JP5430634B2 - Refrigeration cycle apparatus and refrigerant recovery method for refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus and refrigerant recovery method for refrigeration cycle apparatus Download PDF

Info

Publication number
JP5430634B2
JP5430634B2 JP2011241130A JP2011241130A JP5430634B2 JP 5430634 B2 JP5430634 B2 JP 5430634B2 JP 2011241130 A JP2011241130 A JP 2011241130A JP 2011241130 A JP2011241130 A JP 2011241130A JP 5430634 B2 JP5430634 B2 JP 5430634B2
Authority
JP
Japan
Prior art keywords
refrigerant
receiver
refrigerant circuit
side opening
closing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011241130A
Other languages
Japanese (ja)
Other versions
JP2012021770A (en
Inventor
哲二 七種
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011241130A priority Critical patent/JP5430634B2/en
Publication of JP2012021770A publication Critical patent/JP2012021770A/en
Application granted granted Critical
Publication of JP5430634B2 publication Critical patent/JP5430634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷凍サイクル装置、及び冷凍サイクル装置の冷媒回収方法に関するものである。   The present invention relates to a refrigeration cycle apparatus and a refrigerant recovery method for the refrigeration cycle apparatus.

冷凍サイクル装置内を循環する冷媒を回収するため、冷媒回収装置を接続可能とした冷凍サイクル装置が従来より提案されている。このような冷媒回収装置を接続可能とした冷凍サイクル装置としては、例えば「この冷媒回収装置1は、吸入側2Aが熱交換器3を経由して回収ポート5に接続された圧縮機2と、この圧縮機2の吐出側2Bに接続された閉鎖弁6を備えている。この閉鎖弁6は、上記熱交換器3を経由して、排出ポート7に接続されている。排出ポート7は、回収冷媒タンク(図示せず)に接続される。この冷媒回収装置1で、冷凍機100の冷媒を回収するには、まず、回収ポート5を、圧縮機101と室外熱交換器106との間の冷媒配管110に設けた接続ポート108に連結する。」(例えば特許文献1参照)というものが提案されている。   In order to collect the refrigerant circulating in the refrigeration cycle apparatus, a refrigeration cycle apparatus that can be connected to the refrigerant collection apparatus has been conventionally proposed. As a refrigeration cycle apparatus that can connect such a refrigerant recovery apparatus, for example, “this refrigerant recovery apparatus 1 includes a compressor 2 whose suction side 2A is connected to a recovery port 5 via a heat exchanger 3; A shutoff valve 6 is provided connected to the discharge side 2B of the compressor 2. The shutoff valve 6 is connected to the discharge port 7 via the heat exchanger 3. The discharge port 7 is In order to recover the refrigerant of the refrigerator 100 with the refrigerant recovery apparatus 1, first, the recovery port 5 is connected between the compressor 101 and the outdoor heat exchanger 106. To the connection port 108 provided in the refrigerant pipe 110 of the above "(for example, see Patent Document 1).

特開2000−199660号公報(段落0019,0021、図1)Japanese Unexamined Patent Publication No. 2000-199660 (paragraphs 0019, 0021, FIG. 1)

しかしながら、従来の冷凍サイクル装置は、冷媒回収作業では冷媒の大気中への漏洩を防止しているものの、冷媒充填作業では以下のように冷媒が大気中に漏洩してしまうという問題点があった。   However, although the conventional refrigeration cycle apparatus prevents the refrigerant from leaking into the atmosphere in the refrigerant recovery operation, there is a problem that the refrigerant leaks into the atmosphere as described below in the refrigerant charging operation. .

従来の冷凍サイクル装置の冷媒回路に冷媒を充填する場合、以下の作業が必要となる。まず、冷媒回路に設けられた冷媒回収用の接続口(例えば、特許文献1の接続ポート108)に真空ポンプ等の真空源を接続し、冷媒回路内を真空状態にする。その後、接続口から真空源を取り外し、この接続口と冷媒ボンベに接続された接続ホースとを接続する。このようにすることで、冷凍サイクル装置の冷媒回路に冷媒が充填される。しかしながら、冷媒回路内の真空状態を保つため、接続口と冷媒ホースとを接続する前に、接続ホース内の空気を抜く作業が必要となる。このため、接続口と冷媒ホースとを接続する前に、接続ホースを介して冷媒ボンベの冷媒により接続ホース内の空気を押出す作業が実施され、微量の冷媒が大気中に漏洩する可能性があった。   When the refrigerant is filled in the refrigerant circuit of the conventional refrigeration cycle apparatus, the following work is required. First, a vacuum source such as a vacuum pump is connected to a refrigerant recovery connection port (for example, connection port 108 of Patent Document 1) provided in the refrigerant circuit, and the refrigerant circuit is evacuated. Thereafter, the vacuum source is removed from the connection port, and the connection port and the connection hose connected to the refrigerant cylinder are connected. By doing so, the refrigerant is filled in the refrigerant circuit of the refrigeration cycle apparatus. However, in order to maintain the vacuum state in the refrigerant circuit, it is necessary to remove the air in the connection hose before connecting the connection port and the refrigerant hose. For this reason, before the connection port and the refrigerant hose are connected, the work of extruding the air in the connection hose by the refrigerant in the refrigerant cylinder through the connection hose is performed, and a small amount of refrigerant may leak into the atmosphere. there were.

ところで、近年、地球の温暖化を抑制するために、例えばテトラフルオロプロペン等の地球温暖化係数の低い冷媒を冷凍サイクル装置に使用することが望まれている。しかしながら、テトラフルオロプロペン等は従来の冷媒(例えばR410AやR407C等)と比較して凝縮圧力や蒸発圧力が低い。このため、テトラフルオロプロペン等にテトラフルオロプロペン等よりも沸点の低い冷媒(例えばHFC−32)を混合して、凝縮圧力や蒸発圧力を調整した非共沸混合冷媒を用いることが多い。しかしながら、HFC−32は可燃性冷媒であるため、HFC−32が大気中に漏洩した場合には、HFC−32に着火してしまう可能性があるという問題点があった。また、HFC−32は地球温暖化係数が550と高いため、HFC−32が大気中に漏洩した場合には、地球環境に悪影響を及ぼしてしまうという問題点があった。
また、従来の冷媒回収装置は、冷凍サイクル装置内からこのような非共沸混合冷媒を回収する場合、テトラフルオロプロペンよりも沸点の低いHFC系冷媒(例えば、可燃性で大気への漏洩が発生すると地球環境に与える影響(温室化)が大きいHFC−32)を重点的に回収できる構成とはなっていなかった。
By the way, in recent years, in order to suppress global warming, for example, it is desired to use a refrigerant having a low global warming coefficient such as tetrafluoropropene for the refrigeration cycle apparatus. However, tetrafluoropropene or the like has a lower condensation pressure or evaporation pressure than conventional refrigerants (for example, R410A and R407C). For this reason, a non-azeotropic refrigerant mixture in which a condensation pressure or an evaporation pressure is adjusted by mixing tetrafluoropropene or the like with a refrigerant having a lower boiling point than tetrafluoropropene or the like (for example, HFC-32) is often used. However, since HFC-32 is a flammable refrigerant, there is a problem that when HFC-32 leaks into the atmosphere, HFC-32 may be ignited. Moreover, since HFC-32 has a high global warming potential of 550, there is a problem that when HFC-32 leaks into the atmosphere, it adversely affects the global environment.
In addition, when recovering such a non-azeotropic refrigerant mixture from the refrigeration cycle apparatus, a conventional refrigerant recovery apparatus has an HFC refrigerant having a boiling point lower than that of tetrafluoropropene (for example, flammable and leaks to the atmosphere) Then, HFC-32), which has a large impact on the global environment (greenhouse), was not configured to focus on recovery.

本発明は上述のような背景に基づいてなされたものであり、テトラフルオロプロペンと該テトラフルオロプロペンよりも沸点の低いHFC系冷媒とを含む非共沸混合冷媒が循環する冷媒回路から、テトラフルオロプロペンよりも沸点の低いHFC系冷媒を重点的に回収できる冷凍サイクル装置、及び冷凍サイクル装置の冷媒回収方法を得ることを目的とする。   The present invention has been made on the basis of the above-described background. From a refrigerant circuit in which a non-azeotropic refrigerant mixture containing tetrafluoropropene and an HFC refrigerant having a boiling point lower than that of the tetrafluoropropene is circulated, It is an object of the present invention to obtain a refrigeration cycle apparatus capable of intensively collecting an HFC refrigerant having a boiling point lower than that of propene and a refrigerant recovery method for the refrigeration cycle apparatus.

なお、地球温暖化係数とは、各温室効果ガスの地球温暖化をもたらす効果の程度を二酸化炭素の当該効果に対する比で表したものであり、気候変動に関する政府間パネル(IPCC)が承認し、締約国会議が合意した値である。この地球温暖化係数は随時更新される値であり、京都議定書では地球温暖化係数を1955年のIPCCの第2次評価報告書による値と決議されている。本願に示す地球温暖化係数は、この京都議定書で決議された値としている。   The global warming potential is the ratio of the effect of each greenhouse gas that causes global warming to the effect of carbon dioxide, which is approved by the Intergovernmental Panel on Climate Change (IPCC) This is the value agreed by the Conference of the Parties. This global warming potential is a value that is updated from time to time, and the Kyoto Protocol determines that the global warming potential is the value from the 1955 IPCC Second Assessment Report. The global warming potential shown in the present application is a value determined by the Kyoto Protocol.

本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、絞り装置、蒸発器及びアキュームレータが冷媒配管で接続され、テトラフルオロプロペンと該テトラフルオロプロペンよりも沸点の低いHFC系冷媒とを含む非共沸混合冷媒が循環する冷媒回路と、一方の端部が前記圧縮機と前記凝縮器との間に接続された分岐管と、該分岐管の他方の端部に接続された第1の冷媒回路側開閉装置と、前記分岐管に設けられた冷媒流量調整部と、該冷媒流量調整部と第1の冷媒回路側開閉装置との間に設けられ、前記アキュームレータと前記圧縮機との間を流れる前記非共沸混合冷媒と前記分岐管を流れる前記非共沸混合冷媒とが熱交換をする高低圧熱交換器と、前記第1の冷媒回路側開閉装置と着脱自在に接続される第1のレシーバ側開閉装置を有するレシーバと、該冷媒回路に設けられ、真空源と接続可能な接続口と、を備え、前記非共沸混合冷媒が充填されていない状態で前記冷媒回路を設置後、前記冷媒回路の設置場所において、前記非共沸混合冷媒が貯留され前記第1のレシーバ側開閉装置が閉状態の前記レシーバを、閉状態の前記第1の冷媒回路側開閉装置と前記第1のレシーバ側開閉装置とを接続することにより前記冷媒回路に接続し、前記第1の冷媒回路側開閉装置を開いて、前記接続口に接続された真空源で前記冷媒回路の内部を吸引し、前記第1のレシーバ側開閉装置を開いて、前記レシーバに貯留された前記非共沸混合冷媒を前記冷媒回路に充填するものである。 The refrigeration cycle apparatus according to the present invention includes a compressor, a condenser, a throttling device, an evaporator, and an accumulator, which are connected by refrigerant piping, and includes a non-common that includes tetrafluoropropene and an HFC refrigerant having a boiling point lower than that of the tetrafluoropropene. A refrigerant circuit in which the boiling mixed refrigerant circulates, a branch pipe having one end connected between the compressor and the condenser, and a first refrigerant circuit connected to the other end of the branch pipe Side opening / closing device, a refrigerant flow rate adjusting unit provided in the branch pipe, and provided between the refrigerant flow rate adjusting unit and the first refrigerant circuit side opening / closing device, and flows between the accumulator and the compressor. A high- and low-pressure heat exchanger that exchanges heat between the non-azeotropic refrigerant mixture and the non-azeotropic refrigerant flowing through the branch pipe, and a first refrigerant circuit side opening / closing device that is detachably connected. Has receiver-side opening and closing device And receiver, provided in the refrigerant circuit includes a connection port connectable to a vacuum source, and the rear placing the refrigerant circuit in a state of non-azeotropic mixed refrigerant is not filled, the installation place of the refrigerant circuit The non-azeotropic refrigerant mixture is stored and the first receiver-side opening / closing device is closed, and the closed first receiver circuit-side opening / closing device is connected to the first receiver-side opening / closing device. By connecting to the refrigerant circuit, opening the first refrigerant circuit side opening / closing device, sucking the inside of the refrigerant circuit with a vacuum source connected to the connection port, the first receiver side opening / closing device And the refrigerant circuit is filled with the non-azeotropic refrigerant stored in the receiver .

本発明においては、圧縮機を起動すると、アキュームレータ内に貯留された非共沸混合冷媒のうち、沸点の低いHFC系冷媒の蒸発量が多くなる。このため、HFC系冷媒の比率が高い非共沸混合冷媒(以下、HFCリッチな非共沸混合冷媒という)が、冷媒回路内を循環する。そして、このHFCリッチな非共沸混合冷媒は、分岐管を介して冷媒流量調整部に流入し、冷媒流量調整部で流量調整されて高低圧熱交換器に流入する。高低圧熱交換器に流入したHFCリッチなガス状態の非共沸混合冷媒は、圧縮機に吸入されるHFCリッチな非共沸混合冷媒に放熱して液状となり、レシーバに貯留される。したがって、本発明においては、テトラフルオロプロペンと該テトラフルオロプロペンよりも沸点の低いHFC系冷媒とを含む非共沸混合冷媒が循環する冷媒回路から、テトラフルオロプロペンよりも沸点の低いHFC系冷媒を重点的に回収できる。   In the present invention, when the compressor is started, the evaporation amount of the HFC refrigerant having a low boiling point increases among the non-azeotropic refrigerants stored in the accumulator. For this reason, a non-azeotropic refrigerant mixture having a high HFC refrigerant ratio (hereinafter referred to as an HFC-rich non-azeotropic refrigerant mixture) circulates in the refrigerant circuit. The HFC-rich non-azeotropic refrigerant mixture flows into the refrigerant flow rate adjustment unit via the branch pipe, and the flow rate is adjusted by the refrigerant flow rate adjustment unit and flows into the high-low pressure heat exchanger. The non-azeotropic mixed refrigerant in the HFC-rich gas state flowing into the high-low pressure heat exchanger releases heat to the HFC-rich non-azeotropic mixed refrigerant sucked into the compressor and is stored in the receiver. Therefore, in the present invention, an HFC refrigerant having a boiling point lower than that of tetrafluoropropene is obtained from a refrigerant circuit in which a non-azeotropic refrigerant mixture containing tetrafluoropropene and an HFC refrigerant having a boiling point lower than that of tetrafluoropropene is circulated. It can be collected with priority.

実施の形態1に係る冷凍サイクル装置の冷媒回路図の一例である。1 is an example of a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置の冷媒回路図の冷媒回収方法を示す一例である。2 is an example illustrating a refrigerant recovery method of the refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 1. FIG. 実施の形態2に係る冷凍サイクル装置の冷媒回路図の一例である。6 is an example of a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 2. FIG. 実施の形態2に係る冷凍サイクル装置の冷媒回収を行う前の状態を示す冷媒回路図の一例である。It is an example of the refrigerant circuit figure which shows the state before performing refrigerant | coolant collection | recovery of the refrigeration cycle apparatus which concerns on Embodiment 2. FIG.

実施の形態1.
(構成)
図1は、本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図の一例である。
冷凍サイクル装置100は、圧縮機1、四方弁2、室内熱交換器3、絞り装置4、室外熱交換器5、及びアキュームレータ6が冷媒配管で接続されることにより冷媒回路が構成されている。そして、圧縮機1とアキュームレータ6とを接続する配管に設けられた接続口9aには、真空ポンプ9が接続されている。
なお、接続口9aは必ずしも圧縮機1とアキュームレータ6とを接続する配管に設けられる必要はない。冷凍サイクル装置100の冷媒回路中であれば、任意の位置に接続口9aを設けることができる。また、真空源も真空ポンプに限定されない。
Embodiment 1 FIG.
(Constitution)
FIG. 1 is an example of a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
In the refrigeration cycle apparatus 100, a refrigerant circuit is configured by connecting a compressor 1, a four-way valve 2, an indoor heat exchanger 3, an expansion device 4, an outdoor heat exchanger 5, and an accumulator 6 with refrigerant piping. And the vacuum pump 9 is connected to the connection port 9a provided in the piping which connects the compressor 1 and the accumulator 6. FIG.
Note that the connection port 9 a is not necessarily provided in a pipe that connects the compressor 1 and the accumulator 6. If it is in the refrigerant circuit of the refrigerating cycle apparatus 100, the connection port 9a can be provided in arbitrary positions. Further, the vacuum source is not limited to the vacuum pump.

また、本実施の形態1に係る冷凍サイクル装置100には、一方の端部が圧縮機1と四方弁2との間に接続された第1の分岐管13aが設けられている。この第1の分岐管13aの他方の端部には、開閉可能な第1の二方弁14aが接続されている。また、一方の端部が四方弁2とアキュームレータ6との間に接続された第2の分岐管13bが設けられている。この第2の分岐管13bの他方の端部には開閉可能な第2の二方弁14bが接続されている。ここで、第1の二方弁14a及び第2の二方弁14bが、本発明の第1の冷媒回路側開閉装置及び第2の冷媒回路側開閉装置に相当する。   The refrigeration cycle apparatus 100 according to the first embodiment is provided with a first branch pipe 13a having one end connected between the compressor 1 and the four-way valve 2. A first two-way valve 14a that can be opened and closed is connected to the other end of the first branch pipe 13a. Further, a second branch pipe 13 b having one end connected between the four-way valve 2 and the accumulator 6 is provided. A second two-way valve 14b that can be opened and closed is connected to the other end of the second branch pipe 13b. Here, the first two-way valve 14a and the second two-way valve 14b correspond to the first refrigerant circuit side opening / closing device and the second refrigerant circuit side opening / closing device of the present invention.

