant, (7) Area S of the high-pressure side throttle device based on
Changing H and the opening area S L of the low-pressure side throttle device means that P H and P L corresponding to each of the changed opening areas are determined without any modification.

【0043】従って、各開口面積SH、SLを一定に保
ち、(7)式のPHおよびPLが一定になるような下で
は、(なお、この時C2、C3も前述したように一定であ
る。)、中圧PMを設定すれば(6)式よりC1が一意に
決まる。また、このPMの値はレシーバタンクの冷媒貯
留量と一意に対応していることは、自明であるであるか
ら、(6)式および(7)式に基づいて各開口面積
H、SLの制御を行うことにより、結局、PH、PL
M、およびレシーバタンク内の冷媒貯留量の制御をし
たことになる。なお、(7)式を簡易的に、 C3=1/SH+1/SL (7)’ と置き直して、(6)式と(7)’式に基づいて制御を
行ってもなんら問題はないことは、試験およびシミュレ
ーションにより確認されている。
Accordingly, under the condition that the opening areas S H and S L are kept constant and P H and P L in the equation (7) are kept constant, (C 2 and C 3 are also described above. which is constant as.), setting the medium-pressure P M (6) C 1 is uniquely determined from the equation. Further, that the value of P M corresponds uniquely to the refrigerant storage quantity of the receiver tank, since it is a self-evident, (6) and (7) the opening area S H based on the equation, S By controlling L , eventually, P H , P L ,
P M, and it means that the control of the refrigerant storage quantity in the receiver tank. Note that simply replacing equation (7) with C 3 = 1 / S H + 1 / S L (7) ′ and performing control based on equations (6) and (7) ′ does not matter. No problems have been confirmed by tests and simulations.

【0044】さて、次に、圧縮機吸入冷媒加熱度(以後
SHと略す)および凝縮器出口冷媒過冷却度(以後SC
と略す)を検出し、これらの制御を行うためには、これ
らの(6)式および(7)式とを関係付ける必要があ
る。ところで(6)式および(7)式より以下のことが
言える。 (1)C1を大きくすることは、SHを大きくする、すな
わちSCを小さくするか、または、SLを小さくする。
すなわちSHを大きくすることと等価である。 (2)C3を大きくすることは、SHを小さくする、すな
わちSCを大きくするか、または、SLを小さくする。
すなわちSHを大きくすることと等価である。これらの
ことから、下記のようにC1’およびC3’を定義し、そ
れぞれをC1およびC3と対応付けても、C1およびC3
ついての上記知見(1)、(2)式と同様のことが
1’およびC3’についても言えるようになる。すなわ
ち、C1が大きくなるとC1’も大きくなり(C1が小さ
くなるとC1’も小さくなる)、また、C3が大きくなる
とC3’も大きくなる(C3が小さくなるとC3’も小さ
くなる)という傾向がある。
Next, the refrigerant suction refrigerant heating degree (hereinafter abbreviated as SH) and the condenser outlet refrigerant supercooling degree (hereinafter SC) will be described.
(Abbreviated as “.”), And to perform these controls, it is necessary to relate these equations (6) and (7). The following can be said from equations (6) and (7). (1) increasing the C 1 increases the S H, ie, whether to reduce the SC, or to reduce the S L.
That is, it is equivalent to increasing SH. (2) a C 3 to increase decreases the S H, i.e. either by increasing SC, or to reduce the S L.
That is, it is equivalent to increasing SH. From these results, define the C 1 'and C 3' as follows, the knowledge about be associated respectively with C 1 and C 3, C 1 and C 3 (1), (2 ) formula The same can be said for C 1 ′ and C 3 ′. That, C 1 'is large than (is C 1 becomes C 1 when smaller' also decreases) when the C 1 becomes large, 'when it becomes larger (C 3 smaller C 3' C 3 when the C 3 becomes larger Smaller).

【0045】また、ここで前述したように、C1’およ
びC3’を下記のように定義する。 C1’=(SH+10)/(SC+10) ・・・(8) C3’=SH+SC ・・・(9) なお、この(8)式中の見かけ数値10はSC→0の時
にC1’→∞となるのを防ぐためのものであり、式の一
般性を損なうものではない(この数値が例えば5であっ
ても15であってもこれらの式は成り立つ)。ただし、
この数値によって制御目標値へ収束する速度または収束
の仕方が異なり、また、その数値の最適値はシステムに
よって異なる。なお、今回想定しているシステムにおい
ては、この数値が10の時、目標に対して行き過ぎるこ
ともなく、目標に近づく速度も遅すぎず、最適に制御さ
れるシステムを想定したからに他ならない。
As described above, C 1 ′ and C 3 ′ are defined as follows. C 1 ′ = (SH + 10) / (SC + 10) (8) C 3 ′ = SH + SC (9) The apparent numerical value 10 in the equation (8) is C 1 ′ → when SC → 0. This is for preventing the occurrence of ∞, and does not impair the generality of the expression (these expressions hold even if the numerical value is, for example, 5 or 15). However,
The speed or manner of convergence to the control target value differs depending on the numerical value, and the optimum value of the numerical value differs depending on the system. In the system assumed this time, when the numerical value is 10, the system does not go too far with respect to the target, the speed of approaching the target is not too slow, and the system is optimally controlled.

【0046】次に、以上の式(6)、(7)、(8)、
(9)を使用して制御を行うが、実際の計算の仕方(即
ち、図4のST7bおよびST7cの部分)を図5のフ
ローチャートにより説明する。なお、図5のフローチャ
ートは図4のフローチャートのST7bおよびST7c
を詳細に記述したものである。まず、圧縮機吸入冷媒過
熱度の現在の値(検出値)をSH、制御の目標値をSH
*、凝縮器出口冷媒過冷却度の現在の値(検出値)をS
C、制御の目標値をSC*と置く。
Next, the above equations (6), (7), (8),
The control is performed using (9), and the actual calculation method (that is, ST7b and ST7c in FIG. 4) will be described with reference to the flowchart in FIG. It should be noted that the flowchart of FIG. 5 corresponds to ST7b and ST7c of the flowchart of FIG.
Is described in detail. First, the current value (detected value) of the superheat degree of the compressor suction refrigerant is SH, and the target value of the control is SH.
* The current value (detected value) of the subcooling degree of the refrigerant at the outlet of the condenser is S
C, the control target value is set as SC * .

【0047】上記(8)式および(9)式より、この時の
1’,C3’および制御目標値としてのC1*および
3*が以下のように演算される(ST10)。 C1’ =(SH+10)/(SC+10) C3’ =SH+SC C1*=(SH*+10)/(SC*+10) C3*=SH*+SC* また、現在の高圧側絞り装置の開口面積SHおよび低圧
側絞り装置の開口面積SLは既知であるため、(6)式
および(7)式を用いて現在のC1、C3を求めると以下
のようになる(ST20)。 C1=SH/SL3=1/SH 2+1/SL 2
From the above equations (8) and (9), C 1 ′, C 3 ′ and C 1* and C 3* as control target values at this time are calculated as follows (ST10). ). C 1 '= (SH + 10 ) / (SC + 10) C 3' = SH + SC C 1 '* = (SH * +10) / (SC * +10) C 3' * = SH * + SC * Also, the current of the high-pressure side throttle device Since the opening area S H and the opening area SL of the low-pressure-side diaphragm device are known, the current C 1 and C 3 are obtained using the equations (6) and (7) as follows (ST20). C 1 = S H / S L C 3 = 1 / S H 2 + 1 / S L 2

【0048】次に、E、Fを試験もしくはシミュレーシ
ョンにより決定される比例定数とし、△C1および△C3
を次式の様に定義する(ST30)。 △C1=E・(C1*−C1’) ・・・(10) △C3=F・(C3*−C3’) ・・・(11) この時、次式により新しい時刻のC1およびC3(それぞ
れC1 NおよびC3 Nと表記)を演算することができる(S
T40)。 C1 N=C1+△C1 ・・・(12) C3 N=C3+△C3 ・・・(13) その後、(6)式および(7)式にC1 NおよびC3 Nを代
入し、これらの式を逆算して新しい時刻のSH、SLを演
算し(ST50)、高圧側絞り装置および低圧側絞り装
置の開口面積がそれぞれSH、SLになるように、制御器
30によりそれぞれの絞り装置23、24に制御指令を
出力する(ST60)。
Next, E and F are proportional constants determined by tests or simulations, and ΔC 1 and ΔC 3
Is defined as the following equation (ST30). ΔC 1 = E · (C 1* −C 1 ′) (10) ΔC 3 = F · (C 3* −C 3 ′) (11) At this time, the following equation is used. C 1 and C 3 of the new time (denoted C 1 N and C 3 N , respectively) can be computed (S
T40). C 1 N = C 1 + ΔC 1 (12) C 3 N = C 3 + ΔC 3 (13) Then, C 1 N and C 3 are added to the expressions (6) and (7). By substituting N , these expressions are back-calculated to calculate S H and S L at the new time (ST50), so that the opening areas of the high-pressure side restriction device and the low-pressure side restriction device become S H and S L , respectively. Then, the controller 30 outputs a control command to each of the aperture devices 23 and 24 (ST60).

【0049】以上説明したように、本実施の形態では、
圧縮機吸入冷媒の過熱度(SH)および凝縮器出口冷媒
の過冷却度(SC)を検出し、これら2つの冷凍サイク
ルの状態特性値に基づいて(8)式および(9)式の演
算を行うと、C1’およびC’の2つの値が計算され
る。次に、これらを(6)式および(7)式(または
(7)’式)で定義されるCおよびC3と(10)〜
(13)式により一意に対応付けてこれらを演算し、更
に、その演算されたC1、C3を用いて(6)式および
(7)式(または(7)’式)を逆算することにより高
圧側絞り装置の開口面積(SH)および低圧側絞り装置
の開口面積(SL)が同時に演算され、その演算結果に
基づいて2つの調整手段が制御される。このように本発
明によれば、2つの各部冷媒特性値に基づいて高圧側お
よび低段側の2つの調整手段を、互いに相関性を持たせ
て制御する。
As described above, in the present embodiment,
The superheat degree (SH) of the refrigerant sucked into the compressor and the supercooling degree (SC) of the refrigerant at the condenser outlet are detected, and the calculation of the equations (8) and (9) is performed based on the state characteristic values of these two refrigeration cycles. When done, two values of C 1 ′ and C 3 ′ are calculated. Then, these (6) and (7) (or (7) 'formula) and C 1 and C 3, defined in (10) -
These are uniquely associated with each other by the expression (13), and these are calculated, and further, the expressions (6) and (7) (or the expression (7) ′) are inversely calculated using the calculated C 1 and C 3. , The opening area (S H ) of the high-pressure side throttle device and the opening area (S L ) of the low-pressure side throttle device are simultaneously calculated, and the two adjusting means are controlled based on the calculation results. As described above, according to the present invention, the two adjusting means on the high-pressure side and the low-stage side are controlled so as to be correlated with each other based on the two characteristic values of the refrigerant.

【0050】なお、ここでは、冷凍サイクル内の冷媒状
態特性値および調整手段がそれぞれ2つの場合を例にと
り説明したが、これらは、必ずしも2つでなくてもよ
く、例えば、冷媒状態特性値が1つで、調整手段が2
つ。または、冷媒状態特性値及び調整手段が各4つ等、
任意の組み合わせの場合についても同様のことが成り立
つ。
Here, the explanation has been given by taking as an example the case where there are two refrigerant state characteristic values and two adjusting means in the refrigeration cycle. However, these are not necessarily two. One, two adjustment means
One. Or, the refrigerant state characteristic value and the adjusting means are each four or the like,
The same is true for any combination.

【0051】また、本発明における圧力または流量を調
整する調整手段(絞り装置)とは、例えば、電子式膨張
弁、定圧式膨張弁、空気圧駆動式膨張弁、数本のキャピ
ラリーチューブの切り替え等、流路抵抗値(開口面積)
を変化させれるものであれば、何を用いても構わない。
The adjusting means (throttle device) for adjusting the pressure or the flow rate in the present invention includes, for example, an electronic expansion valve, a constant pressure expansion valve, a pneumatic expansion valve, switching of several capillary tubes, etc. Flow resistance (opening area)
Anything can be used as long as it can be changed.

【0052】以上、本発明の全体を理解しやすくするた
めに、高圧側絞り装置及び低圧側絞り装置の開口面積を
制御するものついて説明したが、高圧側絞り装置及び低
圧側絞り装置のいずれか一方に、定圧式膨張弁のような
背圧がほぼ一定になる絞り装置や、キャピラリーチュー
ブのように出入口のいずれか一方の圧力が決まると他方
の圧力が決まる絞り装置を用い、凝縮器出口冷媒の過冷
却度または圧縮機吸入冷媒の過熱度のいずれか一方のみ
の特性値が所定の値になるように、開口面積を制御して
も良いことは、言うまでもない。
In order to make the whole of the present invention easy to understand, the control of the opening area of the high-pressure throttle device and the low-pressure throttle device has been described. On the other hand, using a throttle device such as a constant-pressure expansion valve in which the back pressure is substantially constant, or a throttle device such as a capillary tube in which the pressure of one of the inlet and outlet is determined when the other pressure is determined, the condenser outlet refrigerant is used. Needless to say, the opening area may be controlled so that the characteristic value of only one of the supercooling degree and the superheating degree of the compressor suction refrigerant becomes a predetermined value.

【0053】また、開口面積を制御しない方の過冷却度
または過熱度のいずれか一方を検知し、この検知結果を
利用すれば、定圧式膨張弁を用いなくても、即ち、前述
した電子式膨張弁やキャピラリーチューブ等を用いても
制御できる。なお、この時予め、冷凍装置の運転状態と
過冷却度(背圧)に対応した目標過熱特性値表や、冷凍
装置の運転状態と過熱度(背圧)に対応した目標過冷却
特性値表を実験又は理論計算式から求め、作成して演算
器29等にインプットしておく必要がある。
In addition, by detecting either the degree of supercooling or the degree of superheating in which the opening area is not controlled, and utilizing this detection result, the above-mentioned electronic type can be used without using the constant pressure type expansion valve. Control can also be performed using an expansion valve, a capillary tube, or the like. At this time, a target superheat characteristic value table corresponding to the operation state of the refrigeration apparatus and the degree of supercooling (back pressure) or a target supercool characteristic value table corresponding to the operation state of the refrigeration apparatus and the degree of superheat (back pressure) Must be obtained from an experiment or theoretical calculation formula, created and input to the computing unit 29 and the like.

【0054】また、本発明は、図6〜図11に示す構成
の冷凍システム装置の各場合についても成立する。な
お、これらの冷凍システム装置においては、前述した効
果の他に以下に述べるような効果も期待できる。
The present invention is also applicable to each case of the refrigeration system having the configuration shown in FIGS. In these refrigeration system devices, the following effects can be expected in addition to the effects described above.

【0055】まず、図6に示したように、レシーバタン
ク下部近傍の液冷媒を圧縮機の吸入側へ戻す冷媒戻し配
管31を付け、レシーバタンク内の液冷媒を圧縮機の吸
入側へ戻した構成のものでは、圧縮機の吐出冷媒温度を
下げると共に、圧縮機の吸入冷媒量を増加させるため、
特に、暖房能力を向上させ、冷媒や潤滑油の劣化を防止
した信頼性の高い冷凍システム装置が得られる。なお、
この時、冷媒戻し配管31は、その配管抵抗によってレ
シーバタンク内からの液冷媒を絞って圧縮機の吸入側へ
供給する。
First, as shown in FIG. 6, a refrigerant return pipe 31 for returning the liquid refrigerant near the lower part of the receiver tank to the suction side of the compressor was provided, and the liquid refrigerant in the receiver tank was returned to the suction side of the compressor. In the configuration, in order to lower the refrigerant discharge temperature of the compressor and increase the refrigerant suction amount of the compressor,
In particular, a highly reliable refrigeration system device that improves the heating capacity and prevents deterioration of the refrigerant and the lubricating oil can be obtained. In addition,
At this time, the refrigerant return pipe 31 restricts the liquid refrigerant from the inside of the receiver tank by the resistance of the pipe and supplies the liquid refrigerant to the suction side of the compressor.

【0056】また、図7に示したように、レシーバタン
ク下部近傍の液冷媒を圧縮機の吸入側へ戻す冷媒戻し配
管31を付け、この冷媒戻し配管31に制御弁32を設
け、この弁32の開度を圧縮機の吐出冷媒温度によって
制御する(液インジェクション)の構成図のものでは、
吐出冷媒温度を所定の温度に維持できると共に、圧縮機
の吸入圧力(冷媒量)を増加させるため、特に、暖房能
力を向上させ、冷媒や潤滑油の劣化を防止した信頼性の
高い冷凍システム装置が得られる。
As shown in FIG. 7, a refrigerant return pipe 31 for returning the liquid refrigerant near the lower part of the receiver tank to the suction side of the compressor is provided, and a control valve 32 is provided in the refrigerant return pipe 31. Is controlled by the temperature of refrigerant discharged from the compressor (liquid injection).
A highly reliable refrigeration system that can maintain the discharge refrigerant temperature at a predetermined temperature and increase the suction pressure (refrigerant amount) of the compressor, thereby improving the heating capacity and preventing deterioration of the refrigerant and lubricating oil. Is obtained.

【0057】また、図8に示したように、レシーバタン
クの上部近傍のガス冷媒を圧縮機の吸入側へ戻す冷媒戻
し配管31を取り付け、レシーバタンク内のガス冷媒を
圧縮機の吸入側に戻した場合の構成図のもの(ガスイン
ジェクション)では、圧縮機へ液冷媒が戻るのを防止し
ながら圧縮機の吐出冷媒温度を下げると共に、圧縮機の
吸入圧力(冷媒量)を増加させるため、特に、冷媒の液
バックを防止しながら、暖房能力を向上さて、冷媒や潤
滑油の劣化を防止した信頼性の高い冷凍システム装置が
得られる。なお、この時、冷媒戻し配管31は、その配
管抵抗によってレシーバタンク内のガス冷媒を絞って圧
縮機の吸入側へ供給する。
As shown in FIG. 8, a refrigerant return pipe 31 for returning the gas refrigerant near the upper portion of the receiver tank to the suction side of the compressor is attached, and the gas refrigerant in the receiver tank is returned to the suction side of the compressor. In the case of the configuration diagram (gas injection), the temperature of the refrigerant discharged from the compressor is reduced while preventing the liquid refrigerant from returning to the compressor, and the suction pressure (refrigerant amount) of the compressor is increased. In addition, it is possible to obtain a highly reliable refrigeration system device in which the heating capacity is improved while preventing the liquid back of the refrigerant and the deterioration of the refrigerant and the lubricating oil is prevented. At this time, the refrigerant return pipe 31 throttles the gas refrigerant in the receiver tank by the resistance of the pipe and supplies it to the suction side of the compressor.

【0058】また、図9に示したように、レシーバタン
ク上部近傍のガス冷媒を圧縮機の吸入側へ戻す冷媒戻し
配管31を付け、この冷媒戻し配管31に制御弁32を
設け、この弁32の開度を圧縮機の吐出冷媒温度によっ
て制御する(ガスインジェクション)構成図のもので
は、常に圧縮機へ最適冷媒量を供給しながら吐出冷媒温
度を所定の温度に維持すると共に、圧縮機の吸入圧力
(冷媒量)を増加させるため、特に、暖房能力を向上さ
せ、冷媒や潤滑油の劣化を防止した信頼性の高い冷凍サ
イクル装置が得られる。
As shown in FIG. 9, a refrigerant return pipe 31 for returning the gas refrigerant near the upper part of the receiver tank to the suction side of the compressor is provided, and a control valve 32 is provided in the refrigerant return pipe 31. In the configuration diagram in which the opening degree of the compressor is controlled by the refrigerant temperature discharged from the compressor (gas injection), the discharge refrigerant temperature is maintained at a predetermined temperature while always supplying the optimal refrigerant amount to the compressor, and the suction of the compressor is performed. Since the pressure (refrigerant amount) is increased, in particular, a highly reliable refrigeration cycle device in which the heating capacity is improved and the deterioration of the refrigerant and the lubricating oil is prevented is obtained.

【0059】また、図10に示したように、凝縮器から
低圧側絞り装置までのいずれかの部位、即ち、中圧液冷
媒(または高圧液冷媒)と低圧ガス冷媒(圧縮機へ吸入
される冷媒ガス)を熱交換させる熱交換手段33を設け
た場合の構成図のものでは、過冷却度の大きい冷媒が蒸
発器へ供給されると共に、圧縮機に常にガス冷媒が供給
されるため、特に冷房能力を向上させ、液バックを防止
した信頼性の高い冷凍サイクル装置が得られる。
Further, as shown in FIG. 10, any part from the condenser to the low-pressure side throttle device, that is, the medium-pressure liquid refrigerant (or high-pressure liquid refrigerant) and the low-pressure gas refrigerant (which is sucked into the compressor) In the configuration diagram in the case where the heat exchange means 33 for exchanging heat with the refrigerant gas is provided, the refrigerant having a large degree of supercooling is supplied to the evaporator and the gas refrigerant is always supplied to the compressor. A highly reliable refrigeration cycle device with improved cooling capacity and prevented liquid back can be obtained.

【0060】また、図11に示したように、凝縮器から
低圧側絞り装置までのいずれかの部位、即ち、中圧液冷
媒(または高圧液冷媒)を圧縮機の吸入側へ戻す冷媒戻
し配管34を設け、この冷媒戻し配管34に絞り装置3
6を設け、この絞り装置36を通過した冷媒と中圧液冷
媒(または高圧液冷媒)と熱交換させる熱交換手段35
を設けた構成にしたものでは、最適冷媒量を圧縮機へ供
給しながら吐出冷媒温度を所定の温度に維持して圧縮機
の吸入圧力(冷媒量)を増加させると共に、過冷却度の
大きい冷媒が蒸発器に供給されるため、特に、冷房能力
を向上させ、冷媒や潤滑油の劣化を防止した信頼性の高
い冷凍サイクル装置が得られる。
Further, as shown in FIG. 11, a refrigerant return pipe for returning any part from the condenser to the low-pressure side throttle device, that is, the medium-pressure liquid refrigerant (or the high-pressure liquid refrigerant) to the suction side of the compressor. 34, and a throttling device 3
6, a heat exchange means 35 for exchanging heat between the refrigerant passing through the expansion device 36 and the medium-pressure liquid refrigerant (or high-pressure liquid refrigerant).
In the configuration in which the refrigerant is supplied, the discharge refrigerant temperature is maintained at a predetermined temperature while supplying the optimum refrigerant amount to the compressor, the suction pressure (refrigerant amount) of the compressor is increased, and the refrigerant having a large supercooling degree is provided. Is supplied to the evaporator, and in particular, a highly reliable refrigeration cycle device that improves the cooling capacity and prevents deterioration of the refrigerant and the lubricating oil can be obtained.

【0061】以上述べたことは、後述する実施の形態2
〜8についても同様に成り立つ。
What has been described above is explained in the second embodiment described later.
The same applies to 8.

【0062】実施の形態2.図12は、本発明の実施の
形態2の通常制御を示すフローチャート図であり、この
装置の構成は図1と同様で、また、全体のフローチャー
トは図3と同じである。また、この実施の形態2の冷凍
システム装置においては、蒸発器出口冷媒過熱度および
凝縮器出口冷媒過冷却度を目標値として、高圧側および
低圧側絞り装置の開口面積を制御するもので、具体的な
手順および効果は、実施の形態1とほぼ同様であり、
(8)式および(9)式に挿入するSH、SCの値とし
て、蒸発器出口冷媒温の過熱度と、凝縮器出口冷媒の過
冷却度を基準値としたものである。即ち、実施の形態1
では、蒸発器入口冷媒温度と圧縮機吸入冷媒温度との偏
差値を過熱度(SH)の基準値としたが、この実施の形
態2では、蒸発器入口冷媒温度と蒸発器出口冷媒温度と
の偏差値を過熱度(SH)の基準値としたものである。
Embodiment 2 FIG. 12 is a flowchart showing the normal control according to the second embodiment of the present invention. The configuration of this apparatus is the same as that of FIG. 1, and the overall flowchart is the same as that of FIG. Further, in the refrigeration system apparatus of the second embodiment, the opening areas of the high-pressure side and low-pressure side expansion devices are controlled using the evaporator outlet refrigerant superheat degree and the condenser outlet refrigerant supercooling degree as target values. Procedures and effects are almost the same as those of the first embodiment,
As the SH and SC values to be inserted into the equations (8) and (9), the superheat degree of the evaporator outlet refrigerant temperature and the supercooling degree of the condenser outlet refrigerant are used as reference values. That is, the first embodiment
In the above, the difference between the evaporator inlet refrigerant temperature and the compressor inlet refrigerant temperature was used as the reference value of the superheat (SH). In the second embodiment, however, the difference between the evaporator inlet refrigerant temperature and the evaporator outlet refrigerant temperature was determined. The deviation value is used as a reference value of the degree of superheat (SH).

【0063】なお、このようにすると、蒸発器出口冷媒
の過熱度を精度良く制御するため、冷房時には、冷却能
力を維持し、暖房時には、吸入配管から放熱して吐出冷
媒ガス温度を上昇させるため、特に、暖房能力が向上し
た冷凍システム装置が得られる。
In this way, in order to accurately control the degree of superheating of the refrigerant at the outlet of the evaporator, the cooling capacity is maintained during cooling, and the temperature of the discharged refrigerant gas is increased by radiating heat from the suction pipe during heating. In particular, a refrigeration system device with improved heating capacity can be obtained.

【0064】実施の形態3.図13は、本発明の第3の
実施例の通常制御を示すフローチャートであり、装置の
構成は図1と同様で、また、全体のフローチャートは図
3と同じである。この実施の形態3の冷凍システム装置
においては、圧縮機の吸入冷媒の過熱度に相当する過熱
特性値としての蒸発圧力、および凝縮器出口冷媒の過冷
却度に相当する過冷却特性値としての凝縮圧力を目標値
として、低圧側および高圧側絞り装置を制御するもの
で、具体的な手順・動作およびその作用・効果は、実施
の形態1とほぼ同様であり、(8)式および(9)式に
挿入されるSH、SCの換わりに、蒸発圧力と凝縮圧
力、またはそれらの各圧力に対応した冷媒の飽和蒸発温
度と飽和凝縮温度に置き換えるようにしたものである。
(なお、蒸発圧力を計測する過熱検知手段である蒸発圧
力検知手段、及び凝縮圧力を計測する過冷却検知手段で
ある凝縮圧力検知手段は図示しない。)
Embodiment 3 FIG. 13 is a flowchart showing the normal control according to the third embodiment of the present invention. The configuration of the apparatus is the same as that of FIG. 1, and the overall flowchart is the same as that of FIG. In the refrigeration system of the third embodiment, the evaporating pressure as a superheat characteristic value corresponding to the degree of superheating of the refrigerant sucked into the compressor and the condensation as the supercooling characteristic value corresponding to the degree of supercooling of the refrigerant at the outlet of the condenser. The low-pressure-side and high-pressure-side expansion devices are controlled using the pressure as a target value. The specific procedure and operation and the operation and effect thereof are almost the same as those of the first embodiment. Equations (8) and (9) Instead of SH and SC inserted in the equation, the evaporation pressure and the condensation pressure, or the saturation evaporation temperature and the saturation condensation temperature of the refrigerant corresponding to those pressures are replaced.
(Note that an evaporating pressure detecting means as an overheating detecting means for measuring an evaporating pressure and a condensing pressure detecting means as a supercooling detecting means for measuring a condensing pressure are not shown.)

【0065】なお、この時、演算手段29は、蒸発圧力
および凝縮圧力検知手段の各検知結果と冷凍装置の運転
状態に対応した目標蒸発圧力および目標凝縮圧力との偏
差値を演算し、この演算結果に基づいて制御手段30が
高圧側および低圧側絞り装置の各開口面積を制御する。
また、この時、予め設計され、一義的に定まっている圧
縮機、蒸発器、及び凝縮器等の容量(即ち、各能力の相
関関係が一義的に定まっている冷凍装置)における各R
T(室温)及びAT(外気温)に対しての蒸発圧力と凝
縮圧力との関係、並びにこの関係における蒸発圧力(蒸
発飽和温度)とSH、凝縮圧力(凝縮飽和温度)とSC
との関係は予め決めて置くことはいうまでもない。な
お、このようにすると、少ない構成部品でハンチングを
防止した経済的で、信頼性の高い冷凍システム装置が得
られる。
At this time, the calculating means 29 calculates a deviation value between each detection result of the evaporating pressure and the condensing pressure detecting means and the target evaporating pressure and the target condensing pressure corresponding to the operation state of the refrigeration system. Based on the result, the control means 30 controls the opening areas of the high-pressure side and low-pressure side throttle devices.
In addition, at this time, each R in a capacity of a compressor, an evaporator, a condenser, and the like, which is preliminarily designed and uniquely determined (that is, a refrigeration apparatus in which the correlation between the respective abilities is uniquely determined) is set.
Relationship between evaporation pressure and condensation pressure for T (room temperature) and AT (outside air temperature), and evaporation pressure (evaporation saturation temperature) and SH, condensation pressure (condensation saturation temperature) and SC in this relationship
It goes without saying that the relationship with is determined in advance. In this case, an economical and highly reliable refrigeration system device in which hunting is prevented with a small number of components can be obtained.

【0066】実施の形態4.図14は、本発明の実施の
形態4の通常制御を示すフローチャート図であり、この
フローチャート図の装置の構成は図1と同様で、全体の
フローチャートは図3と同じである。また、この実施の
形態4おける冷凍システム装置においては、レシーバタ
ンク圧力(中間圧)を目標値として、高圧側および低圧
側絞り装置の開口面積を制御するもので、この具体的な
手順・動作およびその作用・効果は、実施の形態1とほ
ぼ同様であるが、前述の中間圧に対応した蒸発圧力(低
圧)と凝縮圧力(高圧)を前述した各式より予め設定し
ておき、この設定された蒸発圧力及び凝縮圧力になるよ
うに、高圧側および低圧側絞り装置の各開口面積を制御
するものである。即ち、(8)式および(9)式に挿入
されるSH、SCの換わりに、レシーバタンク圧力に置
き換わっただけのものである。(なお、レシーバタンク
圧力を計測する手段は、図示せず。) また、この時、演算手段29は、計測された中間圧と目
標中間圧との偏差値を演算し、この演算結果から蒸発圧
力及び凝縮圧力を検知手段の検知結果と冷凍装置の運転
状態に対応した目標蒸発圧力及び目標凝縮圧力との偏差
値をそれぞれ演算する。
Embodiment 4 FIG. 14 is a flowchart showing the normal control according to the fourth embodiment of the present invention. The configuration of the apparatus in this flowchart is the same as that in FIG. 1, and the entire flowchart is the same as FIG. Further, in the refrigeration system apparatus according to the fourth embodiment, the opening areas of the high-pressure side and the low-pressure side expansion devices are controlled using the receiver tank pressure (intermediate pressure) as a target value. The operation and effect are almost the same as those of the first embodiment, except that the evaporation pressure (low pressure) and the condensation pressure (high pressure) corresponding to the above-mentioned intermediate pressure are set in advance by the above-described equations, and are set. The opening areas of the high-pressure side and low-pressure side throttle devices are controlled so that the evaporating pressure and the condensing pressure are adjusted. That is, instead of SH and SC inserted in the equations (8) and (9), the pressure is simply replaced by the receiver tank pressure. (The means for measuring the receiver tank pressure is not shown.) At this time, the calculating means 29 calculates a deviation value between the measured intermediate pressure and the target intermediate pressure, and from this calculation result, the evaporating pressure. And a deviation value between the detection result of the condensing pressure and the target evaporation pressure and the target condensing pressure corresponding to the operation state of the refrigerating apparatus.

【0067】なお、レシーバタンク圧力をある目標値に
制御するということは、高圧側および低圧側絞り装置の
開口面積を制御して、レシーバ12内の冷媒量を目標値
に制御することであり、その結果、とりもなおさず凝縮
器、及び蒸発器内のそれぞれの冷媒量を制御したことに
なる。また、前述したように、これら各機器内の冷媒量
を制御したということは、結果的にはSH、SCを制御
したことになることは前述した通りである。従って、制
御器30が、SH、SCの実測値と目標値との偏差値に
基づて高圧側および低圧側絞り装置の開口面積を制御す
る換わりに、レシーバタンク圧力の実測値と目標値との
偏差値に基づいて制御しても、実施の形態1とほぼ同等
の効果が得られることは言うまでもない。
Controlling the receiver tank pressure to a certain target value means controlling the opening areas of the high-pressure side and low-pressure side expansion devices to control the amount of refrigerant in the receiver 12 to the target value. As a result, the amount of each refrigerant in the condenser and the evaporator is controlled. Further, as described above, controlling the amount of refrigerant in each of these devices means that SH and SC are eventually controlled as described above. Therefore, instead of the controller 30 controlling the opening areas of the high-pressure side and the low-pressure side throttling device based on the deviation value between the actual measurement value of SH and SC and the target value, the actual measurement value and the target value of the receiver tank pressure are compared with the control values. It is needless to say that the same effect as that of the first embodiment can be obtained even if the control is performed based on the deviation value of.

【0068】また、レシーバタンク圧力の目標値を外気
温度に対応させて予め設定し、この設定した目標値をも
ちいると、更に制御精度が向上し、経済的な冷凍サイク
ル運転を維持する制御装置が得られることは言うまでも
ない。なお、外気温度に対応させて目標値を予め設定
し、この設定した目標値をもちいると、更に制御精度が
向上することは、この実施の形態4以外の他の実施の形
態においても同じである。また更に、この外気温度を冷
凍システム装置の運転状態の1つとして、所定の温度範
囲で設定しておく。このようにすると、外気温度が刻々
変化しても安定した制御をすることができる。
Further, a target value of the receiver tank pressure is set in advance corresponding to the outside air temperature, and if the set target value is used, the control accuracy is further improved, and the economical refrigeration cycle operation is maintained. Needless to say, this is obtained. The target value is set in advance in accordance with the outside air temperature, and the control accuracy is further improved by using the set target value in the other embodiments other than the fourth embodiment. is there. Further, this outside air temperature is set in a predetermined temperature range as one of the operation states of the refrigeration system device. In this way, stable control can be performed even if the outside air temperature changes every moment.

【0069】実施の形態5.図15は、本発明の実施の
形態5の通常制御を示すフローチャートであり、装置の
構成は図1と同様で、全体のフローチャートは図3と同
じである。また、この実施の形態5における冷凍システ
ム装置においては、圧縮機吐出冷媒温度および圧縮機吸
入冷媒温度の測定値と目標値との偏差値に基づいて、低
圧側および高圧側絞り装置の各開口面積を制御するもの
で、具体的な手順・動作は、実施の形態1とほぼ同様で
あり、(8)式および(9)式に挿入されるSH、SC
の偏差値の換わりに、圧縮機の吐出冷媒温度および圧縮
機の吸入冷媒温度の偏差値を挿入するものである。(な
お、圧縮機の吐出冷媒温度を計測する過冷却検知手段で
ある吐出温度検知手段は、図示せず。また、圧縮機吸入
冷媒温度を検知する温度検知手段28が過冷却検知手段
となる。) なお、このようにすると、冷凍サイクル内で最も温度の
高い圧縮機吐出温度が常に目標値に管理されるため、少
ない構成部品で、特に、冷媒や油等の劣化を防止しなが
ら、ハンチングを防止した経済的で、信頼性の高い冷凍
システム装置が得られる。
Embodiment 5 FIG. 15 is a flowchart showing the normal control according to the fifth embodiment of the present invention. The configuration of the apparatus is the same as that of FIG. 1, and the overall flowchart is the same as that of FIG. In the refrigeration system apparatus according to Embodiment 5, the opening areas of the low-pressure side and high-pressure side throttle devices are determined based on the deviation between the measured values of the compressor discharge refrigerant temperature and the compressor intake refrigerant temperature and the target values. The specific procedure and operation are almost the same as those in the first embodiment, and SH and SC inserted in the equations (8) and (9) are used.
Is inserted in place of the deviation value of the difference between the refrigerant discharge temperature of the compressor and the refrigerant suction temperature of the compressor. (Note that the discharge temperature detecting means, which is the supercooling detecting means for measuring the refrigerant discharge temperature of the compressor, is not shown. The temperature detecting means 28 for detecting the compressor suction refrigerant temperature is the supercooling detecting means. In this case, since the compressor discharge temperature having the highest temperature in the refrigeration cycle is constantly controlled to the target value, hunting can be performed with a small number of components while preventing deterioration of the refrigerant and oil. An economical and highly reliable refrigeration system device which is prevented is obtained.

【0070】また、圧縮機吐出冷媒温度および圧縮機吸
入冷媒温度の目標値を外気温度に対応させて、予め設定
し、この設定した目標値を用いると、更に制御精度が向
上し、経済的な冷凍サイクル運転を維持する制御装置が
得られることは言うまでもない。
Further, the target values of the compressor discharge refrigerant temperature and the compressor intake refrigerant temperature are set in advance in correspondence with the outside air temperature, and if the set target values are used, the control accuracy is further improved and economical efficiency is improved. It goes without saying that a control device for maintaining the refrigeration cycle operation can be obtained.

【0071】実施の形態6.図16は、本発明の第6の
実施例の通常制御を示すフローチャートであり、装置の
構成は図1と同様、全体のフローチャートは図3と同様
とする。この発明における冷凍システム装置において
は、圧縮機吐出温度および圧縮機吸入冷媒過熱度の測定
値と目標値との偏差値に基づいて、高圧側および低圧側
絞り装置を制御するもので、具体的な手順および効果
は、実施の形態1とほぼ同様であり、(8)式および
(9)式に挿入されるSH、SCの偏差値の換わりに、
圧縮機吐出温度および圧縮機吸入冷媒過熱度の偏差値に
置き換わっただけのものである。(なお、圧縮機吐出温
度を計測する過熱検知手段である吐出温度検知手段は、
図示せず。)
Embodiment 6 FIG. FIG. 16 is a flowchart showing the normal control according to the sixth embodiment of the present invention. The configuration of the apparatus is the same as in FIG. 1, and the overall flowchart is the same as in FIG. In the refrigeration system device according to the present invention, the high-pressure side and low-pressure side expansion devices are controlled based on a deviation value between a measured value of the compressor discharge temperature and a superheat degree of the refrigerant suctioned by the compressor and a target value. The procedure and the effect are almost the same as those of the first embodiment. Instead of the SH and SC deviation values inserted in the equations (8) and (9),
This is simply replaced by the deviation values of the compressor discharge temperature and the compressor superheat degree. (The discharge temperature detecting means, which is the overheat detecting means for measuring the compressor discharge temperature,
Not shown. )

【0072】なお、このようにすると、冷凍サイクル内
で最も温度の高い圧縮機吐出温度が常に目標値に管理さ
れるため、冷媒や油等の劣化を防止しながら、少ない構
成部品でハンチングを防止した経済的で、信頼性の高い
冷凍システム装置が得られる。
In this case, since the compressor discharge temperature having the highest temperature in the refrigeration cycle is always controlled to the target value, hunting is prevented with a small number of components while preventing deterioration of the refrigerant and oil. Thus, an economical and highly reliable refrigeration system device can be obtained.

【0073】また、圧縮機吐出温度および圧縮機吸入冷
媒過熱度の目標値を外気温度に対応させて予め設定し、
この設定した目標値をもちいると、更に制御精度が向上
し、経済的な冷凍サイクル運転を維持する制御装置が得
られることは言うまでもない。
Further, target values of the compressor discharge temperature and the compressor suction refrigerant superheat degree are set in advance in correspondence with the outside air temperature.
When the set target value is used, it goes without saying that a control device with further improved control accuracy and economical refrigeration cycle operation can be obtained.

【0074】実施の形態7.図17は、本発明の実施の
形態7の通常制御を示すフローチャートであり、装置の
構成は図1と同様、全体のフローチャートは図3と同様
とする。この実施の形態7における冷凍システム装置に
おいては、圧縮機吐出温度および蒸発器出口冷媒過熱度
を目標値として、高圧側および低圧側絞り装置の各開口
面積を制御するもので、具体的な手順・動作およびその
効果は、実施の形態1とほぼ同様であり、(8)式およ
び(9)式に挿入されるSH、SCの偏差値の換わり
に、圧縮機吐出温度及び蒸発器出口冷媒過熱度の偏差値
基準に置き換わったものである。なお、圧縮機吐出温度
及び蒸発器出口冷媒過熱度を計測する手段は、図示せ
ず。
Embodiment 7 FIG. 17 is a flowchart showing the normal control according to the seventh embodiment of the present invention. The configuration of the apparatus is the same as in FIG. 1, and the overall flowchart is the same as in FIG. In the refrigeration system apparatus according to the seventh embodiment, the opening areas of the high-pressure side and low-pressure side expansion devices are controlled using the compressor discharge temperature and the evaporator outlet refrigerant superheat degree as target values. The operation and its effect are almost the same as those of the first embodiment. Instead of the SH and SC deviation values inserted in the equations (8) and (9), the compressor discharge temperature and the evaporator outlet refrigerant superheat degree are used. Is replaced by the standard deviation value. Means for measuring the compressor discharge temperature and the evaporator outlet refrigerant superheat degree is not shown.

【0075】実施の形態8.図18は、本発明の実施の
形態8における冷凍システム装置の構成を示す図で、3
は圧縮機、5は四方弁、12はレシーバタンク、14は
吸入管、21aおよび21bは凝縮器、22aおよび2
2bは蒸発器、23aおよび23bは凝縮器とレシーバ
タンクの間に設置され、レシーバタンク圧力およびレシ
ーバタンクに流れる冷媒流量を調整する高圧側の調整手
段(高圧側絞り装置)、24aおよび24bはレシーバ
タンクと蒸発器の間に設置され、低圧および蒸発器21
a、bに流れる冷媒流量を調整する低段側の調整手段
(低圧側絞り装置)、25は凝縮器21aおよび21b
の各圧力を検知する圧力検知手段、26aおよび26b
はそれぞれ凝縮器21a、21bの出口温度を検知する
温度検知手段、27aおよび27bはそれぞれ蒸発器2
2a、22bの入口温度を検知する温度検知手段、28
は圧縮機吸入温度を検知する温度検知手段、29は演算
器、30は制御器である。
Embodiment 8 FIG. FIG. 18 is a diagram showing a configuration of a refrigeration system device according to Embodiment 8 of the present invention.
Is a compressor, 5 is a four-way valve, 12 is a receiver tank, 14 is a suction pipe, 21a and 21b are condensers, 22a and 2
2b is an evaporator, 23a and 23b are installed between the condenser and the receiver tank, and high-pressure side adjusting means (high-pressure side throttle device) for adjusting the pressure of the receiver tank and the flow rate of the refrigerant flowing into the receiver tank, and 24a and 24b are receivers Installed between tank and evaporator, low pressure and evaporator 21
adjusting means (low-pressure side throttling device) on the lower stage for adjusting the flow rate of the refrigerant flowing through a and b, 25 includes condensers 21a and 21b
Pressure detecting means for detecting each pressure of the pressure, 26a and 26b
Are temperature detecting means for detecting the outlet temperatures of the condensers 21a and 21b, respectively, and 27a and 27b are the evaporator 2 respectively.
Temperature detecting means for detecting the inlet temperature of 2a, 22b, 28
Is a temperature detecting means for detecting the compressor suction temperature, 29 is an arithmetic unit, and 30 is a controller.

【0076】この実施の形態8における冷凍システム装
置においては、実施の形態1〜7で説明した値を制御目
標として、各高圧側絞り装置の開口面積の総和および各
低圧側絞り装置の開口面積の総和を制御するもので、具
体的な構成及び手順・動作は、実施の形態1〜7で説明
した内容とほぼ同じなので、説明を割愛する。なお、図
11においては、凝縮器および蒸発器がともに2台づつ
取り付けられているが、凝縮器と蒸発器の台数の組み合
わせが例えばそれぞれ1台と2台、1台と3台、2台と
1台、3台と1台等の組み合わせであっても、同様のこ
とが成り立つのは明らかであるから、そのような組合せ
にも利用できる。
In the refrigeration system apparatus according to the eighth embodiment, the values described in the first to seventh embodiments are used as control targets, and the sum of the opening areas of the high-pressure side expansion devices and the opening area of each low-pressure side expansion device are set. Since the sum is controlled and the specific configuration, procedure, and operation are almost the same as those described in the first to seventh embodiments, the description is omitted. In FIG. 11, two condensers and two evaporators are mounted, but the combination of the number of condensers and evaporators is, for example, one and two, one and three, and two, respectively. It is clear that the same holds true for a combination of one, three, one, etc., and such a combination can be used.

【0077】また、本実施の形態では、各高圧側絞り装
置の開口面積および各低圧側絞り装置の開口面積、即ち
各開口面積の総和を制御するものであり、各凝縮器また
は蒸発器のそれぞれに付いている各調整手段23a、2
3b、24a、24bの開口面積の振り分け方、つまり
各凝縮器または蒸発器への冷媒量の振り分け(開口面
積)制御については、例えば、各凝縮器および蒸発器の
周囲温度によって振り分けて制御したり、あるいは各凝
縮器の過冷却度および蒸発器の過熱度によって振り分け
て制御する。
Further, in this embodiment, the opening area of each high-pressure side expansion device and the opening area of each low-pressure side expansion device, that is, the sum of the respective opening areas, is controlled. Adjustment means 23a, 2 attached to
The method of allocating the opening areas of 3b, 24a, and 24b, that is, the control of the distribution (opening area) of the refrigerant amount to each condenser or evaporator, is performed by, for example, distributing and controlling according to the ambient temperature of each condenser and evaporator. Alternatively, the control is divided and controlled according to the degree of supercooling of each condenser and the degree of superheating of the evaporator.

【0078】以上説明したように、この実施の形態8で
は、凝縮器または蒸発器の少なくともいずれかが並列に
複数箇設けられ、これらの設けられた凝縮器または蒸発
器のそれぞれに対応した高圧または低圧側絞り装置の開
口面積を、演算手段制御手段が、過冷却検知手段および
過熱検知手段の各検知結果と冷凍装置の運転状態に対応
した目標過冷却特性値および目標過熱特性値との各偏差
値からそれぞれ演算し、この演算結果から、制御手段が
制御するので、簡単に精度良く、ハンチングを防止した
信頼性が高く、使い勝手の良い冷凍システム装置が得ら
れる
As described above, in the eighth embodiment, at least one of the condenser and the evaporator is provided in parallel, and the high pressure or the high pressure corresponding to each of the provided condenser or evaporator is provided. The opening area of the low-pressure side throttling device is calculated by the calculating means control means, and the deviation between each detection result of the supercooling detection means and the overheating detection means and the target supercooling characteristic value and the target superheating characteristic value corresponding to the operation state of the refrigerating apparatus. Values are calculated from the values, and the control means controls the calculation results. Therefore, a highly reliable and easy-to-use refrigeration system device that can easily and accurately prevent hunting can be obtained.

【0079】以上述べてきた通り、本発明は、安定運転
時に冷凍サイクルの運転効率を常に最適に維持し、ま
た、冷凍システム装置の運転状態が変化しても、短時間
で最適運転効率の冷凍サイクルに安定させて、年間の平
均効率を大幅に向上させることができる経済的で、信頼
性の高い冷凍システム装置が得られる。
As described above, according to the present invention, the refrigeration cycle operation efficiency is always maintained optimally during the stable operation, and even if the operation state of the refrigeration system changes, the refrigeration cycle of the optimum operation efficiency can be maintained in a short time. An economical and reliable refrigeration system device that can stabilize the cycle and significantly improve the average annual efficiency is obtained.

【0080】ここでいう冷凍システム装置の運転状態変
化としては、例えば、次のようなものがある。 (1)マルチエアコンにおける室内機(蒸発器または凝
縮器)の台数切り替え (2)圧縮機を複数台持つ装置の圧縮機の台数切り替え (3)圧縮機の回転数制御機能を持つ装置の圧縮機回転
数変化 (4)室内温度または室外気温等、熱交換器の周囲温度
の変化 (5)冷暖同時マルチエアコンでの冷媒または空気が流
れる熱交換器面積の変化 (6)除霜運転から暖房運転復帰時などの運転状態変化
や、冷媒の流し方の変化
The change in the operating state of the refrigeration system device includes, for example, the following. (1) Switching the number of indoor units (evaporator or condenser) in a multi-air conditioner (2) Switching the number of compressors of a device with multiple compressors (3) Compressor of a device with a compressor rotation speed control function Change in rotation speed (4) Change in ambient temperature of heat exchanger such as indoor temperature or outdoor temperature (5) Change in area of heat exchanger where refrigerant or air flows in simultaneous cooling / heating multi air conditioner (6) Defrosting operation to heating operation Changes in operating conditions, such as when returning, and changes in refrigerant flow

【0081】[0081]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に示すような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0082】この発明に係る冷凍システム装置は、圧縮
機、凝縮器、高圧側絞り装置、レシーバタンク、低圧側
絞り装置、および蒸発器が順次配管で接続されて構成さ
れた冷凍装置と、この冷凍装置の凝縮器出口冷媒の過冷
却度に相当する過冷却特性値を検知する過冷却検知手段
と、前記圧縮機の吸入冷媒の過熱度に相当する過熱特性
値を検知する過熱検知手段と、現在の前記高圧側および
低圧側絞り装置の開口面積を基に前記過冷却検知手段お
よび過熱検知手段の各検知結果を目標値に近づけるよう
に前記高圧側および低圧側絞り装置の開口面積を補正す
る制御手段と、を備えたので、運転効率が非常に良く、
経済的な冷凍システム装置が得られる効果を奏する。
The refrigeration system apparatus according to the present invention comprises a refrigeration system in which a compressor, a condenser, a high-pressure side expansion device, a receiver tank, a low-pressure side expansion device, and an evaporator are sequentially connected by piping. Supercooling detection means for detecting a supercooling characteristic value corresponding to the degree of supercooling of the refrigerant at the outlet of the condenser of the device; superheating detection means for detecting a superheating characteristic value corresponding to the degree of superheating of the suction refrigerant of the compressor; Control for correcting the opening areas of the high-pressure side and low-pressure side expansion devices so that each detection result of the supercooling detection means and the overheat detection means approaches the target value based on the opening areas of the high-pressure side and low-pressure side expansion devices. Means, the operation efficiency is very good,
An effect is obtained that an economic refrigeration system device can be obtained.

【0083】圧縮機、凝縮器、高圧側絞り装置、レシー
バタンク、低圧側絞り装置、および蒸発器が順次配管で
接続されて構成された冷凍装置と、この冷凍装置の凝縮
器出口冷媒の過冷却度に相当する過冷却特性値を検知す
る過冷却検知手段と、前記圧縮機の吸入冷媒の過熱度に
相当する過熱特性値を検知する過熱検知手段と、前記過
冷却検知手段および過熱検知手段の各検知結果と前記冷
凍装置の運転状態に対応した目標過冷却特性値および目
標過熱特性値との各偏差値を演算する演算手段と、この
演算手段の演算結果に基づいて前記高圧側および低圧側
絞り装置の開口面積を互いに相関性を持たせて制御する
制御手段と、を備えたので、短時間でシステムの運転状
態を安定させることができ、年間の平均効率も従来より
大幅に向上させることができるため、経済的で信頼性の
高い冷凍システム装置が得られる。
A refrigeration system in which a compressor, a condenser, a high-pressure-side expansion device, a receiver tank, a low-pressure-side expansion device, and an evaporator are sequentially connected by piping, and supercooling of refrigerant at the condenser outlet of the refrigeration system. Supercooling detecting means for detecting a supercooling characteristic value corresponding to the temperature, superheat detecting means for detecting a superheat characteristic value corresponding to the degree of superheating of the suction refrigerant of the compressor, and the supercooling detecting means and the superheat detecting means. Calculating means for calculating each deviation value between each detection result and a target supercooling characteristic value and a target superheating characteristic value corresponding to the operation state of the refrigeration apparatus; and the high-pressure side and the low-pressure side based on the calculation results of the calculating means. And control means for controlling the aperture areas of the aperture devices in a manner correlated with each other, so that the operating state of the system can be stabilized in a short time, and the annual average efficiency is greatly improved compared to the conventional one. Bets for can, high refrigeration system unit economical and reliability.

【0084】また、前記高圧側および低圧側絞り装置の
開口面積を同時に制御する制御手段を備えたので、短時
間でシステムの運転状態を安定させる効果を奏する。
Also, since the control means for simultaneously controlling the opening areas of the high-pressure side and low-pressure side throttle devices is provided, an effect of stabilizing the operation state of the system in a short time is exhibited.

【0085】また、制御手段が冷凍装置の運転状態が変
化してから所定時間後に高圧側または、および低圧側絞
り装置の開口面積を制御するので、更にハンチングを防
止した信頼性の高い冷凍サイクル装置が得られる。
Further, since the control means controls the opening area of the high-pressure side or the low-pressure side expansion device a predetermined time after the operation state of the refrigeration system changes, a highly reliable refrigeration cycle device further preventing hunting. Is obtained.

【0086】また、冷媒戻し配管が、レシーバタンクと
圧縮機の吸入側部位との間に設けられ、レシーバタンク
の冷媒圧力を絞りながら圧縮機へ導くので、圧縮機の吐
出冷媒温度を下げると共に、圧縮機の吸入冷媒量を増加
させるため、特に、暖房能力を向上させ、冷媒や潤滑油
の劣化を防止した信頼性の高い冷凍システム装置が得ら
れる。
Further, a refrigerant return pipe is provided between the receiver tank and the suction side of the compressor, and guides the refrigerant to the compressor while reducing the refrigerant pressure in the receiver tank. In order to increase the amount of refrigerant sucked into the compressor, it is possible to obtain a highly reliable refrigeration system device in which the heating capacity is particularly improved and deterioration of the refrigerant and lubricating oil is prevented.

【0087】また、前記冷媒戻し配管が、そのレシーバ
タンク側の一端を前記レシーバタンクの上部近辺の部位
に接続され、前記レシーバタンクの上部近辺の冷媒ガス
を絞りながら圧縮機へ導くので、冷媒ガスを圧縮機へ供
給しながら吐出冷媒温度を下げると共に、圧縮機の吸入
圧力(冷媒量)を増加させるため、特に、冷媒の液バッ
クを防止しながら、暖房能力を向上させて、冷媒や潤滑
油の劣化を防止した信頼性の高い冷凍システム装置が得
られる。
The refrigerant return pipe has one end on the receiver tank side connected to a portion near the upper portion of the receiver tank, and guides the refrigerant gas to the compressor while restricting the refrigerant gas near the upper portion of the receiver tank. In order to lower the discharge refrigerant temperature and increase the suction pressure (refrigerant amount) of the compressor while supplying the refrigerant to the compressor, in particular, to improve the heating capacity while preventing the liquid back of the refrigerant, A highly reliable refrigeration system device that prevents deterioration of the refrigeration system can be obtained.

【0088】また、制御弁が、冷媒戻し配管に取り付け
られ、圧縮機の吐出冷媒温度に基づいて冷媒ガスの圧力
を制御するので、圧縮機へ最適冷媒量を供給しながら吐
出冷媒温度を所定の温度に維持すると共に、圧縮機の吸
入圧力(冷媒量)を増加させるため、特に、暖房能力を
向上させ、冷媒や潤滑油の劣化を防止した信頼性の高い
冷凍サイクル装置が得られる。
Further, since the control valve is attached to the refrigerant return pipe and controls the pressure of the refrigerant gas based on the temperature of the refrigerant discharged from the compressor, the discharge refrigerant temperature is controlled to a predetermined value while supplying the optimum amount of refrigerant to the compressor. Since the temperature is maintained and the suction pressure (refrigerant amount) of the compressor is increased, a highly reliable refrigeration cycle device in which the heating capacity is particularly improved and deterioration of the refrigerant and lubricating oil is prevented is obtained.

【0089】また、熱交換手段が、圧縮機へ吸入される
低圧冷媒と凝縮器から低圧側絞り装置までの高圧又は中
圧冷媒のいずれかとを熱交換させるように設けられたの
で、過冷却度の大きい冷媒が蒸発器へ供給されると共
に、圧縮機に冷媒ガスが供給されるため、特に、冷房能
力を向上させ、液バックを防止そた信頼性の高い冷凍サ
イクル装置が得られる。
Further, since the heat exchange means is provided for exchanging heat between the low-pressure refrigerant sucked into the compressor and either the high-pressure or medium-pressure refrigerant from the condenser to the low-pressure side expansion device, the degree of supercooling is reduced. Is supplied to the evaporator and the refrigerant gas is supplied to the compressor, so that a highly reliable refrigeration cycle device with particularly improved cooling capacity and preventing liquid back can be obtained.

【0090】また、冷媒戻し配管が凝縮器から低圧側絞
り装置までのいずれかの部位と圧縮機の吸入側部位との
間に設けられ、前記いずれかの部位の冷媒を圧縮機の吸
入側へ導き、この冷媒戻し配管に絞り装置が取り付けら
れ、圧縮機の吐出冷媒温度に基づいて冷媒の圧力を制御
し、この制御した冷媒と前記いずれかの部位の冷媒とを
熱交換手段が熱交換させるので、最適冷媒量を圧縮機へ
供給しながら吐出冷媒温度を所定の温度に維持して圧縮
機の吸入圧力(冷媒量)を増加させると共に、過冷却度
の大きい冷媒が蒸発器に供給されるため、特に、冷房能
力を向上させ、冷媒や潤滑油の劣化を防止した信頼性の
高い冷凍サイクル装置が得られる。
Further, a refrigerant return pipe is provided between any part from the condenser to the low-pressure side throttle device and the suction side part of the compressor, and the refrigerant in any one of the above parts is sent to the suction side of the compressor. A guide device is attached to the refrigerant return pipe to control the pressure of the refrigerant based on the refrigerant temperature discharged from the compressor, and the heat exchange means exchanges heat between the controlled refrigerant and the refrigerant at any one of the portions. Therefore, while supplying the optimum amount of refrigerant to the compressor, the discharge refrigerant temperature is maintained at a predetermined temperature to increase the suction pressure (refrigerant amount) of the compressor, and a refrigerant having a large degree of supercooling is supplied to the evaporator. Therefore, it is possible to obtain a highly reliable refrigeration cycle device in which the cooling capacity is particularly improved and the deterioration of the refrigerant and the lubricating oil is prevented.

【0091】また、過熱検知手段が、過熱特性値として
蒸発器出口冷媒の過熱度を検知するので、冷房時には、
冷却能力を維持し、暖房時には、吸入配管から放熱して
吐出冷媒ガス温度を上昇させるため、特に、暖房能力が
向上した経済的な冷凍システム装置が得られる。
Since the overheat detecting means detects the degree of superheat of the refrigerant at the outlet of the evaporator as the overheat characteristic value, during the cooling,
Since the cooling capacity is maintained and the temperature of the discharged refrigerant gas is increased by radiating heat from the suction pipe during heating, an economical refrigeration system device with particularly improved heating capacity can be obtained.

【0092】また、この発明に係る冷凍システム装置
は、圧縮機、凝縮器、高圧側絞り装置、レシーバタン
ク、低圧側絞り装置、および蒸発器が順次配管で接続さ
れて構成された冷凍装置と、この冷凍装置の凝縮器にお
ける冷媒の凝縮圧力により過冷却度を検知する過冷却検
知手段と、前記蒸発器における冷媒の蒸発圧力により過
熱度を検知する過熱検知手段と、現在の前記高圧側およ
び低圧側絞り装置の開口面積を基に前記過冷却検知手段
および過熱検知手段の各検知結果を目標値に近づけるよ
うに前記高圧側および低圧側絞り装置の開口面積を補正
する制御手段と、を備えたので、少ない構成部品でハン
チングを防止した経済的で、信頼性の高い冷凍システム
装置が得られる。
The refrigeration system according to the present invention includes a refrigeration system in which a compressor, a condenser, a high-pressure side expansion device, a receiver tank, a low-pressure side expansion device, and an evaporator are sequentially connected by piping. Supercooling detection means for detecting the degree of supercooling by the condensing pressure of the refrigerant in the condenser of the refrigerating apparatus; superheating detecting means for detecting the degree of superheating by the evaporating pressure of the refrigerant in the evaporator; Control means for correcting the opening areas of the high-pressure side and low-pressure side throttle devices based on the opening area of the side throttle device so as to make each detection result of the supercooling detection means and the overheat detection means close to a target value. Therefore, an economical and highly reliable refrigeration system device in which hunting is prevented with a small number of components can be obtained.

【0093】また、この発明に係る冷凍システム装置
は、圧縮機、凝縮器、高圧側絞り装置、レシーバタン
ク、低圧側絞り装置、および蒸発器が順次配管で接続さ
れて構成された冷凍装置と、前記凝縮器における冷媒の
凝縮圧力と前記蒸発器における冷媒の蒸発圧力との中間
圧力である前記レシーバタンクの冷媒の圧力を検知する
中間圧力検知手段と、現在の前記高圧側および低圧側絞
り装置の開口面積を基に前記中間圧力検知手段の各検知
結果を目標値に近づけるように前記高圧側および低圧側
絞り装置の開口面積を補正する制御手段と、を備えたの
で、少ない構成部品で、ハンチングを防止した経済的
で、信頼性の高い冷凍システム装置が得られる。
The refrigeration system apparatus according to the present invention includes a refrigeration apparatus in which a compressor, a condenser, a high-pressure side expansion device, a receiver tank, a low-pressure side expansion device, and an evaporator are sequentially connected by piping. Intermediate pressure detecting means for detecting the pressure of the refrigerant in the receiver tank, which is an intermediate pressure between the condensation pressure of the refrigerant in the condenser and the evaporation pressure of the refrigerant in the evaporator; and Control means for correcting the opening areas of the high-pressure side and low-pressure side expansion devices so that each detection result of the intermediate pressure detecting means approaches a target value based on the opening area. Thus, an economical and highly reliable refrigeration system device can be obtained.

【0094】また、この発明に係る冷凍システム装置
は、圧縮機、凝縮器、高圧側絞り装置、レシーバタン
ク、低圧側絞り装置、および蒸発器が順次配管で接続さ
れて構成された冷凍装置と、過冷却特性値として前記圧
縮機の吐出冷媒温度を検知する過冷却検知手段と、過熱
特性値として前記圧縮機の吸入冷媒温度を検知する過熱
検知手段と、現在の前記高圧側および低圧側絞り装置の
開口面積を基に前記過冷却検知手段および過熱検知手段
の各検知結果を目標値に近づけるように前記高圧側およ
び低圧側絞り装置の開口面積を補正する制御手段と、を
備えたので、冷凍サイクル内で最も温度の高い圧縮機吐
出温度を常に管理して、冷媒や油等の劣化を防止しなが
ら、少ない構成部品でハンチングを防止した経済的で、
信頼性の高い冷凍システム装置が得られる。
Further, the refrigeration system according to the present invention comprises a refrigeration system in which a compressor, a condenser, a high-pressure side expansion device, a receiver tank, a low-pressure side expansion device, and an evaporator are sequentially connected by piping. Supercooling detecting means for detecting a refrigerant discharge temperature of the compressor as a supercooling characteristic value, overheating detecting means for detecting a suction refrigerant temperature of the compressor as a superheat characteristic value, and a current high-pressure side and low-pressure side expansion device Control means for correcting the opening areas of the high-pressure side and low-pressure side expansion devices so that each detection result of the supercooling detection means and the overheating detection means approaches a target value based on the opening area of the refrigeration unit. It is economical to constantly control the compressor discharge temperature, which is the highest temperature in the cycle, to prevent deterioration of refrigerant and oil, etc., and to prevent hunting with few components.
A highly reliable refrigeration system device can be obtained.

【0095】また、過熱検知手段が、過熱特性値として
圧縮機吸入冷媒の過熱温度を検知するので、少ない構成
部品で、特に、冷房能力を向上させ、ハンチングを防止
した経済的で、信頼性の高い冷凍システム装置が得られ
る。
Further, since the overheat detecting means detects the superheat temperature of the refrigerant drawn into the compressor as the overheat characteristic value, it is economical and reliable with a small number of components, particularly, with improved cooling capacity and prevented hunting. High refrigeration system equipment is obtained.

【0096】また、過熱検知手段が、過熱特性値として
蒸発器出口冷媒の過熱度を検知するので、少ない構成部
品で、特に、暖房能力を向上させ、ハンチングを防止し
た経済的で、信頼性の高い冷凍システム装置が得られ
る。
Further, since the overheat detecting means detects the degree of superheat of the refrigerant at the outlet of the evaporator as an overheat characteristic value, it is economical and reliable with a small number of components, in particular, the heating capacity is improved and hunting is prevented. High refrigeration system equipment is obtained.

【0097】また、凝縮器または蒸発器の少なくともい
ずれかが並列に複数個設けられ、これらの設けられた凝
縮器または蒸発器のそれぞれに対応した高圧側絞り装置
または低圧側絞り装置を有するので、簡単に精度よく、
ハンチングを防止した信頼性が高く、使い勝手の良い冷
凍システム装置が得られる。また、この発明に係る冷凍
システム装置の制御方法は、圧縮機、凝縮器、高圧側絞
り装置、レシーバタンク、低圧側絞り装置、および蒸発
器が順次配管で接続されて構成された冷凍装置におい
て、この冷凍装置の凝縮器出口冷媒の過冷却度の相当す
る過冷却特性値および前記圧縮機の吸入冷媒の過熱度に
相当する過熱特性値を検出して、前記冷凍装置の運転状
態に対応した目標過冷却特性値および目標過熱特性値と
のそれぞれの偏差値を演算するステップと、現在の前記
高圧側および低圧側絞り装置の開口面積に対して前記過
冷却特性および過熱特性の偏差値から前記開口面積の変
化量を前記高圧側および低圧側絞り装置の開口面積に加
えて補正するステップと、前記レシーバタンクの両側に
配設された高圧側および低圧側絞り装置を前記補正され
た開口面積に制御するステップと、を備えたので、運転
効率が非常に良く経済的な冷凍システム装置が得られ
る。また、高圧側および低圧側絞り装置を、同時に互い
に相関性を持たせて制御するステップを備えたので、短
時間でシステムの運転状態を安定させることができる効
果を奏する。
Further, at least one of the condenser and the evaporator is provided in parallel, and a high-pressure side throttle device or a low-pressure side throttle device corresponding to each of the provided condenser or evaporator is provided. Easy and accurate,
A highly reliable and easy-to-use refrigeration system device that prevents hunting can be obtained. Further, the control method of the refrigeration system device according to the present invention, the compressor, a condenser, a high-pressure side expansion device, a receiver tank, a low-pressure side expansion device, and a refrigeration system configured by sequentially connected by piping, A supercooling characteristic value corresponding to the degree of supercooling of the refrigerant at the condenser outlet of the refrigerator and a superheating characteristic value corresponding to the degree of superheating of the refrigerant sucked into the compressor are detected, and a target corresponding to the operating state of the refrigerator is detected. Calculating respective deviation values between the supercooling characteristic value and the target superheat characteristic value; and opening the opening from the deviation values of the supercooling characteristic and the superheat characteristic with respect to the current opening area of the high-pressure side and the low-pressure side expansion device. Correcting the amount of change in the area by adding to the opening areas of the high-pressure side and low-pressure side expansion devices, and compensating the high-pressure side and low-pressure side expansion devices arranged on both sides of the receiver tank. And controlling the opening area that is so provided with, operation efficiency is very good economical refrigeration system unit is obtained. In addition, since the step of controlling the high-pressure side and the low-pressure side expansion devices at the same time so as to be correlated with each other is provided, there is an effect that the operation state of the system can be stabilized in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の第1〜第7の実施例による冷凍シ
ステム装置を示す図である。
FIG. 1 is a diagram showing a refrigeration system device according to first to seventh embodiments of the present invention.

【図2】 この発明の第1〜第8の実施例の動作手順を
示すモリエル線図である。
FIG. 2 is a Mollier diagram showing an operation procedure of the first to eighth embodiments of the present invention.

【図3】 この発明の第1〜第8の実施例の全体の動作
手順を示すフローチャートである。
FIG. 3 is a flowchart showing an overall operation procedure of the first to eighth embodiments of the present invention.

【図4】 この発明の第1の実施例の通常制御の動作手
順を示すフローチャートである。
FIG. 4 is a flowchart showing an operation procedure of normal control according to the first embodiment of the present invention.

【図5】 この発明の第1の実施例の通常制御の一部を
詳細に示すフローチャートである。
FIG. 5 is a flowchart showing in detail a part of normal control according to the first embodiment of the present invention.

【図6】 この発明の第1〜第7の実施例による別の冷
凍システム装置を示す図である。
FIG. 6 is a diagram showing another refrigeration system device according to the first to seventh embodiments of the present invention.

【図7】 この発明の第1〜第7の実施例による別の冷
凍システム装置を示す図である。
FIG. 7 is a diagram showing another refrigeration system device according to the first to seventh embodiments of the present invention.

【図8】 この発明の第1〜第7の実施例による別の冷
凍システム装置を示す図である。
FIG. 8 is a diagram showing another refrigeration system device according to the first to seventh embodiments of the present invention.

【図9】 この発明の第1〜第7の実施例による別の冷
凍システム装置を示す図である。
FIG. 9 is a diagram showing another refrigeration system device according to the first to seventh embodiments of the present invention.

【図10】 この発明の第1〜第7の実施例による別の
冷凍システム装置を示す図である。
FIG. 10 is a diagram showing another refrigeration system device according to the first to seventh embodiments of the present invention.

【図11】 この発明の第1〜第7の実施例による別の
冷凍システム装置を示す図である。
FIG. 11 is a diagram showing another refrigeration system device according to the first to seventh embodiments of the present invention.

【図12】 この発明の第2の実施例の通常制御の動作
手順を示すフローチャートである。
FIG. 12 is a flowchart illustrating an operation procedure of normal control according to the second embodiment of the present invention.

【図13】 この発明の第3の実施例の通常制御の動作
手順を示すフローチャートである。
FIG. 13 is a flowchart showing an operation procedure of normal control according to a third embodiment of the present invention.

【図14】 この発明の第4の実施例の通常制御の動作
手順を示すフローチャートである。
FIG. 14 is a flowchart showing an operation procedure of normal control according to a fourth embodiment of the present invention.

【図15】 この発明の第5の実施例の通常制御の動作
手順を示すフローチャートである。
FIG. 15 is a flowchart showing an operation procedure of normal control according to a fifth embodiment of the present invention.

【図16】 この発明の第6の実施例の通常制御の動作
手順を示すフローチャートである。
FIG. 16 is a flowchart showing an operation procedure of normal control according to a sixth embodiment of the present invention.

【図17】 この発明の第7の実施例の通常制御の動作
手順を示すフローチャートである。
FIG. 17 is a flowchart showing an operation procedure of normal control according to a seventh embodiment of the present invention.

【図18】 この発明の第8の実施例による冷凍システ
ム装置を示す図である。
FIG. 18 is a diagram showing a refrigeration system device according to an eighth embodiment of the present invention.

【図19】 従来の冷凍システム装置を示す図である。FIG. 19 is a diagram showing a conventional refrigeration system device.

【符号の説明】[Explanation of symbols]

3 圧縮機、5 四方弁、6a,6b,6c 室内熱交
換器、11a、11b、11c 電動膨張弁、12 レ
シーバタンク、13 主電動膨張弁、14 吸入管、2
1、21a〜b 凝縮器、22、22a〜b 蒸発器、
23、23a〜b 高圧側の調整手段、24、24a〜
b 低段側の調整手段、25 圧力検知手段、26、2
6a〜b 出口温度検知手段、27、入口温度検知手
段、28吸入温度検知手段、29 演算器、30 制御
器、31 冷媒戻し配管、32 制御弁、33 熱交換
手段、34 冷媒戻し配管、35 熱交換手段、36
絞り装置。
3 compressor, 5 four-way valve, 6a, 6b, 6c indoor heat exchanger, 11a, 11b, 11c electric expansion valve, 12 receiver tank, 13 main electric expansion valve, 14 suction pipe, 2
1, 21a-b condenser, 22, 22a-b evaporator,
23, 23a-b High-pressure side adjusting means, 24, 24a-
b Low-stage adjustment means, 25 Pressure detection means, 26, 2
6a-b Outlet temperature detecting means, 27, inlet temperature detecting means, 28 suction temperature detecting means, 29 computing unit, 30 controller, 31 refrigerant return pipe, 32 control valve, 33 heat exchange means, 34 refrigerant return pipe, 35 heat Exchange means, 36
Aperture device.

───────────────────────────────────────────────────── フロントページの続き 審査官 小野 孝朗 (56)参考文献 特開 平7−225058(JP,A) 特開 昭60−133268(JP,A) 実開 昭61−145258(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 - 7/00 ──────────────────────────────────────────────────続 き Continuation of the front page Examiner Takao Ono (56) References JP-A-7-225058 (JP, A) JP-A-60-133268 (JP, A) Jikai Sho 61-145258 (JP, U) ( 58) Field surveyed (Int. Cl. 7 , DB name) F25B 1/00-7/00

Claims (18)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、高圧側絞り装置、レシ
ーバタンク、低圧側絞り装置、および蒸発器が順次配管
で接続されて構成された冷凍装置と、この冷凍装置の凝
縮器出口冷媒の過冷却度に相当する過冷却特性値を検知
する過冷却検知手段と、前記圧縮機の吸入冷媒の過熱度
に相当する過熱特性値を検知する過熱検知手段と、現在
の前記高圧側および低圧側絞り装置の開口面積を基に前
記過冷却検知手段および過熱検知手段の各検知結果を目
標値に近づけるように前記高圧側および低圧側絞り装置
の開口面積を補正する制御手段と、を備えたことを特徴
とする冷凍システム装置。
1. A refrigeration system in which a compressor, a condenser, a high-pressure-side expansion device, a receiver tank, a low-pressure-side expansion device, and an evaporator are sequentially connected by piping. subcooling detecting means for detecting a subcooling characteristic value corresponding to the degree of subcooling, and superheating detecting means for detecting overheating characteristic value corresponding to the degree of superheat of suction refrigerant of the compressor, the current
Based on the opening areas of the high-pressure side and low-pressure side throttle devices of
Check the detection results of the supercooling detection means and the overheating detection means.
The high-pressure side and the low-pressure side expansion device so as to approach the standard value.
And a control unit for correcting the opening area of the refrigeration system.
【請求項2】 圧縮機、凝縮器、高圧側絞り装置、レシ
ーバタンク、低圧側絞り装置、および蒸発器が順次配管
で接続されて構成された冷凍装置と、この冷凍装置の凝
縮器出口冷媒の過冷却度に相当する過冷却特性値を検知
する過冷却検知手段と、前記圧縮機の吸入冷媒の過熱度
に相当する過熱特性値を検知する過熱検知手段と、前記
過冷却検知手段および過熱検知手段の各検知結果と前記
冷凍装置の運転状態に対応した目標過冷却特性値および
目標過熱特性値との各偏差値を演算する演算手段と、こ
の演算手段の演算結果に基づいて前記高圧側および低圧
側絞り装置の開口面積を互いに相関性を持たせて制御す
る制御手段と、を備えたことを特徴とする冷凍システム
装置。
2. A refrigeration system in which a compressor, a condenser, a high-pressure-side expansion device, a receiver tank, a low-pressure-side expansion device, and an evaporator are sequentially connected by piping. subcooling detecting means for detecting a subcooling characteristic value corresponding to the degree of subcooling, and superheating detecting means for detecting overheating characteristic value corresponding to the degree of superheat of suction refrigerant of the compressor, the
Each detection result of the supercooling detection means and the overheating detection means and the
The target supercooling characteristic value corresponding to the operation state of the refrigeration system and
Calculating means for calculating each deviation value from the target overheat characteristic value;
The high pressure side and the low pressure
Control the aperture area of the side stop device so as to correlate with each other.
Refrigeration system comprising:
apparatus.
【請求項3】 前記高圧側および低圧側絞り装置の開口
面積を同時に制御する制御手段を備えたことを特徴とす
る請求項1または請求項2に記載の冷凍システム装置。
3. The opening of the high-pressure side and low-pressure side throttle devices.
Control means for controlling the area at the same time is provided.
The refrigeration system device according to claim 1 or claim 2.
【請求項4】 前記制御手段が、前記冷凍装置の運転状
態が変化してから所定時間後に前記高圧側または、およ
び低圧側絞り装置の開口面積を制御することを特徴とす
る請求項1から請求項までのいずれかに記載の冷凍シ
ステム装置。
4. The apparatus according to claim 1, wherein the control means controls the opening area of the high-pressure side or the low-pressure side throttle device a predetermined time after the operation state of the refrigerating device changes. Item 4. The refrigeration system device according to any one of Items 3 to 3 .
【請求項5】 冷媒戻し配管が、前記レシーバタンクと
前記圧縮機の吸入側部位との間に設けられ、前記レシー
バタンクの冷媒圧力を絞りながら前記圧縮機へ導くこと
を特徴とする請求項1から請求項までのいずれかに記
載の冷凍システム制御。
5. The refrigerant return pipe is provided between the receiver tank and a suction side portion of the compressor, and guides the refrigerant to the compressor while reducing the refrigerant pressure of the receiver tank. The refrigeration system control according to any one of claims 1 to 4 .
【請求項6】 前記冷媒戻し配管が、そのレシーバタン
ク側の一端を前記レシーバタンクの上部近辺の部位に接
続され、前記レシーバタンクの上部近辺の冷媒ガスを絞
りながら前記圧縮機へ導くことを特徴とする請求項
載の冷凍システム装置。
6. The refrigerant return pipe has one end on the receiver tank side connected to a portion near the upper portion of the receiver tank, and guides the refrigerant gas to the compressor while restricting the refrigerant gas near the upper portion of the receiver tank. The refrigeration system device according to claim 5, wherein
【請求項7】 制御弁が、前記冷媒戻し配管に取り付け
られ、前記圧縮機の吐出冷媒温度に基づいて前記冷媒ガ
スの圧力を制御することを特徴とする請求項記載の冷
凍システム装置。
7. The refrigeration system according to claim 6 , wherein a control valve is attached to the refrigerant return pipe, and controls a pressure of the refrigerant gas based on a refrigerant temperature discharged from the compressor.
【請求項8】 熱交換手段が、前記圧縮機へ吸入される
低圧冷媒と前記凝縮器から低圧側絞り装置までの高圧又
は中圧冷媒のいずれかとを熱交換させるように設けられ
たことを特徴とする請求項1から請求項までのいずれ
かに記載の冷凍システム装置。
8. A heat exchange means for exchanging heat between the low-pressure refrigerant sucked into the compressor and one of a high-pressure or medium-pressure refrigerant from the condenser to a low-pressure side throttle device. The refrigeration system device according to any one of claims 1 to 4, wherein
【請求項9】 前記凝縮器から前記低圧側絞り装置まで
のいずれかの部位と前記圧縮機の吸入側部位との間に設
けられ、前記いずれかの部位の冷媒を前記圧縮機の吸入
側へ導く冷媒戻し配管と、この冷媒戻し配管に取り付け
られ、前記圧縮機の吐出冷媒温度に基づいて前記冷媒の
圧力を制御する絞り装置と、この絞り装置が制御した冷
媒と前記いずれかの部位の冷媒とを熱交換させる熱交換
手段と、を備えたことを特徴とする請求項1から請求項
までのいずれかに記載の冷凍システム装置。
9. A compressor is provided between any part from the condenser to the low-pressure-side throttle device and a suction-side part of the compressor, and transfers the refrigerant at any part to the suction side of the compressor. A refrigerant return pipe for guiding, a throttle device attached to the refrigerant return pipe, for controlling the pressure of the refrigerant based on the refrigerant temperature discharged from the compressor; a refrigerant controlled by the throttle device; And a heat exchange means for exchanging heat with the heat exchange means.
5. The refrigeration system device according to any one of 4 to 4 .
【請求項10】 前記過熱検知手段が、前記過熱特性値
として前記蒸発器出口冷媒の過熱度を検知することを特
徴とする請求項1から請求項までのいずれかに記載の
冷凍システム装置。
Wherein said overheat sensing means, the refrigeration system according to claim 1, characterized in that to detect the degree of superheat of the evaporator outlet refrigerant as the heating characteristic value to claim 4.
【請求項11】 圧縮機、凝縮器、高圧側絞り装置、レ
シーバタンク、低圧側絞り装置、および蒸発器が順次配
管で接続されて構成された冷凍装置と、この冷凍装置の
凝縮器における冷媒の凝縮圧力により過冷却度を検知す
る過冷却検知手段と、前記蒸発器における冷媒の蒸発圧
力により過熱度を検知する過熱検知手段と、現在の前記
高圧側および低圧側絞り装置の開口面積を基に前記過冷
却検知手段および過熱検知手段の各検知結果を目標値に
近づけるように前記高圧側および低圧側絞り装置の開口
面積を補正する制御手段と、を備えたことを特徴とする
冷凍システム装置。
11. A compressor, a condenser, a high-pressure side throttle device, a laser
The Shiva tank, the low-pressure side expansion device, and the evaporator are sequentially installed.
A refrigeration unit connected by a pipe and
Detects the degree of supercooling by the condensation pressure of the refrigerant in the condenser
Means for detecting supercooling, and evaporating pressure of refrigerant in the evaporator.
Overheating detecting means for detecting the degree of superheating by force;
Subcooling based on the opening area of the high-pressure side and low-pressure side expansion devices
The detection results of the rejection detection means and overheat detection means to target values
Opening of the high-pressure side and low-pressure side throttle devices so as to be close to each other.
Control means for correcting the area.
Refrigeration system equipment.
【請求項12】 圧縮機、凝縮器、高圧側絞り装置、レ
シーバタンク、低圧 側絞り装置、および蒸発器が順次配
管で接続されて構成された冷凍装置と、前記凝縮器にお
ける冷媒の凝縮圧力と前記蒸発器における冷媒の蒸発圧
力との中間圧力である前記レシーバタンクの冷媒の圧力
を検知する中間圧力検知手段と、現在の前記高圧側およ
び低圧側絞り装置の開口面積を基に前記中間圧力検知手
段の検知結果を目標値に近づけるように前記高圧側およ
び低圧側絞り装置の開口面積を補正する制御手段と、を
備えたことを特徴とする冷凍システム装置。
12. A compressor, a condenser, a high-pressure-side expansion device,
The Shiva tank, the low-pressure side expansion device, and the evaporator are sequentially installed.
A refrigeration unit connected by a pipe and the condenser;
Pressure of Refrigerant and Evaporation Pressure of Refrigerant in the Evaporator
Pressure of the refrigerant in the receiver tank, which is an intermediate pressure with the force
Pressure detection means for detecting the
And the intermediate pressure detecting means based on the opening area of the low-pressure side throttle device.
And the high pressure side so that the detection result of the stage approaches the target value.
And a control means for correcting the opening area of the low-pressure side throttle device.
A refrigeration system device comprising:
【請求項13】 圧縮機、凝縮器、高圧側絞り装置、レ
シーバタンク、低圧側絞り装置、および蒸発器が順次配
管で接続されて構成された冷凍装置と、過冷却特性値と
して前記圧縮機の吐出冷媒温度を検知する過冷却検知手
段と、過熱特性値として前記圧縮機の吸入冷媒温度を検
知する過熱検知手段と、現在の前記高圧側および低圧側
絞り装置の開口面積を基に前記過冷却検知手段および過
熱検知手段の各検知結果を目標値に近づけるように前記
高圧側および低圧側絞り装置の開口面積を補正する制御
手段と、を備えたことを特徴とする冷凍システム装置。
13. A compressor, a condenser, a high-pressure side throttling device, a laser
The Shiva tank, the low-pressure side expansion device, and the evaporator are sequentially installed.
Refrigeration equipment connected by pipes and supercooling characteristic values
Subcooling detection means for detecting the refrigerant discharge temperature of the compressor
And detecting the refrigerant suction temperature of the compressor as a superheat characteristic value.
Overheat detection means to know the current high pressure side and low pressure side
The supercool detection means and the supercool
So that each detection result of the heat detection means approaches the target value
Control to correct the opening area of the high-pressure and low-pressure throttle devices
Means, and a refrigeration system device comprising:
【請求項14】 前記過熱検知手段が、前記過熱特性値
として前記圧縮機吸入冷媒の過熱度を検知することを特
徴とする請求項13に記載の冷凍システム装置。
14. The refrigeration system apparatus according to claim 13 , wherein said overheating detecting means detects the degree of superheating of the refrigerant drawn into the compressor as the overheating characteristic value.
【請求項15】 前記過熱検知手段が、前記過熱特性値
として前記蒸発器出口冷媒の過熱度を検知することを特
徴とする請求項13に記載の冷凍システム装置。
15. The refrigeration system according to claim 13 , wherein the overheat detecting means detects the degree of superheat of the refrigerant at the evaporator outlet as the overheat characteristic value.
【請求項16】 前記凝縮器または蒸発器の少なくとも
いずれかが並列に複数個設けられ、これらの設けられた
凝縮器または蒸発器のそれぞれに対応した前記高圧側絞
り装置または低圧側絞り装置を有する冷凍装置を備えた
ことを特徴とする請求項1から請求項15までのいずれ
かに記載の冷凍システム装置。
16. A high-pressure throttle device or a low-pressure throttle device corresponding to each of the condenser and the evaporator provided in parallel with at least one of the condenser and the evaporator. The refrigeration system device according to any one of claims 1 to 15 , further comprising a refrigeration device.
【請求項17】 圧縮機、凝縮器、高圧側絞り装置、レ
シーバタンク、低圧側絞り装置、および蒸発器が順次配
管で接続されて構成された冷凍装置において、この冷凍
装置の凝縮器出口冷媒の過冷却度に相当する過冷却特性
値および前記圧縮機の吸入冷媒の過熱度に相当する過熱
特性値を検出して、前記冷凍装置の運転状態に対応した
目標過冷却特性値および目標過熱特性値とのそれぞれの
偏差値を演算するステップと、現在の前記高圧側および
低圧側絞り装置の開口面積に対 して前記過冷却特性およ
び過熱特性の偏差値から演算された前記開口面積の変化
量を前記高圧側および低圧側絞り装置の開口面積に加え
て補正するステップと、前記レシーバタンクの両側に配
設された高圧側および低圧側絞り装置を前記補正された
開口面積に制御するステップと、を備えたことを特徴と
する冷凍システム装置の制御方法。
17. A compressor, a condenser, a high-pressure throttling device, a laser
The Shiva tank, the low-pressure side expansion device, and the evaporator are sequentially installed.
In a refrigeration system configured by connecting tubes,
Subcooling characteristics corresponding to the degree of subcooling of the refrigerant at the condenser outlet of the device
Value and superheat corresponding to the degree of superheat of the refrigerant sucked into the compressor
Detecting the characteristic value and corresponding to the operation state of the refrigeration system
Each of the target supercooling characteristic value and the target superheat characteristic value
Calculating a deviation value; and
Oyo the supercooling characteristics against the opening area of the low pressure side throttle device
Of the opening area calculated from the deviation value of the heating and heating characteristics
The amount is added to the opening area of the high-pressure side and low-pressure side throttle devices.
Correction on both sides of the receiver tank.
The high-pressure side and low-pressure side throttle devices installed are
Controlling the opening area.
Control method of a refrigeration system device to perform.
【請求項18】 前記高圧側および低圧側絞り装置を、
同時に互いに相関性を持たせて制御するステップを備え
たことを特徴とする請求項17に記載の冷凍システム装
置の制御方法。
18. The high-pressure side and low-pressure side expansion devices,
At the same time, there is a step of controlling to correlate with each other
The refrigeration system device according to claim 17, wherein
Control method.
JP24376396A 1996-09-13 1996-09-13 Refrigeration system device and control method for refrigeration system device Expired - Lifetime JP3334507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24376396A JP3334507B2 (en) 1996-09-13 1996-09-13 Refrigeration system device and control method for refrigeration system device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24376396A JP3334507B2 (en) 1996-09-13 1996-09-13 Refrigeration system device and control method for refrigeration system device

Publications (2)

Publication Number Publication Date
JPH1089780A JPH1089780A (en) 1998-04-10
JP3334507B2 true JP3334507B2 (en) 2002-10-15

Family

ID=17108625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24376396A Expired - Lifetime JP3334507B2 (en) 1996-09-13 1996-09-13 Refrigeration system device and control method for refrigeration system device

Country Status (1)

Country Link
JP (1) JP3334507B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119159A (en) * 2012-12-14 2014-06-30 Sharp Corp Refrigeration system device and air conditioner
WO2017100186A1 (en) * 2015-12-08 2017-06-15 Carrier Corporation Refrigeration system and controlling method for starting the refrigeration system

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4459776B2 (en) 2004-10-18 2010-04-28 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
CN100513944C (en) 2005-02-24 2009-07-15 三菱电机株式会社 Air-conditioning plant
JP2006275435A (en) * 2005-03-30 2006-10-12 Fujitsu General Ltd Gas-liquid separator and air-conditioner
JP2006308207A (en) * 2005-04-28 2006-11-09 Daikin Ind Ltd Refrigerating device
CN100554820C (en) * 2006-03-27 2009-10-28 三菱电机株式会社 Refrigerating air-conditioning
JP5309424B2 (en) 2006-03-27 2013-10-09 ダイキン工業株式会社 Refrigeration equipment
JP4675810B2 (en) * 2006-03-28 2011-04-27 三菱電機株式会社 Air conditioner
JP4245044B2 (en) * 2006-12-12 2009-03-25 ダイキン工業株式会社 Refrigeration equipment
JP2007085730A (en) * 2006-12-18 2007-04-05 Mitsubishi Electric Corp Air conditioner and method of operating air conditioner
JP2008286474A (en) * 2007-05-17 2008-11-27 Hoshizaki Electric Co Ltd Cooling storage and its operation method
JP2009063179A (en) * 2007-09-04 2009-03-26 Sanden Corp Drive torque arithmetic unit for compressor and capacity control system of variable displacement compressor
JP2009243881A (en) * 2009-07-30 2009-10-22 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
JP4767340B2 (en) * 2009-07-30 2011-09-07 三菱電機株式会社 Heat pump control device
JP4550153B2 (en) * 2009-07-30 2010-09-22 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
JP2010159967A (en) * 2010-04-19 2010-07-22 Mitsubishi Electric Corp Heat pump device and outdoor unit for the heat pump device
JP5601885B2 (en) * 2010-05-31 2014-10-08 三菱重工業株式会社 Heat pump type hot water supply / air conditioner
JP5797022B2 (en) * 2011-06-09 2015-10-21 三菱重工業株式会社 Multi-type air conditioner and control method thereof
JP5987479B2 (en) * 2012-05-31 2016-09-07 アイシン精機株式会社 Heat pump air conditioner
CN103808010A (en) * 2012-11-15 2014-05-21 珠海格力电器股份有限公司 Quasi-two-stage compression heat pump water heater and control method thereof
JP6174314B2 (en) * 2012-12-14 2017-08-02 シャープ株式会社 Refrigeration system equipment
JP6092606B2 (en) * 2012-12-14 2017-03-08 シャープ株式会社 Air conditioner
JP6087610B2 (en) * 2012-12-14 2017-03-01 シャープ株式会社 Air conditioner
JP6309739B2 (en) * 2013-10-31 2018-04-11 シャープ株式会社 Air conditioner
WO2015140950A1 (en) * 2014-03-19 2015-09-24 三菱電機株式会社 Air conditioner
JP6408262B2 (en) * 2014-06-13 2018-10-17 サンデンホールディングス株式会社 vending machine
CN104215001A (en) * 2014-07-10 2014-12-17 广东美的集团芜湖制冷设备有限公司 Double-stage compressor air-conditioner system and control method thereof
KR20160028400A (en) 2014-09-03 2016-03-11 삼성전자주식회사 Air conditioner and control method thereof
CN105004085B (en) * 2015-07-31 2017-10-27 中国科学院广州能源研究所 A kind of steam compressing air conditioner system
CN108139118B (en) * 2015-10-08 2021-07-23 三菱电机株式会社 Refrigeration cycle device
CN106403193B (en) * 2016-10-17 2018-12-07 珠海格力电器股份有限公司 Air conditioner and control method thereof
CN107421176B (en) * 2017-06-28 2019-07-23 珠海格力电器股份有限公司 Control method of electronic expansion valve and heat pump system
JP7088323B2 (en) 2018-06-26 2022-06-21 日本電気株式会社 Server racks, controls, cooling methods, and programs

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119159A (en) * 2012-12-14 2014-06-30 Sharp Corp Refrigeration system device and air conditioner
WO2017100186A1 (en) * 2015-12-08 2017-06-15 Carrier Corporation Refrigeration system and controlling method for starting the refrigeration system
CN106855329A (en) * 2015-12-08 2017-06-16 开利公司 Refrigeration system and its startup control method
CN106855329B (en) * 2015-12-08 2020-08-28 开利公司 Refrigeration system and starting control method thereof
US10823472B2 (en) 2015-12-08 2020-11-03 Carrier Corporation Refrigeration system and controlling method for starting the refrigeration system

Also Published As

Publication number Publication date
JPH1089780A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
JP3334507B2 (en) Refrigeration system device and control method for refrigeration system device
US8899058B2 (en) Air conditioner heat pump with injection circuit and automatic control thereof
US20050217292A1 (en) Refrigeration system
KR100888122B1 (en) Air conditioning device
CN114322106B (en) Air conditioning system
US20100192607A1 (en) Air conditioner/heat pump with injection circuit and automatic control thereof
CN106482375B (en) Air conditioner
CN110925940B (en) Air supply control method of two-stage compression air supply air conditioning system
KR100618212B1 (en) Control system and method for refrigerant temperature of air conditioner
US20140123693A1 (en) Refrigerating and air-conditioning apparatus and method for controlling refrigerating and air-conditioning apparatus
JP2001221526A (en) Refrigerative air conditioner
EP3757483A1 (en) Refrigeration cycle apparatus and air-conditioning apparatus provided with same
EP3282208B1 (en) Refrigeration apparatus
CN117651833A (en) Air conditioner
JP2006183979A (en) Detection system of refrigerant pipe length and detection method of refrigerant pipe length
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
CN114151935A (en) Air conditioning system
JP3731174B2 (en) Refrigeration cycle
CN106949657B (en) Air conditioning system with supercooling device and control method thereof
KR20130026685A (en) Air conditioner and control method thereof
CN113251496B (en) Air conditioning system and refrigerant heat dissipation method thereof
CN114322269A (en) Refrigerant balance control method and device, multi-split air conditioner and computer readable storage medium
CN210569393U (en) Water chilling unit
WO2016207992A1 (en) Air conditioner
KR101321543B1 (en) Air conditioning system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term