JP3731174B2 - Refrigeration cycle - Google Patents

Refrigeration cycle Download PDF

Info

Publication number
JP3731174B2
JP3731174B2 JP34480197A JP34480197A JP3731174B2 JP 3731174 B2 JP3731174 B2 JP 3731174B2 JP 34480197 A JP34480197 A JP 34480197A JP 34480197 A JP34480197 A JP 34480197A JP 3731174 B2 JP3731174 B2 JP 3731174B2
Authority
JP
Japan
Prior art keywords
way valve
refrigerant
temperature
value
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34480197A
Other languages
Japanese (ja)
Other versions
JPH11173698A (en
Inventor
哲二 七種
等 飯島
直樹 田中
正人 四十宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP34480197A priority Critical patent/JP3731174B2/en
Publication of JPH11173698A publication Critical patent/JPH11173698A/en
Application granted granted Critical
Publication of JP3731174B2 publication Critical patent/JP3731174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、沸点の異なる2種類以上の冷媒からなる非共沸混合冷媒を封入した空気調和機等の冷凍サイクルに関するものである。
【0002】
【従来の技術】
図8は従来の空気調和機の冷凍サイクルを示すブロック図であり、図において、1はアキュームレータ6内の低温低圧のガス冷媒を吸入して圧縮し高温高圧のガス冷媒にする圧縮機、2は四方弁、3は凝縮器として動作する室外熱交換器、4は絞り装置、5は蒸発器として動作する室内熱交換器である。
【0003】
前記のように構成された従来の空気調和機の冷凍サイクルにおいては、例えば冷房運転の場合、圧縮機1より高温高圧のガス冷媒が吐出し、四方弁2を通って室外熱交換器3に入る。このガス冷媒は室外熱交換器により外気と熱交換されて液状の冷媒となり絞り装置4に入る。液化された冷媒は、絞り装置4によって減圧され、乾き度の低い二相冷媒となって室内熱交換器5に送り込まれる。そして、室内熱交換器5で室内の空気と熱交換されて蒸発し、乾き度の高い二相冷媒となって四方弁2、アキュームレータ6を経由し、再び圧縮機1に吸入される。この時、アキュームレータ6には冷媒回路内で余った余剰冷媒が貯留される。
【0004】
【発明が解決しようとする課題】
前記のような従来の冷凍サイクルにおいて、例えばR(フロン)134aを52重量%、R125を25重量%、R32を23重量%の比率で混合した非共沸混合冷媒を用いた場合、アキュームレータ6に貯留される余剰冷媒の中で低沸点冷媒であるR32、R125が多くガス化し易いため、冷凍サイクル中を循環する冷媒は低沸点冷媒であるR32、R125が多めの組成となり、アキュームレータ6に貯留される余剰冷媒の量が変化した場合には、冷凍サイクル中を循環する冷媒の組成も変化してしまい、このことから循環冷媒の物性が変動したり、動作圧力や能力の変動等が生じていた。
【0005】
また、混合冷媒の非共沸性により、従来から用いられてきたR22等の単一冷媒と比べ熱交換器配管内の熱伝達率が小さくなることが知られており、これにより冷凍サイクルのCOP(効率)が低下するという課題もあった。
【0006】
本発明は、かかる課題を解決するためになされたもので、非共沸混合冷媒を用いても、余剰冷媒による循環冷媒の組成の変動を抑制でき、かつ、COPを向上させる冷凍サイクルを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明に係る冷凍サイクルは、圧縮機によって、沸点の異なる2種類以上の冷媒からなる非共沸混合冷媒を高温高圧化し、四方弁、凝縮器、絞り装置及び蒸発器を経て再び四方弁に流入させ、アキュームレータを介して循環させる冷凍サイクルにおいて、レシーバと、第1の二方弁及び冷媒流量を調整する毛細管がそれぞれ設けられ、圧縮機と四方弁をつなぐ配管とレシーバとを接続する第1のバイパス路と、圧縮機に吸入されるアキュームレータからの低圧の非共沸混合冷媒と第1のバイパス路内を通る高温高圧の非共沸混合冷媒とを熱交換をする熱交換器と、第2の二方弁が設けられ、熱交換器により熱交換されたレシーバ内の高圧の非共沸混合冷媒をアキュームレータに導入するための第2のバイパス路と備えたものである。
【0008】
また、圧縮機の吐出側に設置された第1の温度センサと、凝縮器に設置された第2の温度センサと、第1の温度センサの検知温度と第2の温度センサの検知温度との差を演算し、かつ、その値と予め設定された第1の許容値とを比較し、前記値が第1の許容値の下限値以下のときは第1の二方弁を開状態にし、前記値が第1の許容値の上限値を越えたときは第2の二方弁を開状態にする第1の弁制御手段とを備えものである。
【0009】
また、圧縮機の吸入側に設置された第3の温度センサと、蒸発器に設置された第4の温度センサと、第3の温度センサの検知温度と第4の温度センサの検知温度との差を演算し、かつ、その値と予め設定された第2の許容値とを比較し、前記値が第2の許容値の下限値以下のときは第1の二方弁を開状態にし、前記値が第2の許容値の上限値を越えたときは第2の二方弁を開状態にする第2の弁制御手段とを備えものである。
【0011】
【発明の実施の形態】
実施形態1.
図1は本発明の実施形態1に係る例えば空気調和機の冷凍サイクルを示すブロック図で、冷房運転時の状態を示している。なお、図8で説明した従来と同一又は相当部分には同じ符号を付し説明を省略する。
【0012】
図において、11はレシーバ、12は圧縮機1と四方弁2とをつなぐ配管から分岐してレシーバ11に接続された第1のバイパス路、13は第1のバイパス路12を開閉する第1の二方弁、14は第1のバイパス路12に流れる高温高圧のガス冷媒の量を調整する毛細管、15は圧縮機1に吸入される低温低圧のガス冷媒と第1のバイパス路12内を通る高温高圧のガス冷媒とを熱交換をする高低圧熱交換器、16はアキュームレータ6の入口配管から分岐してレシーバ11の底部に接続された第2のバイパス路、17は第2のバイパス路16を開閉する第2の二方弁である。なお、本実施形態に用いられている冷媒は、沸点の異なる2種類以上の冷媒からなる非共沸混合冷媒である。
【0013】
前記のように構成された冷凍サイクルにおいて冷房運転時の動作を説明する。なお、運転開始時、第1の二方弁が開状態になっているものとする。
圧縮機1より高温高圧のガス冷媒が吐出し、四方弁2を通って室外熱交換器3に入る。このガス冷媒は室外熱交換器3により外気と熱交換されて液状の冷媒となり絞り装置4に入る。液化された冷媒は絞り装置4によって減圧され、乾き度0.2〜0.3の低温低圧の二相冷媒となって室内熱交換器5に送り込まれる。そして、室内熱交換器5で室内の空気と熱交換されて蒸発し、乾き度0.9〜1.0の低温低圧の二相冷媒となって四方弁2、アキュームレータ6を経由し、再び圧縮機1に吸入される。
【0014】
一方、圧縮機1から吐出された高温高圧のガス冷媒の一部は、第1の二方弁13の開により第1のバイパス路12の方へ流れて毛細管14を通り、さらに、高低圧熱交換器15を通りながら圧縮機1に吸入される低温低圧のガス冷媒と熱交換され、即ち、冷却されて高圧の液体冷媒となりレシーバ11に余剰冷媒として貯留される。
【0015】
ここで、図2に基づいて余剰冷媒の組成変化について説明する。図2は非共沸混合冷媒をレシーバとアキュームレータに貯留したときの循環冷媒の組成変化の比較図である。図8に示す従来のような冷凍サイクルのアキュームレータ6に余剰の非共沸混合冷媒を溜めるようにした場合は、その混合冷媒が低圧であるため組成変化が大きくなってしまい(イ参照)。これに対して、本実施形態の場合は、レシーバ11内に高温の余剰混合冷媒(液状)を貯留しているので、冷凍サイクルを循環するその混合冷媒の組成変化が小さくなる(ロ参照)。
【0016】
なお、定常運転中に外気温度や空調負荷等の変化により運転状態が変化して冷媒不足となった場合には、第2の二方弁17を開状態にし、レシーバ11内に貯溜された余剰冷媒をアキュームレータ6に補給する。
【0017】
以上のように実施形態1によれば、圧縮機1から吐出された高温高圧のガス冷媒の一部、即ち余剰冷媒を第1のバイパス路12を経由させて冷却しレシーバ11に貯留するようにしたので、アキュームレータ6内の余剰冷媒をなくすことが可能になり、冷凍サイクルを循環する冷媒の組成変化も小さく抑えることができ、動作圧力や能力の変動などを防止することができる。
【0018】
また、アキュームレータ6内の余剰冷媒をなくすことにより圧縮機1に吸入される冷媒を確実にガス化することができるので、圧縮機1の効率がよくなり、かつ、冷凍サイクルのCOPが向上するという効果がある。
【0019】
実施形態2.
図3は本発明の実施形態2に係る例えば空気調和機の冷凍サイクルを示すブロック図で、冷房運転時の状態を示している。なお、図1で説明した実施形態1と同一又は相当部分には同じ符号を付し説明を省略する。
【0020】
実施形態2においては、レシーバ11がアキュームレータ6の底部を仕切板18として下方に延びて形成され、この仕切板18は、レシーバ11に導かれた高温高圧のガス冷媒をアキュームレータ6内の低温低圧のガス冷媒と熱交換するためのものである。アキュームレータ6とレシーバ11は第2のバイパス路16によって接続され、レシーバ11は、圧縮機1と四方弁2を結ぶ配管に第1のバイパス路12を介して接続されている。この第1のバイパス路12には第1の二方弁13と毛細管14が設けられ、第2にバイパス路16には第2の二方弁17が取り付けられている。
【0021】
次に冷房運転時の動作を説明する。なお、実施形態2における冷媒の循環については実施形態1と同様であるため動作の説明を省略する。
第1の二方弁13の開により圧縮機1から吐出された高温高圧のガス冷媒の一部が第1のバイパス路12に導かれると、毛細管14を通ってレシーバ11に入る。この時、レシーバ11内に入った高温高圧のガス冷媒は、仕切板18によりアキュームレータ6内の低温低圧のガス冷媒と熱交換されて高圧の液体冷媒となり、余剰冷媒として貯留される。
【0022】
なお、本実施形態においても冷凍サイクルが冷媒不足となった場合には、第2の二方弁17を開状態にし、レシーバ11内に貯溜された余剰冷媒をアキュームレータ6に補充する。
【0023】
このように、レシーバ11を、アキュームレータ6の底部を仕切板18として下方に延ばして形成したので、高低圧熱交換器15が無くとも第1のバイパス路12を経由する高温高圧のガス冷媒を冷却できるという効果がある。
【0024】
実施形態3.
図4は本発明の実施形態3に係る例えば空気調和機の冷凍サイクルを示すブロック図で、冷房運転時の状態を示している。なお、図1で説明した実施形態1と同一又は相当部分には同じ符号を付し説明を省略する。
【0025】
図において、21は圧縮機1と四方弁2とを結ぶ配管に取り付けられ、圧縮機1より吐出された高温高圧のガス冷媒の温度Tdを検知する第1の温度センサ、22は凝縮器として動作する室外熱交換器3の中央部に装着され、室外熱交換器3により冷却される冷媒の温度Tcを検知する第2の温度センサである。
【0026】
31は例えば空気調和機の圧縮機1等を制御する制御回路で、本発明の第1の弁制御手段を備え、例えば冷房運転時の余剰冷媒の量を調整する際は、第1の温度センサ21の検知温度Tdから第2の温度センサ22の検知温度Tcを減算して吐出過熱度SHdを求め、かつ、その過熱度SHdと予め設定された吐出過熱度の第1の許容値の下限値とを比較し、吐出過熱度SHdが第1の許容値の下限値以下のときは弁駆動回路32を通じて第1の二方弁13を開状態にし、吐出過熱度SHdが第1の許容値の下限値を越えたときは第1の二方弁13を閉状態にする。
【0027】
また、定常運転時は、前記吐出過熱度SHdと第1の許容値の上限値とを比較し、その吐出過熱度SHdが第1の許容値の上限値を越えたとき弁駆動回路32を通じて第2の二方弁17を開状態にし、吐出過熱度SHdが第1の許容値の上限値以下のときは第2の二方弁17を閉状態にする。なお、前述した第1及び第2の二方弁13,17は、例えば電磁弁からなっている。
【0028】
次に、前記のように構成された冷凍サイクルの動作を図5に基づいて説明する。図5は実施形態3に係る例えば空気調和機の冷凍サイクルの動作を示すフローチャートである。なお、前述の非共沸混合冷媒を循環させるときの各部の動作については実施形態1と同じであるため説明を省略する。
【0029】
制御回路31は、圧縮機1を起動すると、弁駆動回路32を通じて第1の二方弁13を開状態にし、レシーバ11内に余剰冷媒を貯留する運転を始める。まず、第2の温度センサ22を通して室外熱交換器3内の二相冷媒の温度Tcを入力し、次いで、圧縮機1より吐出された高温高圧のガス冷媒の温度Tdを第1の温度センサ21を介して入力する。そして、その検知温度Tdから第2の温度センサ22の検知温度Tcを減算して吐出過熱度SHdを求め、かつ、その過熱度SHdと予め設定された吐出過熱度の第1の許容値の下限値とを比較する。
【0030】
運転開始時は吐出過熱度SHdより第1の許容値の下限値の方が高いので、第1の二方弁13の開状態を保持し、再び、第2の温度センサ22の検知温度Tcと第1の温度センサ21の検知温度Tdの入力に入る。この動作を繰り返し行っていくうちにアキュームレータ6内の冷媒が無くなり、圧縮機1の吸入温度が上昇して検知温度Tcと検知温度Tdとに基づく吐出過熱度SHdが第1の許容値の下限値を越えると、弁駆動回路32を通じて第1の二方弁13を閉状態にし、レシーバ11への余剰冷媒の貯留を終了する。
【0031】
定常運転中は前記吐出過熱度SHdと第1の許容値の上限値とを比較し、その吐出過熱度SHdが第1の許容値の上限値以下のときは第2の二方弁17の閉状態を維持する。また、外気温度や空調負荷等の変化により運転状態が変化して循環冷媒が不足状態となった場合は前記吐出過熱度SHdが増加するが、その冷媒不足により、吐出過熱度SHdが第1の許容値の上限値を越えたときは第2の二方弁17を開状態にし、レシーバ11に貯留されている余剰冷媒をアキュームレータ6に補給する。そして、この補給により吐出過熱度SHdが第1の許容値の上限値以下になったときに第2の二方弁17を閉状態にする。
【0032】
以上のように実施形態3によれば、圧縮機1を起動したとき第1の二方弁13を開状態にし、そして、第1の温度センサ21の検知温度Tdから第2の温度センサ22の検知温度Tcを減算して吐出過熱度SHdを求め、かつ、その過熱度SHdと予め設定された吐出過熱度の第1の許容値の下限値とを比較し、吐出過熱度SHdが第1の許容値の下限値以下のときは第1の二方弁13の開状態を保持してレシーバ11への余剰冷媒の貯留を継続し、吐出過熱度SHdが第1の許容値の下限値を越えたときは第1の二方弁13を閉状態してその貯留を停止するようにしたので、外気温度や配管延長等の運転条件が変化しても余剰冷媒をアキュームレータ6に溜めることなく確実にレシーバ11内に貯留することができ、そのため、冷凍サイクルを循環する冷媒の組成変化を小さく抑えることができるという効果がある。
【0033】
また、定常運転時は、前記吐出過熱度SHdが第1の許容値の上限値を越えたとき第2の二方弁17を開状態にしてレーシーバ11内の余剰冷媒をアキュームレータ6に補給し、吐出過熱度SHdが第1の許容値の上限値以下になったときに第2の二方弁17を閉状態にしてその補給を停止するようにしたので、運転中に冷媒不足となってもそれを解消できるという効果もある。
【0034】
なお、実施形態3では、実施形態1の冷凍サイクルに第1及び第2の温度センサ21,22を所定位置に取り付けて余剰冷媒の制御について説明したが、この第1及び第2の温度センサ21,22を第2の実施形態に示す冷凍サイクルに設けて余剰冷媒を制御するようにしてもよい。
【0035】
実施形態4.