また、本実施の形態1に係る冷凍サイクル装置100には、冷媒を貯留可能なレシーバ7が設けられている。このレシーバ7には、レシーバ7の例えば上部及び下部のそれぞれに配管が設けられている。また、このレシーバ7の上部側配管には開閉可能な第3の二方弁8aが接続されており、このレシーバ7の下部側配管には開閉可能な第4の二方弁8bが接続されている。ここで、第3の二方弁8a及び第4の二方弁8bが、本発明の第1のレシーバ側開閉装置及び第2のレシーバ側開閉装置に相当する。   Further, the refrigeration cycle apparatus 100 according to Embodiment 1 is provided with a receiver 7 capable of storing a refrigerant. The receiver 7 is provided with pipes on, for example, an upper part and a lower part of the receiver 7. Further, an openable / closable third two-way valve 8a is connected to the upper pipe of the receiver 7, and a openable / closable fourth two-way valve 8b is connected to the lower pipe of the receiver 7. Yes. Here, the third two-way valve 8a and the fourth two-way valve 8b correspond to the first receiver-side opening / closing device and the second receiver-side opening / closing device of the present invention.

これら第1の二方弁14aと第3の二方弁8a及び第2の二方弁14bと第4の二方弁8bのそれぞれは、接続配管17a及び接続配管17bのそれぞれによって着脱自在に接続されている。   The first two-way valve 14a, the third two-way valve 8a, the second two-way valve 14b, and the fourth two-way valve 8b are detachably connected by the connection pipe 17a and the connection pipe 17b, respectively. Has been.

なお、本実施の形態1の第1の分岐管13a及び第1の二方弁14aに換えて、圧縮機1と四方弁2との間に例えば三方弁を直接設けてもよい。接続配管17aとの接続口が開閉可能な三方弁であれば、第1の分岐管13a及び第1の二方弁14aと同様の機能を果たす。また、第2の分岐管13b及び第2の二方弁14bに換えて、四方弁2とアキュームレータ6との間に例えば三方弁を直接設けてもよい。接続配管17bとの接続口が開閉可能な三方弁であれば、第2の分岐管13b及び第2の二方弁14bと同様の機能を果たす。
また、第3の二方弁8a及び第4の二方弁8bに換えて、レシーバ7に開閉可能な接続口を直接設けても良い。
In addition, instead of the first branch pipe 13a and the first two-way valve 14a of the first embodiment, for example, a three-way valve may be directly provided between the compressor 1 and the four-way valve 2. If the connection port to the connection pipe 17a is a three-way valve that can be opened and closed, the same function as that of the first branch pipe 13a and the first two-way valve 14a is achieved. Further, instead of the second branch pipe 13b and the second two-way valve 14b, for example, a three-way valve may be directly provided between the four-way valve 2 and the accumulator 6. If the connection port with the connection pipe 17b is a three-way valve that can be opened and closed, the same function as the second branch pipe 13b and the second two-way valve 14b is achieved.
Further, instead of the third two-way valve 8a and the fourth two-way valve 8b, a connection port that can be opened and closed may be directly provided in the receiver 7.

(使用冷媒)
本実施の形態1に係る冷凍サイクル装置100には、テトラフルオロプロペン(例えば2,3,3,3−テトラフルオロプロペン)とこのテトラフルオロプロペンよりも沸点が低いHFC冷媒(例えばHFC−32等)とを混合した可燃性の非共沸混合冷媒30を使用している。なお、テトラフルオロプロペンは地球温暖化係数(以下、GWPという)が4と低く、大気中に漏洩しても地球環境に与える影響は小さい。一方、HFC−32はGWPが550と高く、大気への漏洩が発生すると、地球環境に与える影響(温室化)が大きい特徴を有する。
(Used refrigerant)
In the refrigeration cycle apparatus 100 according to Embodiment 1, tetrafluoropropene (for example, 2,3,3,3-tetrafluoropropene) and an HFC refrigerant (for example, HFC-32) having a boiling point lower than that of tetrafluoropropene are used. And a combustible non-azeotropic refrigerant mixture 30 is used. Tetrafluoropropene has a low global warming potential (hereinafter referred to as GWP) of 4, and even if it leaks into the atmosphere, it has little impact on the global environment. On the other hand, HFC-32 has a high GWP of 550, and has a characteristic of having a great influence on the global environment (greenhouse) when leakage to the atmosphere occurs.

(冷媒充填方法)
本実施の形態1に係る冷凍サイクル装置100の冷媒充填方法について説明する。
始めに、あらかじめ安全な場所で可燃性の非共沸混合冷媒30が充填されたレシーバ7を用意する。このとき、第3の二方弁8a及び第4の二方弁8bは閉じられた状態となっている。次に、第1の二方弁14aと第3の二方弁8aとを接続配管17aで接続し、第2の二方弁14bと第4の二方弁8bとを接続配管17bで接続する。そして、第1の二方弁14a及び第2の二方弁14bを開く。次に、接続口9aに接続された前記真空ポンプ9によって、冷凍サイクル装置100の冷媒回路の内部を吸引する。そして、第4の二方弁8bを開き、この冷媒回路にレシーバ7内に充填されていた可燃性の非共沸混合冷媒30を充填する。
(Refrigerant filling method)
A refrigerant charging method of the refrigeration cycle apparatus 100 according to Embodiment 1 will be described.
First, a receiver 7 filled with a combustible non-azeotropic refrigerant mixture 30 in a safe place in advance is prepared. At this time, the third two-way valve 8a and the fourth two-way valve 8b are in a closed state. Next, the first two-way valve 14a and the third two-way valve 8a are connected by a connection pipe 17a, and the second two-way valve 14b and the fourth two-way valve 8b are connected by a connection pipe 17b. . Then, the first two-way valve 14a and the second two-way valve 14b are opened. Next, the inside of the refrigerant circuit of the refrigeration cycle apparatus 100 is sucked by the vacuum pump 9 connected to the connection port 9a. Then, the fourth two-way valve 8b is opened, and the refrigerant circuit is filled with the combustible non-azeotropic refrigerant mixture 30 filled in the receiver 7.

このように構成することにより、あらかじめ安全な場所でレシーバ7に非共沸混合冷媒30を充填することができるので、冷凍サイクル装置100の設置場所で非共沸混合冷媒30が漏洩することを防止できる。また、冷凍サイクル装置100の冷媒回路にレシーバ7を接続する際、第1の二方弁14a、第2の二方弁14b、第3の二方弁8a及び第4の二方弁8bが閉じられているので、冷凍サイクル装置100の設置場所で非共沸混合冷媒30が漏洩することを防止できる。また、第1の二方弁14a及び第2の二方弁14bを開き、第3の二方弁8a及び第4の二方弁8bが閉じた状態で、冷凍サイクル装置100の冷媒回路の内部を吸引できる。このため、従来のような接続配管17a及び接続配管17bの内部の空気を抜くための冷媒漏洩の可能性のある作業をする必要がない。したがって、冷凍サイクル装置100の冷媒回路に冷媒を充填する際、非共沸混合冷媒30が大気中に漏洩することを防止できる。このため、漏洩したHFC−32へ着火することを防止できる。また、GWPが高いHFC−32の冷媒漏れによる地球環境への影響も抑制できる。   With this configuration, the receiver 7 can be filled with the non-azeotropic refrigerant mixture 30 in a safe place in advance, so that the non-azeotropic refrigerant mixture 30 is prevented from leaking at the place where the refrigeration cycle apparatus 100 is installed. it can. Further, when the receiver 7 is connected to the refrigerant circuit of the refrigeration cycle apparatus 100, the first two-way valve 14a, the second two-way valve 14b, the third two-way valve 8a, and the fourth two-way valve 8b are closed. Therefore, it is possible to prevent the non-azeotropic refrigerant mixture 30 from leaking at the place where the refrigeration cycle apparatus 100 is installed. The first two-way valve 14a and the second two-way valve 14b are opened, and the third two-way valve 8a and the fourth two-way valve 8b are closed, and the inside of the refrigerant circuit of the refrigeration cycle apparatus 100 Can be sucked. For this reason, it is not necessary to perform the operation | work with the possibility of the refrigerant | coolant leakage for extracting the air inside the connection piping 17a and the connection piping 17b like the past. Therefore, when the refrigerant circuit of the refrigeration cycle apparatus 100 is filled with the refrigerant, the non-azeotropic mixed refrigerant 30 can be prevented from leaking into the atmosphere. For this reason, it is possible to prevent ignition of the leaked HFC-32. Moreover, the influence on the global environment by the refrigerant | coolant leak of HFC-32 with high GWP can also be suppressed.

(冷媒回収方法)
次に、本実施の形態1に係る冷凍サイクル装置100の冷媒回収方法について説明する。
図2は、本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図の冷媒回収方法を示す一例である。図2では、レシーバ7の外周部に外部冷却装置40が設けられている。
あらかじめ内部が吸引されたレシーバ7を用意する。このとき、第3の二方弁8a及び第4の二方弁8bは閉じられた状態となっている。次に、第1の二方弁14aと第3の二方弁8aとを接続配管17aで接続し、第2の二方弁14bと第4の二方弁8bとを接続配管17bで接続する。そして、第1の二方弁14a、第2の二方弁14b、第3の二方弁8a及び第4の二方弁8bを開き、冷凍サイクル装置100の冷媒回路とレシーバ7とを連通させる。
(Refrigerant recovery method)
Next, a refrigerant recovery method for the refrigeration cycle apparatus 100 according to Embodiment 1 will be described.
FIG. 2 is an example showing a refrigerant recovery method of the refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. In FIG. 2, an external cooling device 40 is provided on the outer periphery of the receiver 7.
A receiver 7 whose inside is sucked in advance is prepared. At this time, the third two-way valve 8a and the fourth two-way valve 8b are in a closed state. Next, the first two-way valve 14a and the third two-way valve 8a are connected by a connection pipe 17a, and the second two-way valve 14b and the fourth two-way valve 8b are connected by a connection pipe 17b. . Then, the first two-way valve 14a, the second two-way valve 14b, the third two-way valve 8a, and the fourth two-way valve 8b are opened, and the refrigerant circuit of the refrigeration cycle apparatus 100 and the receiver 7 are communicated. .

冷凍サイクル装置100の冷媒回路とレシーバ7とを連通させることにより、冷凍サイクル装置100の冷媒回路中の非共沸混合冷媒30がレシーバ7に流入する。次に、レシーバ7の外周部に設けられた外部冷却装置40によってレシーバ7を冷却し、レシーバ7に流入したガス状の非共沸混合冷媒30を凝縮液化させる。そして、冷凍サイクル装置100の冷媒回路中に充填されていたがレシーバ7に流入し終わると、第3の二方弁8a及び第4の二方弁8bを閉じる。その後、第3の二方弁8a及び第4の二方弁8bのそれぞれと接続配管17a及び接続配管17bのそれぞれを取り外すことにより、冷凍サイクル装置100の冷媒回路からレシーバ7を取り外して、非共沸混合冷媒30の回収を完了する。   By connecting the refrigerant circuit of the refrigeration cycle apparatus 100 and the receiver 7, the non-azeotropic refrigerant mixture 30 in the refrigerant circuit of the refrigeration cycle apparatus 100 flows into the receiver 7. Next, the receiver 7 is cooled by the external cooling device 40 provided on the outer periphery of the receiver 7, and the gaseous non-azeotropic refrigerant mixture 30 that has flowed into the receiver 7 is condensed and liquefied. When the refrigerant circuit of the refrigeration cycle apparatus 100 has been filled but has flowed into the receiver 7, the third two-way valve 8a and the fourth two-way valve 8b are closed. Thereafter, the receiver 7 is removed from the refrigerant circuit of the refrigeration cycle apparatus 100 by removing each of the third two-way valve 8a and the fourth two-way valve 8b and each of the connection pipe 17a and the connection pipe 17b. The recovery of the boiling mixed refrigerant 30 is completed.

なお、本実施の形態では冷凍サイクル装置100の冷媒回路中の非共沸混合冷媒30をレシーバ7に流入させた後にレシーバ7を冷却しているが、冷凍サイクル装置100の冷媒回路中の非共沸混合冷媒30をレシーバ7に流入させる前からレシーバ7の冷却を開始していてもよい。また、外部冷却装置40を、例えば接続配管17a及び接続配管17b等のレシーバ7以外の場所に設けてもよい。外部冷却装置40をレシーバ7に設けず、冷凍サイクル装置100の冷媒回路中の非共沸混合冷媒30をレシーバ7に回収することも可能である。   In the present embodiment, the non-azeotropic refrigerant mixture 30 in the refrigerant circuit of the refrigeration cycle apparatus 100 is cooled after flowing into the receiver 7, but the receiver 7 is cooled. The cooling of the receiver 7 may be started before the boiling mixed refrigerant 30 flows into the receiver 7. Moreover, you may provide the external cooling device 40 in places other than the receiver 7, such as the connection piping 17a and the connection piping 17b, for example. It is also possible to collect the non-azeotropic refrigerant mixture 30 in the refrigerant circuit of the refrigeration cycle apparatus 100 in the receiver 7 without providing the external cooling device 40 in the receiver 7.

このように構成することにより、第3の二方弁8a及び第4の二方弁8bを閉じた後、冷凍サイクル装置100の冷媒回路からレシーバを外すことができるので、冷凍サイクル装置100の冷媒回路から冷媒を回収する際、非共沸混合冷媒30が大気中に漏洩することを防止できる。このため、漏洩したHFC−32へ着火することを防止できる。また、GWPが高いHFC−32の冷媒漏れによる地球環境への影響も抑制できる。
また、レシーバ7を外部冷却装置40で冷却することにより、凝縮液化した冷媒をレシーバ7に回収することができる。
With this configuration, the receiver can be removed from the refrigerant circuit of the refrigeration cycle apparatus 100 after the third two-way valve 8a and the fourth two-way valve 8b are closed. When recovering the refrigerant from the circuit, the non-azeotropic refrigerant mixture 30 can be prevented from leaking into the atmosphere. For this reason, it is possible to prevent ignition of the leaked HFC-32. Moreover, the influence on the global environment by the refrigerant | coolant leak of HFC-32 with high GWP can also be suppressed.
In addition, by cooling the receiver 7 with the external cooling device 40, the condensed and liquefied refrigerant can be collected in the receiver 7.

なお、本実施の形態1では、第1の分岐管13a、第1の二方弁14a、接続配管17a及び第3の二方弁8aからなる配管経路と、第2の分岐管13b、第2の二方弁14b、接続配管17b及び第4の二方弁8bからなる配管経路の2つの配管経路で冷凍サイクル装置100の冷媒回路とレシーバ7とを接続したが、どちらか一方の配管経路のみでも本発明を実施することは可能である。また、第1の分岐管13a及び第2の分岐管13bと冷凍サイクル装置100の冷媒回路との接続位置も、本実施の形態の位置に限定されない。   In the first embodiment, a piping path including the first branch pipe 13a, the first two-way valve 14a, the connection pipe 17a, and the third two-way valve 8a, the second branch pipe 13b, and the second The refrigerant circuit of the refrigeration cycle apparatus 100 and the receiver 7 are connected by two piping paths including a two-way valve 14b, a connecting pipe 17b, and a fourth two-way valve 8b, but only one of the piping paths However, it is possible to implement the present invention. Further, the connection positions of the first branch pipe 13a and the second branch pipe 13b and the refrigerant circuit of the refrigeration cycle apparatus 100 are not limited to the positions of the present embodiment.

実施の形態2.
冷凍サイクル装置100の冷媒回収作業では、非共沸混合冷媒30のうち、可燃性で大気への漏洩が発生すると地球環境に与える影響(温室化)が大きいHFC−32を重点的に回収してもよい。
Embodiment 2. FIG.
In the refrigerant recovery operation of the refrigeration cycle apparatus 100, the non-azeotropic refrigerant mixture 30 is focused on recovering HFC-32 that is flammable and has a great impact on the global environment (greenhouse) when leakage to the atmosphere occurs. Also good.

図3は、本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図の一例である。また、図4は、この冷凍サイクル装置の冷媒回収を行う前の状態を示す冷媒回路図の一例である。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。   FIG. 3 is an example of a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. FIG. 4 is an example of a refrigerant circuit diagram showing a state before the refrigerant recovery of the refrigeration cycle apparatus. In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.

(構成)
本実施の形態2に係る冷凍サイクル装置100には、実施の形態1の冷凍サイクル装置100に毛細管15及び高低圧熱交換器16が設けられている。ここで、毛細管15が本発明の冷媒流量調整部に相当する。毛細管15は、本発明の分岐管に相当する第1の分岐管13aに設けられており、レシーバ7に流入する冷媒の量を調整する機能を有する。高低圧熱交換器16は、第1の分岐管13aの毛細管15と第1の二方弁14aとの間に設けられている。この高低圧熱交換器16では、第1の分岐管13aを流れる高温のガス状冷媒とアキュームレータ6から圧縮機1へ流れる低温の冷媒とが熱交換を行う。本実施の形態2に係る冷凍サイクル装置100も、テトラフルオロプロペン(例えば2,3,3,3−テトラフルオロプロペン)とこのテトラフルオロプロペンよりも沸点が低いHFC冷媒(例えばHFC−32等)とを混合した可燃性の非共沸混合冷媒を使用している。
(Constitution)
In the refrigeration cycle apparatus 100 according to the second embodiment, the capillary 15 and the high / low pressure heat exchanger 16 are provided in the refrigeration cycle apparatus 100 according to the first embodiment. Here, the capillary 15 corresponds to the refrigerant flow rate adjusting unit of the present invention. The capillary tube 15 is provided in the first branch tube 13 a corresponding to the branch tube of the present invention, and has a function of adjusting the amount of the refrigerant flowing into the receiver 7. The high / low pressure heat exchanger 16 is provided between the capillary 15 of the first branch pipe 13a and the first two-way valve 14a. In the high-low pressure heat exchanger 16, the high-temperature gaseous refrigerant flowing through the first branch pipe 13 a and the low-temperature refrigerant flowing from the accumulator 6 to the compressor 1 perform heat exchange. The refrigeration cycle apparatus 100 according to Embodiment 2 also includes tetrafluoropropene (for example, 2,3,3,3-tetrafluoropropene) and an HFC refrigerant (for example, HFC-32) having a boiling point lower than that of tetrafluoropropene. A flammable non-azeotropic refrigerant mixture is used.

(冷媒充填方法)
本実施の形態2に係る冷凍サイクル装置100の冷媒充填方法について説明する。
始めに、あらかじめ安全な場所で可燃性の非共沸混合冷媒30(液状)が充填されたレシーバ7を用意する。このとき、第3の二方弁8a及び第4の二方弁8bは閉じられた状態となっている。次に、第1の二方弁14aと第3の二方弁8aとを接続配管17aで接続し、第2の二方弁14bと第4の二方弁8bとを接続配管17bで接続する。そして、第1の二方弁14a及び第2の二方弁14bを開く。次に、接続口9aに接続された前記真空ポンプ9によって、冷凍サイクル装置100の冷媒回路の内部を吸引する。そして、第4の二方弁8bを開き、この冷媒回路にレシーバ7内に充填されていた可燃性の非共沸混合冷媒30(液状)を充填する。
(Refrigerant filling method)
A refrigerant charging method of the refrigeration cycle apparatus 100 according to Embodiment 2 will be described.
First, a receiver 7 filled with a flammable non-azeotropic refrigerant mixture 30 (liquid) in a safe place is prepared in advance. At this time, the third two-way valve 8a and the fourth two-way valve 8b are in a closed state. Next, the first two-way valve 14a and the third two-way valve 8a are connected by a connection pipe 17a, and the second two-way valve 14b and the fourth two-way valve 8b are connected by a connection pipe 17b. . Then, the first two-way valve 14a and the second two-way valve 14b are opened. Next, the inside of the refrigerant circuit of the refrigeration cycle apparatus 100 is sucked by the vacuum pump 9 connected to the connection port 9a. Then, the fourth two-way valve 8b is opened, and the refrigerant circuit is filled with the combustible non-azeotropic refrigerant mixture 30 (liquid) filled in the receiver 7.

このように構成することにより、あらかじめ安全な場所でレシーバ7に非共沸混合冷媒30を充填することができるので、冷凍サイクル装置100の設置場所で非共沸混合冷媒30が漏洩することを防止できる。また、冷凍サイクル装置100の冷媒回路にレシーバ7を接続する際、第1の二方弁14a、第2の二方弁14b、第3の二方弁8a及び第4の二方弁8bが閉じられているので、冷凍サイクル装置100の設置場所で非共沸混合冷媒30が漏洩することを防止できる。また、第1の二方弁14a及び第2の二方弁14bを開き、第3の二方弁8a及び第4の二方弁8bが閉じた状態で、冷凍サイクル装置100の冷媒回路の内部を吸引できる。このため、従来のような接続配管17a及び接続配管17bの内部の空気を抜くための冷媒漏洩の可能性のある作業をする必要がない。したがって、冷凍サイクル装置100の冷媒回路に冷媒を充填する際、非共沸混合冷媒30が大気中に漏洩することを防止できる。このため、漏洩したHFC−32へ着火することを防止できる。また、GWPが高いHFC−32の冷媒漏れによる地球環境への影響も抑制できる。   With this configuration, the receiver 7 can be filled with the non-azeotropic refrigerant mixture 30 in a safe place in advance, so that the non-azeotropic refrigerant mixture 30 is prevented from leaking at the place where the refrigeration cycle apparatus 100 is installed. it can. Further, when the receiver 7 is connected to the refrigerant circuit of the refrigeration cycle apparatus 100, the first two-way valve 14a, the second two-way valve 14b, the third two-way valve 8a, and the fourth two-way valve 8b are closed. Therefore, it is possible to prevent the non-azeotropic refrigerant mixture 30 from leaking at the place where the refrigeration cycle apparatus 100 is installed. The first two-way valve 14a and the second two-way valve 14b are opened, and the third two-way valve 8a and the fourth two-way valve 8b are closed, and the inside of the refrigerant circuit of the refrigeration cycle apparatus 100 Can be sucked. For this reason, it is not necessary to perform the operation | work with the possibility of the refrigerant | coolant leakage for extracting the air inside the connection piping 17a and the connection piping 17b like the past. Therefore, when the refrigerant circuit of the refrigeration cycle apparatus 100 is filled with the refrigerant, the non-azeotropic mixed refrigerant 30 can be prevented from leaking into the atmosphere. For this reason, it is possible to prevent ignition of the leaked HFC-32. Moreover, the influence on the global environment by the refrigerant | coolant leak of HFC-32 with high GWP can also be suppressed.

(冷媒回収方法)
次に、本実施の形態1に係る冷凍サイクル装置100の冷媒回収方法について説明する。
圧縮機1が起動される前の状態においては、余剰な非共沸混合冷媒30がアキュームレータ6の内部に貯留された状態となっている。まず、第1の二方弁14a及び第3の二方弁8aを開き、第2の二方弁14b及び第4の二方弁8bを閉じた状態で、圧縮機1を起動させる。圧縮機1を起動すると、アキュームレータ6の圧力が低下する。アキュームレータ6の圧力が低下すると、非共沸混合冷媒30(液状)がアキュームレータ6の内部で蒸発する。このとき、沸点の低いHFC−32の蒸発量が多くなるため、圧縮機1は、HFC−32の比率が高い非共沸混合冷媒30(以下、HFC−32リッチな非共沸混合冷媒32という)を吸入することとなる。
(Refrigerant recovery method)
Next, a refrigerant recovery method for the refrigeration cycle apparatus 100 according to Embodiment 1 will be described.
In a state before the compressor 1 is started, an excess non-azeotropic refrigerant mixture 30 is stored in the accumulator 6. First, the compressor 1 is started with the first two-way valve 14a and the third two-way valve 8a opened and the second two-way valve 14b and the fourth two-way valve 8b closed. When the compressor 1 is started, the pressure of the accumulator 6 decreases. When the pressure of the accumulator 6 decreases, the non-azeotropic refrigerant mixture 30 (liquid) evaporates inside the accumulator 6. At this time, since the amount of evaporation of HFC-32 having a low boiling point increases, the compressor 1 has a non-azeotropic refrigerant mixture 30 (hereinafter referred to as HFC-32-rich non-azeotropic refrigerant mixture 32) having a high HFC-32 ratio. ) Will be inhaled.

圧縮機1に吸入されたHFC−32リッチな非共沸混合冷媒32は圧縮機1より圧縮され、高温高圧なガス状冷媒となって吐出される。高温高圧となったHFC−32リッチな非共沸混合冷媒32の一部は、四方弁2を通って、凝縮器として機能する室外熱交換器5に流入する。そして、室外熱交換器5で室外空気に放熱しながら凝縮液化し、HFC−32リッチな非共沸混合冷媒32は高圧液状冷媒となる。室外熱交換器5で高圧液状の冷媒となったHFC−32リッチな非共沸混合冷媒32は、絞り装置4に流入する。そして、高圧液状の冷媒となったHFC−32リッチな非共沸混合冷媒32は絞り装置4で絞られて膨張(減圧)し、乾き度0.2〜0.3の低温低圧冷媒(気液二相状態)になる。   The HFC-32 rich non-azeotropic refrigerant mixture 32 sucked into the compressor 1 is compressed by the compressor 1 and discharged as a high-temperature and high-pressure gaseous refrigerant. A part of the HFC-32 rich non-azeotropic refrigerant mixture 32 that has become high temperature and pressure passes through the four-way valve 2 and flows into the outdoor heat exchanger 5 that functions as a condenser. Then, the outdoor heat exchanger 5 condenses and liquefies while dissipating heat to the outdoor air, and the HFC-32 rich non-azeotropic mixed refrigerant 32 becomes a high-pressure liquid refrigerant. The HFC-32 rich non-azeotropic refrigerant mixture 32 that has become a high-pressure liquid refrigerant in the outdoor heat exchanger 5 flows into the expansion device 4. The HFC-32 rich non-azeotropic refrigerant mixture 32 that has become a high-pressure liquid refrigerant is squeezed and expanded (depressurized) by the expansion device 4, and a low-temperature low-pressure refrigerant (gas-liquid) having a dryness of 0.2 to 0.3. Two-phase state).

絞り装置4で低温低圧の気液二相状態となったHFC−32リッチな非共沸混合冷媒32は、蒸発器として機能する室内熱交換器3に流入する。そして、室内熱交換器3で室内空気から吸熱しながら、HFC−32リッチな非共沸混合冷媒32は乾き度0.9〜1.0の低温低圧冷媒(気液二相状態)となる。室内熱交換器3で低温低圧冷媒となったHFC−32リッチな非共沸混合冷媒32は、四方弁2を通過する。四方弁2から流出した低温低圧でHFC−32リッチな非共沸混合冷媒32の一部は、アキュームレータ6に流入し、アキュームレータ6でガス状冷媒と液状冷媒とに分離される。そして、アキュームレータ6内のガス状となったHFC−32リッチな非共沸混合冷媒32は、高低圧熱交換器16に流入する。高低圧熱交換器16に流入したHFC−32リッチな非共沸混合冷媒32は、第1の分岐管13aを流れる高温高圧なHFC−32リッチな非共沸混合冷媒32から吸熱し、圧縮機1に吸引される。   The HFC-32 rich non-azeotropic refrigerant mixture 32 that has become a low-temperature low-pressure gas-liquid two-phase state in the expansion device 4 flows into the indoor heat exchanger 3 that functions as an evaporator. Then, while the indoor heat exchanger 3 absorbs heat from room air, the HFC-32 rich non-azeotropic refrigerant mixture 32 becomes a low-temperature low-pressure refrigerant (gas-liquid two-phase state) with a dryness of 0.9 to 1.0. The HFC-32 rich non-azeotropic refrigerant mixture 32 that has become a low-temperature low-pressure refrigerant in the indoor heat exchanger 3 passes through the four-way valve 2. A part of the low-temperature, low-pressure, HFC-32 rich non-azeotropic refrigerant mixture 32 flowing out of the four-way valve 2 flows into the accumulator 6, and is separated into a gaseous refrigerant and a liquid refrigerant by the accumulator 6. Then, the HFC-32 rich non-azeotropic mixed refrigerant 32 that has become gaseous in the accumulator 6 flows into the high-low pressure heat exchanger 16. The HFC-32 rich non-azeotropic mixed refrigerant 32 flowing into the high-low pressure heat exchanger 16 absorbs heat from the high-temperature high-pressure HFC-32 rich non-azeotropic mixed refrigerant 32 flowing through the first branch pipe 13a, and the compressor 1 is aspirated.

一方、圧縮機1で高温なガス状となったHFC−32リッチな非共沸混合冷媒32の残りの一部は、第1の分岐管13aに流入する。このHFC−32リッチな非共沸混合冷媒32は、毛細管15を通過する際に流量が調整され、高低圧熱交換器16に流入する。高低圧熱交換器16に流入した高温なHFC−32リッチな非共沸混合冷媒32(ガス状)は、圧縮機1に吸入される低温なHFC−32リッチな非共沸混合冷媒32(ガス状)に放熱し、低温で液状のHFC−32リッチな非共沸混合冷媒32となる。高低圧熱交換器16で低温となった液状のHFC−32リッチな非共沸混合冷媒32はレシーバ7に流入し、レシーバ7に貯留される。   On the other hand, the remaining part of the HFC-32 rich non-azeotropic refrigerant mixture 32 that has become a high-temperature gas in the compressor 1 flows into the first branch pipe 13a. The HFC-32 rich non-azeotropic refrigerant mixture 32 is adjusted in flow rate when passing through the capillary tube 15 and flows into the high-low pressure heat exchanger 16. The high-temperature HFC-32 rich non-azeotropic mixed refrigerant 32 (gaseous) flowing into the high-low pressure heat exchanger 16 is converted into the low-temperature HFC-32 rich non-azeotropic mixed refrigerant 32 (gas) sucked into the compressor 1. To form a non-azeotropic refrigerant 32 rich in HFC-32 that is liquid at low temperatures. The liquid HFC-32 rich non-azeotropic refrigerant mixture 32 that has become low temperature in the high / low pressure heat exchanger 16 flows into the receiver 7 and is stored in the receiver 7.

圧縮機1の運転を継続していると、沸点の高いテトラフルオロプロペンも蒸発し始め、冷凍サイクル装置100を循環する。上述のように沸点の低いHFC−32はレシーバ7に貯留されていくため、冷凍サイクル装置100を巡回する冷媒は、徐々にテトラフルオロプロペンの比率が高い状態(以下、テトラフルオロプロペンリッチな非共沸混合冷媒という)となる。   If the operation of the compressor 1 is continued, tetrafluoropropene having a high boiling point also starts to evaporate and circulates through the refrigeration cycle apparatus 100. Since the HFC-32 having a low boiling point is stored in the receiver 7 as described above, the refrigerant circulating in the refrigeration cycle apparatus 100 is in a state where the ratio of tetrafluoropropene is gradually high (hereinafter, tetrafluoropropene-rich non-covalent Called boiling mixed refrigerant).

冷凍サイクル装置100を巡回する冷媒がテトラフルオロプロペンリッチな非共沸混合冷媒となった後、第1の二方弁14a及び第3の二方弁8aを閉じ、圧縮機1を停止させる。その後、第3の二方弁8a及び第4の二方弁8bのそれぞれと接続配管17a及び接続配管17bのそれぞれを取り外すことにより、冷凍サイクル装置100の冷媒回路からレシーバ7を取り外して、HFC−32リッチな非共沸混合冷媒32の回収を完了する。   After the refrigerant circulating in the refrigeration cycle apparatus 100 becomes a tetrafluoropropene-rich non-azeotropic refrigerant mixture, the first two-way valve 14a and the third two-way valve 8a are closed, and the compressor 1 is stopped. Then, the receiver 7 is removed from the refrigerant circuit of the refrigeration cycle apparatus 100 by removing each of the third two-way valve 8a and the fourth two-way valve 8b and each of the connection pipe 17a and the connection pipe 17b. The recovery of the 32-rich non-azeotropic refrigerant mixture 32 is completed.

なお、冷凍サイクル装置100の冷媒回路に残ったテトラフルオロプロペンリッチな非共沸混合冷媒は、例えば、接続口9aに従来の回収装置を接続して回収する。また、新たなレシーバ7を冷凍サイクル装置100の冷媒回路に接続し、実施の形態1に示す冷媒回収方法によって、冷凍サイクル装置100の冷媒回路に残ったテトラフルオロプロペンリッチな非共沸混合冷媒を回収してもよい。   The tetrafluoropropene-rich non-azeotropic mixed refrigerant remaining in the refrigerant circuit of the refrigeration cycle apparatus 100 is recovered by connecting a conventional recovery device to the connection port 9a, for example. Further, a new receiver 7 is connected to the refrigerant circuit of the refrigeration cycle apparatus 100, and the tetrafluoropropene-rich non-azeotropic mixed refrigerant remaining in the refrigerant circuit of the refrigeration cycle apparatus 100 is removed by the refrigerant recovery method shown in the first embodiment. It may be recovered.

このような構成にすることにより、GWPの高いHFC−32リッチな非共沸混合冷媒を重点的にレシーバ7へ回収することができる。このため、GWPの低いテトラフルオロプロペンリッチな非共沸混合冷媒は、従来と同様の方法で冷凍サイクル装置100の冷媒回路から回収することができる。   By adopting such a configuration, it is possible to collect the HFC-32 rich non-azeotropic refrigerant mixture having a high GWP mainly to the receiver 7. For this reason, the tetrafluoropropene-rich non-azeotropic refrigerant mixture having a low GWP can be recovered from the refrigerant circuit of the refrigeration cycle apparatus 100 by a method similar to the conventional method.

なお、本実施の形態2では、第1の分岐管13a、毛細管15、高低圧熱交換器16、第1の二方弁14a、接続配管17a及び第3の二方弁8aからなる配管経路と、第2の分岐管13b、第2の二方弁14b、接続配管17b及び第4の二方弁8bからなる配管経路の2つの配管経路で冷凍サイクル装置100の冷媒回路とレシーバ7とを接続したが、第1の分岐管13a、毛細管15、高低圧熱交換器16、第1の二方弁14a、接続配管17a及び第3の二方弁8aからなる配管経路のみでも本発明を実施することは可能である。   In the second embodiment, a pipe path including the first branch pipe 13a, the capillary tube 15, the high / low pressure heat exchanger 16, the first two-way valve 14a, the connection pipe 17a, and the third two-way valve 8a The refrigerant circuit of the refrigeration cycle apparatus 100 and the receiver 7 are connected by two pipe paths including a second branch pipe 13b, a second two-way valve 14b, a connection pipe 17b, and a fourth two-way valve 8b. However, the present invention is carried out only by a piping path including the first branch pipe 13a, the capillary tube 15, the high / low pressure heat exchanger 16, the first two-way valve 14a, the connection pipe 17a, and the third two-way valve 8a. It is possible.

本発明の図1ないし図4に示す冷媒回路図ではレシーバ7が回路の一部を形成する構成図である。しかしながら、図1のように冷媒回路側に設けられた冷媒回路側開閉装置は、圧縮機1と凝縮器5との間に接続された第1の冷媒回路側開閉装置14a(第1の二方弁14a)、及び蒸発器3と圧縮機1との間に接続された第2の冷媒回路側開閉装置14b(第2の二方弁14b)を備えており、一方レシーバ側に設けられたレシーバ側開閉装置は、第1の二方弁14aとの間に配管接続部を有し、この接続部は冷媒漏れ対策としてのシールと接続手段であるボルトナット等にて固定されているが、この接続部をはずすことにより着脱自在に接続される。この第1のレシーバ側開閉装置8a(第3の二方弁8a)の接続構造と同じ接続構造にて、第2の冷媒回路側開閉装置14b(第2の二方弁14b)と着脱自在に接続される第2のレシーバ側開閉装置8b(第4の二方弁8b)を備えている。この冷媒回路図構成において、レシーバ7が冷媒を冷媒回路から回収した後では、圧縮機1、室外熱交換器5、絞り装置4及び室内熱交換器3、アキュームレータ6、四方弁2が冷媒配管で順次接続され残されることになる。しかしながら冷媒回路には真空源と接続可能な第1の接続口(接続口9a)と、冷媒回路に配置され、冷媒回路にレシーバ7を着脱する際に開閉可能な第1の冷媒回路側開閉装置14a(第1の二方弁14a)を有する第2の接続口と、冷媒回路の第2の接続口とは異なる位置に配置され、レシーバ7に接続可能であるとともに、レシーバ7との間に設けられレシーバ7を冷媒回路から着脱する際に開閉する第2の冷媒回路側開閉装置14b(第2の二方弁14b)を有する第3の接続口と、が残されたままになる。この様にレシーバが除かれた状態では、いずれの接続口に設けられた開閉装置をすべて閉鎖しておくと良い。   In the refrigerant circuit diagram shown in FIGS. 1 to 4 of the present invention, the receiver 7 forms a part of the circuit. However, the refrigerant circuit side switchgear provided on the refrigerant circuit side as shown in FIG. 1 is a first refrigerant circuit side switchgear 14a (first two sides) connected between the compressor 1 and the condenser 5. A valve 14a) and a second refrigerant circuit side opening / closing device 14b (second two-way valve 14b) connected between the evaporator 3 and the compressor 1, and a receiver provided on the one receiver side The side opening / closing device has a pipe connection part between the first two-way valve 14a, and this connection part is fixed with a seal as a countermeasure against refrigerant leakage and a bolt / nut as a connection means. It is detachably connected by removing the connection part. With the same connection structure as the connection structure of the first receiver side opening / closing device 8a (third two-way valve 8a), the second refrigerant circuit side opening / closing device 14b (second two-way valve 14b) is detachable. A second receiver-side opening / closing device 8b (fourth two-way valve 8b) to be connected is provided. In this refrigerant circuit diagram configuration, after the receiver 7 collects the refrigerant from the refrigerant circuit, the compressor 1, the outdoor heat exchanger 5, the expansion device 4, the indoor heat exchanger 3, the accumulator 6, and the four-way valve 2 are refrigerant pipes. Sequentially connected and left. However, the refrigerant circuit has a first connection port (connection port 9a) that can be connected to a vacuum source, and a first refrigerant circuit side opening / closing device that is disposed in the refrigerant circuit and can be opened and closed when the receiver 7 is attached to and detached from the refrigerant circuit. 14a (first two-way valve 14a) and the second connection port and the second connection port of the refrigerant circuit are arranged at different positions, can be connected to the receiver 7, and between the receiver 7 The third connection port having the second refrigerant circuit side opening / closing device 14b (second two-way valve 14b) provided and opened and closed when the receiver 7 is attached to and detached from the refrigerant circuit remains. In such a state where the receiver is removed, it is preferable to close all the opening / closing devices provided in any of the connection ports.

1 圧縮機、2 四方弁、3 室内熱交換器、4 絞り装置、5 室外熱交換器、6 アキュームレータ、7 レシーバ、8a 第3の二方弁、8b 第4の二方弁、9 真空ポンプ、9a 接続口、13a 第1の分岐管、13b 第2の分岐管、14a 第1の二方弁、14b 第2の二方弁、15 毛細管、16 高低圧熱交換器、17a 接続配管、17b 接続配管、30 非共沸混合冷媒、32 HFC−32リッチな非共沸混合冷媒、40 外部冷却装置、100 冷凍サイクル装置。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Indoor heat exchanger, 4 Throttling device, 5 Outdoor heat exchanger, 6 Accumulator, 7 Receiver, 8a 3rd two way valve, 8b 4th two way valve, 9 Vacuum pump, 9a connection port, 13a first branch pipe, 13b second branch pipe, 14a first two-way valve, 14b second two-way valve, 15 capillary, 16 high / low pressure heat exchanger, 17a connection pipe, 17b connection Piping, 30 non-azeotropic refrigerant mixture, 32 HFC-32 rich non-azeotropic refrigerant mixture, 40 external cooling device, 100 refrigeration cycle device.

Claims (3)

圧縮機、凝縮器、絞り装置、蒸発器及びアキュームレータが冷媒配管で接続され、テトラフルオロプロペンと該テトラフルオロプロペンよりも沸点の低いHFC系冷媒とを含む非共沸混合冷媒が循環する冷媒回路と、
一方の端部が前記圧縮機と前記凝縮器との間に接続された分岐管と、
該分岐管の他方の端部に接続された第1の冷媒回路側開閉装置と、
前記分岐管に設けられた冷媒流量調整部と、
該冷媒流量調整部と第1の冷媒回路側開閉装置との間に設けられ、前記アキュームレータと前記圧縮機との間を流れる前記非共沸混合冷媒と前記分岐管を流れる前記非共沸混合冷媒とが熱交換をする高低圧熱交換器と、
前記第1の冷媒回路側開閉装置と着脱自在に接続される第1のレシーバ側開閉装置を有するレシーバと、
該冷媒回路に設けられ、真空源と接続可能な接続口と、
を備え
前記非共沸混合冷媒が充填されていない状態で前記冷媒回路を設置後、前記冷媒回路の設置場所において、
前記非共沸混合冷媒が貯留され前記第1のレシーバ側開閉装置が閉状態の前記レシーバを、閉状態の前記第1の冷媒回路側開閉装置と前記第1のレシーバ側開閉装置とを接続することにより前記冷媒回路に接続し、
前記第1の冷媒回路側開閉装置を開いて、前記接続口に接続された真空源で前記冷媒回路の内部を吸引し、
前記第1のレシーバ側開閉装置を開いて、前記レシーバに貯留された前記非共沸混合冷媒を前記冷媒回路に充填することを特徴とする冷凍サイクル装置。
A refrigerant circuit in which a compressor, a condenser, a throttling device, an evaporator, and an accumulator are connected by a refrigerant pipe, and a non-azeotropic mixed refrigerant containing tetrafluoropropene and an HFC refrigerant having a boiling point lower than that of the tetrafluoropropene is circulated; ,
A branch pipe having one end connected between the compressor and the condenser;
A first refrigerant circuit side opening / closing device connected to the other end of the branch pipe;
A refrigerant flow rate adjusting portion provided in the branch pipe;
The non-azeotropic mixed refrigerant flowing between the accumulator and the compressor, and the non-azeotropic mixed refrigerant flowing between the branch pipes, provided between the refrigerant flow rate adjusting unit and the first refrigerant circuit side opening / closing device. A high and low pressure heat exchanger that exchanges heat with
A receiver having a first receiver-side opening / closing device detachably connected to the first refrigerant circuit-side opening / closing device;
A connection port provided in the refrigerant circuit and connectable to a vacuum source;
Equipped with a,
After installing the refrigerant circuit in a state where the non-azeotropic refrigerant mixture is not filled, at the installation location of the refrigerant circuit,
The receiver in which the non-azeotropic refrigerant mixture is stored and the first receiver side opening / closing device is closed is connected to the first refrigerant circuit side opening / closing device in the closed state and the first receiver side opening / closing device. Connected to the refrigerant circuit by
Open the first refrigerant circuit side opening and closing device, suck the inside of the refrigerant circuit with a vacuum source connected to the connection port,
The refrigeration cycle apparatus, wherein the first receiver-side opening / closing device is opened, and the refrigerant circuit is filled with the non-azeotropic refrigerant mixture stored in the receiver .
圧縮機、凝縮器、絞り装置、蒸発器及びアキュームレータが冷媒配管で接続され、テトラフルオロプロペンと該テトラフルオロプロペンよりも沸点の低いHFC系冷媒とを含む非共沸混合冷媒が循環する冷媒回路と、
一方の端部が前記圧縮機と前記凝縮器との間に接続された分岐管と、
該分岐管の他方の端部に接続された第1の冷媒回路側開閉装置と、
前記分岐管に設けられた冷媒流量調整部と、
該冷媒流量調整部と第1の冷媒回路側開閉装置との間に設けられ、前記アキュームレータと前記圧縮機との間を流れる前記非共沸混合冷媒と前記分岐管を流れる前記非共沸混合冷媒とが熱交換をする高低圧熱交換器と、
前記第1の冷媒回路側開閉装置と着脱自在に接続される第1のレシーバ側開閉装置を有するレシーバと、
を備えた冷凍サイクル装置の冷媒回収方法であって、
前記第1の冷媒回路側開閉装置及び前記第1のレシーバ側開閉装置を開き、前記圧縮機を起動させ、前記アキュームレータの内部のガス状の前記非共沸混合冷媒を前記分岐管に流入させる工程と、
前記分岐管に設けられた前記高低圧熱交換器で凝縮液化された前記非共沸混合冷媒を前記レシーバに貯留する工程と、
少なくとも前記第1のレシーバ側開閉装置を閉じ、前記冷媒回路側開閉装置と前記レシーバ側開閉装置とを外して前記非共沸混合冷媒を回収する工程と、
前記レシーバを外部冷却装置で冷却する工程と、
を有することを特徴とする冷凍サイクル装置の冷媒回収方法。
A refrigerant circuit in which a compressor, a condenser, a throttling device, an evaporator, and an accumulator are connected by a refrigerant pipe, and a non-azeotropic mixed refrigerant containing tetrafluoropropene and an HFC refrigerant having a boiling point lower than that of the tetrafluoropropene is circulated; ,
A branch pipe having one end connected between the compressor and the condenser;
A first refrigerant circuit side opening / closing device connected to the other end of the branch pipe;
A refrigerant flow rate adjusting portion provided in the branch pipe;
The non-azeotropic mixed refrigerant flowing between the accumulator and the compressor, and the non-azeotropic mixed refrigerant flowing between the branch pipes, provided between the refrigerant flow rate adjusting unit and the first refrigerant circuit side opening / closing device. A high and low pressure heat exchanger that exchanges heat with
A receiver having a first receiver-side opening / closing device detachably connected to the first refrigerant circuit-side opening / closing device;
A refrigerant recovery method for a refrigeration cycle apparatus comprising:
Opening the first refrigerant circuit side opening / closing device and the first receiver side opening / closing device, starting the compressor, and allowing the gaseous non-azeotropic mixed refrigerant inside the accumulator to flow into the branch pipe When,
Storing the non-azeotropic refrigerant mixture condensed and liquefied in the high-low pressure heat exchanger provided in the branch pipe in the receiver;
Closing at least the first receiver-side switchgear, removing the refrigerant circuit-side switchgear and the receiver-side switchgear, and collecting the non-azeotropic refrigerant mixture;
Cooling the receiver with an external cooling device;
A refrigerant recovery method for a refrigeration cycle apparatus, comprising:
圧縮機、凝縮器、絞り装置、蒸発器及びアキュームレータが冷媒配管で接続され、テトラフルオロプロペンと該テトラフルオロプロペンよりも沸点の低いHFC系冷媒とを含む非共沸混合冷媒が循環する冷媒回路と、
一方の端部が前記圧縮機と前記凝縮器との間に接続された分岐管と、
該分岐管の他方の端部に接続され、レシーバと接続可能な第1の冷媒回路側開閉装置と、
前記分岐管に設けられた冷媒流量調整部と、
該冷媒流量調整部と第1の冷媒回路側開閉装置との間に設けられ、前記アキュームレータと前記圧縮機との間を流れる前記非共沸混合冷媒と前記分岐管を流れる前記非共沸混合冷媒とが熱交換をする高低圧熱交換器と、
該冷媒回路に設けられ、真空源と接続可能な接続口と、
を備え
前記非共沸混合冷媒が充填されていない状態で前記冷媒回路を設置後、前記冷媒回路の設置場所において、
閉状態の前記第1の冷媒回路側開閉装置とレシーバに設けられた閉状態の第1のレシーバ側開閉装置とを接続することにより、前記非共沸混合冷媒が貯留された前記レシーバを前記冷媒回路に接続し、
前記第1の冷媒回路側開閉装置を開いて、前記接続口に接続された真空源で前記冷媒回路の内部を吸引し、
前記第1のレシーバ側開閉装置を開いて、前記レシーバに貯留された前記非共沸混合冷媒を前記冷媒回路に充填することを特徴とする冷凍サイクル装置。
A refrigerant circuit in which a compressor, a condenser, a throttling device, an evaporator, and an accumulator are connected by a refrigerant pipe, and a non-azeotropic mixed refrigerant containing tetrafluoropropene and an HFC refrigerant having a boiling point lower than that of the tetrafluoropropene is circulated; ,
A branch pipe having one end connected between the compressor and the condenser;
A first refrigerant circuit side opening / closing device connected to the other end of the branch pipe and connectable to a receiver;
A refrigerant flow rate adjusting portion provided in the branch pipe;
The non-azeotropic mixed refrigerant flowing between the accumulator and the compressor, and the non-azeotropic mixed refrigerant flowing between the branch pipes, provided between the refrigerant flow rate adjusting unit and the first refrigerant circuit side opening / closing device. A high and low pressure heat exchanger that exchanges heat with
A connection port provided in the refrigerant circuit and connectable to a vacuum source;
Equipped with a,
After installing the refrigerant circuit in a state where the non-azeotropic refrigerant mixture is not filled, at the installation location of the refrigerant circuit,
By connecting the first refrigerant circuit side opening / closing device in the closed state and the first receiver side opening / closing device in the closed state provided in the receiver, the receiver in which the non-azeotropic refrigerant mixture is stored is used as the refrigerant. Connected to the circuit,
Open the first refrigerant circuit side opening and closing device, suck the inside of the refrigerant circuit with a vacuum source connected to the connection port,
The refrigeration cycle apparatus, wherein the first receiver-side opening / closing device is opened, and the refrigerant circuit is filled with the non-azeotropic refrigerant mixture stored in the receiver .
JP2011241130A 2011-11-02 2011-11-02 Refrigeration cycle apparatus and refrigerant recovery method for refrigeration cycle apparatus Expired - Fee Related JP5430634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011241130A JP5430634B2 (en) 2011-11-02 2011-11-02 Refrigeration cycle apparatus and refrigerant recovery method for refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011241130A JP5430634B2 (en) 2011-11-02 2011-11-02 Refrigeration cycle apparatus and refrigerant recovery method for refrigeration cycle apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008160318A Division JP4860668B2 (en) 2008-06-19 2008-06-19 Refrigeration cycle apparatus, refrigerant charging method and refrigerant recovery method for refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2012021770A JP2012021770A (en) 2012-02-02
JP5430634B2 true JP5430634B2 (en) 2014-03-05

Family

ID=45776182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011241130A Expired - Fee Related JP5430634B2 (en) 2011-11-02 2011-11-02 Refrigeration cycle apparatus and refrigerant recovery method for refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP5430634B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879951A (en) * 2015-05-20 2015-09-02 清华大学 Non-azeotropic working medium hot pump system with adjustable concentration and running method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879952B (en) * 2015-05-20 2017-04-19 清华大学 Rectifying tower type variable concentration non-azeotropic working medium hot pump system and running method
WO2017027716A1 (en) 2015-08-11 2017-02-16 Trane International Inc. Refrigerant recovery and repurposing
WO2019198203A1 (en) * 2018-04-12 2019-10-17 三菱電機株式会社 Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164437A (en) * 1991-12-12 1993-06-29 Hitachi Ltd Air conditioner
JPH10253203A (en) * 1997-03-13 1998-09-25 Mitsubishi Electric Corp Refrigerant recovering method
JP3731174B2 (en) * 1997-12-15 2006-01-05 三菱電機株式会社 Refrigeration cycle
EP1737922B1 (en) * 2004-04-16 2008-12-10 Honeywell International Inc. Azeotrope-like trifluoroiodomethane compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879951A (en) * 2015-05-20 2015-09-02 清华大学 Non-azeotropic working medium hot pump system with adjustable concentration and running method thereof
CN104879951B (en) * 2015-05-20 2017-04-19 清华大学 Non-azeotropic working medium hot pump system with adjustable concentration and running method thereof

Also Published As

Publication number Publication date
JP2012021770A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5797354B1 (en) Air conditioner
JP6361263B2 (en) Air conditioner
JP5430634B2 (en) Refrigeration cycle apparatus and refrigerant recovery method for refrigeration cycle apparatus
JP2009299909A (en) Refrigeration cycle device
WO2016079834A1 (en) Air conditioning device
JP4860668B2 (en) Refrigeration cycle apparatus, refrigerant charging method and refrigerant recovery method for refrigeration cycle apparatus
JP5762441B2 (en) Refrigeration cycle equipment
JP5014271B2 (en) Refrigeration cycle equipment
JP4776660B2 (en) Refrigeration cycle equipment
JP2008215672A (en) Residual gas recovering method of refrigerating cycle using combustible refrigerant gas and its device
JP2018173196A5 (en)
JP3956997B1 (en) Refrigerating machine oil recovery method
JP5208231B2 (en) Refrigeration cycle equipment
JP2005249297A (en) Refrigerant collecting device, refrigerant collection connecting device and refrigerant collecting method
JP6417775B2 (en) Refrigeration equipment
JP6393181B2 (en) Refrigeration cycle equipment
JP2005049057A (en) Refrigerating cycle device
WO2016203507A1 (en) Refrigeration cycle device
KR101129722B1 (en) Refrigerating and cooling system provided with overheat protection heat exchanger using carbon dioxide refrigerant
JP2009257620A (en) Refrigerant recovering device
JP2012007774A (en) Air conditioner
WO2012137260A1 (en) Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device
JP6413447B2 (en) Refrigeration equipment
AU2014345151B2 (en) Refrigeration cycle apparatus, method of manufacturing the same, and method of installing the same
KR102475088B1 (en) Refregerant apparatus without refregerant recovery apparatus on the time of exchanging pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5430634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees