WO2012137260A1 - Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device - Google Patents

Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device Download PDF

Info

Publication number
WO2012137260A1
WO2012137260A1 PCT/JP2011/002098 JP2011002098W WO2012137260A1 WO 2012137260 A1 WO2012137260 A1 WO 2012137260A1 JP 2011002098 W JP2011002098 W JP 2011002098W WO 2012137260 A1 WO2012137260 A1 WO 2012137260A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
flammable
combustible
mixed
Prior art date
Application number
PCT/JP2011/002098
Other languages
French (fr)
Japanese (ja)
Inventor
山下 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/002098 priority Critical patent/WO2012137260A1/en
Publication of WO2012137260A1 publication Critical patent/WO2012137260A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Definitions

  • the present invention relates to a refrigerant recovery method and a refrigeration cycle apparatus for a refrigeration cycle apparatus such as a room air conditioner or a building multi-air conditioner using a flammable refrigerant as a refrigerant.
  • refrigerant circulating in the refrigeration cycle is often recovered using a refrigerant recovery apparatus.
  • Fluorocarbon refrigerant recovery devices usually do not have an explosion-proof structure that can recover flammable refrigerants. Therefore, if a combustible refrigerant is recovered using such a conventional refrigerant recovery device for CFC, there is a possibility of causing ignition or explosion.
  • An object of the present invention is to provide a refrigerant recovery method and a refrigeration cycle apparatus for a refrigeration cycle apparatus that can be safely recovered.
  • the refrigerant recovery method of the refrigeration cycle apparatus includes a compressor, a first heat exchanger, a first expansion device, and a second heat exchanger connected by a refrigerant pipe to circulate a flammable refrigerant,
  • a refrigerant recovery method for a refrigeration cycle for recovering a flammable refrigerant wherein a predetermined amount of a nonflammable refrigerant is mixed with the flammable refrigerant circulating in the refrigeration cycle to generate a nonflammable mixed refrigerant.
  • the combustible refrigerant is recovered as the non-combustible mixed refrigerant.
  • the refrigeration cycle apparatus includes a refrigeration cycle in which a compressor, a first heat exchanger, a first expansion device, and a second heat exchanger are connected by a refrigerant pipe to circulate a combustible refrigerant, and the refrigeration cycle
  • a refrigerant outlet connected to the refrigerant outlet
  • a refrigerant mixing device connected to the refrigerant outlet
  • an incombustible refrigerant cylinder detachably connected to the refrigerant outlet via the refrigerant mixer
  • the non-combustible refrigerant and the combustible refrigerant circulating in the refrigerating cycle are detachably connected to the refrigerant take-out portion via the non-combustible cylinder and sealed in the refrigerating cycle via the non-combustible cylinder.
  • a refrigerant recovery device that recovers the mixed refrigerant, and the nonflammable mixed refrigerant that is connected to the refrigerant recovery device and in which the combustible refrigerant and the nonflammable refrigerant are mixed in the refrigerant mixing device by the action of the refrigerant recovery device
  • the A refrigerant recovery cylinder is cut, in those having a refrigerant recovery mechanism configured.
  • the flammable refrigerant in the refrigeration cycle can be recovered safely without igniting.
  • FIG. 1 is a schematic circuit diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the configuration, operation, and refrigerant recovery method of the refrigeration cycle apparatus 100 will be described. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
  • the refrigeration cycle apparatus 100 can perform a cooling operation (for example, a cooling operation) or a heating operation (for example, a heating operation) by using a refrigeration cycle in which a refrigerant is circulated. It is used for freezers, vending machines, air conditioners, showcases, heat pump water heaters, and the like. In the following description, a state where the refrigeration cycle apparatus 100 is applied to an air conditioner will be described as an example.
  • the refrigeration cycle apparatus 100 includes an outdoor unit 1 that is a heat source unit and an indoor unit 2 that is a use side unit.
  • the outdoor unit 1 and the indoor unit 2 are connected by a refrigerant pipe 4 (refrigerant pipe 4 (1) and refrigerant pipe 4 (2) that conducts the refrigerant, and the cold or hot heat generated by the outdoor unit 1 is the indoor unit.
  • the refrigerant recovery mechanism 50 is connected to the refrigerant pipe 4 (2) between the expansion device 16 and the use side heat exchanger 13.
  • the outdoor unit 1 is normally disposed in an outdoor space (for example, a rooftop) of a building or the like, and the indoor unit 2 supplies cold or hot heat to the indoor unit 2.
  • the indoor unit 2 is disposed at a position where cooling air or heating air can be supplied to an indoor space (for example, a living room) inside the building, and supplies the cooling air or heating air to the indoor space that is the air-conditioning target space.
  • the refrigerant recovery mechanism 50 is used when recovering the refrigerant circulating in the refrigeration cycle.
  • a flammable refrigerant is used as the refrigerant.
  • R32 difluoromethane
  • HFO1234yf may be mixed at a ratio of 80%, R32 may be mixed at 20%, etc., but the mixing ratio is not particularly limited, and any mixing ratio may be used.
  • a highly flammable refrigerant such as R290 (propane) may be used.
  • Outdoor unit 1 In the outdoor unit 1, a compressor 10, a refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger (first heat exchanger) 12, and a throttle device 16 are connected in series by a refrigerant pipe 4. Has been installed.
  • the compressor 10 sucks the refrigerant and compresses the refrigerant to a high temperature / high pressure state, and may be composed of, for example, an inverter compressor capable of capacity control.
  • the refrigerant flow switching device 11 switches the refrigerant flow during the heating operation and the refrigerant flow during the cooling operation.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and between air supplied from a blower such as a fan (not shown) and the heat source side refrigerant. Heat exchange is performed to evaporate or condense the heat-source-side refrigerant.
  • the expansion device 16 has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
  • the expansion device 16 may be composed of an electronic expansion valve or the like.
  • the indoor unit 2 is equipped with a use side heat exchanger (second heat exchanger) 13.
  • the use side heat exchanger 13 is connected to the expansion device 16 and the refrigerant flow switching device 11 mounted in the outdoor unit 1 by the refrigerant pipe 4 (refrigerant pipe 4 (1), refrigerant pipe 4 (2)). It is like that.
  • the use side heat exchanger 13 exchanges heat between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space. Is.
  • the refrigerant recovery mechanism 50 includes an extraction pipe (refrigerant extraction part) 31, a connection valve (open / close valve) 32, a hose 33, a refrigerant recovery device 34, a refrigerant recovery cylinder 35, and an incombustible refrigerant cylinder 36. ing.
  • the extraction pipe 31 is connected to the refrigerant pipe 4 (2) between the expansion device 16 and the use-side heat exchanger 13, and the refrigerant conducts when the refrigerant is sealed or collected.
  • the connection valve 32 is installed in the extraction pipe 31 and opens and closes the extraction pipe 31 when enclosing the refrigerant or collecting the refrigerant.
  • the hose 33 connects the connection valve 32 and the refrigerant recovery device 34 so that the refrigerant is conducted when the refrigerant is recovered.
  • the refrigerant recovery device 34 is driven to cause the refrigerant to conduct from the refrigerant pipe 4 (2) to the extraction pipe 31 and the hose 33.
  • the refrigerant recovery cylinder 35 recovers the refrigerant that has flowed through the extraction pipe 31 and the hose 33 by driving the refrigerant recovery device 34.
  • the non-combustible refrigerant cylinder 36 is one in which an incombustible refrigerant sealed in the refrigeration cycle is stored.
  • a low-temperature / low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature / high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 is expanded by the expansion device 16 and becomes a low-temperature, low-pressure two-phase refrigerant. This two-phase refrigerant flows out of the outdoor unit 1 and flows into the indoor unit 2 through the refrigerant pipe 4 (2).
  • the two-phase refrigerant that has flowed into the indoor unit 2 flows into the use-side heat exchanger 13 that acts as an evaporator.
  • the two-phase refrigerant that has flowed into the use-side heat exchanger 13 absorbs heat from the indoor air in the use-side heat exchanger 13 to be evaporated and becomes a low-temperature / low-pressure gas refrigerant.
  • the indoor unit 2 cools the indoor space.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 13 flows out of the indoor unit 2 and flows into the outdoor unit 1 again through the refrigerant pipe 4 (1).
  • the gas refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the refrigerant flow switching device 11.
  • a low-temperature / low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature / high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11, and flows into the indoor unit 2 through the refrigerant pipe 4 (1).
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 2 flows into the use-side heat exchanger 13.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the use-side heat exchanger 13 is condensed and liquefied while dissipating heat to the indoor air in the use-side heat exchanger 13, and becomes high-pressure liquid refrigerant.
  • the indoor unit 2 heats the indoor space 7.
  • the high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 13 flows out of the indoor unit 2 and flows into the outdoor unit 1 again through the refrigerant pipe 4 (2).
  • the high-pressure liquid refrigerant flowing into the outdoor unit 1 is expanded by the expansion device 16 and becomes a low-temperature / low-pressure two-phase refrigerant.
  • This two-phase refrigerant flows into the heat source side heat exchanger 12 acting as an evaporator.
  • the two-phase refrigerant that has flowed into the heat source side heat exchanger 12 absorbs heat from outdoor air in the heat source side heat exchanger 12 to be evaporated and gasified into a low-temperature / low-pressure gas refrigerant, and through the refrigerant flow switching device 11, It is sucked into the compressor 10 again.
  • FIG. 2 is a system configuration diagram for explaining the refrigerant recovery operation executed by the refrigeration cycle apparatus 100.
  • FIG. 3 is a flowchart showing the flow of the refrigerant recovery operation performed by the refrigeration cycle apparatus 100. The refrigerant recovery operation when recovering the combustible refrigerant from the refrigeration cycle apparatus 100 will be described with reference to FIGS.
  • the refrigerant circulating inside the refrigerant pipe 4 is recovered in a recovery cylinder and then failed. Parts need to be repaired. If the refrigerant is released into the atmosphere without being collected, the global warming will progress. Therefore, the global warming can be prevented from being accelerated by collecting the refrigerant. Also, when the refrigeration cycle apparatus 100 is deteriorated and discarded, it is necessary to recover the refrigerant from the viewpoint of suppressing global warming.
  • the refrigerant recovery mechanism 50 is connected to the refrigeration cycle apparatus 100 as described above.
  • the refrigerant recovery device 34 is stopped and the connection valve 32 is closed so that the refrigerant does not flow outside. It has become.
  • the refrigerant recovery apparatus 34 is driven, the connection valve 32 is opened, and the refrigerant is recovered in the refrigerant recovery cylinder 35 via the extraction pipe 31 and the hose 33. It is like that.
  • the refrigerant recovery device 34 used for recovery of the chlorofluorocarbon refrigerant is usually not explosion-proof. Therefore, if a flammable refrigerant is used as the refrigerant and the refrigerant is recovered using the refrigerant recovery device 34, the refrigerant may ignite and explode. Therefore, when recovering the flammable refrigerant, a new countermeasure for recovering the refrigerant is required. Therefore, the refrigeration cycle apparatus 100 takes measures as described below.
  • a combustible refrigerant has a property of becoming nonflammable when a specific amount or more of a specific nonflammable refrigerant is mixed. The combination of the incombustible combustible refrigerant and the incombustible refrigerant will be described later.
  • the flammable refrigerant circulating in the refrigeration cycle apparatus 100 becomes a mixed refrigerant with the nonflammable refrigerant and becomes nonflammable. Thereafter, the connection valve 32 is closed, and the nonflammable refrigerant cylinder 36 is removed from the connection valve 32 (ST5). At this time, unless the pressure inside the incombustible refrigerant cylinder 36 is higher than the pressure inside the refrigeration cycle, the refrigerant cannot be sealed from the incombustible refrigerant cylinder 36 into the refrigeration cycle. Therefore, the processing (ST3, ST4) is performed after the compressor 10 is stopped or the refrigerant flow switching device 11 is operated so that the position of the extraction pipe 31 is low.
  • the refrigerant recovery device 34 is connected to the connection valve 32 via the hose 33 (ST6). Then, the connection valve 32 is opened to secure a non-flammable mixed refrigerant flow path, and the non-flammable mixed refrigerant generated in the refrigeration cycle is supplied to the refrigerant recovery cylinder 35 by the action of the refrigerant recovery device 34. (ST7). Then, the refrigerant is recovered until the pressure in the refrigeration cycle becomes less than the set pressure (ST8). When the pressure in the refrigeration cycle becomes less than the set pressure (ST8; Yes), the refrigerant recovery device 34 is removed from the connection valve 32 (ST9). The refrigerant recovery operation is completed by this series of processes (ST10).
  • the present invention is not limited to this.
  • the refrigerant in the refrigeration cycle also depends on whether or not the recovered refrigerant amount has exceeded a specified amount (specified weight). It can be confirmed that is fully recovered.
  • R410A which is a refrigerant often used in a refrigeration cycle apparatus such as an air conditioner
  • R125 which is a flammable refrigerant
  • R125 which is a nonflammable refrigerant
  • R410A is called a pseudo-azeotropic refrigerant.
  • R32 is mixed with 50% by mass and R125 is mixed with 50% by mass.
  • R410B has the same refrigerant component as R410A but having a different mixing ratio.
  • R32 is mixed by 45 mass% and R125 is mixed by 55 mass%. That is, in the mixed refrigerant produced by mixing the flammable refrigerant R32 and the non-flammable refrigerant R125, it is possible to obtain a non-flammable mixed refrigerant by mixing 50 mass% or more of R125.
  • a pseudo-azeotropic incombustible mixed refrigerant can be produced by mixing 62% by mass of HFO1234yf, which is a combustible refrigerant, and 38% by mass of R134a, which is an incombustible refrigerant. Since the boiling point of HFO1234yf is ⁇ 29 ° C. and the boiling point of R134a is ⁇ 26.2 ° C., this mixed refrigerant also becomes a pseudo-azeotropic mixed refrigerant.
  • R32 which is a flammable refrigerant
  • R125 which is a non-flammable refrigerant
  • R134a which is a non-flammable refrigerant
  • R407C 23 mass%: 25 mass%: 52 mass%)
  • R32 has a boiling point of ⁇ 51.8 ° C.
