JP2012007774A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2012007774A
JP2012007774A JP2010142311A JP2010142311A JP2012007774A JP 2012007774 A JP2012007774 A JP 2012007774A JP 2010142311 A JP2010142311 A JP 2010142311A JP 2010142311 A JP2010142311 A JP 2010142311A JP 2012007774 A JP2012007774 A JP 2012007774A
Authority
JP
Japan
Prior art keywords
pump
air conditioner
valve
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010142311A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kawabe
義和 川邉
Kazuhiko Marumoto
一彦 丸本
Akira Fujitaka
章 藤高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010142311A priority Critical patent/JP2012007774A/en
Publication of JP2012007774A publication Critical patent/JP2012007774A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the problem with a pump-down operation, wherein there is a possibility that hydrofluoroolefin may be decomposed due to a rise of a temperature of a sliding part during the pump-down operation since the hydrofluoroolefin is liable to be decomposed.SOLUTION: An outdoor machine 100 includes: a compressor 1; an outdoor heat exchanger 2; an outdoor blower 3; an expansion valve 4; a two-way valve 5; and a three-way valve 8. An indoor machine 101 includes an indoor heat exchanger 6 and an indoor blower 7. HFO-1234yf is used as an operation coolant. A time of the pump-down operation is shortened by being shifted to pump-down by raising a gas ratio of a coolant which exists in liquid-side connecting piping 21 immediately before the pump-down, the rise of the temperature of the sliding part of the compressor 1 is suppressed, and the decomposition of the coolant is prevented, thus improving reliability.

Description

本発明は、作動冷媒を用いて冷凍、ヒートポンプサイクルを構成して冷暖房をおこなう空気調和機に関するもので、特に室内機と室外機を接続配管で繋いでサイクルを構成する装置において、炭素間に二重結合を有する作動冷媒を使用するに当たり、作動冷媒を室外機に回収するポンプダウン作業時に、圧縮機の温度上昇を抑えて冷媒の分解を防ぐため、ポンプダウンを速やかに行うことのできる技術を提供するものである。   The present invention relates to an air conditioner that uses a working refrigerant to form a refrigeration and heat pump cycle for air conditioning, and particularly in an apparatus that forms a cycle by connecting an indoor unit and an outdoor unit with a connecting pipe. When using a working refrigerant with multiple bonds, a technology that can quickly pump down to prevent decomposition of the refrigerant by suppressing a rise in the temperature of the compressor during pump down work to collect the working refrigerant in the outdoor unit. It is to provide.

分離型の空気調和機は、通常、室外機に冷媒が予め封入されており、室内機と室外機を液側、ガス側の接続配管で繋いだ後、作動冷媒を接続配管および室内機に開放して設置を行うものである。そして、一旦設置した装置を移設したりするために、室内機、室外機、接続配管を取り外す場合には、冷媒を室外機に回収するポンプダウン作業を行う。   In the separation type air conditioner, the refrigerant is usually sealed in the outdoor unit, and after connecting the indoor unit and the outdoor unit with the connection pipe on the liquid side and the gas side, the working refrigerant is opened to the connection pipe and the indoor unit. To install. And in order to transfer the apparatus once installed, when removing an indoor unit, an outdoor unit, and connection piping, the pump down operation | work which collect | recovers refrigerant | coolants to an outdoor unit is performed.

従来ポンプダウン作業は、室外機に設けられた液側の開閉弁を閉じて冷房運転を行い、所定の時間が経過したところで、室外機に設けられたガス側の開閉弁を閉じ、運転を停止して行う(特許文献1参照)。   Conventional pump-down operation is performed by closing the liquid-side on-off valve provided in the outdoor unit and performing cooling operation. When a predetermined time has elapsed, the gas-side on-off valve provided in the outdoor unit is closed and the operation is stopped. (See Patent Document 1).

このとき、室内機側の作動冷媒はガス側接続配管から圧縮機へ吸引され、最終的に液側接続配管内の作動冷媒が圧縮機へ吸引されてポンプダウンは終了する。   At this time, the working refrigerant on the indoor unit side is sucked into the compressor from the gas side connecting pipe, and finally the working refrigerant in the liquid side connecting pipe is sucked into the compressor, thereby completing the pump-down.

液側の開閉弁を閉じてから運転停止までのポンプダウン時間が短いと、室内機側に作動冷媒が残留し接続配管をはずした際に大気放出されてしまう。逆にポンプダウン時間を長くしすぎると、作動冷媒が流れてこない状態で圧縮機を運転することになり圧縮機内部、特に摺動部の温度が上昇する。   If the pump-down time from the closing of the liquid-side on / off valve to the stoppage of operation is short, the working refrigerant remains on the indoor unit side and is released into the atmosphere when the connection pipe is removed. On the other hand, if the pump down time is too long, the compressor is operated in a state where the working refrigerant does not flow, and the temperature inside the compressor, particularly the sliding portion, rises.

一方、近年は地球温暖化が大きな問題となり、温暖化係数の低い作動冷媒を使用しようという動きが顕著になってきており、自然冷媒や、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンなどの冷媒が注目されている。   On the other hand, in recent years, global warming has become a major problem, and the movement to use working refrigerants with low global warming potential has become prominent. Natural refrigerants, hydrofluoroolefins having a double bond between carbon and carbon, etc. The refrigerant is attracting attention.

ハイドロフルオロオレフィンは、R134aの代替冷媒として特に注目されており、自動車用エアコンディショナーへの実用化の検討が推進されている。その温暖化係数(100年)はHFO1234yfの場合は4と、R134aの1300、エアコンなどで使用されているR410Aの1730に比べてきわめて小さい。この温暖化係数が小さいという特性は、炭素間に2重結合を有し分解し易いことに起因している。   Hydrofluoroolefins are particularly attracting attention as alternative refrigerants for R134a, and studies on practical application to automotive air conditioners are being promoted. The warming potential (100 years) is 4 in the case of HFO1234yf, which is extremely small compared to 1300 of R134a and 1730 of R410A used in air conditioners. This characteristic that the warming coefficient is small is attributed to the fact that there is a double bond between carbon and it is easy to decompose.

特開平5−157382号公報JP-A-5-157382

上記従来の空気調和機のポンプダウン運転を、ハイドロフルオロオレフィンを使用する空気調和機に適応すると、圧縮機内部の温度上昇で作動冷媒が分解する可能性がある。   When the pump-down operation of the conventional air conditioner is applied to an air conditioner using hydrofluoroolefin, the working refrigerant may be decomposed due to a temperature rise inside the compressor.

従来の空気調和機では、作動冷媒は分解しにくいものであったため、圧縮機において最も耐熱温度の低い材料はモーターの絶縁皮膜であり、その耐熱温度は120℃程度が一般的であった。最も温度が上昇すると考えられるメカ摺動面においては、200℃程度の温度になっても問題は生じなかった。   In a conventional air conditioner, since the working refrigerant is difficult to decompose, the material having the lowest heat resistant temperature in the compressor is a motor insulating film, and the heat resistant temperature is generally about 120 ° C. On the mechanical sliding surface where the temperature is considered to rise the most, no problem occurred even when the temperature reached about 200 ° C.

ところが、ハイドロフルオロオレフィンは分解し易いため、ポンプダウン運転時の摺動部の温度上昇により分解する可能性がある。   However, since hydrofluoroolefin is easy to decompose | disassemble, there exists a possibility of decomposition | disassembly by the temperature rise of a sliding part at the time of pump down operation.

作動流体である冷媒が分解すること自体望ましいことではないし、分解時の生成物が金属表面や有機材料に悪影響を及ぼす可能性もある。   It is not desirable that the refrigerant, which is a working fluid, decompose itself, and the product at the time of decomposition may adversely affect the metal surface and organic material.

従って本発明は、こうした課題を解決し、圧縮機内部の温度上昇を抑え確実なポンプダウンを行うことで、信頼性の高い空気調和機を提供するものである。   Therefore, the present invention provides a highly reliable air conditioner by solving such problems and performing a reliable pump down while suppressing a temperature rise inside the compressor.

上記従来の課題を解決するために、本発明の空気調和機は、作動冷媒としてハイドロフルオロオレフィンを含む冷媒を用いた空気調和機において、室内熱交換器および接続配管内の作動冷媒のガス比率を上昇させた後、液側閉鎖弁を閉じ、ポンプダウン運転を行うものである。   In order to solve the above-described conventional problems, an air conditioner according to the present invention is an air conditioner using a refrigerant containing hydrofluoroolefin as a working refrigerant, and the gas ratio of the working refrigerant in the indoor heat exchanger and the connecting pipe is set. After raising, the liquid side shut-off valve is closed and the pump down operation is performed.

これにより、室内熱交換器および接続配管内に存在する液冷媒の蒸発に要する時間が短縮され、速やかにポンプダウンを終了し、圧縮機内部の温度上昇を抑制することができる。   Thereby, the time required for the evaporation of the liquid refrigerant existing in the indoor heat exchanger and the connecting pipe is shortened, the pump-down can be finished quickly, and the temperature rise inside the compressor can be suppressed.

また、本発明の空気調和機は、圧縮手段の吐出口から室外熱交換器と液側閉鎖弁との間の配管までを接続するバイパス回路と、バイパス回路に設けられたバイパス開閉弁とを備え、ポンプダウン運転を行う前にバイパス開閉弁を開いた運転を行うものである。   The air conditioner of the present invention includes a bypass circuit that connects the discharge port of the compression means to the pipe between the outdoor heat exchanger and the liquid side shut-off valve, and a bypass on-off valve provided in the bypass circuit. The operation that opens the bypass on / off valve is performed before the pump down operation.

これにより、簡単な制御で、速やかにポンプダウンを終了し、圧縮機内部の温度上昇を低減することができる。   As a result, the pump-down can be completed quickly and the temperature rise inside the compressor can be reduced with simple control.

また、本発明の空気調和機は、1つの工程が終了したことを表示する出力手段と、作業者が1つの工程を完了したことを入力する入力手段とを備えるものである。   Moreover, the air conditioner of this invention is provided with the output means which displays that one process was complete | finished, and the input means which inputs that the operator completed one process.

これにより、1つ1つ作業を確実に遂行することができる。   Thereby, each operation | work can be performed reliably.

本発明の空気調和機は、ポンプダウン時の温度上昇による冷媒分解を回避し信頼性の高い装置を提供することができる。   The air conditioner of the present invention can provide a highly reliable device that avoids refrigerant decomposition due to temperature rise when the pump is down.

本発明の実施の形態1における空気調和機の構成図The block diagram of the air conditioner in Embodiment 1 of this invention 本発明の実施の形態2における空気調和機の構成図The block diagram of the air conditioner in Embodiment 2 of this invention

第1の発明は、作動冷媒を圧縮する圧縮手段、室外熱交換器、膨張弁、室外送風機、液側閉鎖弁、ガス側閉鎖弁を有する室外機と、室内熱交換器、室内送風機を有する室内機とを、接続配管にて接続して、作動冷媒としてハイドロフルオロオレフィンを含む作動冷媒を用いた、冷凍サイクルあるいはヒートポンプサイクルを構成する空気調和機であって、室内熱交換器および接続配管内の作動冷媒のガス比率を上昇させた後、液側閉鎖弁を閉じ冷房運転を所定時間行った後、ガス側閉鎖弁を閉じて室外機に作動冷媒を回収するポンプダウン運転を行うものである。   The first invention includes a compression means for compressing a working refrigerant, an outdoor heat exchanger, an expansion valve, an outdoor blower, a liquid side shutoff valve, an outdoor unit having a gas side shutoff valve, an indoor heat exchanger, and an indoor fan having an indoor blower Is an air conditioner that constitutes a refrigeration cycle or a heat pump cycle using a working refrigerant containing hydrofluoroolefin as a working refrigerant, and is connected to the indoor heat exchanger and the connecting pipe. After increasing the gas ratio of the working refrigerant, the liquid-side closing valve is closed and the cooling operation is performed for a predetermined time, and then the gas-side closing valve is closed and the pump-down operation for collecting the working refrigerant in the outdoor unit is performed.

これにより、液冷媒の蒸発に要する時間が短縮され速やかにポンプダウンを終了し、圧縮機内部の温度上昇を抑制することができる。   As a result, the time required for the evaporation of the liquid refrigerant is shortened, and the pump-down can be completed quickly, and the temperature rise inside the compressor can be suppressed.

従って、作動冷媒に含まれるハイドロフルオロオレフィンの分解を防ぎ、信頼性の高い装置を提供することができる。   Therefore, decomposition of the hydrofluoroolefin contained in the working refrigerant can be prevented and a highly reliable device can be provided.

第2の発明は、第1の発明において、ポンプダウン運転を行う前に所定の時間冷房運転を行い、引き続いて冷房運転時よりも膨張弁の開度を開いて所定の時間運転した後、前記ポンプダウン運転を行うものである。   According to a second invention, in the first invention, the cooling operation is performed for a predetermined time before the pump-down operation is performed, and then the opening of the expansion valve is opened for a predetermined time as compared with the cooling operation. The pump down operation is performed.

これにより、室外熱交換器出口の作動冷媒温度が上昇し作動冷媒の過冷却が取れなくなり、比エンタルピーは増加するので、膨張弁の下流つまり液側接続配管、室内熱交換器、ガス側接続配管内の作動冷媒のガス比率が増加する。   As a result, the working refrigerant temperature at the outlet of the outdoor heat exchanger rises and the working refrigerant cannot be supercooled, and the specific enthalpy increases. Therefore, downstream of the expansion valve, that is, the liquid side connection pipe, the indoor heat exchanger, the gas side connection pipe The gas ratio of the working refrigerant increases.

第3の発明は、第1の発明において、ポンプダウン運転を行う前に所定の時間冷房運転を行い、引き続いて冷房運転時よりも室外送風機の送風量を減じて所定の時間運転した後、ポンプダウン運転を行うものである。   According to a third invention, in the first invention, after performing the cooling operation for a predetermined time before performing the pump-down operation, and subsequently operating the pump for a predetermined time by reducing the blast volume of the outdoor blower compared to the cooling operation, Down operation is performed.

これにより、室外熱交換器における放熱量が減少し、室外熱交換器出口の作動冷媒温度が上昇し、膨張弁の下流つまり液側接続配管、室内熱交換器、ガス側接続配管内の作動冷媒のガス比率が増加する。   As a result, the amount of heat released in the outdoor heat exchanger is reduced, the working refrigerant temperature at the outlet of the outdoor heat exchanger is increased, and the working refrigerant in the downstream of the expansion valve, that is, in the liquid side connection pipe, the indoor heat exchanger, and the gas side connection pipe The gas ratio increases.

従って、液冷媒の蒸発に要する時間が短縮され速やかにポンプダウンを終了し、圧縮機内部の温度上昇を抑制することができる。   Therefore, the time required for the evaporation of the liquid refrigerant is shortened, and the pump-down can be completed quickly, and the temperature rise inside the compressor can be suppressed.

第4の発明は、第3の発明において、ポンプダウン運転時に、液側閉鎖弁を閉じた後、室外送風機の送風量を増加させるものである。   4th invention increases the ventilation volume of an outdoor air blower after closing a liquid side closing valve at the time of pump down driving | operation in 3rd invention.

これにより、ポンプダウン運転において、回収されてきた作動冷媒を室外熱交換器に凝縮し、蓄積するのを助長し、室内熱交換器に滞留している作動冷媒の蒸発を促進することができる。   Thereby, in the pump down operation, the recovered working refrigerant can be condensed and accumulated in the outdoor heat exchanger, and evaporation of the working refrigerant staying in the indoor heat exchanger can be promoted.

従って、液冷媒の蒸発に要する時間が短縮されポンプダウンを終了し、圧縮機内部の温度上昇を抑制することができる。   Therefore, the time required for the evaporation of the liquid refrigerant is shortened, the pump down is completed, and the temperature rise inside the compressor can be suppressed.

第5の発明は、第1の発明において、圧縮手段の吐出口から室外熱交換器と液側閉鎖弁との間の配管までを接続するバイパス回路と、バイパス回路に設けられたバイパス開閉弁とを備え、ポンプダウン運転を行う前にバイパス開閉弁を開いた運転を行うものである。   According to a fifth invention, in the first invention, a bypass circuit that connects the discharge port of the compression means to a pipe between the outdoor heat exchanger and the liquid-side closing valve, and a bypass opening / closing valve provided in the bypass circuit And performing an operation in which the bypass on-off valve is opened before the pump down operation is performed.

これにより、圧縮機から高温のガス冷媒が、液側接続配管および室内熱交換器に送られてくるので、液側接続配管、室内熱交換器、ガス側接続配管内に存在する作動冷媒のガス比率を上昇させることができる。   Thereby, since the high-temperature gas refrigerant is sent from the compressor to the liquid side connection pipe and the indoor heat exchanger, the working refrigerant gas existing in the liquid side connection pipe, the indoor heat exchanger, and the gas side connection pipe The ratio can be increased.

従って、バイパス開閉弁の開閉という簡単な制御で、速やかにポンプダウンを終了し、圧縮機内部の温度上昇を抑制することができる。   Accordingly, the simple control of opening / closing the bypass opening / closing valve can quickly terminate the pump down and suppress the temperature rise inside the compressor.

第6の発明は、第1〜5のいずれかの発明において、1つの工程が終了したことを表示する出力手段と、作業者が1つの工程を完了したことを入力する入力手段とを備えるものである。   6th invention is provided with the output means which displays that one process was completed, and the input means which inputs that a worker completed one process in any invention of the 1st-5th It is.

これにより、作業者は、1つの工程が終了したことを知ることができ、1つ1つ作業を確認しながら確実に遂行することができる。従って、ポンプダウン作業のミスを減らすことができる。   As a result, the worker can know that one process has been completed, and can reliably perform the work while checking each work. Therefore, mistakes in the pump down operation can be reduced.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における空気調和機の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of an air conditioner according to a first embodiment of the present invention.

図1に示すように、第1の実施の形態における空気調和機は、室外機100と室内機101を、接続配管である、液側接続配管21およびガス側接続配管22で接続して装置を構成している。   As shown in FIG. 1, the air conditioner in 1st Embodiment connects the outdoor unit 100 and the indoor unit 101 with the liquid side connection piping 21 and the gas side connection piping 22 which are connection piping, and is apparatus. It is composed.

室外機100には、圧縮手段である圧縮機1、室外熱交換器2、室外送風機3、作動冷媒を減圧膨張させる膨張弁4、液側閉鎖弁である二方弁5、ガス側閉鎖弁である三方弁8が備えられている。また、室内機101には、室内熱交換器6、室内送風機7を備えている。そして、圧縮機1、室外熱交換器2、膨張弁4、二方弁5、液側接続配管21、室内熱交換器6、ガス側接続配管22、三方弁8は、配管で接続され、作動冷媒が流れる冷媒回路を構成している。作動冷媒としては炭素間に二重結合を有し温暖化係数の小さな、ハイドロフルオロオレフィンであるHFO−1234yfを使用している。   The outdoor unit 100 includes a compressor 1, which is a compression means, an outdoor heat exchanger 2, an outdoor blower 3, an expansion valve 4 for decompressing and expanding the working refrigerant, a two-way valve 5 which is a liquid side closing valve, and a gas side closing valve. A certain three-way valve 8 is provided. The indoor unit 101 includes an indoor heat exchanger 6 and an indoor blower 7. The compressor 1, the outdoor heat exchanger 2, the expansion valve 4, the two-way valve 5, the liquid side connection pipe 21, the indoor heat exchanger 6, the gas side connection pipe 22, and the three-way valve 8 are connected by piping and operated. A refrigerant circuit through which the refrigerant flows is configured. As the working refrigerant, HFO-1234yf, which is a hydrofluoroolefin having a double bond between carbons and having a small warming potential, is used.

また、この空気調和機には、ポンプダウンの1つの工程が終了したことを表示する出力手段である作業指示ランプ9と、作業者が1つの工程を完了したことを入力する入力手段である作業完了ボタン10を備えている。作業指示ランプ9と作業完了ボタン10は、例えば、空気調和機の制御装置を構成する室外機制御基板や、制御装置と通信を行うリモコンに設けられている。   The air conditioner also includes a work instruction lamp 9 which is an output means for displaying that one process of pumping down is completed, and a work which is an input means for inputting that a worker has completed one process. A completion button 10 is provided. The work instruction lamp 9 and the work completion button 10 are provided on, for example, an outdoor unit control board constituting a control device of the air conditioner or a remote controller that communicates with the control device.

以上のように構成された空気調和機の通常の運転動作について説明する。室内機101から室外機100に戻ってきた作動冷媒は、三方弁8を経て圧縮機1に吸い込まれて圧縮され、高温高圧の冷媒となって室外熱交換器2に送られ、室外送風機3によって送られてくる空気で冷却され凝縮し、膨張弁4で減圧され、二方弁5を経て室内機101へ送られ、室内熱交換器6で室内送風機7により送られてきた空気から熱を奪い蒸発して、再び、室外機100へ戻る。室内熱交換器6で室内送風機7により送られてきた空気から熱を奪うことで、室内機101が設置された空間の空気の冷却、つまり冷房が行われる。   The normal operation of the air conditioner configured as described above will be described. The working refrigerant that has returned from the indoor unit 101 to the outdoor unit 100 is sucked into the compressor 1 through the three-way valve 8 and compressed, and is sent to the outdoor heat exchanger 2 as a high-temperature and high-pressure refrigerant. Cooled and condensed by the air sent, depressurized by the expansion valve 4, sent to the indoor unit 101 through the two-way valve 5, and deprived of heat from the air sent by the indoor blower 7 in the indoor heat exchanger 6. It evaporates and returns to the outdoor unit 100 again. By taking heat from the air sent by the indoor blower 7 in the indoor heat exchanger 6, the air in the space where the indoor unit 101 is installed is cooled, that is, cooled.

次に、このような空気調和機の設置時、移設時について説明する。   Next, the time of installation and relocation of such an air conditioner will be described.

図1に示されるような分離型空気調和機の場合、設置前は室外機100に冷媒が封入されている。設置時には、液側接続配管21およびガス側接続配管22で室内機101と室外機100とを接続する。その後、二方弁5を閉じたまま、三方弁8のサービスポートと真空ポンプとをホースで接続する。そして、真空ポンプを運転して室内機101側の配管(二方弁5から三方弁8までの配管であって、室内熱交換器6を含む)内の空気を三方弁8のサービスポートから真空引きする。その後、二方弁5、三方弁8を開けて冷媒を配管内に開放して設置を完了する。   In the case of the separation type air conditioner as shown in FIG. 1, the refrigerant is sealed in the outdoor unit 100 before installation. At the time of installation, the indoor unit 101 and the outdoor unit 100 are connected by the liquid side connection pipe 21 and the gas side connection pipe 22. Thereafter, with the two-way valve 5 closed, the service port of the three-way valve 8 and the vacuum pump are connected by a hose. Then, the vacuum pump is operated to vacuum the air in the indoor unit 101 side piping (the piping from the two-way valve 5 to the three-way valve 8 and including the indoor heat exchanger 6) from the service port of the three-way valve 8. Pull. Thereafter, the two-way valve 5 and the three-way valve 8 are opened to release the refrigerant into the pipe, thereby completing the installation.

また、設置した空気調和機を移動させる場合には、作動冷媒を室外機100に再び回収し液側接続配管21およびガス側接続配管22をはずして移動させる。このような、作動冷媒を再び室外機100に回収する作業をポンプダウンという。   Further, when the installed air conditioner is moved, the working refrigerant is again collected in the outdoor unit 100 and moved by removing the liquid side connection pipe 21 and the gas side connection pipe 22. Such an operation of collecting the working refrigerant again in the outdoor unit 100 is referred to as pump down.

ポンプダウンは、従来であれば予備運転として所定の時間、冷房運転を行った後、二方弁5を閉切り、3分程度冷房運転を続け、三方弁8を閉切り運転を停止する。このとき、ゲージマニホールドなどの圧力測定手段を三方弁8のサービスポートに接続してポンプダウンを行う場合は、圧力測定手段の表示が負圧になるまで、二方弁5を閉切った状態での冷房運転を行う。   In the conventional pump-down operation, after performing a cooling operation for a predetermined time as a preliminary operation, the two-way valve 5 is closed, the cooling operation is continued for about 3 minutes, and the three-way valve 8 is closed to stop the operation. At this time, when a pressure measuring means such as a gauge manifold is connected to the service port of the three-way valve 8 and pumping down is performed, the two-way valve 5 is closed until the pressure measuring means displays negative pressure. Cooling operation is performed.

このとき、ポンプダウンが十分でなければ、接続配管および室内機101側の配管に作動冷媒が残留する。その結果、そのまま、接続配管をはずすと、作動冷媒を大気放出することになる。温暖化係数が小さいとはいえ、フッ素化合物が大気放出されるのは望ましいとは言えず、装置内の作動冷媒が減るという観点からも作動冷媒はできる限り回収するのが望ましい。しかし、二方弁5を閉切った運転、すなわち、ポンプダウン運転を長時間続けると、作動冷媒が循環しない状態での運転が続くため、圧縮機1の摺動部の冷却が妨げられ、圧縮機1の摺動部の温度が上昇する。   At this time, if the pump down is not sufficient, the working refrigerant remains in the connection pipe and the pipe on the indoor unit 101 side. As a result, if the connection pipe is removed as it is, the working refrigerant is released into the atmosphere. Although the global warming potential is small, it is not desirable that the fluorine compound is released into the atmosphere, and it is desirable to collect the working refrigerant as much as possible from the viewpoint of reducing the working refrigerant in the apparatus. However, if the operation in which the two-way valve 5 is closed, that is, the pump-down operation is continued for a long time, the operation in a state where the working refrigerant does not circulate continues. The temperature of the sliding part of the machine 1 rises.

ここで、本実施の形態の空気調和機では、作動冷媒としてHFO−1234yfを使用しているが、この冷媒は、炭素間に二重結合を有しているがゆえに分解し易く、酸素が存在する雰囲気中であれば温度が上昇すれば容易に分解し、酸を生じたりさまざまな有機物を生じたりし、圧縮機1の摺動部や配管などの金属部品、圧縮機1のモーター巻線や各弁部における有機材料にダメージを与える可能性がある。   Here, in the air conditioner of the present embodiment, HFO-1234yf is used as a working refrigerant. However, since this refrigerant has a double bond between carbons, it is easily decomposed and oxygen is present. If the temperature rises, it will easily decompose and produce acid and various organic substances, metal parts such as the sliding parts and piping of the compressor 1, motor windings of the compressor 1, etc. There is a possibility of damaging the organic material in each valve part.

さらに、酸素が存在しない場合においても、高温部では冷媒が分解する。圧縮機1において最も耐熱温度の低い材料はモーターの絶縁皮膜であり、その耐熱温度は120℃程度が一般的である。最も温度が上昇すると考えられるメカ摺動面においては、200℃程度の温度になる。従来は冷媒が分解しにくいものであったため問題は発生しなかったが、冷媒としてHFO−1234yfを使用する装置では、分解し易いため、ポンプダウン運転時の摺動部の温度上昇により、作動冷媒が分解する可能性がある。   Further, even when oxygen is not present, the refrigerant is decomposed at the high temperature portion. The material having the lowest heat resistant temperature in the compressor 1 is an insulating film of a motor, and the heat resistant temperature is generally about 120 ° C. The mechanical sliding surface that is considered to have the highest temperature reaches a temperature of about 200 ° C. Conventionally, since the refrigerant was difficult to decompose, no problem occurred. However, in the apparatus using HFO-1234yf as the refrigerant, it is easy to decompose, and therefore the working refrigerant is increased due to the temperature rise of the sliding portion during the pump down operation. May break down.

そこで、本発明の実施の形態1の空気調和機は、以下のようにしてポンプダウン運転の時間を短縮し、圧縮機1の摺動部の温度上昇を抑え、作動冷媒の分解を防いで信頼性の向上を図るものである。   Therefore, the air conditioner of Embodiment 1 of the present invention shortens the time of the pump-down operation as follows, suppresses the temperature rise of the sliding portion of the compressor 1, and prevents the working refrigerant from being decomposed and is reliable. It is intended to improve the performance.

まず、基本的な考え方は、ポンプダウン運転前に、液側接続配管21、室内熱交換器6、ガス側接続配管22内に存在する作動冷媒のガス比率(ガス冷媒の、液冷媒とガス冷媒の総和に対する重量または体積比率)を少しでもあげてポンプダウン運転に移行することである。特に、液側接続配管21内に存在する作動冷媒のガス比率を上げることが望ましい。   First, the basic idea is that the gas ratio of the working refrigerant existing in the liquid side connection pipe 21, the indoor heat exchanger 6, and the gas side connection pipe 22 (gas refrigerant, liquid refrigerant and gas refrigerant before the pump down operation). The weight or volume ratio with respect to the sum of the above is increased as much as possible to shift to the pump-down operation. In particular, it is desirable to increase the gas ratio of the working refrigerant present in the liquid side connection pipe 21.

この理由を以下に説明する。液側接続配管21は断熱材で覆われているため、液側接続配管21の内部の液冷媒は、吸熱による蒸発が行われにくい。このため、液側接続配管21の内部に存在する作動冷媒は低圧側で最も乾き度が低い状態にある。なお、これに対し、室内熱交換器6では液冷媒があっても空気と熱交換して速やかに蒸発する。また、ガス側接続配管22も断熱材で覆われているので、作動冷媒の速やかな蒸発は望めないが、室内熱交換器6で蒸発した作動冷媒と共に圧縮機1に運ばれていくので、速やかに圧縮機1に回収される。   The reason for this will be described below. Since the liquid side connection pipe 21 is covered with a heat insulating material, the liquid refrigerant inside the liquid side connection pipe 21 is not easily evaporated by heat absorption. For this reason, the working refrigerant present inside the liquid side connection pipe 21 is in a state where the dryness is the lowest on the low pressure side. On the other hand, in the indoor heat exchanger 6, even if there is a liquid refrigerant, heat is exchanged with the air and it is quickly evaporated. Further, since the gas side connection pipe 22 is also covered with the heat insulating material, it is not possible to expect rapid evaporation of the working refrigerant, but since it is carried to the compressor 1 together with the working refrigerant evaporated in the indoor heat exchanger 6, Is recovered by the compressor 1.

液冷媒は、ポンプダウン運転を行う際に滞留し易く、液溜りが生じるとその部分の冷媒は蒸発してから圧縮機1に回収されるので周囲から熱を吸収する必要がある。一部の液冷媒が周囲から蒸発熱をもらって蒸発すると、周囲の温度はその分下がっていく。蒸発、温度低下を繰り返していくうち液冷媒の周囲の温度は下がり、ますます、液冷媒は蒸発しにくくなって冷媒回収に時間がかかるようになる。   The liquid refrigerant is likely to stay during the pump-down operation, and when the liquid pool is generated, the refrigerant in that portion is evaporated and then collected by the compressor 1, so it is necessary to absorb heat from the surroundings. When a part of the liquid refrigerant evaporates with the heat of evaporation from the surroundings, the ambient temperature decreases accordingly. As the evaporation and temperature decrease are repeated, the ambient temperature of the liquid refrigerant decreases, and the liquid refrigerant becomes more difficult to evaporate and it takes time to recover the refrigerant.

一方、液冷媒の量が少ないと周囲の温度は比較的高い温度に保たれ、液冷媒は蒸発し易い状態が保たれる。その結果、作動冷媒の回収が速やかに行われ、圧縮機1の摺動部の温度上昇を抑え、冷媒の分解を防いで信頼性の向上が図れる。   On the other hand, when the amount of liquid refrigerant is small, the ambient temperature is kept at a relatively high temperature, and the liquid refrigerant is kept in a state where it is easily evaporated. As a result, the working refrigerant can be quickly recovered, the temperature rise of the sliding portion of the compressor 1 can be suppressed, and the refrigerant can be prevented from being decomposed to improve the reliability.

液側接続配管21、室内熱交換器6、ガス側接続配管22のガス比率を上げる具体的な方法は次の通りである。   A specific method for increasing the gas ratio of the liquid side connection pipe 21, the indoor heat exchanger 6, and the gas side connection pipe 22 is as follows.

まず1つめの方法は、ポンプダウン運転を行う前に所定の時間冷房運転を行い、引き続いて冷房運転時よりも膨張弁4の開度を開いて所定の時間運転した後、ポンプダウン運転を行うことである。   In the first method, the cooling operation is performed for a predetermined time before the pump-down operation is performed, and the pump-down operation is subsequently performed after the opening of the expansion valve 4 is opened for a predetermined time as compared with the cooling operation. That is.

膨張弁4の開度を開くと、室外熱交換器2出口において高圧となっている作動冷媒の圧力は若干下がり、室外熱交換器2出口の作動冷媒の温度は上昇する。このため、室外熱交換器2出口の作動冷媒の比エンタルピーは増加して過冷却が取れなくなり、膨張弁4の出口の乾き度は上昇する。この結果、液側接続配管21、室内熱交換器6、ガス側接続配管22のガス比率が上昇する。   When the opening degree of the expansion valve 4 is opened, the pressure of the working refrigerant having a high pressure at the outlet of the outdoor heat exchanger 2 is slightly lowered, and the temperature of the working refrigerant at the outlet of the outdoor heat exchanger 2 is raised. For this reason, the specific enthalpy of the working refrigerant at the outlet of the outdoor heat exchanger 2 increases, and supercooling cannot be obtained, and the dryness of the outlet of the expansion valve 4 increases. As a result, the gas ratio of the liquid side connection pipe 21, the indoor heat exchanger 6, and the gas side connection pipe 22 increases.

第2の方法としては、室外送風機3の送風量を減少させる方法がある。室外送風機3の送風量を減少させると、室外熱交換器2における放熱量が減少して室外熱交換器2出口の冷媒圧力、温度共に上昇し、比エンタルピーは増加する。このため、膨張弁4の出口の乾き度は上昇し、液側接続配管21、室内熱交換器6、ガス側接続配管22のガス比率が上昇する。   As a second method, there is a method of reducing the amount of air blown by the outdoor blower 3. When the amount of air blown from the outdoor blower 3 is reduced, the amount of heat released from the outdoor heat exchanger 2 is reduced, the refrigerant pressure and temperature at the outlet of the outdoor heat exchanger 2 are increased, and the specific enthalpy is increased. For this reason, the dryness of the outlet of the expansion valve 4 increases, and the gas ratio of the liquid side connection pipe 21, the indoor heat exchanger 6, and the gas side connection pipe 22 increases.

第2の方法を実施する場合、ポンプダウン運転に入ったら、室外送風機3の送風量を増加させるのが望ましい。これにより、室外熱交換器2における放熱量を増加させ、回収してきた冷媒を凝縮し蓄積し易くし安全かつ速やかにポンプダウンを行うことができる。   When carrying out the second method, it is desirable to increase the amount of air blown by the outdoor blower 3 when the pump down operation is started. Thereby, the amount of heat radiation in the outdoor heat exchanger 2 can be increased, the recovered refrigerant can be condensed and stored easily, and the pump can be pumped down safely and promptly.

以上に述べた液側接続配管21のガス比率を上げる具体的な方法は、それぞれで効果を奏し、合わせて用いても効果を奏するもので、従来の構成のままで制御を変えることにより実施できるものである。つまり、本実施の形態の空気調和機は、ポンプダウン時の温度上昇による作動冷媒の分解の回避を、簡単な制御で実現することができる。   The specific methods for increasing the gas ratio of the liquid side connection pipe 21 described above are effective in each case and are effective even when used together, and can be implemented by changing the control with the conventional configuration. Is. That is, the air conditioner of the present embodiment can achieve the avoidance of the decomposition of the working refrigerant due to the temperature rise at the time of pump down by simple control.

次に、作業指示ランプ9、作業完了ボタン10の動作および使用方法について説明する。   Next, operations and usage methods of the work instruction lamp 9 and the work completion button 10 will be described.

ポンプダウンを実施する際に、まず作業者が作業完了ボタン10を押し作業の開始を入力する。すると、制御装置(図示せず)は、空気調和機の冷房運転を開始する。そして、液側接続配管21、室内熱交換器6、ガス側接続配管22のガス比率を上げる具体的な方法を行う工程を実施し、その工程が完了すると作業指示ランプ9の1回点滅を繰り返す。これを確認した作業者はポンプダウン運転の開始のため、二方弁5を閉切り、再び作業完了ボタン10を押す。すると、制御装置はポンプダウン運転を開始し、所定の時間が過ぎると空気調和機は作業指示ランプ9の2回点滅を繰り返し、ポンプダウン運転の工程の終了を告げる。これを確認した作業者は、三方弁8を閉切り、作業完了ボタン10を押すと空気調和機は運転を停止する。これでポンプダウンは終了である。   When pumping down is performed, the worker first presses the work completion button 10 and inputs the start of the work. Then, a control device (not shown) starts the cooling operation of the air conditioner. And the process of performing the concrete method which raises the gas ratio of the liquid side connection piping 21, the indoor heat exchanger 6, and the gas side connection piping 22 is implemented, and when the process is completed, the work instruction lamp 9 is flashed once. . The worker who has confirmed this closes the two-way valve 5 and presses the work completion button 10 again to start the pump-down operation. Then, the control device starts the pump-down operation, and when the predetermined time has passed, the air conditioner repeats blinking of the work instruction lamp 9 twice to notify the end of the pump-down operation process. When the worker who has confirmed this closes the three-way valve 8 and presses the work completion button 10, the air conditioner stops operation. This completes the pump down.

つまり、本実施の形態の空気調和機は、作業指示ランプ9、作業完了ボタン10により、1つ1つの工程を確実に遂行でき、作業ミスを減らすことができる。   That is, the air conditioner according to the present embodiment can reliably perform each process by the work instruction lamp 9 and the work completion button 10 and reduce work mistakes.

なお、本実施の形態では、二方弁5や三方弁8の操作は、作業者が行い、それらの操作の完了は作業完了ボタン10を押すことで入力するものとしたが、二方弁5や三方弁8の操作も制御装置が自動的に行うことで、作業完了ボタン10を廃止することも可能である。この際には、さらに作業ミスを減らすことができることはいうまでもない。   In the present embodiment, the operation of the two-way valve 5 and the three-way valve 8 is performed by an operator, and the completion of these operations is input by pressing the work completion button 10, but the two-way valve 5 Further, the operation completion button 10 can be eliminated by automatically operating the three-way valve 8 by the control device. In this case, it goes without saying that work errors can be further reduced.

(実施の形態2)
図2は、本発明の第2の実施の形態における空気調和機の構成図を示すものである。
(Embodiment 2)
FIG. 2 shows a configuration diagram of an air conditioner according to the second embodiment of the present invention.

図2に示すように、図1の空気調和機に、圧縮機1の吐出から膨張弁4と二方弁5との間の配管へ繋がるバイパス回路11を備え、バイパス回路11にはバイパス開閉弁12が追加して設けられている。   As shown in FIG. 2, the air conditioner of FIG. 1 includes a bypass circuit 11 that leads from the discharge of the compressor 1 to a pipe between the expansion valve 4 and the two-way valve 5, and the bypass circuit 11 includes a bypass on-off valve. 12 is additionally provided.

本実施の形態のポンプダウンの手順を説明する。   The pump-down procedure of this embodiment will be described.

まず、予備運転として通常の冷房運転を所定の時間行う。当然このとき、バイパス開閉弁12は閉じられている。所定の時間冷房運転を行った後、引き続きバイパス開閉弁12を開いて運転する。圧縮機1から吐出される高温高圧の作動冷媒は、その一部は室外熱交換器2で放熱して凝縮し、その他は、バイパス回路11を流れた後、合流部で室外熱交換器2から流れてくる冷媒と合流して二方弁5を通り、液側接続配管21から室内機101へ流れていく。   First, a normal cooling operation is performed for a predetermined time as a preliminary operation. Of course, at this time, the bypass on-off valve 12 is closed. After performing the cooling operation for a predetermined time, the bypass on-off valve 12 is continuously opened for operation. A part of the high-temperature and high-pressure working refrigerant discharged from the compressor 1 dissipates heat and condenses in the outdoor heat exchanger 2, and the other flows from the outdoor heat exchanger 2 at the junction after flowing through the bypass circuit 11. The refrigerant that has flowed joins, passes through the two-way valve 5, and flows from the liquid side connection pipe 21 to the indoor unit 101.

これによれば、圧縮機1から吐出されてすぐの高温高圧の冷媒がバイパス回路11を流れてくるので、液側接続配管21には、通常の冷房運転時に比べて乾き度の高い冷媒が流れる。したがって、吸熱による蒸発が行われにくく、低圧側で最も乾き度が低い状態にある液側接続配管21の作動冷媒を、速やかな蒸発させ、圧縮機1に回収できる。   According to this, since the high-temperature and high-pressure refrigerant immediately discharged from the compressor 1 flows through the bypass circuit 11, the refrigerant having a higher dryness flows in the liquid side connection pipe 21 than in the normal cooling operation. . Therefore, it is difficult to evaporate due to heat absorption, and the working refrigerant in the liquid side connection pipe 21 that is in the lowest dryness state on the low pressure side can be quickly evaporated and recovered in the compressor 1.

その後、二方弁5を閉じて所定の時間運転を続け、三方弁8を閉じてポンプダウン運転を終了する。図2の空気調和機は構成要素が増えているが、ポンプダウン時の制御は極めて簡単になっており、誤動作や作業ミスを招きにくい。   Thereafter, the two-way valve 5 is closed and the operation is continued for a predetermined time, and the three-way valve 8 is closed to end the pump-down operation. Although the air conditioner of FIG. 2 has more components, the control when the pump is down is extremely simple, and it is difficult to cause malfunctions and work errors.

次に、作業指示ランプ9、作業完了ボタン10の動作および使用方法について説明する。   Next, operations and usage methods of the work instruction lamp 9 and the work completion button 10 will be described.

ポンプダウンを実施する際に、まず作業者が作業完了ボタン10を押し作業の開始を入力する。すると、制御装置は、通常の冷房運転を開始する。そして、所定時間経過すると、作業指示ランプ9の1回点滅を繰り返す。これを確認した作業者は、バイパス開閉弁12を開き、再度、作業完了ボタン10を押す。さらに、所定時間経過すると、作業指示ランプ9の2回点滅を繰り返す。これを確認した作業者はポンプダウン運転の開始のため、二方弁5を閉切り、再び作業完了ボタン10を押す。すると、制御装置はポンプダウン運転を開始し、所定の時間が過ぎると空気調和機は作業指示ランプ9の3回点滅を繰り返し、ポンプダウン運転の工程の終了を告げる。これを確認した作業者は、三方弁8を閉切り、作業完了ボタン10を押すと空気調和機は運転を停止する。これでポンプダウンは終了である。   When pumping down is performed, the worker first presses the work completion button 10 and inputs the start of the work. Then, the control device starts a normal cooling operation. When a predetermined time has elapsed, the work instruction lamp 9 repeats blinking once. The worker who has confirmed this opens the bypass opening / closing valve 12 and presses the work completion button 10 again. Further, when the predetermined time has elapsed, the work instruction lamp 9 repeats blinking twice. The worker who has confirmed this closes the two-way valve 5 and presses the work completion button 10 again to start the pump-down operation. Then, the control device starts the pump-down operation, and when the predetermined time has passed, the air conditioner repeatedly flashes the work instruction lamp 9 three times to notify the end of the pump-down operation process. When the worker who has confirmed this closes the three-way valve 8 and presses the work completion button 10, the air conditioner stops operation. This completes the pump down.

つまり、本実施の形態の空気調和機は、作業指示ランプ9、作業完了ボタン10により、1つ1つの工程を確実に遂行でき、作業ミスを減らすことができる。   That is, the air conditioner according to the present embodiment can reliably perform each process by the work instruction lamp 9 and the work completion button 10 and reduce work mistakes.

なお、本実施の形態では、バイパス開閉弁12の操作は、作業者が行い、それらの操作の完了は作業完了ボタン10を押すことで入力するものとしたが、バイパス開閉弁12の操作も制御装置が自動的に行うことで、作業完了ボタン10を廃止することも可能である。この際には、さらに作業ミスを減らすことができることはいうまでもない。   In the present embodiment, the operation of the bypass on-off valve 12 is performed by an operator, and the completion of those operations is input by pressing the work completion button 10, but the operation of the bypass on-off valve 12 is also controlled. The operation completion button 10 can be abolished by the automatic operation of the apparatus. In this case, it goes without saying that work errors can be further reduced.

なお、以上の実施の形態における空気調和機は暖房運転を行うことができない冷房専用機であるが、圧縮機1の出口に作動冷媒の流れ方向を切り換える四方弁を備え暖房運転を行うことができる冷暖機種でも同様の効果が得られる。   In addition, although the air conditioner in the above embodiment is a cooling only machine which cannot perform heating operation, it can equip with the four-way valve which switches the flow direction of a working refrigerant at the exit of the compressor 1, and can perform heating operation. The same effect can be obtained even in cool and warm models.

また、冷媒はHFO−1234yfを使用したが、HFO−1234zeであっても、HFO−1234yfあるいはHFO−1234zeを含む混合冷媒であっても同様の効果を奏するものである。このような、混合冷媒としては、例えば、HFO−1234yfとHFC−32との混合冷媒などがある。   Moreover, although HFO-1234yf was used as the refrigerant, even if it is HFO-1234ze or a mixed refrigerant containing HFO-1234yf or HFO-1234ze, the same effect can be obtained. An example of such a mixed refrigerant is a mixed refrigerant of HFO-1234yf and HFC-32.

以上のように、本発明にかかる空気調和機は、ポンプダウン運転を行う際に、液側接続配管内に存在する作動冷媒のガス比率を上昇させた後、液側閉鎖弁を閉じ、ポンプダウン運転を行うものである。これにより、速やかにポンプダウンを終了し、圧縮機内部の温度上昇を抑制することができる。   As described above, when performing the pump-down operation, the air conditioner according to the present invention increases the gas ratio of the working refrigerant present in the liquid-side connection pipe, and then closes the liquid-side shut-off valve and pumps down. It is for driving. As a result, the pump-down can be quickly finished, and the temperature rise inside the compressor can be suppressed.

その結果、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンのような、分解しやすい冷媒も使用することができ、環境性に優れている。   As a result, a refrigerant that is easily decomposed, such as a hydrofluoroolefin having a double bond between carbon and carbon, can be used, and the environment is excellent.

そして、空気調和機だけに止まらず、セパレート型のショーケースや冷凍機、ヒートポンプ式の温水器などに広く適用することができ、効果をもたらすものである。   Further, the present invention is not limited to the air conditioner, and can be widely applied to a separate type showcase, a refrigerator, a heat pump type water heater, and the like, and brings about an effect.

1 圧縮機
2 室外熱交換器
3 室外送風機
4 膨張弁
5 二方弁
6 室内熱交換器
7 室内送風機
8 三方弁
9 作業指示ランプ
10 作業完了ボタン
11 バイパス回路
12 バイパス開閉弁
21 液側接続配管
22 ガス側接続配管
100 室外機
101 室内機
DESCRIPTION OF SYMBOLS 1 Compressor 2 Outdoor heat exchanger 3 Outdoor blower 4 Expansion valve 5 Two-way valve 6 Indoor heat exchanger 7 Indoor blower 8 Three-way valve 9 Work instruction lamp 10 Work completion button 11 Bypass circuit 12 Bypass on-off valve 21 Liquid side connection piping 22 Gas side connection piping 100 Outdoor unit 101 Indoor unit

Claims (6)

作動冷媒を圧縮する圧縮手段、室外熱交換器、膨張弁、室外送風機、液側閉鎖弁、ガス側閉鎖弁を有する室外機と、室内熱交換器、室内送風機を有する室内機とを、接続配管にて接続して、前記作動冷媒としてハイドロフルオロオレフィンを含む冷媒を用いた、冷凍サイクルあるいはヒートポンプサイクルを構成する空気調和機であって、前記室内熱交換器および前記接続配管内の前記作動冷媒のガス比率を上昇させた後、前記液側閉鎖弁を閉じ冷房運転を所定時間行った後、前記ガス側閉鎖弁を閉じて前記室外機に前記作動冷媒を回収するポンプダウン運転を行うことを特徴とする空気調和機。 Compressing means for compressing working refrigerant, outdoor heat exchanger, expansion valve, outdoor blower, liquid side shutoff valve, outdoor unit having gas side shutoff valve, indoor heat exchanger, indoor unit having indoor blower, connecting piping And an air conditioner constituting a refrigeration cycle or a heat pump cycle using a refrigerant containing hydrofluoroolefin as the working refrigerant, wherein the working refrigerant in the indoor heat exchanger and the connecting pipe After increasing the gas ratio, the liquid side closing valve is closed and the cooling operation is performed for a predetermined time, and then the gas side closing valve is closed and the pump down operation for collecting the working refrigerant in the outdoor unit is performed. Air conditioner. 前記ポンプダウン運転を行う前に所定の時間冷房運転を行い、引き続いて冷房運転時よりも前記膨張弁の開度を開いて所定の時間運転した後、前記ポンプダウン運転を行うことを特徴とする請求項1に記載の空気調和機。 A cooling operation is performed for a predetermined time before performing the pump-down operation, and then the pump-down operation is performed after opening for a predetermined time by opening the opening of the expansion valve as compared with the cooling operation. The air conditioner according to claim 1. 前記ポンプダウン運転を行う前に所定の時間冷房運転を行い、引き続いて冷房運転時よりも前記室外送風機の送風量を減じて所定の時間運転した後、前記ポンプダウン運転を行うことを特徴とする請求項1に記載の空気調和機。 A cooling operation is performed for a predetermined time before the pump-down operation is performed, and then the pump-down operation is performed after the operation is performed for a predetermined time by reducing the amount of air blown from the outdoor fan compared to the cooling operation. The air conditioner according to claim 1. 前記ポンプダウン運転時に、前記液側閉鎖弁を閉じた後、前記室外送風機の送風量を増加させることを特徴とする請求項3に記載の空気調和機。 4. The air conditioner according to claim 3, wherein, during the pump-down operation, after the liquid side shut-off valve is closed, the amount of air blown from the outdoor blower is increased. 前記圧縮手段の吐出口から前記室外熱交換器と前記液側閉鎖弁との間の配管までを接続するバイパス回路と、前記バイパス回路に設けられたバイパス開閉弁とを備え、前記ポンプダウン運転を行う前に前記バイパス開閉弁を開いた運転を行うことを特徴とする請求項1に記載の空気調和機。 A bypass circuit connecting the discharge port of the compression means to a pipe between the outdoor heat exchanger and the liquid side shut-off valve, and a bypass on-off valve provided in the bypass circuit, and the pump down operation 2. The air conditioner according to claim 1, wherein the operation is performed with the bypass on-off valve opened before the operation. 1つの工程が終了したことを表示する出力手段と、作業者が1つの工程を完了したことを入力する入力手段とを備えたことを特徴とする請求項1〜5のいずれか1項に記載の空気調和機。 The output means for displaying that one process has been completed and the input means for inputting that the worker has completed one process are provided. Air conditioner.
JP2010142311A 2010-06-23 2010-06-23 Air conditioner Pending JP2012007774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142311A JP2012007774A (en) 2010-06-23 2010-06-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142311A JP2012007774A (en) 2010-06-23 2010-06-23 Air conditioner

Publications (1)

Publication Number Publication Date
JP2012007774A true JP2012007774A (en) 2012-01-12

Family

ID=45538535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142311A Pending JP2012007774A (en) 2010-06-23 2010-06-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP2012007774A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163548A (en) * 2013-02-22 2014-09-08 Fujitsu General Ltd Air conditioning apparatus
JPWO2018003096A1 (en) * 2016-06-30 2019-02-14 三菱電機株式会社 Air conditioner
CN111164355A (en) * 2017-10-10 2020-05-15 三菱电机株式会社 Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163548A (en) * 2013-02-22 2014-09-08 Fujitsu General Ltd Air conditioning apparatus
JPWO2018003096A1 (en) * 2016-06-30 2019-02-14 三菱電機株式会社 Air conditioner
CN111164355A (en) * 2017-10-10 2020-05-15 三菱电机株式会社 Air conditioner
CN111164355B (en) * 2017-10-10 2024-01-05 三菱电机株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP4187020B2 (en) Air conditioner and cleaning method thereof
EP2629028A1 (en) Air conditioner
JP6484950B2 (en) Refrigeration equipment
US10598413B2 (en) Air-conditioning apparatus
EP2837900A1 (en) Air-conditioning device
EP3217115A1 (en) Air conditioning apparatus
EP2921801B1 (en) Method of part replacement for refrigeration cycle apparatus
KR101510978B1 (en) Binary refrigeration cycle device
WO2013175963A1 (en) Freezer
KR100889025B1 (en) Air conditioner, heat source unit, and air conditioner update method
US11112154B2 (en) Air conditioner
JP2012007774A (en) Air conditioner
JP2012007775A (en) Air conditioner
JP6417775B2 (en) Refrigeration equipment
EP3196557A1 (en) Brine/water heat pump system
AU2014345151B2 (en) Refrigeration cycle apparatus, method of manufacturing the same, and method of installing the same
WO2012137260A1 (en) Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device
CN215595820U (en) Machine and air conditioner in air conditioner evacuating device, air conditioning
JP5962010B2 (en) Inhalation method of refrigerant leakage prevention agent
JP2010112618A (en) Air conditioning device
JP2016035354A (en) Refrigerating device
JP2003148817A5 (en)
JP2006335825A (en) Refrigeration cycle system and working fluid suitable for the refrigeration cycle system
JP2003314878A (en) Control method for air conditioner, and air conditioner
JPH01306776A (en) Coolant heating type cooling and heating device