図6は本発明の実施形態4に係る例えば空気調和機の冷凍サイクルを示すブロック図で、冷房運転時の状態を示している。なお、図4で説明した実施形態3と同一又は相当部分には同じ符号を付し説明を省略する。
【0036】
本実施形態の冷凍サイクルには、圧縮機1の吸入側に取り付けられ、圧縮機1により吸入される低温低圧のガス冷媒の温度Tsを検知する第3の温度センサ23と、蒸発器として動作する室内熱交換器5の中央部に装着され、室内熱交換器5により気化される冷媒の温度Teを検知する第4の温度センサ24とが備えられている。
【0037】
また、制御回路31は、本発明の第2の弁制御手段を備え、例えば冷房運転時の余剰冷媒の量を調整する際は、第3の温度センサ21の検知温度Tsから第4の温度センサ22の検知温度Teを減算して吸入過熱度SHsを求め、かつ、その過熱度SHsと予め設定された吸入過熱度の第2の許容値の下限値とを比較し、吸入過熱度SHsが第2の許容値の下限値以下のときは弁駆動回路32を通じて第1の二方弁13を開状態にし、吸入過熱度SHsが第2の許容値の下限値を越えたときは第1の二方弁13を閉状態にする。
【0038】
定常運転時は、前記吸入過熱度SHsが第2の許容値の上限値を越えたとき弁駆動回路32を通じて第2の二方弁17を開状態にし、吸入過熱度SHsが第2の許容値の上限値以下のときは第2の二方弁17を閉状態にする。なお、本実施形態の第2の許容値は、実施形態3に記載の第1の許容値より低く設定されている。
【0039】
次に、前記のように構成された冷凍サイクルの動作を図7に基づいて説明する。図7は実施形態4に係る例えば空気調和機の冷凍サイクルの動作を示すフローチャートである。なお、前述の非共沸混合冷媒を循環させるときの各部の動作については実施形態1と同じであるため説明を省略する。
【0040】
制御回路31は、圧縮機1を起動すると、前述したように弁駆動回路32を通じて第1の二方弁13を開状態にし、レシーバ11内に余剰冷媒を貯留する運転を始める。まず、第4の温度センサ24を通して室内熱交換器5内の二相冷媒の温度Teを入力し、次いで、圧縮機1に吸入される低温低圧のガス冷媒の温度Tsを第3の温度センサ23を介して入力する。そして、その検知温度Tsから第4の温度センサ24の検知温度Teを減算して吸入過熱度SHsを求め、かつ、その過熱度SHsと予め設定された吸入過熱度の第2の許容値の下限値とを比較する。
【0041】
運転開始時は吸入過熱度SHsより第2の許容値の下限値の方が高いので、第1の二方弁13の開状態を保持し、再び、第3の温度センサ23の検知温度Tsと第4の温度センサ24の検知温度Teの入力に入る。この動作を繰り返し行っていくうちにアキュームレータ6内の冷媒が無くなり、圧縮機1の吸入温度が上昇して検知温度Teと検知温度Tsとに基づく吸入過熱度SHsが第2の許容値の下限値を越えると、弁駆動回路32を通じて第1の二方弁13を閉状態にし、レシーバ11への余剰冷媒の貯留を終了する。
【0042】
定常運転中は前記吸入過熱度SHsと第2の許容値の上限値とを比較し、その吸入過熱度SHsが第2の許容値の上限値以下のときは第2の二方弁17の閉状態を維持する。また、外気温度や空調負荷等の変化により運転状態が変化して循環冷媒が不足状態となった場合は前記吸入過熱度SHsが増加するが、その冷媒不足により、吸入過熱度SHsが第2の許容値の上限値を越えたときは第2の二方弁17を開状態にし、レシーバ11に貯留されている余剰冷媒をアキュームレータ6に補給する。そして、この補給により吸入過熱度SHsが第2の許容値の上限値以下になったときに第2の二方弁17を閉状態にする。
【0043】
以上のように実施形態4によれば、圧縮機1を起動したとき第1の二方弁13を開状態にし、そして、第3の温度センサ23の検知温度Tsから第4の温度センサ24の検知温度Teを減算して吸入過熱度SHsを求め、かつ、その過熱度SHsと予め設定された吸入過熱度の第2の許容値の下限値とを比較し、吸入過熱度SHsが第2の許容値の下限値以下のときは第1の二方弁13を開状態にしてレシーバ11への余剰冷媒の貯留を継続し、吸入過熱度SHsが第2の許容値の下限値を越えたときは第1の二方弁13を閉状態してその貯留を停止するようにしたので、外気温度や配管延長等の運転条件が変化しても余剰冷媒をアキュームレータ6に溜めることなく確実にレシーバ11内に貯留することができ、そのため、冷凍サイクルを循環する冷媒の組成変化を小さく抑えることができるという効果がある。
【0044】
また、定常運転時は、前記吸入過熱度SHsが第2の許容値の上限値を越えたとき第2の二方弁17を開状態にしてレシーバ11内の余剰冷媒をアキュームレータ6に補給し、吸入過熱度SHsが第2の許容値の上限値以下になったときに第2の二方弁17を閉状態にしてその補給を停止するようにしたので、運転中に冷媒不足となってもそれを解消できるという効果もある。
【0045】
なお、実施形態4では、前述したように実施形態1の冷凍サイクルに第3及び第4の温度センサ23,24を所定位置に取り付けて余剰冷媒の制御について説明したが、この第3及び第4の温度センサ23,24を第2の実施形態に示す冷凍サイクルに設けて余剰冷媒を制御するようにしてもよい。
【0046】
【発明の効果】
以上のように本発明によれば、圧縮機1から吐出された高温高圧のガス冷媒の一部を第1のバイパス路を経由させて冷却しレシーバに貯留するようにしたので、アキュームレータ内の余剰冷媒をなくすことが可能になり、冷凍サイクルを循環する冷媒の組成変化も小さく抑えることができ、動作圧力や能力の変動などを防止することができる。また、アキュームレータ内の余剰冷媒をなくすことにより圧縮機に吸入される冷媒を確実にガス化することができるので、圧縮機の効率がよくなり、かつ、冷凍サイクルのCOPが向上するという効果がある。
【0047】
また、圧縮機の吐出側に第1の温度センサを、凝縮器に第2の温度センサをそれぞれ設けて、第1の温度センサの検知温度と第2の温度センサの検知温度との差を演算し、かつ、その値と予め設定された第1の許容値とを比較し、前記値が第1の許容値の下限値以下のときは第1の二方弁を開状態にするようにしたので、外気温度や配管延長等の運転条件が変化しても余剰冷媒をアキュームレータに溜めることなく確実にレシーバ内に貯留することができ、そのため、冷凍サイクルを循環する冷媒の組成変化を小さく抑えることができるという効果がある。また、前記値が第1の許容値の上限値を越えたときは第2の二方弁を開状態にしてレーシーバ内の余剰冷媒をアキュームレータに補給するようにしたので、運転中に冷媒不足となってもそれを解消できるという効果もある。
【0048】
また、圧縮機の吸入側に第3の温度センサを、蒸発器に第4の温度センサをそれぞれ設けて、第3の温度センサの検知温度と第4の温度センサの検知温度との差を演算し、かつ、その値と予め設定された第2の許容値とを比較し、前記値が第1の許容値の下限値以下のときは第1の二方弁を開状態にするようにしたので、外気温度や配管延長等の運転条件が変化しても余剰冷媒をアキュームレータに溜めることなく確実にレシーバ内に貯留することができ、そのため、冷凍サイクルを循環する冷媒の組成変化を小さく抑えることができるという効果がある。また、前記値が第2の許容値の上限値を越えたときは第2の二方弁を開状態にしてレーシーバ内の余剰冷媒をアキュームレータに補給するようにしたので、運転中に冷媒不足となってもそれを解消できるという効果もある。
【図面の簡単な説明】
【図1】 本発明の実施形態1に係る例えば空気調和機の冷凍サイクルを示すブロック図である。
【図2】 非共沸混合冷媒をレシーバとアキュームレータに貯留したときの循環冷媒の組成変化の比較図である。
【図3】 本発明の実施形態2に係る例えば空気調和機の冷凍サイクルを示すブロック図である。
【図4】 本発明の実施形態3に係る例えば空気調和機の冷凍サイクルを示すブロック図である。
【図5】 実施形態3に係る例えば空気調和機の冷凍サイクルの動作を示すフローチャートである。
【図6】 本発明の実施形態4に係る例えば空気調和機の冷凍サイクルを示すブロック図でである。
【図7】 実施形態4に係る例えば空気調和機の冷凍サイクルの動作を示すフローチャートである。
【図8】 従来の空気調和機の冷凍サイクルを示すブロック図である。
【符号の説明】
1 圧縮機、 2 四方弁、 3 室外熱交換器、 4 絞り装置、 5 室内熱交換器、 6 アキュームレータ、 11 レシーバ、 12 第1のバイパス路、 13 第1の二方弁、 14 毛細管、 15 高低圧熱交換器、
16 第2のバイパス路、 17 第2の二方弁、 21 第1の温度センサー、 22 第2の温度センサ、 23 第3の温度センサー、 24 第4の温度センサ、 31 制御回路、32 弁駆動回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration cycle such as an air conditioner in which a non-azeotropic refrigerant mixture composed of two or more refrigerants having different boiling points is enclosed.
[0002]
[Prior art]
FIG. 8 is a block diagram showing a refrigeration cycle of a conventional air conditioner. In the figure, reference numeral 1 denotes a compressor that sucks and compresses a low-temperature and low-pressure gas refrigerant in an accumulator 6 to form a high-temperature and high-pressure gas refrigerant. A four-way valve, 3 is an outdoor heat exchanger that operates as a condenser, 4 is a throttle device, and 5 is an indoor heat exchanger that operates as an evaporator.
[0003]
In the refrigeration cycle of the conventional air conditioner configured as described above, for example, in a cooling operation, high-temperature and high-pressure gas refrigerant is discharged from the compressor 1 and enters the outdoor heat exchanger 3 through the four-way valve 2. . This gas refrigerant is heat-exchanged with the outside air by the outdoor heat exchanger, becomes a liquid refrigerant, and enters the expansion device 4. The liquefied refrigerant is depressurized by the expansion device 4 and is fed into the indoor heat exchanger 5 as a two-phase refrigerant having a low dryness. Then, heat is exchanged with indoor air in the indoor heat exchanger 5 to evaporate, and it becomes a two-phase refrigerant having high dryness, and is sucked into the compressor 1 again via the four-way valve 2 and the accumulator 6. At this time, excess refrigerant remaining in the refrigerant circuit is stored in the accumulator 6.
[0004]
[Problems to be solved by the invention]
In the conventional refrigeration cycle as described above, for example, when a non-azeotropic refrigerant mixture in which R (Freon) 134a is mixed in a ratio of 52% by weight, R125 is 25% by weight, and R32 is 23% by weight is used in the accumulator 6. Among the excess refrigerant stored, R32 and R125, which are low-boiling refrigerants, are likely to be gasified, so that the refrigerant circulating in the refrigeration cycle has a larger composition of R32 and R125, which are low-boiling refrigerants, and is stored in the accumulator 6. When the amount of surplus refrigerant to be changed changes, the composition of the refrigerant circulating in the refrigeration cycle also changes, which causes fluctuations in the physical properties of the circulating refrigerant, fluctuations in operating pressure, capacity, etc. .
[0005]
In addition, it is known that the heat transfer coefficient in the heat exchanger pipe is smaller than that of a conventional single refrigerant such as R22 due to the non-azeotropic property of the mixed refrigerant. There was also a problem that (efficiency) decreased.
[0006]
The present invention has been made to solve such a problem, and provides a refrigeration cycle that can suppress fluctuations in the composition of circulating refrigerant due to excess refrigerant and improve COP even when a non-azeotropic refrigerant mixture is used. For the purpose.
[0007]
[Means for Solving the Problems]
In the refrigeration cycle according to the present invention, a non-azeotropic refrigerant mixture composed of two or more kinds of refrigerants having different boiling points is made high-temperature and high-pressure by a compressor, and flows into the four-way valve again through the four- way valve, the condenser, the expansion device, and the evaporator. In the refrigeration cycle that circulates through the accumulator , a receiver, a first two-way valve, and a capillary that adjusts the refrigerant flow rate are provided, respectively , and a first pipe that connects the compressor and the four-way valve is connected to the receiver. A heat exchanger for exchanging heat between the low - pressure non-azeotropic mixed refrigerant from the accumulator sucked into the compressor and the high - temperature high - pressure non-azeotropic mixed refrigerant passing through the first bypass path; two-way valve is provided for, in which a non-azeotropic refrigerant in the high pressure in the receiver, which is heat-exchanged with the second bypass passage for introducing into the accumulator by the heat exchanger.
[0008]
The first temperature sensor installed on the discharge side of the compressor, the second temperature sensor installed in the condenser, the detected temperature of the first temperature sensor, and the detected temperature of the second temperature sensor The difference is calculated, and the value is compared with a preset first allowable value. When the value is equal to or lower than the lower limit value of the first allowable value, the first two-way valve is opened. when the value exceeds the upper limit of the first tolerance value is obtained by a first valve control means for the second two-way valve in the open state.
[0009]
Further, a third temperature sensor installed on the suction side of the compressor, a fourth temperature sensor installed in the evaporator, a detection temperature of the third temperature sensor, and a detection temperature of the fourth temperature sensor The difference is calculated, and the value is compared with a preset second allowable value. When the value is equal to or lower than the lower limit value of the second allowable value, the first two-way valve is opened. when the value exceeds the upper limit of the second tolerance value is obtained by a second valve control means for the second two-way valve in the open state.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1. FIG.
FIG. 1 is a block diagram showing, for example, a refrigeration cycle of an air conditioner according to Embodiment 1 of the present invention, and shows a state during cooling operation. In addition, the same code | symbol is attached | subjected to the part which is the same as that of the former demonstrated in FIG. 8, or an equivalent, and description is abbreviate | omitted.
[0012]
In the figure, 11 is a receiver, 12 is a first bypass passage branched from a pipe connecting the compressor 1 and the four-way valve 2 and connected to the receiver 11, and 13 is a first bypass for opening and closing the first bypass passage 12. A two-way valve 14 is a capillary that adjusts the amount of high-temperature and high-pressure gas refrigerant flowing through the first bypass passage 12, and 15 is a low-temperature and low-pressure gas refrigerant sucked into the compressor 1 and passes through the first bypass passage 12. A high / low pressure heat exchanger for exchanging heat with a high-temperature / high-pressure gas refrigerant, 16 is a second bypass passage branched from the inlet pipe of the accumulator 6 and connected to the bottom of the receiver 11, and 17 is a second bypass passage 16. It is the 2nd two-way valve which opens and closes. Note that the refrigerant used in the present embodiment is a non-azeotropic refrigerant mixture composed of two or more kinds of refrigerants having different boiling points.
[0013]
Operation during cooling operation in the refrigeration cycle configured as described above will be described. It is assumed that the first two-way valve is open at the start of operation.
High-temperature and high-pressure gas refrigerant is discharged from the compressor 1 and enters the outdoor heat exchanger 3 through the four-way valve 2. This gas refrigerant is heat-exchanged with the outside air by the outdoor heat exchanger 3 to become a liquid refrigerant and enters the expansion device 4. The liquefied refrigerant is depressurized by the expansion device 4 and is sent to the indoor heat exchanger 5 as a low-temperature and low-pressure two-phase refrigerant having a dryness of 0.2 to 0.3. Then, heat is exchanged with indoor air in the indoor heat exchanger 5 to evaporate, and it becomes a low-temperature and low-pressure two-phase refrigerant having a dryness of 0.9 to 1.0, and is compressed again via the four-way valve 2 and the accumulator 6. Inhaled by machine 1.
[0014]
On the other hand, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows toward the first bypass passage 12 by opening the first two-way valve 13, passes through the capillary 14, and further, the high-low pressure heat Heat exchange is performed with the low-temperature and low-pressure gas refrigerant sucked into the compressor 1 while passing through the exchanger 15, that is, the refrigerant is cooled to become a high-pressure liquid refrigerant and stored in the receiver 11 as surplus refrigerant.
[0015]
Here, the composition change of the surplus refrigerant will be described with reference to FIG. FIG. 2 is a comparison diagram of the composition change of the circulating refrigerant when the non-azeotropic refrigerant mixture is stored in the receiver and the accumulator. When excess non-azeotropic refrigerant mixture is stored in the accumulator 6 of the conventional refrigeration cycle shown in FIG. 8, the composition change becomes large because the refrigerant mixture is at a low pressure (see A). On the other hand, in the case of this embodiment, since the high-temperature surplus mixed refrigerant (liquid state) is stored in the receiver 11, the composition change of the mixed refrigerant circulating in the refrigeration cycle becomes small (see b).
[0016]
When the operating state changes due to changes in the outside air temperature, air conditioning load, etc. during steady operation and the refrigerant becomes insufficient, the second two-way valve 17 is opened and the surplus stored in the receiver 11 Refrigerant is supplied to the accumulator 6.
[0017]
As described above, according to the first embodiment, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1, that is, surplus refrigerant is cooled through the first bypass 12 and stored in the receiver 11. Therefore, it is possible to eliminate surplus refrigerant in the accumulator 6, to suppress a change in composition of the refrigerant circulating in the refrigeration cycle, and to prevent fluctuations in operating pressure and capacity.
[0018]
Moreover, since the refrigerant | coolant suck | inhaled by the compressor 1 can be reliably gasified by eliminating the excess refrigerant | coolant in the accumulator 6, the efficiency of the compressor 1 improves and COP of a refrigerating cycle improves. effective.
[0019]
Embodiment 2. FIG.
FIG. 3 is a block diagram showing a refrigeration cycle of, for example, an air conditioner according to Embodiment 2 of the present invention, and shows a state during cooling operation. In addition, the same code | symbol is attached | subjected to the same or equivalent part as Embodiment 1 demonstrated in FIG. 1, and description is abbreviate | omitted.
[0020]
In the second embodiment, the receiver 11 is formed extending downward with the bottom of the accumulator 6 as a partition plate 18, and the partition plate 18 converts the high-temperature and high-pressure gas refrigerant guided to the receiver 11 into a low-temperature and low-pressure gas in the accumulator 6. It is for exchanging heat with the gas refrigerant. The accumulator 6 and the receiver 11 are connected by a second bypass path 16, and the receiver 11 is connected to a pipe connecting the compressor 1 and the four-way valve 2 via the first bypass path 12. The first bypass passage 12 is provided with a first two-way valve 13 and a capillary tube 14, and the second bypass passage 16 is provided with a second two-way valve 17.
[0021]
Next, the operation during the cooling operation will be described. Since the circulation of the refrigerant in the second embodiment is the same as that in the first embodiment, description of the operation is omitted.
When a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 by the opening of the first two-way valve 13 is guided to the first bypass 12, it enters the receiver 11 through the capillary 14. At this time, the high-temperature and high-pressure gas refrigerant that has entered the receiver 11 is heat-exchanged with the low-temperature and low-pressure gas refrigerant in the accumulator 6 by the partition plate 18 to become high-pressure liquid refrigerant, and is stored as surplus refrigerant.
[0022]
In this embodiment as well, when the refrigerant is short in the refrigeration cycle, the second two-way valve 17 is opened, and the surplus refrigerant stored in the receiver 11 is replenished to the accumulator 6.
[0023]
In this way, the receiver 11 is formed by extending the bottom of the accumulator 6 with the partition plate 18 extending downward, so that the high-temperature and high-pressure gas refrigerant passing through the first bypass 12 can be cooled without the high-low pressure heat exchanger 15. There is an effect that can be done.
[0024]
Embodiment 3. FIG.
FIG. 4 is a block diagram showing a refrigeration cycle of, for example, an air conditioner according to Embodiment 3 of the present invention, and shows a state during cooling operation. In addition, the same code | symbol is attached | subjected to the same or equivalent part as Embodiment 1 demonstrated in FIG. 1, and description is abbreviate | omitted.
[0025]
In the figure, 21 is attached to a pipe connecting the compressor 1 and the four-way valve 2, and a first temperature sensor for detecting the temperature Td of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1, and 22 operates as a condenser. This is a second temperature sensor that detects the temperature Tc of the refrigerant that is attached to the center of the outdoor heat exchanger 3 and that is cooled by the outdoor heat exchanger 3.
[0026]
31 is a control circuit for controlling the compressor 1 of the air conditioner, for example, and includes the first valve control means of the present invention. For example, when adjusting the amount of excess refrigerant during cooling operation, the first temperature sensor 21 is subtracted from the detected temperature Td of the second temperature sensor 22 to obtain the discharge superheat degree SHd, and the lower limit value of the superheat degree SHd and the first allowable value of the preset discharge superheat degree When the discharge superheat degree SHd is less than or equal to the lower limit value of the first allowable value, the first two-way valve 13 is opened through the valve drive circuit 32, and the discharge superheat degree SHd is equal to the first allowable value. When the lower limit is exceeded, the first two-way valve 13 is closed.
[0027]
Further, during steady operation, the discharge superheat degree SHd is compared with the upper limit value of the first allowable value, and when the discharge superheat degree SHd exceeds the upper limit value of the first allowable value, the first value is passed through the valve drive circuit 32. The two two-way valve 17 is opened, and the second two-way valve 17 is closed when the discharge superheat degree SHd is not more than the upper limit value of the first allowable value. In addition, the 1st and 2nd two-way valves 13 and 17 mentioned above consist of an electromagnetic valve, for example.
[0028]
Next, the operation of the refrigeration cycle configured as described above will be described with reference to FIG. FIG. 5 is a flowchart showing the operation of the refrigeration cycle of the air conditioner according to the third embodiment, for example. In addition, since operation | movement of each part when circulating the above-mentioned non-azeotropic refrigerant mixture is the same as Embodiment 1, description is abbreviate | omitted.
[0029]
When the compressor 1 is started, the control circuit 31 opens the first two-way valve 13 through the valve drive circuit 32 and starts an operation for storing excess refrigerant in the receiver 11. First, the temperature Tc of the two-phase refrigerant in the outdoor heat exchanger 3 is input through the second temperature sensor 22, and then the temperature Td of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is input to the first temperature sensor 21. Enter through. Then, the detected temperature Tc of the second temperature sensor 22 is subtracted from the detected temperature Td to obtain the discharge superheat degree SHd, and the lower limit of the superheat degree SHd and the first allowable value of the preset discharge superheat degree Compare the value.
[0030]
Since the lower limit value of the first allowable value is higher than the discharge superheat degree SHd at the start of operation, the open state of the first two-way valve 13 is maintained, and again the detected temperature Tc of the second temperature sensor 22 The detection temperature Td of the first temperature sensor 21 is entered. As the operation is repeated, the refrigerant in the accumulator 6 runs out, the suction temperature of the compressor 1 rises, and the discharge superheat degree SHd based on the detected temperature Tc and the detected temperature Td is the lower limit value of the first allowable value. Is exceeded, the first two-way valve 13 is closed through the valve drive circuit 32, and the storage of excess refrigerant in the receiver 11 is terminated.
[0031]
During the steady operation, the discharge superheat degree SHd is compared with the upper limit value of the first allowable value, and when the discharge superheat degree SHd is less than or equal to the upper limit value of the first allowable value, the second two-way valve 17 is closed. Maintain state. In addition, when the operating state changes due to changes in the outside air temperature, the air conditioning load, etc., and the circulating refrigerant becomes insufficient, the discharge superheat degree SHd increases, but due to the lack of refrigerant, the discharge superheat degree SHd is the first. When the upper limit value of the allowable value is exceeded, the second two-way valve 17 is opened, and the surplus refrigerant stored in the receiver 11 is supplied to the accumulator 6. Then, the second two-way valve 17 is closed when the discharge superheat degree SHd becomes less than or equal to the upper limit value of the first allowable value due to this replenishment.
[0032]
As described above, according to the third embodiment, when the compressor 1 is started, the first two-way valve 13 is opened, and the detected temperature Td of the first temperature sensor 21 is changed to that of the second temperature sensor 22. The detected superheat degree SHd is obtained by subtracting the detected temperature Tc, and the superheat degree SHd is compared with a lower limit value of a first allowable value of the preset discharge superheat degree. When the value is equal to or lower than the lower limit value of the allowable value, the first two-way valve 13 is kept open and the excess refrigerant is continuously stored in the receiver 11, and the discharge superheat degree SHd exceeds the lower limit value of the first allowable value. In this case, since the first two-way valve 13 is closed and its storage is stopped, the surplus refrigerant is reliably stored in the accumulator 6 even if the operating conditions such as the outside air temperature and the pipe extension are changed. Can be stored in the receiver 11, so that the freezing cycle There is an effect that it is possible to suppress the change in composition of the refrigerant circulating in the.
[0033]
Further, during steady operation, when the discharge superheat degree SHd exceeds the upper limit value of the first allowable value, the second two-way valve 17 is opened to supply the surplus refrigerant in the receiver 11 to the accumulator 6, When the discharge superheat degree SHd becomes equal to or lower than the upper limit value of the first allowable value, the second two-way valve 17 is closed and the replenishment is stopped. There is also an effect that it can be eliminated.
[0034]
In the third embodiment, the first and second temperature sensors 21 and 22 are attached to predetermined positions in the refrigeration cycle of the first embodiment, and the control of the surplus refrigerant has been described. , 22 may be provided in the refrigeration cycle shown in the second embodiment to control excess refrigerant.
[0035]
Embodiment 4 FIG.
FIG. 6 is a block diagram showing a refrigeration cycle of, for example, an air conditioner according to Embodiment 4 of the present invention, and shows a state during cooling operation. In addition, the same code | symbol is attached | subjected to the part which is the same as that of Embodiment 3 demonstrated in FIG. 4, or an equivalent, and description is abbreviate | omitted.
[0036]
In the refrigeration cycle of the present embodiment, a third temperature sensor 23 that is attached to the suction side of the compressor 1 and detects the temperature Ts of the low-temperature and low-pressure gas refrigerant sucked by the compressor 1 operates as an evaporator. A fourth temperature sensor 24 that is mounted at the center of the indoor heat exchanger 5 and detects the temperature Te of the refrigerant vaporized by the indoor heat exchanger 5 is provided.
[0037]
The control circuit 31 includes the second valve control means of the present invention. For example, when adjusting the amount of excess refrigerant during the cooling operation, the control circuit 31 uses the detected temperature Ts of the third temperature sensor 21 to the fourth temperature sensor. The detected superheat degree SHs is obtained by subtracting the detected temperature Te of 22 and the superheat degree SHs is compared with a lower limit value of a second allowable value of the preliminarily set intake superheat degree. The first two-way valve 13 is opened through the valve drive circuit 32 when the lower limit value of the second allowable value is less than the lower limit value of the second allowable value, and when the suction superheat degree SHs exceeds the lower limit value of the second allowable value. The direction valve 13 is closed.
[0038]
During steady operation, when the suction superheat degree SHs exceeds the upper limit value of the second allowable value, the second two-way valve 17 is opened through the valve drive circuit 32, and the suction superheat degree SHs is the second allowable value. When the value is equal to or lower than the upper limit value, the second two-way valve 17 is closed. Note that the second tolerance value of the present embodiment is set lower than the first tolerance value described in the third embodiment.
[0039]
Next, the operation of the refrigeration cycle configured as described above will be described with reference to FIG. FIG. 7 is a flowchart showing the operation of the refrigeration cycle of the air conditioner according to the fourth embodiment, for example. In addition, since operation | movement of each part when circulating the above-mentioned non-azeotropic refrigerant mixture is the same as Embodiment 1, description is abbreviate | omitted.
[0040]
When the compressor 1 is started, the control circuit 31 opens the first two-way valve 13 through the valve drive circuit 32 as described above, and starts an operation for storing excess refrigerant in the receiver 11. First, the temperature Te of the two-phase refrigerant in the indoor heat exchanger 5 is inputted through the fourth temperature sensor 24, and then the temperature Ts of the low-temperature and low-pressure gas refrigerant sucked into the compressor 1 is inputted to the third temperature sensor 23. Enter through. Then, the detected temperature Te of the fourth temperature sensor 24 is subtracted from the detected temperature Ts to obtain the suction superheat degree SHs, and the lower limit of the second allowable value of the superheat degree SHs and the preset suction superheat degree Compare the value.
[0041]
Since the lower limit value of the second allowable value is higher than the suction superheat degree SHs at the start of operation, the open state of the first two-way valve 13 is maintained, and the detected temperature Ts of the third temperature sensor 23 again. The detection temperature Te of the fourth temperature sensor 24 is entered. As the operation is repeated, the refrigerant in the accumulator 6 runs out, the intake temperature of the compressor 1 rises, and the intake superheat degree SHs based on the detected temperature Te and the detected temperature Ts is the lower limit value of the second allowable value. Is exceeded, the first two-way valve 13 is closed through the valve drive circuit 32, and the storage of excess refrigerant in the receiver 11 is terminated.
[0042]
During steady operation, the suction superheat degree SHs is compared with the upper limit value of the second allowable value, and when the suction superheat degree SHs is less than or equal to the upper limit value of the second allowable value, the second two-way valve 17 is closed. Maintain state. In addition, when the operating state changes due to changes in the outside air temperature, the air conditioning load, etc., and the circulating refrigerant becomes insufficient, the suction superheat degree SHs increases. However, due to the lack of refrigerant, the suction superheat degree SHs becomes the second superheat degree SHs. When the upper limit value of the allowable value is exceeded, the second two-way valve 17 is opened, and the surplus refrigerant stored in the receiver 11 is supplied to the accumulator 6. Then, when the replenishment causes the suction superheat degree SHs to become equal to or lower than the upper limit value of the second allowable value, the second two-way valve 17 is closed.
[0043]
As described above, according to the fourth embodiment, when the compressor 1 is started, the first two-way valve 13 is opened, and the detected temperature Ts of the third temperature sensor 23 is changed to that of the fourth temperature sensor 24. The detected superheat degree SHs is obtained by subtracting the detected temperature Te, and the superheat degree SHs is compared with a lower limit value of a second allowable value of the preset intake superheat degree. When the lower limit value of the allowable value is not exceeded, the first two-way valve 13 is opened and the excess refrigerant is continuously stored in the receiver 11, and the suction superheat degree SHs exceeds the lower limit value of the second allowable value. Since the first two-way valve 13 is closed and its storage is stopped, the receiver 11 can be reliably received without accumulating excess refrigerant in the accumulator 6 even if the operating conditions such as the outside air temperature and the pipe extension change. Can be stored in the refrigeration cycle There is an effect that it is possible to suppress the change in composition of the refrigerant ring.
[0044]
Further, during steady operation, when the suction superheat degree SHs exceeds the upper limit value of the second allowable value, the second two-way valve 17 is opened to supply surplus refrigerant in the receiver 11 to the accumulator 6, Since the second two-way valve 17 is closed and the replenishment is stopped when the suction superheat degree SHs becomes equal to or lower than the upper limit value of the second allowable value, even if the refrigerant becomes insufficient during operation. There is also an effect that it can be eliminated.
[0045]
In the fourth embodiment, as described above, the third and fourth temperature sensors 23 and 24 are attached to predetermined positions in the refrigeration cycle of the first embodiment, and the control of the surplus refrigerant has been described. These temperature sensors 23 and 24 may be provided in the refrigeration cycle shown in the second embodiment to control excess refrigerant.
[0046]
【The invention's effect】
As described above, according to the present invention, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is cooled via the first bypass and stored in the receiver. The refrigerant can be eliminated, the composition change of the refrigerant circulating in the refrigeration cycle can be suppressed to a small level, and fluctuations in operating pressure and capacity can be prevented. In addition, since the refrigerant sucked into the compressor can be reliably gasified by eliminating the excess refrigerant in the accumulator, the compressor efficiency is improved and the COP of the refrigeration cycle is improved. .
[0047]
Also, a first temperature sensor is provided on the discharge side of the compressor, and a second temperature sensor is provided on the condenser, and the difference between the detected temperature of the first temperature sensor and the detected temperature of the second temperature sensor is calculated. In addition, the value is compared with a preset first allowable value, and when the value is less than or equal to the lower limit value of the first allowable value, the first two-way valve is opened. Therefore, even if operating conditions such as outside air temperature and pipe extension change, excess refrigerant can be reliably stored in the receiver without accumulating in the accumulator, and therefore, the composition change of the refrigerant circulating in the refrigeration cycle can be kept small. There is an effect that can be. In addition, when the value exceeds the upper limit of the first allowable value, the second two-way valve is opened so that excess refrigerant in the receiver is supplied to the accumulator. Even if it becomes, there is an effect that it can be solved.
[0048]
Also, a third temperature sensor is provided on the suction side of the compressor and a fourth temperature sensor is provided on the evaporator, and the difference between the detected temperature of the third temperature sensor and the detected temperature of the fourth temperature sensor is calculated. In addition, the value is compared with a preset second allowable value, and when the value is less than or equal to the lower limit value of the first allowable value, the first two-way valve is opened. Therefore, even if operating conditions such as outside air temperature and pipe extension change, excess refrigerant can be reliably stored in the receiver without accumulating in the accumulator, and therefore, the composition change of the refrigerant circulating in the refrigeration cycle can be kept small. There is an effect that can be. In addition, when the value exceeds the upper limit of the second allowable value, the second two-way valve is opened so that excess refrigerant in the receiver is supplied to the accumulator. Even if it becomes, there is an effect that it can be solved.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a refrigeration cycle of, for example, an air conditioner according to Embodiment 1 of the present invention.
FIG. 2 is a comparison diagram of composition change of circulating refrigerant when non-azeotropic refrigerant mixture is stored in a receiver and an accumulator.
FIG. 3 is a block diagram showing a refrigeration cycle of, for example, an air conditioner according to Embodiment 2 of the present invention.
FIG. 4 is a block diagram showing a refrigeration cycle of, for example, an air conditioner according to Embodiment 3 of the present invention.
FIG. 5 is a flowchart showing an operation of a refrigeration cycle of an air conditioner according to Embodiment 3, for example.
FIG. 6 is a block diagram showing a refrigeration cycle of, for example, an air conditioner according to Embodiment 4 of the present invention.
FIG. 7 is a flowchart showing an operation of a refrigeration cycle of an air conditioner according to Embodiment 4, for example.
FIG. 8 is a block diagram showing a refrigeration cycle of a conventional air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four-way valve, 3 Outdoor heat exchanger, 4 Throttle device, 5 Indoor heat exchanger, 6 Accumulator, 11 Receiver, 12 1st bypass, 13 1st two-way valve, 14 Capillary, 15 High Low pressure heat exchanger,
16 Second bypass path, 17 Second two-way valve, 21 First temperature sensor, 22 Second temperature sensor, 23 Third temperature sensor, 24 Fourth temperature sensor, 31 Control circuit, 32 Valve drive circuit.

Claims (3)

圧縮機によって、沸点の異なる2種類以上の冷媒からなる非共沸混合冷媒を高温高圧化し、四方弁、凝縮器、絞り装置及び蒸発器を経て再び四方弁に流入させ、アキュームレータを介して循環させる冷凍サイクルにおいて、
レシーバと、
第1の二方弁及び冷媒流量を調整する毛細管がそれぞれ設けられ、前記圧縮機と四方弁をつなぐ配管と前記レシーバとを接続する第1のバイパス路と、
前記圧縮機に吸入されるアキュームレータからの低圧の非共沸混合冷媒と前記第1のバイパス路内を通る高温高圧の非共沸混合冷媒とを熱交換をする熱交換器と、
第2の二方弁が設けられ、前記熱交換器により熱交換された前記レシーバ内の高圧の非共沸混合冷媒をアキュームレータに導入するための第2のバイパス路と
備えたことを特徴とする冷凍サイクル。
A non-azeotropic refrigerant mixture consisting of two or more kinds of refrigerants having different boiling points is made high-temperature and high-pressure by a compressor, and again flows into a four-way valve via a four- way valve, a condenser, a throttling device, and an evaporator, and is circulated through an accumulator. In the refrigeration cycle,
A receiver,
A first two-way valve and a capillary for adjusting the refrigerant flow rate, respectively , and a first bypass passage connecting the receiver and a pipe connecting the compressor and the four-way valve;
A heat exchanger for exchanging heat between the low - pressure non-azeotropic refrigerant mixture from the accumulator sucked into the compressor and the high - temperature high - pressure non-azeotropic refrigerant mixture passing through the first bypass path;
A second two-way valve is provided, and includes a second bypass passage for introducing a high-pressure non-azeotropic refrigerant mixture in the receiver that has been heat-exchanged by the heat exchanger into the accumulator. Refrigeration cycle to be.
前記圧縮機の吐出側に設置された第1の温度センサと、
前記凝縮器に設置された第2の温度センサと、
前記第1の温度センサの検知温度と前記第2の温度センサの検知温度との差を演算し、かつ、その値と予め設定された第1の許容値とを比較し、前記値が第1の許容値の下限値以下のときは前記第1の二方弁を開状態にし、前記値が第1の許容値の上限値を越えたときは前記第2の二方弁を開状態にする第1の弁制御手段と
を備えことを特徴とする請求項1記載の冷凍サイクル。
A first temperature sensor installed on the discharge side of the compressor;
A second temperature sensor installed in the condenser;
The difference between the detected temperature of the first temperature sensor and the detected temperature of the second temperature sensor is calculated, and the value is compared with a preset first allowable value. When the value is less than or equal to the lower limit value of the allowable value, the first two-way valve is opened, and when the value exceeds the upper limit value of the first allowable value, the second two-way valve is opened. claim 1 Symbol placement of the refrigeration cycle comprising the <br/> the first valve control means.
前記圧縮機の吸入側に設置された第3の温度センサと、
前記蒸発器に設置された第4の温度センサと、
前記第3の温度センサの検知温度と前記第4の温度センサの検知温度との差を演算し、かつ、その値と予め設定された第2の許容値とを比較し、前記値が第2の許容値の下限値以下のときは前記第1の二方弁を開状態にし、前記値が第2の許容値の上限値を越えたときは前記第2の二方弁を開状態にする第2の弁制御手段と
を備えことを特徴とする請求項1記載の冷凍サイクル。
A third temperature sensor installed on the suction side of the compressor;
A fourth temperature sensor installed in the evaporator;
The difference between the detected temperature of the third temperature sensor and the detected temperature of the fourth temperature sensor is calculated, and the value is compared with a preset second allowable value. The first two-way valve is opened when it is below the lower limit value of the allowable value, and the second two-way valve is opened when the value exceeds the upper limit value of the second allowable value. claim 1 Symbol placement of the refrigeration cycle comprising the <br/> and second valve control means.
JP34480197A 1997-12-15 1997-12-15 Refrigeration cycle Expired - Lifetime JP3731174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34480197A JP3731174B2 (en) 1997-12-15 1997-12-15 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34480197A JP3731174B2 (en) 1997-12-15 1997-12-15 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH11173698A JPH11173698A (en) 1999-07-02
JP3731174B2 true JP3731174B2 (en) 2006-01-05

Family

ID=18372100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34480197A Expired - Lifetime JP3731174B2 (en) 1997-12-15 1997-12-15 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP3731174B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE380987T1 (en) * 1999-10-18 2007-12-15 Daikin Ind Ltd REFRIGERATOR
JP2004361036A (en) 2003-06-06 2004-12-24 Daikin Ind Ltd Air conditioning system
JP5208231B2 (en) * 2011-02-18 2013-06-12 三菱電機株式会社 Refrigeration cycle equipment
WO2012172597A1 (en) * 2011-06-14 2012-12-20 三菱電機株式会社 Air conditioner
KR101369568B1 (en) * 2011-09-09 2014-03-04 엘지전자 주식회사 An air conditioner and a control method for the same
JP5430634B2 (en) * 2011-11-02 2014-03-05 三菱電機株式会社 Refrigeration cycle apparatus and refrigerant recovery method for refrigeration cycle apparatus
KR101426998B1 (en) * 2012-08-02 2014-08-06 엘지전자 주식회사 An air conditioner
CN104718382B (en) * 2012-10-12 2017-11-03 冷王公司 The combined box of reservoir and receiving device
CN105571221A (en) * 2015-12-21 2016-05-11 珠海格力电器股份有限公司 Air conditioner system and control method of air conditioner system
JP7298580B2 (en) * 2019-11-22 2023-06-27 株式会社デンソー refrigeration cycle equipment
CN114761738B (en) * 2019-11-22 2024-04-09 株式会社电装 Refrigeration cycle device

Also Published As

Publication number Publication date
JPH11173698A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
US5651263A (en) Refrigeration cycle and method of controlling the same
JP5855129B2 (en) Outdoor unit and air conditioner
JP5791785B2 (en) Air conditioner
US9671119B2 (en) Air-conditioning apparatus
JP4895883B2 (en) Air conditioner
KR101096851B1 (en) Heat source unit and refrigeration device
US20050217292A1 (en) Refrigeration system
JP4200532B2 (en) Refrigeration equipment
US20090077985A1 (en) Refrigerating Apparatus
WO2006057111A1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
JPWO2014141375A1 (en) Air conditioner
AU6020000A (en) Refrigerating device
JP3743861B2 (en) Refrigeration air conditioner
JPWO2003062718A1 (en) Refrigeration equipment
JP2001248920A (en) Controller for refrigeration circuit
JP3731174B2 (en) Refrigeration cycle
JP3152187B2 (en) Refrigeration apparatus and refrigerant charging method
JP3334601B2 (en) Air conditioner with natural circulation
JPWO2004013550A1 (en) Refrigeration equipment
JP3724239B2 (en) Cooling system
JP4465860B2 (en) Air conditioner refrigeration equipment
WO2011151985A1 (en) Freezing device
JP5077089B2 (en) Refrigeration equipment
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JP3804601B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term