  • R125 has a boiling point of ⁇ 48.5 ° C.
  • R134a has a boiling point of ⁇ 26.2 ° C.
  • refrigerants having greatly different boiling points are mixed. It becomes a non-azeotropic refrigerant mixture. That is, in the mixed refrigerant of R32, R125, and R134a, if the mixed refrigerant has a mixture ratio that is less than the above-mentioned component ratio or the above-mentioned component ratio, the component ratio of R32 that is a flammable refrigerant is incombustible. Can be a mixed refrigerant.
  • nonflammable refrigerants can be produced by mixing nonflammable refrigerants with flammable refrigerants in the refrigeration cycle and having a refrigerant component ratio similar to these prescribed nonflammable mixed refrigerants, The refrigerant can be recovered safely.
  • the mixing ratio is similar to that of the specified non-flammable mixed refrigerant, even if the mixing ratio is not completely the same, the same characteristics are exhibited. There is no particular problem.
  • the present invention is not limited to the combinations described here. Absent. Even if it is a thing other than the combination described here, as long as it can produce a nonflammable mixed refrigerant by combining a combustible refrigerant and a nonflammable refrigerant, any component and mixing ratio may be used.
  • the mixed refrigerant may be a pseudo-azeotropic mixed refrigerant or a non-azeotropic mixed refrigerant.
  • R125, R1234a and other nonflammable refrigerants are mixed and recovered as a nonflammable mixed refrigerant. May be.
  • a refrigeration cycle apparatus is provided by enclosing a specified amount of non-flammable refrigerant in the refrigeration cycle of the refrigeration cycle apparatus 100 from the outside. Incombustible mixed refrigerant can be produced in 100 refrigeration cycles. Therefore, even if the refrigerant recovery device 34 used for refrigerant recovery of the chlorofluorocarbon refrigerant is used, the refrigerant can be recovered safely.
  • FIG. 4 and 5 are schematic circuit diagrams illustrating an example of another refrigerant circuit configuration of the refrigeration cycle apparatus 100.
  • FIG. Based on FIG.4 and FIG.5, enclosure of a nonflammable refrigerant
  • FIG. 4 shows a refrigerant circuit configuration in which an accumulator 18 is installed on the suction side of the compressor 10.
  • FIG. 5 shows a refrigerant circuit configuration in which a receiver (intermediate pressure receiver) 19 is installed between the heat source side heat exchanger 12 and the use side heat exchanger 13.
  • a diaphragm device (a diaphragm device 16a, a diaphragm device 16b) is installed before and after the receiver 19.
  • the mixing ratio of R32 and R125 needs to be 50% by mass to 50% by mass. That is, it is necessary to enclose the same amount of R125 refrigerant as the R32 refrigerant circulating in the refrigeration cycle in the refrigeration cycle.
  • the refrigerant changes into liquid, two-phase, and gas, and the density is the largest in liquid refrigerant, then the two-phase refrigerant, and the smallest is the gas refrigerant.
  • the density ratio of the gas refrigerant is about 1000 times. Therefore, it is technically possible to stop the compressor 10 and enclose the liquid refrigerant in a place where the refrigerant exists in a gas state or a two-phase state.
  • FIG. 4 shows an example in which the expansion device 16 is accommodated in the outdoor unit 1 and FIG. 4 shows an example in which the expansion device 16 is accommodated in the indoor unit 2, but the expansion device 16 is included in the outdoor unit. 1 and indoor unit 2 may be accommodated.
  • an extraction pipe that can put refrigerant into and out of the refrigeration cycle and a connection valve that can open and close the flow path are integrated.
  • it has a service valve that also has the function of connecting an extension pipe. Therefore, it is sufficient to use such a service valve, and it is not necessary to newly provide another one.
  • any material may be used as long as the refrigerant in the refrigeration cycle can be taken in and out and the flow path can be opened and closed.
  • connection valve 32 Furthermore, between the extraction pipe 31 and the connection valve 32, between the connection valve 32 and the refrigerant recovery device 34, between the connection valve 32 and the non-combustible refrigerant cylinder 36, and between the refrigerant recovery device 34 and the refrigerant recovery cylinder 35.
  • the hose 33 is used as an example for the connection, but any connection method may be used as long as the refrigerant is connected so as not to leak to the outside, and the connection is made using copper piping. Alternatively, it may be directly connected using a special connection joint.
  • the refrigerant flow switching device 11 may be a four-way valve, or a plurality of three-way valves or two-way valves may be used.
  • the heat source side heat exchanger 12 and the use side heat exchanger 13 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not restrictive.
  • a blower for example, as the use side heat exchanger 13, a panel heater using radiation can be used, and as the heat source side heat exchanger 12, a water-cooled type in which heat is transferred by water or antifreeze. Any material can be used as long as it has a structure capable of radiating or absorbing heat.
  • the installation position of the outdoor unit 1 is not limited to the outdoor space, but may be installed in an enclosed space such as a machine room with a vent, and if it is ventilated outdoors, It can be installed.
  • the indoor unit 2 includes a ceiling cassette type, a ceiling-embedded type, a ceiling-suspended type, a wall-mounted type, and the like, so that heating air or cooling air can be blown directly into the indoor space 7 or by a duct or the like. Any kind of material can be used.
  • the number of connected outdoor units 1 and indoor units 2 is shown as one, but the number is not limited to this, and a plurality of indoor units 2 may be attached to one outdoor unit 1, A plurality of outdoor units 1 may be connected to one refrigeration cycle.
  • a repeater is installed between the outdoor unit 1 and the indoor unit 2, and both the cooling and heating are generated by the repeater, and the cooling and heating can be freely selected by the plurality of indoor units 2, and the cooling and heating can be performed simultaneously.
  • the circuit may be configured to operate.
  • the refrigeration cycle apparatus 100 may be a room air conditioner, a packaged air conditioner, or a multi air conditioner for buildings, and includes a refrigeration cycle in which a refrigerant is circulated. Any device can be used.
  • a heat medium converter that houses a heat exchanger for heat medium in which a heat medium such as refrigerant and water exchanges heat, and the outdoor unit 1 and the heat medium converter
  • the circuit may be configured so that the refrigerant is circulated between them and the heat medium is circulated between the heat medium converter and the indoor unit.
  • the heat exchanger between heat media which heat-exchanges heat medium such as a refrigerant
  • coolant is circulated in the outdoor unit 1, and between the outdoor unit 1 and the indoor unit 2 is accommodated.
  • a circuit such as a chiller in which the heat medium circulates may be configured.
  • the non-flammable refrigerant is temporarily sealed in the refrigeration cycle in which the flammable refrigerant circulates, and the generated non-flammable mixed refrigerant is used as the action of the refrigerant recovery apparatus 34.
  • the flammable refrigerant can be safely recovered by collecting the refrigerant in the refrigerant collection cylinder 35.
  • FIG. FIG. 6 is a refrigerant circuit diagram showing a refrigerant circuit configuration of the refrigeration cycle apparatus 200 according to Embodiment 2 of the present invention. Based on FIG. 6, the structure, operation
  • the difference from the first embodiment described above will be mainly described, and parts having the same functions as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
  • the same reference numerals and description thereof will be omitted.
  • Refrigeration cycle apparatus 200 according to Embodiment 2 is different from refrigeration cycle apparatus 100 according to Embodiment 1 in that refrigerant mixing apparatus 37 is connected.
  • the refrigerant mixing device 37 is connected to the connection valve 32 via the hose 33.
  • the refrigerant mixing device 37 is connected to an incombustible refrigerant cylinder 36 and a refrigerant recovery device 34 via a hose 33.
  • a refrigerant recovery cylinder 35 is connected to the refrigerant recovery device 34 via a hose 33.
  • an extraction pipe (refrigerant extraction part) 31 a connection valve (open / close valve) 32, a hose 33, a refrigerant recovery apparatus 34, a refrigerant recovery cylinder 35, an incombustible refrigerant cylinder 36, and a refrigerant
  • the mixing device 37 constitutes a refrigerant recovery mechanism 50A.
  • the refrigerant mixing device 37 is driven by, for example, a stepping motor or the like, and changes the opening area of the flow path opened on the connection valve 32 side and the opening area of the flow path opened on the nonflammable refrigerant cylinder 36 side. It is good to comprise by the three-way valve etc. which are made to do. If the refrigerant mixing device is constituted by such a three-way valve, the amount of the combustible refrigerant flowing from the connection valve 32 and the nonflammability flowing from the nonflammable refrigerant cylinder 36 are adjusted by adjusting the opening of the refrigerant mixing device 37. The amount of refrigerant can be adjusted to a specified ratio.
  • the removal and connection of the non-combustible refrigerant cylinder 36, the refrigerant recovery apparatus 34, and the refrigerant recovery cylinder 35 can be omitted, and the refrigerant can be easily recovered accordingly. Become.
  • FIG. 7 is a flowchart showing the flow of the refrigerant recovery operation performed by the refrigeration cycle apparatus 200. Based on FIG.6 and FIG.7, the refrigerant
  • coolants from the refrigerating-cycle apparatus 200 is demonstrated.
  • the types and mixing ratios of the flammable refrigerant and the nonflammable refrigerant are the same as those described in the first embodiment.
  • GT1 Treatment for recovering the combustible refrigerant from the refrigeration cycle apparatus 100 is started (GT1).
  • the refrigerant mixing device 37 is connected to the connection valve 32, the refrigerant collecting device 34 and the incombustible refrigerant cylinder 36 are connected to the refrigerant mixing device 37, and the refrigerant collecting cylinder 35 is connected to the refrigerant collecting device 34.
  • GT2 connection valve 32 is opened, the opening degree of the refrigerant mixing device 37 is adjusted, the amount of flammable refrigerant flowing into the refrigerant mixing device 37 from the inside of the refrigeration cycle, and the refrigerant mixing device 37 flowing from the nonflammable refrigerant cylinder 36.
  • the ratio to the amount of non-combustible refrigerant to be set is set to a predetermined specified value (GT3).
  • the mixed refrigerant of the nonflammable combustible refrigerant and the nonflammable refrigerant generated by the refrigerant mixing device 37 is recovered in the refrigerant recovery cylinder 35 via the refrigerant recovery device 34 (GT4). Then, recovery of the refrigerant is continued until the pressure in the refrigeration cycle becomes less than the set pressure (GT5). When the pressure in the refrigeration cycle becomes lower than the set pressure (GT5; Yes), the refrigerant recovery is completed, and the refrigerant mixing device 37 is removed from the connection valve 32 (GT6). The refrigerant recovery operation is completed by this series of processes (GT7).
  • GT7 refrigerant recovery method, only the non-combustible mixed refrigerant flows into the refrigerant recovery device 34, so that the refrigerant can be safely recovered in the refrigerant recovery cylinder 35.
  • first pressure detection device that measures the pressure of the refrigerant in the refrigeration cycle
  • second pressure detection device that measures the pressure of the refrigerant in the incombustible refrigerant cylinder 36.
  • the refrigerant flowing into the refrigerant recovery device 34 can always be an incombustible mixed refrigerant. It will be safer to use.
  • a refrigerant flow rate detection device capable of measuring the flow rate of the combustible refrigerant flowing from the refrigeration cycle device 200 to the refrigerant mixing device 37, and a non-flammable refrigerant cylinder 36 for refrigerant mixing. You may make it provide the refrigerant
  • the refrigerant recovery process for example, if the pressure in the refrigeration cycle apparatus 200 falls below a predetermined value, the refrigerant recovery may be completed assuming that the refrigerant has been sufficiently recovered.
  • a refrigerant flow rate detection device first refrigerant flow rate detection device, second refrigerant flow rate detection device
  • detection based on a detection flow rate of the first refrigerant flow rate detection device and / or a detection flow rate of the third refrigerant flow rate detection device
  • the refrigerant recovery may be completed.
  • the refrigerant recovery operation procedure is reduced, and there is an advantage that the refrigerant can be recovered safely and in a short time.
  • the refrigerant mixing device 37 has been described as an example of a three-way valve.
  • the refrigerant mixing device 37 is not limited to this, and the refrigerant mixing device 37 may have a structure such as an ejector that can suck and mix a fluid from another flow path by a main flow. Good.
  • two open / close valves two-way valves
  • expansion valves driven by a stepping motor or the like may be combined, or a three-way valve or two open / close valves that are manually operated may be combined to suck and mix two fluids. Any structure can be used.
  • the refrigerant mixing device 37 is different from the connection valve 32 and is connected to the connection valve 32 has been described as an example, but the present invention is not limited to this.
  • the refrigerant mixing device 37 has a structure that can completely close the connection port between the refrigerant mixing device 37 and the refrigerant recovery device 34 and the mixing port between the refrigerant mixing device 37 and the nonflammable refrigerant, the refrigerant mixing device The apparatus 37 may be incorporated in the refrigeration cycle apparatus 200 instead of the connection valve 32.
  • a flammable refrigerant circulating in the refrigeration cycle is mixed with a specified amount of an incombustible refrigerant to generate an incombustible mixed refrigerant, and a refrigerant recovery apparatus.
  • the refrigerant can be recovered in the non-combustible refrigerant cylinder 36 via 34, and the refrigerant recovery device 34 can prevent the occurrence of ignition or explosion and can recover the refrigerant safely.
  • the refrigerating and air-conditioning apparatus may be configured by appropriately combining the features of each embodiment. If the embodiments are appropriately combined, the effects of the features of the embodiments can be obtained in a superimposed manner.

Abstract

Provided is a refrigerant recovery method that is for a refrigeration cycle device and that is able to safely recover refrigerant without igniting the refrigerant when recovering the combustible refrigerant using a normal refrigerant recovery device for Freon. A refrigeration cycle device (100) generates a non-combustible mixed refrigerant by mixing a predetermined quantity of non-combustible refrigerant and the combustible refrigerant within the refrigeration cycle, and recovers the combustible refrigerant from the generated non-combustible mixed refrigerant.

Description

冷凍サイクル装置の冷媒回収方法及び冷凍サイクル装置Refrigerant recovery method for refrigeration cycle apparatus and refrigeration cycle apparatus
 本発明は、可燃性冷媒を冷媒として用いるルームエアコンやビル用マルチエアコン等の冷凍サイクル装置の冷媒回収方法及び冷凍サイクル装置に関するものである。 The present invention relates to a refrigerant recovery method and a refrigeration cycle apparatus for a refrigeration cycle apparatus such as a room air conditioner or a building multi-air conditioner using a flammable refrigerant as a refrigerant.
 従来、ルームエアコンやビル用マルチエアコン等の冷凍サイクル装置では、冷媒回収装置を用いて冷凍サイクル内を循環する冷媒を回収することが多かった。 Conventionally, in refrigeration cycle apparatuses such as room air conditioners and multi air conditioners for buildings, refrigerant circulating in the refrigeration cycle is often recovered using a refrigerant recovery apparatus.
 その他、冷凍空調サイクルの冷媒をポンプダウン運転により室外機に回収後、室内機や接続配管に残存した冷媒を真空ポンプを用いて回収する時、真空ポンプの排気口に冷媒回収容器を接続し、排気口から排出される冷媒を回収することにより、冷媒回収時や移設時において微量な冷媒も確実に回収し、冷媒漏洩による危険性を確実に回避できるようにした冷凍サイクル装置の冷媒回収方法も存在している(たとえば、特許文献1参照)。 In addition, after collecting the refrigerant in the refrigeration and air-conditioning cycle to the outdoor unit by pump down operation, when collecting the refrigerant remaining in the indoor unit and connection pipe using a vacuum pump, connect a refrigerant collection container to the exhaust port of the vacuum pump, There is also a refrigerant recovery method for the refrigeration cycle system that recovers the refrigerant discharged from the exhaust port to reliably recover a small amount of refrigerant at the time of refrigerant recovery or relocation, and reliably avoids the risk of refrigerant leakage. Exists (see, for example, Patent Document 1).
特開2004-116885号公報(第7頁、図4等)JP 2004-116885 A (7th page, FIG. 4 etc.)
 フロン用の冷媒回収装置は、通常、可燃性冷媒を回収できる防爆構造にはなっていない。そのため、そのような従来からあるフロン用の冷媒回収装置を用いて可燃性冷媒を回収すると、発火や爆発を起こしてしまう可能性があった。 Fluorocarbon refrigerant recovery devices usually do not have an explosion-proof structure that can recover flammable refrigerants. Therefore, if a combustible refrigerant is recovered using such a conventional refrigerant recovery device for CFC, there is a possibility of causing ignition or explosion.
 また、特許文献1に記載の冷凍サイクル装置の冷媒回収方法においては、真空ポンプから排気される冷媒を回収して、発火を防ごうとするものであり、真空ポンプや冷媒回収装置そのものが発火源となる場合には、発火を防ぐことができないという課題があった。 Further, in the refrigerant recovery method of the refrigeration cycle apparatus described in Patent Document 1, the refrigerant exhausted from the vacuum pump is recovered to prevent ignition, and the vacuum pump and the refrigerant recovery apparatus itself are the ignition source. In such a case, there was a problem that ignition could not be prevented.
 本発明は、上記のような課題を解決するためになされたもので、通常のフロン用の冷媒回収装置を用いて、可燃性を有する冷媒を回収する際に、冷媒が発火することなしに、安全に回収できる冷凍サイクル装置の冷媒回収方法及び冷凍サイクル装置を提供することを目的とするものである。 The present invention was made in order to solve the above-described problems, and when recovering a flammable refrigerant using a normal refrigerant recovery device for Freon, the refrigerant does not ignite, An object of the present invention is to provide a refrigerant recovery method and a refrigeration cycle apparatus for a refrigeration cycle apparatus that can be safely recovered.
 本発明に係る冷凍サイクル装置の冷媒回収方法は、圧縮機、第1熱交換器、第1絞り装置、第2熱交換器を冷媒配管で接続して可燃性冷媒を循環させる冷凍サイクルから、前記可燃性冷媒を回収する冷凍サイクルの冷媒回収方法であって、前記冷凍サイクルを循環している前記可燃性冷媒に所定量の不燃性冷媒を混合させて不燃性の混合冷媒を生成し、生成された前記不燃性の混合冷媒として前記可燃性冷媒を回収するものである。 The refrigerant recovery method of the refrigeration cycle apparatus according to the present invention includes a compressor, a first heat exchanger, a first expansion device, and a second heat exchanger connected by a refrigerant pipe to circulate a flammable refrigerant, A refrigerant recovery method for a refrigeration cycle for recovering a flammable refrigerant, wherein a predetermined amount of a nonflammable refrigerant is mixed with the flammable refrigerant circulating in the refrigeration cycle to generate a nonflammable mixed refrigerant. The combustible refrigerant is recovered as the non-combustible mixed refrigerant.
 本発明に係る冷凍サイクル装置は、圧縮機、第1熱交換器、第1絞り装置、第2熱交換器を冷媒配管で接続して可燃性冷媒を循環させる冷凍サイクルを有し、前記冷凍サイクルに接続された冷媒取出部と、前記冷媒取出部に接続された冷媒混合装置と、前記冷媒混合装置を介して前記冷媒取出部に着脱自在に接続された不燃性冷媒ボンベと、前記冷媒混合装置を介して前記冷媒取出部に着脱自在に接続され、前記不燃性ボンベを介して前記冷凍サイクルに封入された前記不燃性冷媒と前記冷凍サイクルを循環している前記可燃性冷媒との不燃性の混合冷媒を回収する冷媒回収装置と、前記冷媒回収装置に接続され、前記冷媒回収装置の作用により前記冷媒混合装置で前記可燃性冷媒と前記不燃性冷媒とが混合された前記不燃性の混合冷媒を貯留する冷媒回収ボンベと、で構成されている冷媒回収機構を備えたものである。 The refrigeration cycle apparatus according to the present invention includes a refrigeration cycle in which a compressor, a first heat exchanger, a first expansion device, and a second heat exchanger are connected by a refrigerant pipe to circulate a combustible refrigerant, and the refrigeration cycle A refrigerant outlet connected to the refrigerant outlet, a refrigerant mixing device connected to the refrigerant outlet, an incombustible refrigerant cylinder detachably connected to the refrigerant outlet via the refrigerant mixer, and the refrigerant mixer The non-combustible refrigerant and the combustible refrigerant circulating in the refrigerating cycle are detachably connected to the refrigerant take-out portion via the non-combustible cylinder and sealed in the refrigerating cycle via the non-combustible cylinder. A refrigerant recovery device that recovers the mixed refrigerant, and the nonflammable mixed refrigerant that is connected to the refrigerant recovery device and in which the combustible refrigerant and the nonflammable refrigerant are mixed in the refrigerant mixing device by the action of the refrigerant recovery device The A refrigerant recovery cylinder is cut, in those having a refrigerant recovery mechanism configured.
 本発明の冷凍サイクル装置の冷媒回収方法及び冷凍サイクル装置によれば、冷凍サイクル内の可燃性冷媒を、発火することなしに、安全に回収することができる。 According to the refrigerant recovery method and the refrigeration cycle apparatus of the present invention, the flammable refrigerant in the refrigeration cycle can be recovered safely without igniting.
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成の一例を示す概略回路図である。It is a schematic circuit diagram which shows an example of the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置が実行する冷媒回収動作を説明するためのシステム構成図である。It is a system block diagram for demonstrating the refrigerant | coolant collection | recovery operation | movement which the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention performs. 本発明の実施の形態1に係る冷凍サイクル装置が実行する冷媒回収動作の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the refrigerant | coolant collection | recovery operation | movement which the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention performs. 本発明の実施の形態1に係る冷凍サイクル装置の別の冷媒回路構成の一例を示す概略回路図である。It is a schematic circuit diagram which shows an example of another refrigerant circuit structure of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の別の冷媒回路構成の一例を示す概略回路図である。It is a schematic circuit diagram which shows an example of another refrigerant circuit structure of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置が実行する冷媒回収動作の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the refrigerant | coolant collection | recovery operation | movement which the refrigeration cycle apparatus which concerns on Embodiment 2 of this invention performs.
 以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置100の冷媒回路構成の一例を示す概略回路図である。図1に基づいて、冷凍サイクル装置100の構成、動作、及び、冷媒回収方法について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic circuit diagram showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the configuration, operation, and refrigerant recovery method of the refrigeration cycle apparatus 100 will be described. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
 実施の形態1に係る冷凍サイクル装置100は、冷媒を循環させる冷凍サイクルを利用することで冷却運転(たとえば、冷房運転)あるいは加熱運転(たとえば、暖房運転)を実行できるものであり、たとえば冷蔵庫や冷凍庫、自動販売機、空気調和装置、ショーケース、ヒートポンプ給湯機等に利用されるものである。なお、以下の説明では、冷凍サイクル装置100が空気調和装置に適用されている状態を例に説明するものとする。 The refrigeration cycle apparatus 100 according to Embodiment 1 can perform a cooling operation (for example, a cooling operation) or a heating operation (for example, a heating operation) by using a refrigeration cycle in which a refrigerant is circulated. It is used for freezers, vending machines, air conditioners, showcases, heat pump water heaters, and the like. In the following description, a state where the refrigeration cycle apparatus 100 is applied to an air conditioner will be described as an example.
[冷凍サイクル装置100の構成]
 図1においては、冷凍サイクル装置100は、熱源機である室外機1と、利用側機である室内機2と、を有している。室外機1と室内機2とは、冷媒を導通する冷媒配管4(冷媒配管4(1)、冷媒配管4(2)で接続されており、室外機1で生成された冷熱あるいは温熱が室内機2に配送されるようになっている。また、絞り装置16と利用側熱交換器13との間における冷媒配管4(2)には、冷媒回収機構50が接続されている。
[Configuration of refrigeration cycle apparatus 100]
In FIG. 1, the refrigeration cycle apparatus 100 includes an outdoor unit 1 that is a heat source unit and an indoor unit 2 that is a use side unit. The outdoor unit 1 and the indoor unit 2 are connected by a refrigerant pipe 4 (refrigerant pipe 4 (1) and refrigerant pipe 4 (2) that conducts the refrigerant, and the cold or hot heat generated by the outdoor unit 1 is the indoor unit. The refrigerant recovery mechanism 50 is connected to the refrigerant pipe 4 (2) between the expansion device 16 and the use side heat exchanger 13.
 室外機1は、通常、ビル等の建物の室外空間(たとえば、屋上等)に配置され、室内機2は、室内機2に冷熱または温熱を供給するものである。室内機2は、建物の内部の室内空間(たとえば、居室等)に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間に冷房用空気あるいは暖房用空気を供給するものである。冷媒回収機構50は、冷凍サイクルを循環している冷媒を回収する際に利用されるものである。 The outdoor unit 1 is normally disposed in an outdoor space (for example, a rooftop) of a building or the like, and the indoor unit 2 supplies cold or hot heat to the indoor unit 2. The indoor unit 2 is disposed at a position where cooling air or heating air can be supplied to an indoor space (for example, a living room) inside the building, and supplies the cooling air or heating air to the indoor space that is the air-conditioning target space. To do. The refrigerant recovery mechanism 50 is used when recovering the refrigerant circulating in the refrigeration cycle.
 冷凍サイクル装置100において、冷媒としては可燃性の冷媒が用いられている。可燃性冷媒としては、たとえば、化学式がC32で表されるテトラフルオロプロペン(CF3CF=CHで表されるHFO1234yf、CF3CH=CHFで表されるHFO1234ze等)や化学式がCH22で表されるジフルオロメタン(R32)等が知られている。また、これらを含む混合冷媒を用いてもよい。混合冷媒の場合は、たとえば、HFO1234yfを80%、R32を20%等の割合で混合すればよいが、特に混合比を限定するものではなく、どのような混合比でも構わない。また、R290(プロパン)等の強燃性の冷媒を使用してもよい。 In the refrigeration cycle apparatus 100, a flammable refrigerant is used as the refrigerant. The flammable refrigerant, for example, (HFO1234yf represented by CF 3 CF = CH 2, HFO1234ze like represented by CF 3 CH = CHF) chemical formula C 3 H 2-tetrafluoropropene represented by F 4 and Formula Is known such as difluoromethane (R32) represented by CH 2 F 2 . Moreover, you may use the mixed refrigerant containing these. In the case of a mixed refrigerant, for example, HFO1234yf may be mixed at a ratio of 80%, R32 may be mixed at 20%, etc., but the mixing ratio is not particularly limited, and any mixing ratio may be used. Further, a highly flammable refrigerant such as R290 (propane) may be used.
[室外機1]
 室外機1には、圧縮機10と、四方弁等の冷媒流路切替装置11と、熱源側熱交換器(第1熱交換器)12と、絞り装置16とが冷媒配管4で直列に接続されて搭載されている。
[Outdoor unit 1]
In the outdoor unit 1, a compressor 10, a refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger (first heat exchanger) 12, and a throttle device 16 are connected in series by a refrigerant pipe 4. Has been installed.
 圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。冷媒流路切替装置11は、暖房運転時における冷媒の流れと冷房運転時における冷媒の流れとを切り替えるものである。熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能し、図示省略のファン等の送風機から供給される空気と熱源側冷媒との間で熱交換を行ない、その熱源側冷媒を蒸発ガス化または凝縮液化するものである。絞り装置16は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものであり、たとえば電子式膨張弁等で構成するとよい。 The compressor 10 sucks the refrigerant and compresses the refrigerant to a high temperature / high pressure state, and may be composed of, for example, an inverter compressor capable of capacity control. The refrigerant flow switching device 11 switches the refrigerant flow during the heating operation and the refrigerant flow during the cooling operation. The heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and between air supplied from a blower such as a fan (not shown) and the heat source side refrigerant. Heat exchange is performed to evaporate or condense the heat-source-side refrigerant. The expansion device 16 has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure. For example, the expansion device 16 may be composed of an electronic expansion valve or the like.
[室内機2]
 室内機2には、利用側熱交換器(第2熱交換器)13が搭載されている。この利用側熱交換器13は、冷媒配管4(冷媒配管4(1)、冷媒配管4(2))によって室外機1に搭載されている絞り装置16と冷媒流路切替装置11とに接続するようになっている。この利用側熱交換器13は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間に供給するための暖房用空気あるいは冷房用空気を生成するものである。
[Indoor unit 2]
The indoor unit 2 is equipped with a use side heat exchanger (second heat exchanger) 13. The use side heat exchanger 13 is connected to the expansion device 16 and the refrigerant flow switching device 11 mounted in the outdoor unit 1 by the refrigerant pipe 4 (refrigerant pipe 4 (1), refrigerant pipe 4 (2)). It is like that. The use side heat exchanger 13 exchanges heat between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space. Is.
[冷媒回収機構50]
 冷媒回収機構50は、取出配管(冷媒取出部)31と、接続バルブ(開閉バルブ)32、ホース33と、冷媒回収装置34と、冷媒回収ボンベ35と、不燃性冷媒ボンベ36と、で構成されている。
[Refrigerant recovery mechanism 50]
The refrigerant recovery mechanism 50 includes an extraction pipe (refrigerant extraction part) 31, a connection valve (open / close valve) 32, a hose 33, a refrigerant recovery device 34, a refrigerant recovery cylinder 35, and an incombustible refrigerant cylinder 36. ing.
 取出配管31は、絞り装置16と利用側熱交換器13との間における冷媒配管4(2)に接続され、冷媒を封入する際や冷媒を回収する際に冷媒が導通するものである。接続バルブ32は、取出配管31に設置され、冷媒を封入する際や冷媒を回収する際に取出配管31を開閉するものである。ホース33は、接続バルブ32と冷媒回収装置34とを接続し、冷媒回収時に冷媒が導通するものである。冷媒回収装置34は、駆動されることで冷媒配管4(2)から取出配管31及びホース33に冷媒を導通させるものである。冷媒回収ボンベ35は、冷媒回収装置34の駆動によって取出配管31及びホース33を流れてきた冷媒を回収するものである。不燃性冷媒ボンベ36は、冷凍サイクルに封入する不燃性冷媒が内部に貯留されているものである。 The extraction pipe 31 is connected to the refrigerant pipe 4 (2) between the expansion device 16 and the use-side heat exchanger 13, and the refrigerant conducts when the refrigerant is sealed or collected. The connection valve 32 is installed in the extraction pipe 31 and opens and closes the extraction pipe 31 when enclosing the refrigerant or collecting the refrigerant. The hose 33 connects the connection valve 32 and the refrigerant recovery device 34 so that the refrigerant is conducted when the refrigerant is recovered. The refrigerant recovery device 34 is driven to cause the refrigerant to conduct from the refrigerant pipe 4 (2) to the extraction pipe 31 and the hose 33. The refrigerant recovery cylinder 35 recovers the refrigerant that has flowed through the extraction pipe 31 and the hose 33 by driving the refrigerant recovery device 34. The non-combustible refrigerant cylinder 36 is one in which an incombustible refrigerant sealed in the refrigeration cycle is stored.
[冷凍サイクル装置100の冷房運転時の動作]
 冷凍サイクル装置100が冷房運転を実行する場合、室外機1では、冷媒流路切替装置11を、圧縮機10から吐出された冷媒を熱源側熱交換器12へ流入させるように切り替える。
[Operation during cooling operation of refrigeration cycle apparatus 100]
When the refrigeration cycle apparatus 100 performs the cooling operation, in the outdoor unit 1, the refrigerant flow switching device 11 is switched so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、絞り装置16で膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、室外機1から流出し、冷媒配管4(2)を通って室内機2に流入する。 A low-temperature / low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature / high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 is expanded by the expansion device 16 and becomes a low-temperature, low-pressure two-phase refrigerant. This two-phase refrigerant flows out of the outdoor unit 1 and flows into the indoor unit 2 through the refrigerant pipe 4 (2).
 室内機2に流入した二相冷媒は、蒸発器として作用する利用側熱交換器13に流入する。利用側熱交換器13に流入した二相冷媒は、利用側熱交換器13にて室内空気から吸熱して蒸発ガス化し、低温・低圧のガス冷媒となる。このとき、室内機2にて、室内空間の冷房を行なう。利用側熱交換器13から流出した低温・低圧のガス冷媒は、室内機2から流出し、冷媒配管4(1)を通って再び室外機1へ流入する。室外機1に流入したガス冷媒は、冷媒流路切替装置11を介して、圧縮機10へ再度吸入される。 The two-phase refrigerant that has flowed into the indoor unit 2 flows into the use-side heat exchanger 13 that acts as an evaporator. The two-phase refrigerant that has flowed into the use-side heat exchanger 13 absorbs heat from the indoor air in the use-side heat exchanger 13 to be evaporated and becomes a low-temperature / low-pressure gas refrigerant. At this time, the indoor unit 2 cools the indoor space. The low-temperature and low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 13 flows out of the indoor unit 2 and flows into the outdoor unit 1 again through the refrigerant pipe 4 (1). The gas refrigerant that has flowed into the outdoor unit 1 is again sucked into the compressor 10 via the refrigerant flow switching device 11.
[冷凍サイクル装置100の暖房運転時の動作]
 冷凍サイクル装置100が暖房運転を実行する場合、室外機1では、冷媒流路切替装置11を、圧縮機10から吐出された冷媒を熱源側熱交換器12ではなく利用側熱交換器13へ流入させるように切り替える。
[Operation during heating operation of refrigeration cycle apparatus 100]
When the refrigeration cycle apparatus 100 performs a heating operation, in the outdoor unit 1, the refrigerant flow switching device 11 causes the refrigerant discharged from the compressor 10 to flow into the use side heat exchanger 13 instead of the heat source side heat exchanger 12. Switch to let
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、冷媒流路切替装置11を介して室外機1から流出し、冷媒配管4(1)を通って室内機2に流入する。室内機2に流入した高温・高圧のガス冷媒は、利用側熱交換器13に流入する。利用側熱交換器13に流入した高温・高圧のガス冷媒は、利用側熱交換器13で室内空気に放熱しながら凝縮液化し、高圧液冷媒となる。このとき、室内機2にて、室内空間7の暖房を行なう。 A low-temperature / low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature / high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11, and flows into the indoor unit 2 through the refrigerant pipe 4 (1). The high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 2 flows into the use-side heat exchanger 13. The high-temperature and high-pressure gas refrigerant that has flowed into the use-side heat exchanger 13 is condensed and liquefied while dissipating heat to the indoor air in the use-side heat exchanger 13, and becomes high-pressure liquid refrigerant. At this time, the indoor unit 2 heats the indoor space 7.
 利用側熱交換器13から流出した高圧液冷媒は、室内機2から流出し、冷媒配管4(2)を通って再び室外機1へ流入する。室外機1に流入した高圧液冷媒は、絞り装置16で膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、蒸発器として作用する熱源側熱交換器12に流入する。熱源側熱交換器12に流入した二相冷媒は、熱源側熱交換器12にて室外空気から吸熱して蒸発ガス化して低温・低圧のガス冷媒となり、冷媒流路切替装置11を介して、圧縮機10へ再度吸入される。 The high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 13 flows out of the indoor unit 2 and flows into the outdoor unit 1 again through the refrigerant pipe 4 (2). The high-pressure liquid refrigerant flowing into the outdoor unit 1 is expanded by the expansion device 16 and becomes a low-temperature / low-pressure two-phase refrigerant. This two-phase refrigerant flows into the heat source side heat exchanger 12 acting as an evaporator. The two-phase refrigerant that has flowed into the heat source side heat exchanger 12 absorbs heat from outdoor air in the heat source side heat exchanger 12 to be evaporated and gasified into a low-temperature / low-pressure gas refrigerant, and through the refrigerant flow switching device 11, It is sucked into the compressor 10 again.
[冷媒回収動作]
 図2は、冷凍サイクル装置100が実行する冷媒回収動作を説明するためのシステム構成図である。図3は、冷凍サイクル装置100が実行する冷媒回収動作の処理の流れを示すフローチャートである。図1~図3に基づいて、冷凍サイクル装置100から可燃性冷媒を回収する際の冷媒回収動作について説明する。
[Refrigerant recovery operation]
FIG. 2 is a system configuration diagram for explaining the refrigerant recovery operation executed by the refrigeration cycle apparatus 100. FIG. 3 is a flowchart showing the flow of the refrigerant recovery operation performed by the refrigeration cycle apparatus 100. The refrigerant recovery operation when recovering the combustible refrigerant from the refrigeration cycle apparatus 100 will be described with reference to FIGS.
 現地で据え付けられた冷凍サイクル装置100に使用している部品、たとえば圧縮機10等が故障した場合、冷媒配管4の内部を循環している冷媒を回収用のボンベに回収してから、故障した部品の修理を行なう必要がある。冷媒を回収せずに大気に放出してしまうと地球の温暖化が進んでしまうため、冷媒を回収することにより地球の温暖化を促進しないようにすることができる。また、冷凍サイクル装置100が劣化し、廃棄する場合にも、地球温暖化の抑制という観点から冷媒回収を行なう必要がある。 When a part used in the refrigeration cycle apparatus 100 installed on site, for example, the compressor 10 or the like fails, the refrigerant circulating inside the refrigerant pipe 4 is recovered in a recovery cylinder and then failed. Parts need to be repaired. If the refrigerant is released into the atmosphere without being collected, the global warming will progress. Therefore, the global warming can be prevented from being accelerated by collecting the refrigerant. Also, when the refrigeration cycle apparatus 100 is deteriorated and discarded, it is necessary to recover the refrigerant from the viewpoint of suppressing global warming.
 冷凍サイクル装置100には、上述したように冷媒回収機構50が接続されている。冷凍サイクル装置100が通常運転(冷房運転又は暖房運転)を実行しているときは、冷媒回収装置34が停止、接続バルブ32が閉となっており、冷媒が外部に流出することがないようになっている。一方、冷凍サイクル装置100が冷媒回収動作を実行するときは、冷媒回収装置34が駆動され、接続バルブ32が開となり、取出配管31及びホース33を介して、冷媒回収ボンベ35に冷媒を回収するようになっている。 The refrigerant recovery mechanism 50 is connected to the refrigeration cycle apparatus 100 as described above. When the refrigeration cycle apparatus 100 is performing a normal operation (cooling operation or heating operation), the refrigerant recovery device 34 is stopped and the connection valve 32 is closed so that the refrigerant does not flow outside. It has become. On the other hand, when the refrigeration cycle apparatus 100 executes the refrigerant recovery operation, the refrigerant recovery apparatus 34 is driven, the connection valve 32 is opened, and the refrigerant is recovered in the refrigerant recovery cylinder 35 via the extraction pipe 31 and the hose 33. It is like that.
 ここで、フロン冷媒の回収に用いられる冷媒回収装置34は、通常、防爆対応にはなっていない。そこで、冷媒として、可燃性の冷媒を用い、冷媒回収装置34を用いて冷媒を回収すると、冷媒が発火し、爆発してしまう可能性がある。そのため、可燃性冷媒を回収する場合は、新たな冷媒回収の対策が必要となる。そこで、冷凍サイクル装置100では、以下に説明するような対策を施している。 Here, the refrigerant recovery device 34 used for recovery of the chlorofluorocarbon refrigerant is usually not explosion-proof. Therefore, if a flammable refrigerant is used as the refrigerant and the refrigerant is recovered using the refrigerant recovery device 34, the refrigerant may ignite and explode. Therefore, when recovering the flammable refrigerant, a new countermeasure for recovering the refrigerant is required. Therefore, the refrigeration cycle apparatus 100 takes measures as described below.
 図2及び図3を参照しながら、冷媒回収動作の流れを説明する。
 まず、冷媒回収装置34及び冷媒回収ボンベ35を取り外した状態で、冷凍サイクル装置100から可燃性冷媒を回収する処置を開始する(ST1)。処理を開始すると、図2に示すように、ホース33を介して接続バルブ32に不燃性冷媒ボンベ36を接続する(ST2)。そして、接続バルブ32を開として可燃性冷媒の流路を確保し、不燃性冷媒ボンベ36から可燃性冷媒が既に封入されている冷凍サイクル内に不燃冷媒を封入する(ST3)。可燃性冷媒には、特定の不燃性冷媒を規定量以上混合させると不燃性になるという性質がある。この不燃性となる可燃性冷媒と不燃性冷媒の組み合わせについては後述する。
The flow of the refrigerant recovery operation will be described with reference to FIGS.
First, with the refrigerant recovery device 34 and the refrigerant recovery cylinder 35 removed, a procedure for recovering the combustible refrigerant from the refrigeration cycle apparatus 100 is started (ST1). When the process is started, as shown in FIG. 2, the nonflammable refrigerant cylinder 36 is connected to the connection valve 32 via the hose 33 (ST2). Then, the connection valve 32 is opened to secure the flow path of the combustible refrigerant, and the incombustible refrigerant is enclosed in the refrigeration cycle in which the combustible refrigerant is already enclosed from the incombustible refrigerant cylinder 36 (ST3). A combustible refrigerant has a property of becoming nonflammable when a specific amount or more of a specific nonflammable refrigerant is mixed. The combination of the incombustible combustible refrigerant and the incombustible refrigerant will be described later.
 不燃性冷媒が規定量以上混合されると(ST4;Yes)、冷凍サイクル装置100に循環していた可燃性冷媒は、不燃性冷媒との混合冷媒となって不燃性となる。その後、接続バルブ32を閉とし、不燃性冷媒ボンベ36を接続バルブ32から取り外す(ST5)。このとき、冷凍サイクル内の圧力よりも不燃性冷媒ボンベ36の内部の圧力の方が高くないと、不燃性冷媒ボンベ36から冷凍サイクル内に冷媒を封入することができない。そのため、圧縮機10を停止させておくか、あるいは、取出配管31の位置が低圧となるように、冷媒流路切替装置11を操作した後に、上記処理(ST3、ST4)を行なう。 When a non-flammable refrigerant is mixed more than a specified amount (ST4; Yes), the flammable refrigerant circulating in the refrigeration cycle apparatus 100 becomes a mixed refrigerant with the nonflammable refrigerant and becomes nonflammable. Thereafter, the connection valve 32 is closed, and the nonflammable refrigerant cylinder 36 is removed from the connection valve 32 (ST5). At this time, unless the pressure inside the incombustible refrigerant cylinder 36 is higher than the pressure inside the refrigeration cycle, the refrigerant cannot be sealed from the incombustible refrigerant cylinder 36 into the refrigeration cycle. Therefore, the processing (ST3, ST4) is performed after the compressor 10 is stopped or the refrigerant flow switching device 11 is operated so that the position of the extraction pipe 31 is low.
 次に、図1に示すように、ホース33を介して接続バルブ32に冷媒回収装置34を接続する(ST6)。そして、接続バルブ32を開として不燃性となった混合冷媒の流路を確保し、冷凍サイクル内に生成された不燃性となった混合冷媒を、冷媒回収装置34の作用により、冷媒回収ボンベ35に回収する(ST7)。そして、冷凍サイクル内の圧力が設定圧力未満になるまで冷媒回収を行なう(ST8)。冷凍サイクル内の圧力が設定圧力未満になったら(ST8;Yes)、冷媒回収装置34を接続バルブ32から取り外す(ST9)。この一連の処理で冷媒回収動作が終了する(ST10)。 Next, as shown in FIG. 1, the refrigerant recovery device 34 is connected to the connection valve 32 via the hose 33 (ST6). Then, the connection valve 32 is opened to secure a non-flammable mixed refrigerant flow path, and the non-flammable mixed refrigerant generated in the refrigeration cycle is supplied to the refrigerant recovery cylinder 35 by the action of the refrigerant recovery device 34. (ST7). Then, the refrigerant is recovered until the pressure in the refrigeration cycle becomes less than the set pressure (ST8). When the pressure in the refrigeration cycle becomes less than the set pressure (ST8; Yes), the refrigerant recovery device 34 is removed from the connection valve 32 (ST9). The refrigerant recovery operation is completed by this series of processes (ST10).
 なお、ここでは、冷凍サイクル内の圧力が設定圧力未満に下がることにより、冷凍サイクル内の冷媒回収を完了する旨の説明を行なったが、これに限定するものではない。たとえば、予め冷凍サイクル装置100の冷凍サイクル内に封入されている冷媒量が分かっている場合は、回収された冷媒量が規定量(規定重量)以上になったかどうかによっても、冷凍サイクル内の冷媒が十分に回収できたことを、確認することができる。 In addition, although the description that the refrigerant recovery in the refrigeration cycle is completed when the pressure in the refrigeration cycle falls below the set pressure is described here, the present invention is not limited to this. For example, when the amount of refrigerant sealed in the refrigeration cycle of the refrigeration cycle apparatus 100 is known in advance, the refrigerant in the refrigeration cycle also depends on whether or not the recovered refrigerant amount has exceeded a specified amount (specified weight). It can be confirmed that is fully recovered.
[可燃性冷媒と不燃性冷媒の種類および混合比]
 可燃性冷媒に不燃性冷媒を混合させて生成する不燃性の混合冷媒について説明する。
 一般的に、空気調和装置等の冷凍サイクル装置によく使用されている冷媒であるR410Aは、可燃性冷媒であるR32に、不燃性冷媒であるR125を混合させた、不燃性の混合冷媒である。R32の沸点は-51.8℃、R125の沸点は-48.5℃であり、R32とR125の沸点が近い値であるため、R410Aは擬似共沸冷媒と呼ばれている。
[Types and mixing ratios of combustible and non-combustible refrigerants]
A nonflammable mixed refrigerant produced by mixing a nonflammable refrigerant with a combustible refrigerant will be described.
In general, R410A, which is a refrigerant often used in a refrigeration cycle apparatus such as an air conditioner, is a nonflammable mixed refrigerant in which R125, which is a flammable refrigerant, is mixed with R125, which is a nonflammable refrigerant. . Since the boiling point of R32 is −51.8 ° C., the boiling point of R125 is −48.5 ° C., and the boiling points of R32 and R125 are close to each other, R410A is called a pseudo-azeotropic refrigerant.
 このR410Aにおいては、R32が50質量%、R125が50質量%、混合されている。また、R410Aと冷媒成分が同じで、混合比が異なるR410Bという不燃性の混合冷媒も存在している。このR410Bにおいては、R32が45質量%、R125が55質量%、混合されている。すなわち、可燃性冷媒R32と不燃性冷媒R125を混合させて生成した混合冷媒において、R125を50質量%以上混合させることにより、不燃性の混合冷媒とすることができる。 In this R410A, R32 is mixed with 50% by mass and R125 is mixed with 50% by mass. There is also a non-flammable mixed refrigerant R410B having the same refrigerant component as R410A but having a different mixing ratio. In this R410B, R32 is mixed by 45 mass% and R125 is mixed by 55 mass%. That is, in the mixed refrigerant produced by mixing the flammable refrigerant R32 and the non-flammable refrigerant R125, it is possible to obtain a non-flammable mixed refrigerant by mixing 50 mass% or more of R125.
 また、可燃性冷媒であるHFO1234yfを62質量%、不燃性冷媒であるR134aを38質量%、混合させることにより、擬似共沸の不燃性の混合冷媒を生成できることも分かっている。HFO1234yfの沸点は-29℃、R134aの沸点は-26.2℃であるため、この混合冷媒も擬似共沸混合冷媒になる。なお、HFO1234yfとR134aとの混合冷媒においては、不燃性冷媒であるR134aを38質量%よりも多く混合させても、当然、不燃性の混合冷媒が生成される。 It has also been found that a pseudo-azeotropic incombustible mixed refrigerant can be produced by mixing 62% by mass of HFO1234yf, which is a combustible refrigerant, and 38% by mass of R134a, which is an incombustible refrigerant. Since the boiling point of HFO1234yf is −29 ° C. and the boiling point of R134a is −26.2 ° C., this mixed refrigerant also becomes a pseudo-azeotropic mixed refrigerant. Note that in the mixed refrigerant of HFO1234yf and R134a, an incombustible mixed refrigerant is naturally produced even if R134a, which is an incombustible refrigerant, is mixed in an amount greater than 38% by mass.
 また、その他にも、可燃性冷媒であるR32と、不燃性冷媒であるR125と、不燃性冷媒であるR134aと、を混合させた不燃性の混合冷媒として、次のようなものがある。たとえば、R407A(R32:R125:R134a=20質量%:40質量%:40質量%)、R407B(R32:R125:R134a=10質量%:70質量%:20質量%)、R407C(R32:R125:R134a=23質量%:25質量%:52質量%)、R407D(R32:R125:R134a=15質量%:15質量%:70質量%)、R407E(R32:R125:R134a=25質量%:15質量%:60質量%)など。 In addition, there are the following non-flammable mixed refrigerants in which R32, which is a flammable refrigerant, R125, which is a non-flammable refrigerant, and R134a, which is a non-flammable refrigerant, are mixed. For example, R407A (R32: R125: R134a = 20 mass%: 40 mass%: 40 mass%), R407B (R32: R125: R134a = 10 mass%: 70 mass%: 20 mass%), R407C (R32: R125: R134a = 23 mass%: 25 mass%: 52 mass%), R407D (R32: R125: R134a = 15 mass%: 15 mass%: 70 mass%), R407E (R32: R125: R134a = 25 mass%: 15 mass) %: 60% by mass).
 これらの冷媒においては、R32の沸点が-51.8℃、R125の沸点が-48.5℃、R134aの沸点が-26.2℃であり、沸点の大きく違う冷媒が混合されているため、非共沸混合冷媒となる。すなわち、R32とR125とR134aとの混合冷媒においては、上述の成分比率、あるいは、上述の成分比率よりも、可燃性冷媒であるR32の成分比率が少ない混合比である混合冷媒とすれば、不燃性の混合冷媒とすることができる。 In these refrigerants, R32 has a boiling point of −51.8 ° C., R125 has a boiling point of −48.5 ° C., R134a has a boiling point of −26.2 ° C., and refrigerants having greatly different boiling points are mixed. It becomes a non-azeotropic refrigerant mixture. That is, in the mixed refrigerant of R32, R125, and R134a, if the mixed refrigerant has a mixture ratio that is less than the above-mentioned component ratio or the above-mentioned component ratio, the component ratio of R32 that is a flammable refrigerant is incombustible. Can be a mixed refrigerant.
 以上より、冷凍サイクル内の可燃性冷媒に、不燃性の冷媒を混合させ、これら規定の不燃性混合冷媒と類似の冷媒成分比とすることにより、不燃性の混合冷媒を生成することができ、安全に冷媒を回収できることになる。なお、可燃性冷媒と不燃性冷媒とを混合させた結果、規定の不燃性混合冷媒と類似の混合比となっていれば、完全に同じ混合比でなくても、同様の特性を示すため、特に問題はない。 From the above, nonflammable refrigerants can be produced by mixing nonflammable refrigerants with flammable refrigerants in the refrigeration cycle and having a refrigerant component ratio similar to these prescribed nonflammable mixed refrigerants, The refrigerant can be recovered safely. In addition, as a result of mixing the flammable refrigerant and the non-flammable refrigerant, if the mixing ratio is similar to that of the specified non-flammable mixed refrigerant, even if the mixing ratio is not completely the same, the same characteristics are exhibited. There is no particular problem.
 なお、ここでは、不燃性の混合冷媒を生成する場合において、混合させる可燃性冷媒と不燃性冷媒の成分および混合比率の数例を示したに過ぎず、ここに記した組み合わせに限定するものではない。ここに記した組み合わせ以外のものであっても、可燃性冷媒と不燃性冷媒とを組み合わせて不燃性の混合冷媒を生成できるものであれば、どのような成分および混合比率としても構わない。また、混合冷媒は、擬似共沸混合冷媒であっても、非共沸混合冷媒であっても構わない。たとえば、冷凍サイクル内に、R32とHFO1234yfとの混合冷媒(可燃性)が封入されている場合等においても、R125やR1234aやその他の不燃性の冷媒を混合させ、不燃性の混合冷媒として、回収してもよい。 Here, in the case of generating a nonflammable mixed refrigerant, only a few examples of the components and mixing ratios of the combustible refrigerant and the nonflammable refrigerant to be mixed are shown, and the present invention is not limited to the combinations described here. Absent. Even if it is a thing other than the combination described here, as long as it can produce a nonflammable mixed refrigerant by combining a combustible refrigerant and a nonflammable refrigerant, any component and mixing ratio may be used. The mixed refrigerant may be a pseudo-azeotropic mixed refrigerant or a non-azeotropic mixed refrigerant. For example, even when a mixed refrigerant (flammable) of R32 and HFO1234yf is enclosed in the refrigeration cycle, R125, R1234a and other nonflammable refrigerants are mixed and recovered as a nonflammable mixed refrigerant. May be.
 以上のようにして、冷凍サイクル装置100の冷凍サイクル内に可燃性冷媒が循環している場合、外部から冷凍サイクル装置100の冷凍サイクル内に不燃性冷媒を規定量封入することにより、冷凍サイクル装置100の冷凍サイクル内に不燃性の混合冷媒を生成することができる。したがって、フロン冷媒の冷媒回収に用いられる冷媒回収装置34を用いても、冷媒を安全に回収することができることになる。 As described above, when a flammable refrigerant circulates in the refrigeration cycle of the refrigeration cycle apparatus 100, a refrigeration cycle apparatus is provided by enclosing a specified amount of non-flammable refrigerant in the refrigeration cycle of the refrigeration cycle apparatus 100 from the outside. Incombustible mixed refrigerant can be produced in 100 refrigeration cycles. Therefore, even if the refrigerant recovery device 34 used for refrigerant recovery of the chlorofluorocarbon refrigerant is used, the refrigerant can be recovered safely.
[冷凍サイクル装置100の別の回路構成]
 図4及び図5は、冷凍サイクル装置100の別の冷媒回路構成の一例を示す概略回路図である。図4及び図5に基づいて、不燃性冷媒を封入について説明する。図4は、圧縮機10の吸入側にアキュムレータ18を設置した冷媒回路構成を示している。また、図5は、熱源側熱交換器12と利用側熱交換器13との間にレシーバ(中圧レシーバ)19を設置した冷媒回路構成を示している。なお、レシーバ19の前後に絞り装置(絞り装置16a、絞り装置16b)を設置している。
[Another circuit configuration of the refrigeration cycle apparatus 100]
4 and 5 are schematic circuit diagrams illustrating an example of another refrigerant circuit configuration of the refrigeration cycle apparatus 100. FIG. Based on FIG.4 and FIG.5, enclosure of a nonflammable refrigerant | coolant is demonstrated. FIG. 4 shows a refrigerant circuit configuration in which an accumulator 18 is installed on the suction side of the compressor 10. FIG. 5 shows a refrigerant circuit configuration in which a receiver (intermediate pressure receiver) 19 is installed between the heat source side heat exchanger 12 and the use side heat exchanger 13. A diaphragm device (a diaphragm device 16a, a diaphragm device 16b) is installed before and after the receiver 19.
 たとえば、R410Aを生成する場合、R32とR125の混合比を50質量%対50質量%とする必要がある。すなわち、冷凍サイクル内に循環しているR32冷媒と同量のR125冷媒を冷凍サイクル内に封入する必要がある。図1に示す冷凍サイクル装置100においては、冷媒は液、二相、ガスと変化しており、密度は液冷媒が最も大きく、次いで二相冷媒、最も小さいのがガス冷媒であり、液冷媒とガス冷媒の密度比は1000倍程度である。よって、圧縮機10を停止させ、冷媒がガス状態あるいは二相状態となって存在している場所に、液冷媒を封入することは技術的には可能である。 For example, when producing R410A, the mixing ratio of R32 and R125 needs to be 50% by mass to 50% by mass. That is, it is necessary to enclose the same amount of R125 refrigerant as the R32 refrigerant circulating in the refrigeration cycle in the refrigeration cycle. In the refrigeration cycle apparatus 100 shown in FIG. 1, the refrigerant changes into liquid, two-phase, and gas, and the density is the largest in liquid refrigerant, then the two-phase refrigerant, and the smallest is the gas refrigerant. The density ratio of the gas refrigerant is about 1000 times. Therefore, it is technically possible to stop the compressor 10 and enclose the liquid refrigerant in a place where the refrigerant exists in a gas state or a two-phase state.
 一方、冷凍サイクルとして機能させた状態においては、外部から封入する不燃性冷媒を貯める場所が存在せず、困難である。そこで、図4に示すように、圧縮機10の吸入側に、アキュムレータ18を設けることにより、アキュムレータ18内に多くの液冷媒を貯めることができることになる。そのため、不燃性冷媒を容易に封入することができるようになる。なお、図1においては絞り装置16を室外機1に収容した場合を、図4においては絞り装置16を室内機2に収容した場合を、それぞれ例に示しているが、絞り装置16を室外機1、室内機2のどちらに収容しても構わない。 On the other hand, in the state of functioning as a refrigeration cycle, there is no place for storing the nonflammable refrigerant sealed from the outside, which is difficult. Therefore, as shown in FIG. 4, by providing the accumulator 18 on the suction side of the compressor 10, a large amount of liquid refrigerant can be stored in the accumulator 18. Therefore, the nonflammable refrigerant can be easily enclosed. 1 shows an example in which the expansion device 16 is accommodated in the outdoor unit 1 and FIG. 4 shows an example in which the expansion device 16 is accommodated in the indoor unit 2, but the expansion device 16 is included in the outdoor unit. 1 and indoor unit 2 may be accommodated.
 また、図5に示すように、熱源側熱交換器12と利用側熱交換器13との間の配管、つまり液冷媒が流れる配管に、レシーバ19を設けることにより、レシーバ19内に多くの液冷媒を貯めることができることになる。そのため、不燃性冷媒を容易に封入することができるようになる In addition, as shown in FIG. 5, by providing the receiver 19 in the pipe between the heat source side heat exchanger 12 and the use side heat exchanger 13, that is, the pipe through which the liquid refrigerant flows, a large amount of liquid is contained in the receiver 19. The refrigerant can be stored. Therefore, it becomes possible to easily enclose the nonflammable refrigerant.
 また、冷凍サイクル装置100に、取出配管31及び接続バルブ32を備えることを例に説明を行なった。ところで、通常の冷凍サイクル装置には、冷凍サイクル内に冷媒を入れたり、冷凍サイクル内から冷媒を出したりすることができる取出配管と、流路の開閉を行なえる接続バルブと、が一体になったもので、かつ、延長配管の接続機能を併せ持ったサービスバルブが備えられている。そのため、このようなサービスバルブを用いればよく、新たに別のものを設ける必要はない。その他にも、冷凍サイクル内の冷媒の入れ出しができ、流路の開閉が行なえるものであれば、どのようなものを用いてもよい。 Further, the description has been given by taking the refrigeration cycle apparatus 100 as being provided with the extraction pipe 31 and the connection valve 32 as an example. By the way, in a normal refrigeration cycle apparatus, an extraction pipe that can put refrigerant into and out of the refrigeration cycle and a connection valve that can open and close the flow path are integrated. In addition, it has a service valve that also has the function of connecting an extension pipe. Therefore, it is sufficient to use such a service valve, and it is not necessary to newly provide another one. In addition, any material may be used as long as the refrigerant in the refrigeration cycle can be taken in and out and the flow path can be opened and closed.
 さらに、取出配管31と接続バルブ32との間、接続バルブ32と冷媒回収装置34との間、接続バルブ32と不燃性冷媒ボンベ36との間、冷媒回収装置34と冷媒回収ボンベ35との間、等の接続には、ホース33を使用することを例に説明を行ったが、冷媒が外部に漏れないように接続されていれば、どのような接続方法でもよく、銅配管を用いて接続してもよいし、特別な接続継手を用いて直接接続してもよい。 Furthermore, between the extraction pipe 31 and the connection valve 32, between the connection valve 32 and the refrigerant recovery device 34, between the connection valve 32 and the non-combustible refrigerant cylinder 36, and between the refrigerant recovery device 34 and the refrigerant recovery cylinder 35. The hose 33 is used as an example for the connection, but any connection method may be used as long as the refrigerant is connected so as not to leak to the outside, and the connection is made using copper piping. Alternatively, it may be directly connected using a special connection joint.
 なお、冷媒流路切替装置11は、四方弁であってもよいし、三方弁や二方弁を複数用いるようにしてもよい。 The refrigerant flow switching device 11 may be a four-way valve, or a plurality of three-way valves or two-way valves may be used.
 また、一般的に、熱源側熱交換器12および利用側熱交換器13には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば、利用側熱交換器13としては、放射を利用したパネルヒータのようなものも用いることができるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができ、放熱あるいは吸熱をできる構造のものであればどんなものでも用いることができる。 In general, the heat source side heat exchanger 12 and the use side heat exchanger 13 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not restrictive. For example, as the use side heat exchanger 13, a panel heater using radiation can be used, and as the heat source side heat exchanger 12, a water-cooled type in which heat is transferred by water or antifreeze. Any material can be used as long as it has a structure capable of radiating or absorbing heat.
 また、室外機1の設置位置は、室外空間に限定するものではなく、換気口付の機械室等の囲まれた空間に設置してもよく、屋外に対し通気がなされているところであれば、設置可能である。 Moreover, the installation position of the outdoor unit 1 is not limited to the outdoor space, but may be installed in an enclosed space such as a machine room with a vent, and if it is ventilated outdoors, It can be installed.
 また、室内機2は、天井カセット型、天井埋込型、天井吊下式、壁掛型等のタイプがあり、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。 The indoor unit 2 includes a ceiling cassette type, a ceiling-embedded type, a ceiling-suspended type, a wall-mounted type, and the like, so that heating air or cooling air can be blown directly into the indoor space 7 or by a duct or the like. Any kind of material can be used.
 また、ここでは、室外機1、室内機2の接続台数を1台として示しているが、これに限るものではなく、1つの室外機1に複数の室内機2が付いていてもよいし、1つの冷凍サイクルに複数の室外機1を接続してもよい。 In addition, here, the number of connected outdoor units 1 and indoor units 2 is shown as one, but the number is not limited to this, and a plurality of indoor units 2 may be attached to one outdoor unit 1, A plurality of outdoor units 1 may be connected to one refrigeration cycle.
 また、室外機1と室内機2との間に、中継器を設置し、中継器で冷熱と温熱の双方を生成し、複数の室内機2で冷房と暖房を自由に選択し、冷房暖房同時運転を行うように回路を構成してもよい。 In addition, a repeater is installed between the outdoor unit 1 and the indoor unit 2, and both the cooling and heating are generated by the repeater, and the cooling and heating can be freely selected by the plurality of indoor units 2, and the cooling and heating can be performed simultaneously. The circuit may be configured to operate.
 また、冷凍サイクル装置100としては、ルームエアコンであってもよいし、パッケージエアコンであってもよいし、ビル用のマルチエアコンであってもよく、内部に冷媒を循環させている冷凍サイクルを備えた装置であれば、どんなものであっても構わない。 The refrigeration cycle apparatus 100 may be a room air conditioner, a packaged air conditioner, or a multi air conditioner for buildings, and includes a refrigeration cycle in which a refrigerant is circulated. Any device can be used.
 また、室内機2に直接冷媒が循環する直膨サイクルに限るものでもない。室外機1と室内機2との間に、冷媒と水等の熱媒体が熱交換する熱媒体間熱交換器を収容した熱媒体変換機を設置し、室外機1と熱媒体変換機との間で冷媒を循環させ、熱媒体変換機と室内機との間で熱媒体が循環するように、回路を構成してもよい。 Also, it is not limited to the direct expansion cycle in which the refrigerant circulates directly to the indoor unit 2. Installed between the outdoor unit 1 and the indoor unit 2 is a heat medium converter that houses a heat exchanger for heat medium in which a heat medium such as refrigerant and water exchanges heat, and the outdoor unit 1 and the heat medium converter The circuit may be configured so that the refrigerant is circulated between them and the heat medium is circulated between the heat medium converter and the indoor unit.
 また、室外機1の内部に、冷媒と水等の熱媒体が熱交換する熱媒体間熱交換器を収容し、冷媒は室外機1内で循環させ、室外機1と室内機2との間で熱媒体が循環するチラーのような、回路を構成してもよい。 Moreover, the heat exchanger between heat media which heat-exchanges heat medium, such as a refrigerant | coolant and water, is accommodated in the inside of the outdoor unit 1, a refrigerant | coolant is circulated in the outdoor unit 1, and between the outdoor unit 1 and the indoor unit 2 is accommodated. A circuit such as a chiller in which the heat medium circulates may be configured.
 以上のように、冷凍サイクル装置100によれば、可燃性冷媒が循環している冷凍サイクル内に、不燃性冷媒を一旦封入し、生成された不燃性の混合冷媒を、冷媒回収装置34の作用により、冷媒回収ボンベ35に回収することにより、可燃性冷媒を安全に回収することができる。 As described above, according to the refrigeration cycle apparatus 100, the non-flammable refrigerant is temporarily sealed in the refrigeration cycle in which the flammable refrigerant circulates, and the generated non-flammable mixed refrigerant is used as the action of the refrigerant recovery apparatus 34. Thus, the flammable refrigerant can be safely recovered by collecting the refrigerant in the refrigerant collection cylinder 35.
実施の形態2.
 図6は、本発明の実施の形態2に係る冷凍サイクル装置200の冷媒回路構成を示す冷媒回路図である。図6に基づいて、冷凍サイクル装置200の構成、動作、及び、冷媒回収方法について説明する。なお、この実施の形態2では上述した実施の形態1との相違点を中心に説明するものとし、実施の形態1と同一作用である部分には、同一符号を付して説明を省略するものとする。
Embodiment 2. FIG.
FIG. 6 is a refrigerant circuit diagram showing a refrigerant circuit configuration of the refrigeration cycle apparatus 200 according to Embodiment 2 of the present invention. Based on FIG. 6, the structure, operation | movement, and refrigerant | coolant collection | recovery method of the refrigerating-cycle apparatus 200 are demonstrated. In the second embodiment, the difference from the first embodiment described above will be mainly described, and parts having the same functions as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. And
 実施の形態2に係る冷凍サイクル装置200は、冷媒混合装置37を接続する点で実施の形態1に係る冷凍サイクル装置100と相違している。この冷媒混合装置37は、ホース33を介して接続バルブ32に接続されている。そして、冷媒混合装置37には、ホース33を介して、不燃性冷媒ボンベ36と、冷媒回収装置34と、が接続されている。また、冷媒回収装置34には、ホース33を介して、冷媒回収ボンベ35が接続されている。 Refrigeration cycle apparatus 200 according to Embodiment 2 is different from refrigeration cycle apparatus 100 according to Embodiment 1 in that refrigerant mixing apparatus 37 is connected. The refrigerant mixing device 37 is connected to the connection valve 32 via the hose 33. The refrigerant mixing device 37 is connected to an incombustible refrigerant cylinder 36 and a refrigerant recovery device 34 via a hose 33. A refrigerant recovery cylinder 35 is connected to the refrigerant recovery device 34 via a hose 33.
 すなわち、冷凍サイクル装置200では、取出配管(冷媒取出部)31と、接続バルブ(開閉バルブ)32、ホース33と、冷媒回収装置34と、冷媒回収ボンベ35と、不燃性冷媒ボンベ36と、冷媒混合装置37と、で冷媒回収機構50Aを構成している。 That is, in the refrigeration cycle apparatus 200, an extraction pipe (refrigerant extraction part) 31, a connection valve (open / close valve) 32, a hose 33, a refrigerant recovery apparatus 34, a refrigerant recovery cylinder 35, an incombustible refrigerant cylinder 36, and a refrigerant The mixing device 37 constitutes a refrigerant recovery mechanism 50A.
 冷媒混合装置37は、たとえばステッピングモータ等で駆動され、接続バルブ32側に開口している流路の開口面積と、不燃性冷媒ボンベ36側に開口している流路の開口面積と、を変化させられる三方弁等で構成するとよい。このような三方弁で冷媒混合装置を構成すれば、冷媒混合装置37の開度を調整することにより、接続バルブ32から流入する可燃性冷媒の量と、不燃性冷媒ボンベ36から流入する不燃性冷媒の量と、を規定の比率になるように調整することができる。したがって、冷凍サイクル装置200によれば、不燃性冷媒ボンベ36、冷媒回収装置34、冷媒回収ボンベ35を取り外したり、接続したりすることを省略することができ、その分、冷媒の回収が簡便になる。 The refrigerant mixing device 37 is driven by, for example, a stepping motor or the like, and changes the opening area of the flow path opened on the connection valve 32 side and the opening area of the flow path opened on the nonflammable refrigerant cylinder 36 side. It is good to comprise by the three-way valve etc. which are made to do. If the refrigerant mixing device is constituted by such a three-way valve, the amount of the combustible refrigerant flowing from the connection valve 32 and the nonflammability flowing from the nonflammable refrigerant cylinder 36 are adjusted by adjusting the opening of the refrigerant mixing device 37. The amount of refrigerant can be adjusted to a specified ratio. Therefore, according to the refrigeration cycle apparatus 200, the removal and connection of the non-combustible refrigerant cylinder 36, the refrigerant recovery apparatus 34, and the refrigerant recovery cylinder 35 can be omitted, and the refrigerant can be easily recovered accordingly. Become.
[冷媒回収動作]
 図7は、冷凍サイクル装置200が実行する冷媒回収動作の処理の流れを示すフローチャートである。図6及び図7に基づいて、冷凍サイクル装置200から可燃性冷媒を回収する際の冷媒回収動作について説明する。なお、可燃性冷媒と不燃性冷媒の種類および混合比率に関しては、実施の形態1で説明したものと同様である。
[Refrigerant recovery operation]
FIG. 7 is a flowchart showing the flow of the refrigerant recovery operation performed by the refrigeration cycle apparatus 200. Based on FIG.6 and FIG.7, the refrigerant | coolant collection | recovery operation | movement at the time of collect | recovering combustible refrigerant | coolants from the refrigerating-cycle apparatus 200 is demonstrated. The types and mixing ratios of the flammable refrigerant and the nonflammable refrigerant are the same as those described in the first embodiment.
 まず、冷凍サイクル装置100から可燃性冷媒を回収する処置を開始する(GT1)。処理を開始すると、図6に示すように、接続バルブ32に冷媒混合装置37を、冷媒混合装置37に冷媒回収装置34及び不燃性冷媒ボンベ36を、冷媒回収装置34に冷媒回収ボンベ35を、それぞれ接続する(GT2)。そして、接続バルブ32を開とし、冷媒混合装置37の開度を調整して、冷凍サイクル内から冷媒混合装置37へ流入する可燃性冷媒の量と不燃性冷媒ボンベ36から冷媒混合装置37へ流入する不燃性冷媒の量との比を所定の規定値となるように設定する(GT3)。 First, treatment for recovering the combustible refrigerant from the refrigeration cycle apparatus 100 is started (GT1). When the processing is started, as shown in FIG. 6, the refrigerant mixing device 37 is connected to the connection valve 32, the refrigerant collecting device 34 and the incombustible refrigerant cylinder 36 are connected to the refrigerant mixing device 37, and the refrigerant collecting cylinder 35 is connected to the refrigerant collecting device 34. Each is connected (GT2). Then, the connection valve 32 is opened, the opening degree of the refrigerant mixing device 37 is adjusted, the amount of flammable refrigerant flowing into the refrigerant mixing device 37 from the inside of the refrigeration cycle, and the refrigerant mixing device 37 flowing from the nonflammable refrigerant cylinder 36. The ratio to the amount of non-combustible refrigerant to be set is set to a predetermined specified value (GT3).
 冷媒混合装置37によって生成された不燃性の可燃性冷媒と不燃性冷媒との混合冷媒は、冷媒回収装置34を介して、冷媒回収ボンベ35に回収される(GT4)。それから、冷凍サイクル内の圧力が設定圧力未満になるまで、冷媒の回収が継続される(GT5)。冷凍サイクル内の圧力が設定圧力未満になったら(GT5;Yes)、冷媒回収が完了し、冷媒混合装置37を接続バルブ32から取り外す(GT6)。この一連の処理で冷媒回収動作が終了する(GT7)。このような冷媒回収方法を行うことにより、冷媒回収装置34へは不燃性の混合冷媒しか流入しないため、冷媒回収ボンベ35に冷媒を安全に回収することができる。 The mixed refrigerant of the nonflammable combustible refrigerant and the nonflammable refrigerant generated by the refrigerant mixing device 37 is recovered in the refrigerant recovery cylinder 35 via the refrigerant recovery device 34 (GT4). Then, recovery of the refrigerant is continued until the pressure in the refrigeration cycle becomes less than the set pressure (GT5). When the pressure in the refrigeration cycle becomes lower than the set pressure (GT5; Yes), the refrigerant recovery is completed, and the refrigerant mixing device 37 is removed from the connection valve 32 (GT6). The refrigerant recovery operation is completed by this series of processes (GT7). By performing such a refrigerant recovery method, only the non-combustible mixed refrigerant flows into the refrigerant recovery device 34, so that the refrigerant can be safely recovered in the refrigerant recovery cylinder 35.
 なお、冷凍サイクル内の冷媒が回収されていくに従い、冷凍サイクル内の圧力が下がっていく。そのため、冷凍サイクル内の冷媒の圧力を測定する図示省略の圧力センサ(第1圧力検出装置)と、不燃性冷媒ボンベ36内の冷媒の圧力を測定する図示省略の圧力センサ(第2圧力検出装置)により測定し、双方の圧力を元に、規定の混合比となる冷媒混合装置37の開度を演算し、冷媒混合装置37を制御することが可能になる。こうすることにより、冷凍サイクル内の冷媒の圧力、不燃性冷媒ボンベ36内の冷媒の圧力が変化しても、冷媒回収装置34に流入する冷媒を、常時、不燃性混合冷媒とすることができ、より安全に使用できることになる。 Note that as the refrigerant in the refrigeration cycle is recovered, the pressure in the refrigeration cycle decreases. Therefore, an unillustrated pressure sensor (first pressure detection device) that measures the pressure of the refrigerant in the refrigeration cycle, and an unillustrated pressure sensor (second pressure detection device) that measures the pressure of the refrigerant in the incombustible refrigerant cylinder 36. ), And based on both pressures, the opening degree of the refrigerant mixing device 37 having a specified mixing ratio is calculated, and the refrigerant mixing device 37 can be controlled. By doing so, even if the pressure of the refrigerant in the refrigeration cycle and the pressure of the refrigerant in the incombustible refrigerant cylinder 36 change, the refrigerant flowing into the refrigerant recovery device 34 can always be an incombustible mixed refrigerant. It will be safer to use.
 また、冷凍サイクル装置200に、冷凍サイクル装置200から冷媒混合装置37に流れる可燃性冷媒の流量を測定可能な冷媒流量検出装置(第1冷媒流量検出装置)と、不燃性冷媒ボンベ36から冷媒混合装置37に流れる不燃性冷媒の流量を測定可能な冷媒流量検出装置(第2冷媒流量検出装置)とを備えるようにしてもよい。そうすれば、双方の検出値(検出流量)を元に、規定の混合比となる冷媒混合装置37の開度を演算し、冷媒混合装置37を制御することが可能になる。 In addition, a refrigerant flow rate detection device (first refrigerant flow rate detection device) capable of measuring the flow rate of the combustible refrigerant flowing from the refrigeration cycle device 200 to the refrigerant mixing device 37, and a non-flammable refrigerant cylinder 36 for refrigerant mixing. You may make it provide the refrigerant | coolant flow rate detection apparatus (2nd refrigerant | coolant flow rate detection apparatus) which can measure the flow volume of the nonflammable refrigerant | coolant which flows into the apparatus 37. FIG. If it does so, it will become possible to calculate the opening degree of the refrigerant | coolant mixing apparatus 37 used as a prescription | regulation mixing ratio based on both detection values (detection flow volume), and to control the refrigerant | coolant mixing apparatus 37. FIG.
 なお、冷媒回収処理は、たとえば、冷凍サイクル装置200内の圧力が所定値を下回ったら、十分に冷媒が回収されたとして、冷媒回収を完了させるとよい。冷媒流量検出装置(第1冷媒流量検出装置、第2冷媒流量検出装置)を設置している場合は、第1冷媒流量検出装置の検出流量または/および第3冷媒流量検出装置の検出流量による検出圧力が所定値を下回ったら、冷媒回収を完了させるとよい。 In the refrigerant recovery process, for example, if the pressure in the refrigeration cycle apparatus 200 falls below a predetermined value, the refrigerant recovery may be completed assuming that the refrigerant has been sufficiently recovered. When a refrigerant flow rate detection device (first refrigerant flow rate detection device, second refrigerant flow rate detection device) is installed, detection based on a detection flow rate of the first refrigerant flow rate detection device and / or a detection flow rate of the third refrigerant flow rate detection device When the pressure falls below a predetermined value, the refrigerant recovery may be completed.
 冷凍サイクル装置200の冷媒回収方法を行なうことにより、冷媒回収の操作の手順が少なくなり、冷媒の回収を、安全にかつ短時間で行なえるという利点がある。 By performing the refrigerant recovery method of the refrigeration cycle apparatus 200, the refrigerant recovery operation procedure is reduced, and there is an advantage that the refrigerant can be recovered safely and in a short time.
 なお、冷媒混合装置37は、三方弁である場合を例に説明したが、これに限るものではなく、主流の流れによって別の流路から流体を吸引し混合できるエジェクターのような構造のものでもよい。また、ステッピングモータ等で駆動される開閉弁(二方弁)や膨張弁を2つ組み合わせてもよく、手動で操作する三方弁や2つの開閉弁でもよく、2つの流体を吸入し、混合できるものであれば、どんな構造のものでもよい。 The refrigerant mixing device 37 has been described as an example of a three-way valve. However, the refrigerant mixing device 37 is not limited to this, and the refrigerant mixing device 37 may have a structure such as an ejector that can suck and mix a fluid from another flow path by a main flow. Good. In addition, two open / close valves (two-way valves) and expansion valves driven by a stepping motor or the like may be combined, or a three-way valve or two open / close valves that are manually operated may be combined to suck and mix two fluids. Any structure can be used.
 また、冷媒混合装置37が接続バルブ32と別のもので、接続バルブ32に接続される場合を例に説明を行なったが、これに限定するものではない。たとえば、冷媒混合装置37が、冷媒混合装置37と冷媒回収装置34との接続口および冷媒混合装置37と不燃性冷媒との混合口を完全に閉止できるような構造のものであれば、冷媒混合装置37を接続バルブ32の代わりに冷凍サイクル装置200に組み込んでおいてもよい。 In addition, the case where the refrigerant mixing device 37 is different from the connection valve 32 and is connected to the connection valve 32 has been described as an example, but the present invention is not limited to this. For example, if the refrigerant mixing device 37 has a structure that can completely close the connection port between the refrigerant mixing device 37 and the refrigerant recovery device 34 and the mixing port between the refrigerant mixing device 37 and the nonflammable refrigerant, the refrigerant mixing device The apparatus 37 may be incorporated in the refrigeration cycle apparatus 200 instead of the connection valve 32.
 以上のように、冷凍サイクル装置200によれば、冷凍サイクル内を循環している可燃性冷媒に、規定量の不燃性冷媒を混合させて、不燃性の混合冷媒を生成して、冷媒回収装置34を介して不燃性冷媒ボンベ36に冷媒を回収することができ、冷媒回収装置34にて、発火や爆発が起きるのを防止し、安全に冷媒を回収することができる。 As described above, according to the refrigeration cycle apparatus 200, a flammable refrigerant circulating in the refrigeration cycle is mixed with a specified amount of an incombustible refrigerant to generate an incombustible mixed refrigerant, and a refrigerant recovery apparatus. The refrigerant can be recovered in the non-combustible refrigerant cylinder 36 via 34, and the refrigerant recovery device 34 can prevent the occurrence of ignition or explosion and can recover the refrigerant safely.
 なお、本発明に係る冷凍空調装置を実施の形態に分けて説明したが、各実施の形態の特徴事項を適宜組み合わせて冷凍空調装置を構成するようにしてもよい。各実施の形態を適宜組み合わせるようにすれば、各実施の形態の特徴事項による効果を重畳的に得ることができることになる。 In addition, although the refrigerating and air-conditioning apparatus according to the present invention has been described separately for each embodiment, the refrigerating and air-conditioning apparatus may be configured by appropriately combining the features of each embodiment. If the embodiments are appropriately combined, the effects of the features of the embodiments can be obtained in a superimposed manner.
 1 室外機、2 室内機、4 冷媒配管、7 室内空間、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 利用側熱交換器、16 絞り装置、16a 絞り装置、16b 絞り装置、18 アキュムレータ、19 レシーバ、31 取出配管、32 接続バルブ、33 ホース、34 冷媒回収装置、35 冷媒回収ボンベ、36 不燃性冷媒ボンベ、37 冷媒混合装置、50 冷媒回収機構、50A 冷媒回収機構、100 冷凍サイクル装置、200 冷凍サイクル装置。 1 outdoor unit, 2 indoor unit, 4 refrigerant piping, 7 indoor space, 10 compressor, 11 refrigerant flow switching device, 12 heat source side heat exchanger, 13 use side heat exchanger, 16 expansion device, 16a expansion device, 16b Throttle device, 18 accumulator, 19 receiver, 31 outlet piping, 32 connection valve, 33 hose, 34 refrigerant recovery device, 35 refrigerant recovery cylinder, 36 nonflammable refrigerant cylinder, 37 refrigerant mixing device, 50 refrigerant recovery mechanism, 50A refrigerant recovery mechanism , 100 refrigeration cycle equipment, 200 refrigeration cycle equipment.

Claims (15)

  1.  圧縮機、第1熱交換器、第1絞り装置、第2熱交換器を冷媒配管で接続して可燃性冷媒を循環させる冷凍サイクルから、前記可燃性冷媒を回収する冷凍サイクルの冷媒回収方法であって、
     前記冷凍サイクルを循環している前記可燃性冷媒に所定量の不燃性冷媒を混合させて不燃性の混合冷媒を生成し、生成された前記不燃性の混合冷媒として前記可燃性冷媒を回収する
     冷凍サイクル装置の冷媒回収方法。
    A refrigerant recovery method for a refrigeration cycle in which the combustible refrigerant is recovered from a refrigeration cycle in which the compressor, the first heat exchanger, the first expansion device, and the second heat exchanger are connected by refrigerant piping to circulate the combustible refrigerant. There,
    A predetermined amount of non-flammable refrigerant is mixed with the combustible refrigerant circulating in the refrigeration cycle to generate a non-flammable mixed refrigerant, and the combustible refrigerant is recovered as the generated non-flammable mixed refrigerant. A refrigerant recovery method for a cycle device.
  2.  前記冷媒配管のいずれかの位置に、冷媒の入れ出しが可能な冷媒取出部を備え、
     前記冷媒取出部を介して前記冷凍サイクル内に前記不燃性冷媒を封入し、前記冷凍サイクル内を循環する前記可燃性冷媒と前記不燃性冷媒とを混合させてから、前記冷媒取出部を介して前記不燃性の混合冷媒を回収する
     請求項1に記載の冷凍サイクル装置の冷媒回収方法。
    A refrigerant take-out part capable of taking in and out the refrigerant is provided at any position of the refrigerant pipe,
    The non-flammable refrigerant is sealed in the refrigeration cycle via the refrigerant take-out section, the flammable refrigerant circulating in the refrigeration cycle is mixed with the non-flammable refrigerant, and then the refrigerant take-out section is passed through. The refrigerant recovery method for the refrigeration cycle apparatus according to claim 1, wherein the non-combustible mixed refrigerant is recovered.
  3.  前記冷凍サイクルに前記不燃性冷媒を封入する不燃性冷媒ボンベを前記冷凍サイクルに接続するステップと、
     前記不燃性冷媒ボンベから前記冷凍サイクル内に前記不燃性冷媒を封入するステップと、
     前記冷凍サイクルから前記不燃性の混合冷媒を取り出す冷媒回収装置を前記冷凍サイクルに接続するステップと、
     前記冷媒回収装置を駆動することにより、前記不燃性の混合冷媒を前記冷媒回収装置に接続した冷媒回収ボンベに回収するステップと、を備えた
     請求項1又は2に記載の冷凍サイクル装置の冷媒回収方法。
    Connecting a non-flammable refrigerant cylinder that encloses the non-flammable refrigerant to the refrigeration cycle to the refrigeration cycle;
    Enclosing the incombustible refrigerant from the incombustible refrigerant cylinder into the refrigeration cycle;
    Connecting a refrigerant recovery device for taking out the non-combustible mixed refrigerant from the refrigeration cycle to the refrigeration cycle;
    The refrigerant recovery of the refrigeration cycle apparatus according to claim 1, further comprising a step of recovering the incombustible mixed refrigerant in a refrigerant recovery cylinder connected to the refrigerant recovery apparatus by driving the refrigerant recovery apparatus. Method.
  4.  前記冷媒配管のいずれかの位置に設置され、冷媒の入れ出しが可能な冷媒取出部と、
     前記冷媒取出部に接続され、前記可燃性冷媒と前記不燃性冷媒との混合比を調整可能な冷媒混合装置と、を備え、
     前記冷媒取出部及び前記冷媒混合装置を介して、前記冷凍サイクル内を循環する前記可燃性冷媒と前記不燃性冷媒とを混合させてから、前記冷媒取出部及び前記冷媒混合装置を介して前記不燃性の混合冷媒を回収する
     請求項1に記載の冷凍サイクル装置の冷媒回収方法。
    A refrigerant take-out unit installed at any position of the refrigerant pipe and capable of taking in and out the refrigerant;
    A refrigerant mixing device connected to the refrigerant take-out unit and capable of adjusting a mixing ratio of the flammable refrigerant and the non-flammable refrigerant,
    The flammable refrigerant circulating in the refrigeration cycle and the non-flammable refrigerant are mixed through the refrigerant take-out section and the refrigerant mixing device, and then the non-flammable through the refrigerant take-out portion and the refrigerant mixing device. The refrigerant | coolant collection method of the refrigerating-cycle apparatus of Claim 1.
  5.  前記冷媒混合装置を介して前記冷凍サイクルに前記不燃性冷媒を封入する不燃性冷媒ボンベと、前記冷媒混合装置を介して前記冷凍サイクルから前記不燃性の混合冷媒を取り出す冷媒回収装置と、を前記冷凍サイクルに接続するステップと、
     前記冷媒回収装置の作用により、前記冷媒混合装置にて、前記可燃性冷媒と前記不燃性冷媒とを混合し、前記冷媒回収装置に取り付けた冷媒回収ボンベに前記不燃性の混合冷媒を回収するステップと、を備えた
     請求項4に記載の冷凍サイクル装置の冷媒回収方法。
    A non-flammable refrigerant cylinder that encloses the non-flammable refrigerant in the refrigeration cycle via the refrigerant mixing device; and a refrigerant recovery device that extracts the non-flammable mixed refrigerant from the refrigeration cycle via the refrigerant mixing device. Connecting to the refrigeration cycle;
    The step of mixing the flammable refrigerant and the non-flammable refrigerant in the refrigerant mixing device by the action of the refrigerant recovery device, and collecting the non-flammable mixed refrigerant in a refrigerant recovery cylinder attached to the refrigerant recovery device. The refrigerant | coolant collection method of the refrigerating-cycle apparatus of Claim 4.
  6.  前記冷媒混合装置は、
     前記可燃性冷媒と前記不燃性冷媒との混合比を調整可能なもので構成されている
     請求項4又は5に記載の冷凍サイクル装置の冷媒回収方法。
    The refrigerant mixing device includes:
    The refrigerant recovery method for the refrigeration cycle apparatus according to claim 4, wherein the refrigerant ratio is configured to be capable of adjusting a mixing ratio of the combustible refrigerant and the non-combustible refrigerant.
  7.  前記冷媒混合装置は、
     三方弁または2つの開閉弁で構成されている
     請求項4又は5に記載の冷凍サイクル装置の冷媒回収方法。
    The refrigerant mixing device includes:
    The refrigerant recovery method for the refrigeration cycle apparatus according to claim 4, comprising a three-way valve or two on-off valves.
  8.  前記冷凍サイクルの圧力を測定する第1圧力検出装置と、
     前記不燃性冷媒ボンベの圧力を測定する第2圧力検出装置と、を備え、
     前記第1圧力検出装置の検出圧力と前記第2圧力検出装置の検出圧力とに基づき、前記冷媒混合装置を制御する
     請求項4~7のいずれか一項に記載の冷凍サイクル装置の冷媒回収方法。
    A first pressure detector for measuring the pressure of the refrigeration cycle;
    A second pressure detection device for measuring the pressure of the non-combustible refrigerant cylinder,
    The refrigerant recovery method for a refrigeration cycle apparatus according to any one of claims 4 to 7, wherein the refrigerant mixing device is controlled based on a detection pressure of the first pressure detection device and a detection pressure of the second pressure detection device. .
  9.  前記第1圧力検出装置による検出圧力が設定されている所定値を下回ったら、冷媒回収動作を完了させる
     請求項8に記載の冷凍サイクル装置の冷媒回収方法。
    The refrigerant recovery method for a refrigeration cycle apparatus according to claim 8, wherein the refrigerant recovery operation is completed when the pressure detected by the first pressure detection apparatus falls below a predetermined value set.
  10.  前記冷凍サイクル装置から前記冷媒混合装置に流れる前記可燃性冷媒の流量を測定する第1冷媒流量検出装置と、
     前記不燃性冷媒ボンベから前記冷媒混合装置に流れる前記不燃性冷媒の流量を測定する第2冷媒流量検出装置と、を備え、
     前記第1冷媒流量検出装置の検出流量と前記第2冷媒流量検出装置の検出流量とに基づき、前記冷媒混合装置を制御する
     請求項4~9のいずれか一項に記載の冷凍サイクル装置の冷媒回収方法。
    A first refrigerant flow rate detection device for measuring a flow rate of the combustible refrigerant flowing from the refrigeration cycle device to the refrigerant mixing device;
    A second refrigerant flow rate detection device that measures the flow rate of the non-combustible refrigerant flowing from the non-combustible refrigerant cylinder to the refrigerant mixing device,
    The refrigerant of the refrigeration cycle apparatus according to any one of claims 4 to 9, wherein the refrigerant mixing device is controlled based on a detection flow rate of the first refrigerant flow rate detection device and a detection flow rate of the second refrigerant flow rate detection device. Collection method.
  11.  前記第1冷媒流量検出装置及び前記第2冷媒流量検出装置による検出流量の少なくとも1つの検出流量が設定されている所定値を下回ったら、冷媒回収動作を完了させる
     請求項10に記載の冷凍サイクル装置の冷媒回収方法。
    The refrigeration cycle apparatus according to claim 10, wherein the refrigerant recovery operation is completed when at least one detection flow rate detected by the first refrigerant flow rate detection device and the second refrigerant flow rate detection device falls below a predetermined value. Refrigerant recovery method.
  12.  前記可燃性冷媒がR32であり、
     前記不燃性冷媒がR125であり、
     前記不燃性の混合冷媒における前記不燃性冷媒の割合が50%以上となるように前記不燃性冷媒を混合させる
     請求項1~11のいずれか一項に記載の冷凍サイクル装置の冷媒回収方法。
    The combustible refrigerant is R32;
    The non-flammable refrigerant is R125;
    The refrigerant recovery method for a refrigeration cycle apparatus according to any one of claims 1 to 11, wherein the non-flammable refrigerant is mixed so that a ratio of the non-flammable refrigerant in the non-flammable mixed refrigerant is 50% or more.
  13. 前記不燃性の混合冷媒は、
     R410A冷媒またはR410B冷媒の成分比と類似している
     請求項12に記載の冷凍サイクル装置の冷媒回収方法。
    The non-flammable mixed refrigerant is
    The refrigerant recovery method of the refrigeration cycle apparatus according to claim 12, which is similar to a component ratio of the R410A refrigerant or the R410B refrigerant.
  14.  前記可燃性冷媒がHFO1234yfであり、
     前記不燃性冷媒がR134aであり、
     前記不燃性の混合冷媒における前記不燃性冷媒の割合が38%以上となるように前記不燃性冷媒を混合させる
     請求項1~11のいずれか一項に記載の冷凍サイクル装置の冷媒回収方法。
    The combustible refrigerant is HFO1234yf;
    The non-flammable refrigerant is R134a;
    The refrigerant recovery method for a refrigeration cycle apparatus according to any one of claims 1 to 11, wherein the non-flammable refrigerant is mixed so that a ratio of the non-flammable refrigerant in the non-flammable mixed refrigerant is 38% or more.
  15.  圧縮機、第1熱交換器、第1絞り装置、第2熱交換器を冷媒配管で接続して可燃性冷媒を循環させる冷凍サイクルを有し、
     前記冷凍サイクルに接続された冷媒取出部と、
     前記冷媒取出部に接続された冷媒混合装置と、
     前記冷媒混合装置を介して前記冷媒取出部に着脱自在に接続された不燃性冷媒ボンベと、
     前記冷媒混合装置を介して前記冷媒取出部に着脱自在に接続され、前記不燃性ボンベを介して前記冷凍サイクルに封入された前記不燃性冷媒と前記冷凍サイクルを循環している前記可燃性冷媒との不燃性の混合冷媒として前記可燃性冷媒を回収する冷媒回収装置と、
     前記冷媒回収装置に接続され、前記冷媒回収装置の作用により前記冷媒混合装置で前記可燃性冷媒と前記不燃性冷媒とが混合された前記不燃性の混合冷媒を貯留する冷媒回収ボンベと、で構成されている冷媒回収機構を備えた
     冷凍サイクル装置。
    A compressor, a first heat exchanger, a first expansion device, and a second heat exchanger having a refrigeration cycle for circulating a flammable refrigerant by connecting refrigerant pipes;
    A refrigerant outlet connected to the refrigeration cycle;
    A refrigerant mixing device connected to the refrigerant outlet, and
    A non-combustible refrigerant cylinder detachably connected to the refrigerant outlet through the refrigerant mixing device;
    The flammable refrigerant that is detachably connected to the refrigerant take-out section via the refrigerant mixing device and is enclosed in the refrigeration cycle via the nonflammable cylinder, and the flammable refrigerant circulating in the refrigeration cycle; A refrigerant recovery device for recovering the combustible refrigerant as a non-combustible mixed refrigerant;
    A refrigerant recovery cylinder connected to the refrigerant recovery device and storing the nonflammable mixed refrigerant in which the combustible refrigerant and the nonflammable refrigerant are mixed in the refrigerant mixing device by the operation of the refrigerant recovery device; A refrigeration cycle apparatus equipped with a refrigerant recovery mechanism.
PCT/JP2011/002098 2011-04-08 2011-04-08 Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device WO2012137260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002098 WO2012137260A1 (en) 2011-04-08 2011-04-08 Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/002098 WO2012137260A1 (en) 2011-04-08 2011-04-08 Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2012137260A1 true WO2012137260A1 (en) 2012-10-11

Family

ID=46968704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002098 WO2012137260A1 (en) 2011-04-08 2011-04-08 Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2012137260A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018494A1 (en) * 2015-07-30 2017-02-02 ダイキン工業株式会社 Refrigerating device
JP7303172B2 (en) 2015-07-30 2023-07-04 ダイキン工業株式会社 refrigeration equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961018A (en) * 1995-08-30 1997-03-07 Hitachi Ltd Refrigerant recovery device
JP2004116885A (en) * 2002-09-26 2004-04-15 Mitsubishi Electric Corp Handling method and refrigerant recovering mechanism for refrigeration air-conditioning cycle device
JP2007139375A (en) * 2005-11-22 2007-06-07 Mac:Kk Method and device for preventing fire and for extinguishing fire for refrigerating cycle that uses inflammable coolant gas
JP2009542883A (en) * 2006-07-12 2009-12-03 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Heating / cooling method using fluoroether compound, composition suitable for this, and use thereof
JP2010243136A (en) * 2009-04-10 2010-10-28 Mitsubishi Electric Corp Air-purging device and air-purging method of combustible refrigerant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961018A (en) * 1995-08-30 1997-03-07 Hitachi Ltd Refrigerant recovery device
JP2004116885A (en) * 2002-09-26 2004-04-15 Mitsubishi Electric Corp Handling method and refrigerant recovering mechanism for refrigeration air-conditioning cycle device
JP2007139375A (en) * 2005-11-22 2007-06-07 Mac:Kk Method and device for preventing fire and for extinguishing fire for refrigerating cycle that uses inflammable coolant gas
JP2009542883A (en) * 2006-07-12 2009-12-03 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Heating / cooling method using fluoroether compound, composition suitable for this, and use thereof
JP2010243136A (en) * 2009-04-10 2010-10-28 Mitsubishi Electric Corp Air-purging device and air-purging method of combustible refrigerant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018494A1 (en) * 2015-07-30 2017-02-02 ダイキン工業株式会社 Refrigerating device
JP2017032185A (en) * 2015-07-30 2017-02-09 ダイキン工業株式会社 Refrigerating device
EP3330639A4 (en) * 2015-07-30 2019-04-17 Daikin Industries, Ltd. Refrigerating device
US11060773B2 (en) 2015-07-30 2021-07-13 Daikin Industries, Ltd. Refrigerating device
JP7303172B2 (en) 2015-07-30 2023-07-04 ダイキン工業株式会社 refrigeration equipment

Similar Documents

Publication Publication Date Title
US10539358B2 (en) Air-conditioning apparatus and refrigerant leakage detection method
WO2019073870A1 (en) Refrigeration device
JP6701337B2 (en) Air conditioner
WO2019198134A1 (en) Air conditioner
EP2535651A1 (en) Air conditioner
EP2647929B1 (en) Part replacement method for refrigeration cycle device and refrigeration cycle device
JP5908183B1 (en) Air conditioner
EP2921801B1 (en) Method of part replacement for refrigeration cycle apparatus
WO2015140887A1 (en) Refrigeration cycle apparatus
WO2012137260A1 (en) Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device
JP2018173196A5 (en)
WO2015140881A1 (en) Refrigeration cycle apparatus
JP6238202B2 (en) Air conditioner
WO2016071978A1 (en) Air conditioning device
WO2015068455A1 (en) Refrigeration cycle apparatus, and production method and installation method therefor
JP2022150675A (en) Heat pump device
JPWO2015140877A1 (en) Throttle device and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP