JP6238202B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6238202B2
JP6238202B2 JP2013249189A JP2013249189A JP6238202B2 JP 6238202 B2 JP6238202 B2 JP 6238202B2 JP 2013249189 A JP2013249189 A JP 2013249189A JP 2013249189 A JP2013249189 A JP 2013249189A JP 6238202 B2 JP6238202 B2 JP 6238202B2
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
outdoor
heat exchanger
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013249189A
Other languages
Japanese (ja)
Other versions
JP2015105808A (en
Inventor
篤彦 深澤
篤彦 深澤
福治 塚田
福治 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2013249189A priority Critical patent/JP6238202B2/en
Publication of JP2015105808A publication Critical patent/JP2015105808A/en
Application granted granted Critical
Publication of JP6238202B2 publication Critical patent/JP6238202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空気調和機に関し、特に運転停止時において室外機側に冷媒を回収する機能を有するものに関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner having a function of collecting refrigerant on the outdoor unit side when operation is stopped.

冷凍サイクルを構成する空気調和機は、一般に、室内熱交換器等を有する室内機、室外熱交換器及び圧縮機等を有する室外機を備え、据付現場において、室内機と室外機を冷媒配管で接続して冷凍サイクルを構成することで空気調和機として機能する。   An air conditioner constituting a refrigeration cycle generally includes an indoor unit having an indoor heat exchanger or the like, an outdoor unit having an outdoor heat exchanger and a compressor, and the like. It functions as an air conditioner by connecting and configuring a refrigeration cycle.

空気調和機として機能させるためには、冷凍サイクル(冷媒回路)に適量の冷媒を封入する必要があり、室外機の組立時に必要量の冷媒を予め封入しておくか、室外機と室内機を冷媒配管で接続する配管接続施工時に、冷媒回路に冷媒を封入している。   In order to function as an air conditioner, it is necessary to enclose an appropriate amount of refrigerant in the refrigeration cycle (refrigerant circuit), and either enclose the necessary amount of refrigerant in advance when the outdoor unit is assembled, The refrigerant is sealed in the refrigerant circuit at the time of pipe connection construction for connecting with the refrigerant pipe.

室内機は、蒸発器(熱交換器)等の密封を必要とする容器を内蔵しているが、密封が不十分であったり、室内機と室外機を連結する配管接続部の密封が不十分だと、冷媒回路に封入した冷媒が建物等の密閉空間に漏洩する場合がある(この冷媒漏れをガス漏れとも呼ぶ)。   The indoor unit has a built-in container that needs to be sealed, such as an evaporator (heat exchanger), but the sealing is insufficient or the pipe connection that connects the indoor unit to the outdoor unit is not sufficiently sealed Then, the refrigerant | coolant enclosed with the refrigerant circuit may leak into sealed spaces, such as a building (this refrigerant | coolant leakage is also called gas leakage).

冷媒は、HCFC冷媒からオゾン層破壊係数ゼロのHFC冷媒に転換済みであるが、HFC冷媒は温暖化係数が大きく、環境に悪影響を与えることから、次世代冷媒選定が急がれている。そこで、より温暖化影響係数が低い次世代冷媒候補としてHFC32、プロパンガス等があがっているが、HFC410Aと比べそれ自体に燃焼性があるという課題があり、ガス漏れに至った場合、室内に充満した冷媒が発火源となる恐れがある。また、他の次世代冷媒候補にはCO冷媒もあるが、これも消防予第193号、消防危第117号「二酸化炭素消火設備の安全対策について」に記載されているように、空気中の濃度によっては人体に大きな影響を及ぼすことがある。このように、次世代冷媒の選定をする際には、冷媒種類によらず、室内側への漏洩量を極力少なくする手法を併せて考案する必要がある。 The refrigerant has already been changed from HCFC refrigerant to HFC refrigerant with zero ozone depletion coefficient, but HFC refrigerant has a large global warming potential and adversely affects the environment. Therefore, HFC32, propane gas, etc. have been raised as next-generation refrigerant candidates with lower global warming impact coefficient, but there is a problem that it is flammable by itself compared with HFC410A, and if the gas leaks, it fills the room The refrigerated refrigerant may be a source of ignition. Other next-generation refrigerant candidates include CO 2 refrigerant, which is also described in Fire Preliminary No. 193 and Fire Hazard No. 117 “Safety Measures for Carbon Dioxide Fire Extinguishing Equipment”. Depending on the concentration, the human body may be greatly affected. Thus, when selecting a next-generation refrigerant, it is necessary to devise a method for reducing the amount of leakage to the indoor side as much as possible regardless of the type of refrigerant.

一方で、ヒートポンプ式空気調和機においては、冷房運転時には室外熱交換器側でガス冷媒を凝縮させ、暖房運転時には室内熱交換器側でガス冷媒を凝縮させるために、暖房運転時においては室内機に室外機と比べ、比較的多くの冷媒が存在することとなる。よって、暖房運転停止後に冷媒漏洩に至った場合の室内側への漏洩量も大きくなる可能性がある。   On the other hand, in the heat pump type air conditioner, the gas refrigerant is condensed on the outdoor heat exchanger side during the cooling operation, and the gas refrigerant is condensed on the indoor heat exchanger side during the heating operation. In comparison with the outdoor unit, a relatively large amount of refrigerant is present. Therefore, when the refrigerant leaks after stopping the heating operation, there is a possibility that the amount of leakage to the indoor side also increases.

また、空気調和機の施工後においては入念な冷媒漏れ検査を行うが、スローリークと呼ばれる冷媒の微少漏れについては、微少漏れであるため発見が難しく、スローリークがあると経年により冷媒不足に至るが、封入されている冷媒量が大幅に少なくなるまで発覚しないことも多い。   In addition, a careful refrigerant leak inspection is performed after the air conditioner is installed. However, it is difficult to detect the minute leak of the refrigerant called slow leak because it is a minute leak. However, it is often not detected until the amount of refrigerant enclosed is significantly reduced.

このため、室内への冷媒漏洩量を少なくするために、冷媒漏洩対策の安全弁を備えた空気調和機が提案されている(例えば、特許文献1参照)。特許文献1に開示された空気調和機は、圧縮機と室内熱交換器と室外熱交換器とが冷媒配管を介して接続され、冷媒を循環させて冷凍サイクルを行う冷媒回路を備えた空気調和機であって、冷媒回路の室内熱交換器側と室外熱交換器側との間に安全弁を備え、安全弁は、安全弁に対して室内熱交換器側の冷媒圧力が、室外熱交換器側の冷媒圧力より低圧となるときに閉となることを特徴している。ここで、安全弁とは、両方の圧力差がある一定の幅の間では開放し、圧力差が一定以上になると閉じられるものをいう。特許文献1の空気調和機では、安全弁に対して室内機側の冷媒圧力が、室外熱交換器側の冷媒圧力より低圧になったとき、安全弁が閉としている。これにより、突発事故や、スローリークにより室内にて冷媒漏洩が生じた場合に、室外側からの冷媒流を遮断し、室内への冷媒漏洩量を抑えている。   For this reason, in order to reduce the refrigerant | coolant leakage amount to room | chamber interior, the air conditioner provided with the safety valve of a refrigerant | coolant leakage countermeasure is proposed (for example, refer patent document 1). The air conditioner disclosed in Patent Document 1 includes an air conditioner including a refrigerant circuit in which a compressor, an indoor heat exchanger, and an outdoor heat exchanger are connected via a refrigerant pipe, and the refrigerant is circulated to perform a refrigeration cycle. A safety valve is provided between the indoor heat exchanger side and the outdoor heat exchanger side of the refrigerant circuit, and the safety valve is configured such that the refrigerant pressure on the indoor heat exchanger side is higher than the safety valve on the outdoor heat exchanger side. It is characterized by being closed when the pressure is lower than the refrigerant pressure. Here, the safety valve refers to a valve that opens between a certain width of both pressure differences and closes when the pressure difference exceeds a certain value. In the air conditioner of Patent Literature 1, when the refrigerant pressure on the indoor unit side is lower than the refrigerant pressure on the outdoor heat exchanger side with respect to the safety valve, the safety valve is closed. As a result, when a refrigerant leak occurs indoors due to a sudden accident or a slow leak, the refrigerant flow from the outside of the room is blocked to suppress the amount of refrigerant leaking into the room.

一方、ペアタイプ空気調和機とマルチタイプ空気調和機で室内機を共用化するべく、室内機に室外機の制御装置によって開閉の制御を行なう電子膨張弁を設けた室内機が提案されている(例えば、特許文献2参照)。特許文献2に開示された空気調和機は、圧縮機と室外熱交換器とを有する1台の室外機と、電子膨張弁と室内熱交換器とを有する1台の室内機とから構成され、室内機の運転モードが冷房の場合に圧縮機から吐出される冷媒は室内熱交換器で凝縮し、電子膨張弁で膨張し、室外熱交換器で蒸発して圧縮機に戻る冷凍サイクルを形成し、一方、室内機の運転モードが暖房の場合には圧縮機から吐出される冷媒は室内熱交換器で凝縮し、電子膨張弁で膨張し、熱外熱交換器で蒸発して圧縮機に戻る冷凍サイクルを形成する空気調和機であって、一台のみの室内機が接続される専用の室外機に室内機の電子膨張弁を制御する制御手段を設けている。   On the other hand, in order to share an indoor unit between a pair-type air conditioner and a multi-type air conditioner, an indoor unit is proposed in which an indoor unit is provided with an electronic expansion valve that controls opening and closing by an outdoor unit control device ( For example, see Patent Document 2). The air conditioner disclosed in Patent Document 2 is composed of one outdoor unit having a compressor and an outdoor heat exchanger, and one indoor unit having an electronic expansion valve and an indoor heat exchanger, When the operation mode of the indoor unit is cooling, the refrigerant discharged from the compressor condenses in the indoor heat exchanger, expands in the electronic expansion valve, evaporates in the outdoor heat exchanger, and forms a refrigeration cycle that returns to the compressor. On the other hand, when the operation mode of the indoor unit is heating, the refrigerant discharged from the compressor is condensed by the indoor heat exchanger, expanded by the electronic expansion valve, evaporated by the external heat exchanger, and returned to the compressor. An air conditioner that forms a refrigeration cycle, and a control unit that controls an electronic expansion valve of the indoor unit is provided in a dedicated outdoor unit to which only one indoor unit is connected.

特開2008−170058号公報JP 2008-170058 A 特開平6−207741号公報Japanese Patent Laid-Open No. 6-207741

特許文献1の空気調和機では、冷媒回路の室内熱交換器側と室外熱交換器側との間に安全弁を設けるため、安全弁自体のコストが上乗せされること、さらに安全弁の圧力損失もあることから循環冷媒量が減少し、空気調和機としての性能が損なわれる。また、特許文献1の空気調和機において、冷房運転では、圧縮機から室外熱交換器、室内熱交換器を介して圧縮機に循環冷媒が循環する冷凍サイクルとなっている。一方、暖房運転では、上記と逆の順序である逆サイクルにて運転する。従って、室内熱交換器側が室外熱交換器より高圧になることから、安全弁は働かないため、安全弁を圧縮機と室内熱交換器の間にも設ける必要があり、システムとして更に複雑となる。   In the air conditioner of Patent Document 1, since a safety valve is provided between the indoor heat exchanger side and the outdoor heat exchanger side of the refrigerant circuit, the cost of the safety valve itself is added, and there is also a pressure loss of the safety valve. Therefore, the amount of circulating refrigerant decreases, and the performance as an air conditioner is impaired. Moreover, in the air conditioner of patent document 1, it is a refrigerating cycle in which a circulating refrigerant circulates from a compressor to a compressor through an outdoor heat exchanger and an indoor heat exchanger in the cooling operation. On the other hand, in the heating operation, the operation is performed in the reverse cycle which is the reverse order to the above. Therefore, since the pressure on the indoor heat exchanger side is higher than that on the outdoor heat exchanger, the safety valve does not work. Therefore, it is necessary to provide a safety valve between the compressor and the indoor heat exchanger, which further complicates the system.

また、冷房運転においては安全弁の動作があれば、室外熱交換器側に冷媒を保有したまま封止ができ、室内熱交換器の冷媒を室外熱交換器よりも少なくすることができる。このため、室内機側で冷媒漏洩があったとしも、室内への冷媒漏洩量は抑えられる。しかしながら、暖房運転においては、冷媒の移動は圧力平衡に頼る部分が大きく、室外機と室内機の冷媒保有量は同程度になることから、冷房運転停止時と比べて暖房運転停止時には冷媒漏洩量が比較的大きくなる。   Further, in the cooling operation, if the safety valve operates, the outdoor heat exchanger side can be sealed while retaining the refrigerant, and the indoor heat exchanger can be reduced in refrigerant than the outdoor heat exchanger. For this reason, even if there is refrigerant leakage on the indoor unit side, the amount of refrigerant leakage into the room can be suppressed. However, in the heating operation, the movement of the refrigerant largely depends on the pressure equilibrium, and the amount of refrigerant in the outdoor unit and the indoor unit is about the same, so the amount of refrigerant leakage when the heating operation is stopped compared to when the cooling operation is stopped Is relatively large.

一方、特許文献2にある空気調和機のように予め、安全弁とした用途ではないが、膨張弁を設けた空気調和機も存在する。   On the other hand, there is an air conditioner provided with an expansion valve, although it is not used as a safety valve in advance as in the air conditioner disclosed in Patent Document 2.

本発明の目的は、空気調和機の室内機が設置された室内において、冷媒漏洩が発生した場合であっても、室内に漏洩する冷媒の量を抑えることが可能な空気調和機を提供することである。   An object of the present invention is to provide an air conditioner capable of suppressing the amount of refrigerant leaking into the room even when refrigerant leakage occurs in the room where the indoor unit of the air conditioner is installed. It is.

上記課題を解決すべく、本発明の一態様である空気調和機は、冷媒を吐出する圧縮機と、前記圧縮機から吐出された前記冷媒の流れる方向を切換える切換え弁とを有する室外機と、室内熱交換器と、前記室内熱交換器への前記冷媒の流量を制御可能な室内膨張弁とを有し、冷媒配管を介して前記室外機に接続される室内機と、前記室外機および前記室内機により形成される冷凍サイクルを制御する制御部とを備える。前記制御部は、暖房運転を停止した場合に、前記切換え弁を切換えて前記冷媒の流れる方向を冷房運転時の方向に切換えるとともに、前記室内膨張弁を全閉状態にする。   In order to solve the above problems, an air conditioner according to an aspect of the present invention includes an outdoor unit including a compressor that discharges refrigerant and a switching valve that switches a flow direction of the refrigerant discharged from the compressor. An indoor heat exchanger, an indoor expansion valve capable of controlling the flow rate of the refrigerant to the indoor heat exchanger, an indoor unit connected to the outdoor unit via a refrigerant pipe, the outdoor unit, and the And a control unit that controls a refrigeration cycle formed by the indoor unit. When the heating operation is stopped, the control unit switches the switching valve to switch the direction in which the refrigerant flows to the direction during cooling operation, and fully closes the indoor expansion valve.

本発明によれば、空気調和機の室内機が設置された室内において冷媒漏洩が発生した場合であっても、室内に漏洩する冷媒の量を抑えることができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where refrigerant | coolant leakage has generate | occur | produced in the room | chamber interior in which the indoor unit of the air conditioner was installed, the quantity of the refrigerant | coolant leaking indoors can be suppressed.

本発明の実施形態に係る空気調和機の冷凍サイクル系統図である。It is a refrigeration cycle system diagram of the air conditioner according to the embodiment of the present invention.

以下、本発明の第1の実施形態の空気調和機1について、図面に基づいて説明する。図1は、空気調和機1の冷凍サイクル系統図である。本実施の形態の空気調和装置1で使用する冷媒は、微燃性のR32冷媒、HFC32、プロパンガス、または、自然冷媒であるCOである。 Hereinafter, the air conditioner 1 of the 1st Embodiment of this invention is demonstrated based on drawing. FIG. 1 is a refrigeration cycle system diagram of the air conditioner 1. The refrigerant used in the air conditioner 1 of the present embodiment is a slightly flammable R32 refrigerant, HFC32, propane gas, or CO 2 that is a natural refrigerant.

空気調和機1は、室外機10、室内機20、室外機10と室内機20とを接続するガス接続配管2および液接続配管3から構成されている。本実施形態では、室外機10と室内機20とを1対1で接続しているが、一台の室内機に対し複数台の室外機を接続しても良いし、一台の室外機に対し複数台の室内機を接続しても良い。   The air conditioner 1 includes an outdoor unit 10, an indoor unit 20, a gas connection pipe 2 and a liquid connection pipe 3 that connect the outdoor unit 10 and the indoor unit 20. In this embodiment, the outdoor unit 10 and the indoor unit 20 are connected on a one-to-one basis. However, a plurality of outdoor units may be connected to a single indoor unit, or a single outdoor unit may be connected. However, a plurality of indoor units may be connected.

室外機10は、圧縮機11と、切換え弁12と、室外熱交換器13と、室外ファン14と、室外膨張弁15と、外気温度検出器16と、冷媒温度検出器17と、圧力センサ18と、制御装置(制御部)19とを有している。   The outdoor unit 10 includes a compressor 11, a switching valve 12, an outdoor heat exchanger 13, an outdoor fan 14, an outdoor expansion valve 15, an outdoor temperature detector 16, a refrigerant temperature detector 17, and a pressure sensor 18. And a control device (control unit) 19.

圧縮機11は、その運転周波数がインバータで可変して制御される容量可変式圧縮機である。また、圧縮機11は、冷媒を高温高圧に圧縮して配管に吐出する。切換え弁12は、冷媒の流れを変化させ、冷房運転と暖房運転とを切換える弁であり、本実施形態では四方弁である。   The compressor 11 is a variable capacity compressor whose operating frequency is controlled by an inverter. Moreover, the compressor 11 compresses a refrigerant | coolant to high temperature / high pressure, and discharges it to piping. The switching valve 12 is a valve that changes the flow of the refrigerant to switch between the cooling operation and the heating operation, and is a four-way valve in the present embodiment.

室外熱交換器13は、狭い間隔で並置された多数枚のフィンと、これらのフィンを貫通する蛇行状の冷媒パイプとで構成されたフィンチューブ型熱交換器である。室外熱交換器13では、冷媒パイプ内を流れる冷媒と室外ファン14により供給される外気(室外空気)の間で熱交換が行われる。室外膨張弁15は、冷媒を減圧させるための電子式膨張弁である。外気温度検知器16は、室外機10の外板に取り付けられ、外気温度を検知する。冷媒温度検知器17は、室外熱交換器13の近傍において、室外熱交換器13に接続される配管に取り付けられ、室外熱交換器13で減圧された低温低圧のガス液混合冷媒の温度を検出する。圧力センサ18は、圧縮機11の吸入側(低圧側)の冷媒の圧力を検出する。   The outdoor heat exchanger 13 is a fin-tube heat exchanger that includes a large number of fins juxtaposed at narrow intervals and a meandering refrigerant pipe that passes through the fins. In the outdoor heat exchanger 13, heat exchange is performed between the refrigerant flowing in the refrigerant pipe and the outside air (outdoor air) supplied by the outdoor fan 14. The outdoor expansion valve 15 is an electronic expansion valve for decompressing the refrigerant. The outside air temperature detector 16 is attached to the outer plate of the outdoor unit 10 and detects the outside air temperature. The refrigerant temperature detector 17 is attached to a pipe connected to the outdoor heat exchanger 13 in the vicinity of the outdoor heat exchanger 13 and detects the temperature of the low-temperature and low-pressure gas-liquid mixed refrigerant decompressed by the outdoor heat exchanger 13. To do. The pressure sensor 18 detects the pressure of the refrigerant on the suction side (low pressure side) of the compressor 11.

制御装置19は、図示せぬリモコンからの運転指令、外気温度検知器16および冷媒温度検知器17で検出された温度、及び/又は、圧力センサ18で検出された圧力に基づいて、室外機10および室内機20を構成する機器(圧縮機11、切換え弁12、および室外膨張弁15等)を制御する。   The control device 19 uses the outdoor unit 10 based on an operation command from a remote controller (not shown), the temperature detected by the outside air temperature detector 16 and the refrigerant temperature detector 17, and / or the pressure detected by the pressure sensor 18. And the equipment (compressor 11, switching valve 12, outdoor expansion valve 15, etc.) which constitutes indoor unit 20 is controlled.

室外機10は、さらに、ガス阻止弁4および液阻止弁5を有する。ガス阻止弁4および液阻止弁5により、空気調和機1の据え付け前において、室外機10に充填されている冷媒が封止される。そして、空気調和機1を据え付けて、ガス阻止弁4および液阻止弁5とガス接続配管2および液接続配管3とを接続した後は、ガス阻止弁4および液阻止弁5は、常時開いた状態とされる。   The outdoor unit 10 further includes a gas blocking valve 4 and a liquid blocking valve 5. The refrigerant filled in the outdoor unit 10 is sealed by the gas blocking valve 4 and the liquid blocking valve 5 before the air conditioner 1 is installed. After the air conditioner 1 is installed and the gas blocking valve 4 and the liquid blocking valve 5 are connected to the gas connecting pipe 2 and the liquid connecting pipe 3, the gas blocking valve 4 and the liquid blocking valve 5 are always open. State.

室内機20は、室内熱交換機21と、室内膨張弁22と、室内ファン23を有している。   The indoor unit 20 includes an indoor heat exchanger 21, an indoor expansion valve 22, and an indoor fan 23.

室内熱交換器21は、室外熱交換器13と同様のフィンチューブ型熱交換器である。室外熱交換器13では、冷媒パイプ内を流れる冷媒と室外ファン23により供給される室内空気の間で熱交換が行われる。   The indoor heat exchanger 21 is a fin-tube heat exchanger similar to the outdoor heat exchanger 13. In the outdoor heat exchanger 13, heat exchange is performed between the refrigerant flowing in the refrigerant pipe and the indoor air supplied by the outdoor fan 23.

室内膨張弁22は、冷凍サイクルの主回路を流れる冷媒の減圧を行うための電子式膨張弁であり、室内熱交換器21と液接続配管3との間に設置されている。   The indoor expansion valve 22 is an electronic expansion valve for depressurizing the refrigerant flowing through the main circuit of the refrigeration cycle, and is installed between the indoor heat exchanger 21 and the liquid connection pipe 3.

次に、空気調和機1の冷凍サイクルの動作について説明する。   Next, the operation of the refrigeration cycle of the air conditioner 1 will be described.

まず、空気調和機1における暖房運転について説明する。図1における実線の矢印は、空気調和機1の暖房運転における冷媒の流れを示している。暖房運転において、切換え弁12は、実線で示すように、圧縮機11の吐出側とガス接続配管2とを連通させ、圧縮機11の吸入側と室外熱交換器13とを連通させる。   First, the heating operation in the air conditioner 1 will be described. The solid arrows in FIG. 1 indicate the flow of the refrigerant in the heating operation of the air conditioner 1. In the heating operation, the switching valve 12 causes the discharge side of the compressor 11 and the gas connection pipe 2 to communicate with each other, and the suction side of the compressor 11 and the outdoor heat exchanger 13 communicate with each other, as indicated by a solid line.

圧縮機11から吐出される高温高圧のガス冷媒は、切換え弁12により、ガス阻止弁4側に流れ、ガス接続配管2を通って室内機20の室内熱交換器21に流入する。室内熱交換器21に流入した高温高圧のガス冷媒は、室内ファン23により供給される室内空気と熱交換して凝縮し、高圧の液冷媒となる。この際、室内空気は、冷媒によって加熱され、温風が室内に送られる。その後、液化した冷媒は、全開状態の室内膨張弁22、および液接続配管3を通過して、室内機10へと戻される。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows to the gas blocking valve 4 side by the switching valve 12 and flows into the indoor heat exchanger 21 of the indoor unit 20 through the gas connection pipe 2. The high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 21 is condensed by exchanging heat with the indoor air supplied by the indoor fan 23 and becomes high-pressure liquid refrigerant. At this time, the room air is heated by the refrigerant, and the warm air is sent into the room. Thereafter, the liquefied refrigerant passes through the fully opened indoor expansion valve 22 and the liquid connection pipe 3 and is returned to the indoor unit 10.

室外機10へ戻った液冷媒は、液阻止弁5を通過して、室外膨張弁15により減圧されて、低温低圧のガス液混合冷媒となる。減圧された冷媒は、室外熱交換器13に流入して、室外ファン14により供給される外気と熱交換し、蒸発され、低圧のガス冷媒となる。室外熱交換器13から流出したガス冷媒は、切換え弁12を通過後、圧縮機11に吸入され、再度圧縮機11で圧縮されることにより、一連の冷凍サイクルが形成される。   The liquid refrigerant returned to the outdoor unit 10 passes through the liquid blocking valve 5 and is decompressed by the outdoor expansion valve 15 to become a low-temperature and low-pressure gas-liquid mixed refrigerant. The decompressed refrigerant flows into the outdoor heat exchanger 13, exchanges heat with the outside air supplied by the outdoor fan 14, is evaporated, and becomes a low-pressure gas refrigerant. The gas refrigerant that has flowed out of the outdoor heat exchanger 13 passes through the switching valve 12, is sucked into the compressor 11, and is compressed again by the compressor 11, thereby forming a series of refrigeration cycles.

次に、空気調和機1における冷房運転について説明する。図1における点線の矢印は、空気調和機1の冷房運転における冷媒の流れを示している。冷房運転において、切換え弁12は、点線で示すように、圧縮機11の吐出側と室外熱交換器13とを連通させ、圧縮機11の吸入側とガス接続配管2とを連通させる。   Next, the cooling operation in the air conditioner 1 will be described. The dotted arrows in FIG. 1 indicate the refrigerant flow in the cooling operation of the air conditioner 1. In the cooling operation, the switching valve 12 causes the discharge side of the compressor 11 and the outdoor heat exchanger 13 to communicate with each other, and the suction side of the compressor 11 and the gas connection pipe 2 communicate with each other as indicated by a dotted line.

圧縮機11から吐出される高温高圧のガス冷媒は、切換え弁12により、室外熱交換器13側に流れ、室内熱交換器13に流入し、室外ファン14により供給される外気と熱交換して凝縮され、液冷媒となる。この液冷媒は、全開状態の室外膨張弁15、液阻止弁5、およびガス接続配管3を通過して、室内機20に流入する。室内機20に流入した液冷媒は、室内膨張弁22により減圧されて、低温低圧のガス液混合冷媒となる。この低温低圧の冷媒は、室内熱交換器21に流入して、室内ファン14により供給される室内空気と熱交換されて蒸発し、ガス冷媒となる。この際、室内空気は、冷媒の蒸発潜熱により冷却され、冷風が室内に送られる。その後、ガス冷媒は、ガス接続配管2を通って、室外機10に戻される。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows to the outdoor heat exchanger 13 side by the switching valve 12, flows into the indoor heat exchanger 13, and exchanges heat with the outside air supplied by the outdoor fan 14. It is condensed and becomes a liquid refrigerant. The liquid refrigerant passes through the fully-expanded outdoor expansion valve 15, the liquid blocking valve 5, and the gas connection pipe 3 and flows into the indoor unit 20. The liquid refrigerant flowing into the indoor unit 20 is decompressed by the indoor expansion valve 22 and becomes a low-temperature and low-pressure gas-liquid mixed refrigerant. This low-temperature and low-pressure refrigerant flows into the indoor heat exchanger 21, exchanges heat with the indoor air supplied by the indoor fan 14, evaporates, and becomes a gas refrigerant. At this time, the indoor air is cooled by the latent heat of vaporization of the refrigerant, and the cool air is sent into the room. Thereafter, the gas refrigerant is returned to the outdoor unit 10 through the gas connection pipe 2.

室外機10に戻ったガス冷媒は、ガス阻止弁4および切換え弁12を通過し、圧縮機11に吸入され、再度圧縮機11で圧縮されることにより、一連の冷凍サイクルが形成される。   The gas refrigerant that has returned to the outdoor unit 10 passes through the gas blocking valve 4 and the switching valve 12, is sucked into the compressor 11, and is compressed again by the compressor 11, thereby forming a series of refrigeration cycles.

次に、空気調和機1における除霜運転について説明する。空気調和機1において、暖房運転時に、蒸発器として作用している室外熱交換器11の表面に霜が付着する場合がある。このようなときに暖房運転が所定時間継続されると、霜により風路が閉塞されて風量が次第に低下し、暖房能力が低下する。   Next, the defrosting operation in the air conditioner 1 will be described. In the air conditioner 1, frost may adhere to the surface of the outdoor heat exchanger 11 acting as an evaporator during heating operation. If the heating operation is continued for a predetermined time at such time, the air path is blocked by frost, the air volume gradually decreases, and the heating capacity decreases.

そのため、一定の着霜量となった時点にて、室外熱交換器13に付着した霜を融解させる、いわゆる除霜運転が行われる。ここでは、暖房運転時の冷媒のサイクルと逆となる逆サイクル(冷房サイクル)除霜運転での除霜について説明する。   Therefore, when the amount of frost formation becomes constant, a so-called defrosting operation is performed in which frost attached to the outdoor heat exchanger 13 is melted. Here, the defrosting in the reverse cycle (cooling cycle) defrosting operation that is the reverse of the refrigerant cycle during the heating operation will be described.

除霜運転は、外気温度検出器16および冷媒温度検出器17により検出される温度が、所定の判定値以下である場合に実行される。除霜運転時には、室外ファン14は停止し、外気への放熱を避け、霜の融解に利用される熱量を確保する。また、室内ファン23も停止する。   The defrosting operation is executed when the temperatures detected by the outside air temperature detector 16 and the refrigerant temperature detector 17 are equal to or lower than a predetermined determination value. During the defrosting operation, the outdoor fan 14 stops, avoids heat radiation to the outside air, and secures the amount of heat used for melting the frost. Moreover, the indoor fan 23 also stops.

除霜運転中の冷媒循環は冷房運転時の冷媒循環と同一方向であり、切換え弁12は冷房運転時の状態に切り換えられる。すなわち、除霜運転中、冷媒は図1の点線の矢印で示す方向に沿って流れる。このため、圧縮機11から圧縮された高温高圧のガス冷媒は、切換え弁12を経由し、室外熱交換器13へ流入する。室内熱交換器21へ流入した高温高圧のガス冷媒は、室外熱交換器13に付着する霜を冷媒の凝縮熱により加熱して融解する。   The refrigerant circulation during the defrosting operation is in the same direction as the refrigerant circulation during the cooling operation, and the switching valve 12 is switched to the state during the cooling operation. That is, during the defrosting operation, the refrigerant flows along the direction indicated by the dotted arrow in FIG. For this reason, the high-temperature and high-pressure gas refrigerant compressed from the compressor 11 flows into the outdoor heat exchanger 13 via the switching valve 12. The high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 21 is melted by heating the frost adhering to the outdoor heat exchanger 13 by the heat of condensation of the refrigerant.

室外熱交換器13にて霜の融解に使用され比エンタルピが小さくなった液冷媒は、室外膨張弁15および液接続配管3を通過して、室内機20へ送られる。室内機20に流入した液冷媒は、室内膨張弁22にて減圧され、室内熱交換器21を通過する際に暖房時に暖められていた熱交換器の熱容量を消費して加熱され、ガス接続配管2を通って、室外機10へと戻される。   The liquid refrigerant that has been used for melting frost in the outdoor heat exchanger 13 and has a low specific enthalpy passes through the outdoor expansion valve 15 and the liquid connection pipe 3 and is sent to the indoor unit 20. The liquid refrigerant that has flowed into the indoor unit 20 is decompressed by the indoor expansion valve 22, is heated while consuming the heat capacity of the heat exchanger that has been heated during heating when passing through the indoor heat exchanger 21, and gas connection piping 2 is returned to the outdoor unit 10.

室外機10に戻ったガス冷媒は、ガス阻止弁4および切換え弁12を通過し、圧縮機11へと戻されて再度圧縮され、一連の冷凍サイクルが形成される。   The gas refrigerant that has returned to the outdoor unit 10 passes through the gas blocking valve 4 and the switching valve 12, is returned to the compressor 11, and is compressed again, thereby forming a series of refrigeration cycles.

次に、暖房運転を停止した場合の冷媒の室外機10への回収動作について説明する。   Next, the refrigerant | coolant collection | recovery operation | movement to the outdoor unit 10 at the time of stopping heating operation is demonstrated.

図示せぬリモコンにより暖房運転が停止されると、制御装置19は、切換え弁12を切換え、圧縮機11の吐出側と室外熱交換器13とを連通させ、圧縮機11の吸入側とガス接続配管2とを連通させる。すなわち、切換え弁12の状態を冷房運転の状態にする。また、制御装置19は、室内膨張弁22を全閉状態にする。切換え弁12の切換えは、暖房運転時の室外熱交換器13と室内熱交換器21との圧力差を利用して行われる。切換え弁12を切換えたことにより、冷媒の流れる方向が、冷房運転時の冷媒の流れと同じになる。   When the heating operation is stopped by a remote controller (not shown), the control device 19 switches the switching valve 12 to connect the discharge side of the compressor 11 and the outdoor heat exchanger 13 and connects the suction side of the compressor 11 to the gas connection. The pipe 2 is connected. That is, the state of the switching valve 12 is set to the cooling operation state. In addition, the control device 19 fully closes the indoor expansion valve 22. The switching valve 12 is switched using the pressure difference between the outdoor heat exchanger 13 and the indoor heat exchanger 21 during heating operation. By switching the switching valve 12, the flow direction of the refrigerant becomes the same as the flow of the refrigerant during the cooling operation.

暖房運転停止後であるので、室内熱交換器21(室内機20)が高圧側、室外熱交換器13(室外機10)が低圧側となっている。よって、冷媒は、圧力平衡によって、ガス接続配管2を介して、高圧側の室内機20から低圧側の室外機10に流れ込む。室内膨張弁22が全閉状態であるので、液接続配管3を介して、室外機10から室内機20に冷媒が流入することはなく、室内機20よりも室外機10に冷媒を多く留めることができる。よって、冷媒が室内に漏洩したとしても、漏洩する冷媒の量を少なくすることができる。本実施の形態で使用する冷媒は、微燃性のR32冷媒、HFC32、プロパンガス、または、自然冷媒であるCOであるので、冷媒漏洩による発火の可能性を小さくし、人体への影響を少なくすることができる。 Since the heating operation is stopped, the indoor heat exchanger 21 (indoor unit 20) is on the high pressure side, and the outdoor heat exchanger 13 (outdoor unit 10) is on the low pressure side. Therefore, the refrigerant flows from the high pressure side indoor unit 20 into the low pressure side outdoor unit 10 through the gas connection pipe 2 due to pressure equilibrium. Since the indoor expansion valve 22 is in a fully closed state, the refrigerant does not flow into the indoor unit 20 from the outdoor unit 10 via the liquid connection pipe 3, and the refrigerant is retained in the outdoor unit 10 more than the indoor unit 20. Can do. Therefore, even if the refrigerant leaks into the room, the amount of the leaked refrigerant can be reduced. Since the refrigerant used in the present embodiment is a slightly flammable R32 refrigerant, HFC32, propane gas, or CO 2 that is a natural refrigerant, the possibility of ignition due to refrigerant leakage is reduced and the influence on the human body is reduced. Can be reduced.

また、暖房運転停止時に、圧縮機11を継続して動作させても良い。これにより、積極的に室内機20内にある冷媒を室外機10に回収し、圧縮機11を停止させているよりも多くの冷媒を室外機10に留めることができる。なお、圧縮機11を動作させすぎると、圧縮機11の低圧側の冷媒が少なくなり、次の運転を開始する際に圧縮機11がうまく動作しない場合がある。よって、圧力センサ18により、圧縮機11の吸入側(低圧側)の圧力を検出し、検出した圧力が所定の圧力になると圧縮機11を停止させて、冷媒の回収を終了する。   Further, the compressor 11 may be continuously operated when the heating operation is stopped. Thereby, the refrigerant in the indoor unit 20 can be positively collected in the outdoor unit 10, and more refrigerant can be retained in the outdoor unit 10 than when the compressor 11 is stopped. If the compressor 11 is operated too much, the refrigerant on the low-pressure side of the compressor 11 decreases, and the compressor 11 may not operate well when starting the next operation. Therefore, the pressure sensor 18 detects the pressure on the suction side (low pressure side) of the compressor 11, and when the detected pressure reaches a predetermined pressure, the compressor 11 is stopped and the recovery of the refrigerant is finished.

次に、冷房運転停止時の冷媒の室外機10への回収動作について説明する。   Next, the refrigerant | coolant collection | recovery operation | movement to the outdoor unit 10 at the time of a cooling operation stop is demonstrated.

図示せぬリモコンにより冷房運転が停止されると、制御装置19は、室内膨張弁8を閉じる。室内機20内の冷媒は、冷房運転時の流れのままに室外機10に流れ込む。そして、室内膨張弁8を閉じることで、室外熱交換器13に保有している高圧の液冷媒を封止することができ、室内機20と比べて室外機10側で比較的多く冷媒を保有することができる。   When the cooling operation is stopped by a remote controller (not shown), the control device 19 closes the indoor expansion valve 8. The refrigerant in the indoor unit 20 flows into the outdoor unit 10 while maintaining the flow during the cooling operation. Then, by closing the indoor expansion valve 8, the high-pressure liquid refrigerant possessed in the outdoor heat exchanger 13 can be sealed, and a relatively large amount of refrigerant is retained on the outdoor unit 10 side compared to the indoor unit 20. can do.

次に、本発明の第2の実施形態の空気調和機について説明する。本実施の形態の空気調和機と、第2の実施の形態の空気調和機1とでは、暖房運転停止後の動作のみが異なる。よって、以下では本実施形態における暖房運転停止後の動作についてのみ説明する。   Next, an air conditioner according to a second embodiment of the present invention will be described. The air conditioner of the present embodiment and the air conditioner 1 of the second embodiment differ only in the operation after stopping the heating operation. Therefore, only the operation after stopping the heating operation in the present embodiment will be described below.

図示せぬリモコンにより暖房運転が停止されると、制御装置19は、外気温度検出器16および冷媒温度検出器17により検出される温度が、所定の判定値以下であるか否かを判定する。検出された温度が、所定の判定値以下であった場合、制御装置19は、上述の除霜運転を実行する。除霜運転終了後に、室内膨張弁22を閉じて、圧縮機11を動作さる。これにより、積極的に室内機20側にある冷媒を室外機10側に回収し、より多くの冷媒を室外機10に留めることができる。なお、除霜運転終了後に、圧縮機11を動作させなくても良い。   When the heating operation is stopped by a remote controller (not shown), the control device 19 determines whether or not the temperatures detected by the outside air temperature detector 16 and the refrigerant temperature detector 17 are equal to or lower than a predetermined determination value. When the detected temperature is equal to or lower than the predetermined determination value, the control device 19 performs the above-described defrosting operation. After completion of the defrosting operation, the indoor expansion valve 22 is closed and the compressor 11 is operated. Thereby, the refrigerant on the indoor unit 20 side can be positively collected on the outdoor unit 10 side, and more refrigerant can be retained in the outdoor unit 10. In addition, it is not necessary to operate the compressor 11 after completion | finish of a defrost operation.

一方、検出された温度が、所定の判定値より大きい場合、制御装置19は、切換え弁12を切換え、室内膨張弁22を全閉状態にする。これにより、第1の実施形態と同様に、冷媒が、高圧側の室内機20から低圧側の室外機10に流れ込み、室内機20よりも室外機10に冷媒を多く留めることができる。なお、この時に圧縮機11を動作させても良い。   On the other hand, when the detected temperature is higher than the predetermined determination value, the control device 19 switches the switching valve 12 to fully close the indoor expansion valve 22. Thereby, similarly to 1st Embodiment, a refrigerant | coolant flows into the outdoor unit 10 of the low voltage | pressure side from the indoor unit 20 of the high voltage | pressure side, and can retain more refrigerant | coolants in the outdoor unit 10 rather than the indoor unit 20. FIG. At this time, the compressor 11 may be operated.

なお、上述した本発明の実施形態および実施例は、本発明の説明のための例示であり、本発明の範囲をそれらの実施形態あるいは実施例のみに限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。   The embodiments and examples of the present invention described above are examples for explaining the present invention, and are not intended to limit the scope of the present invention only to those embodiments or examples. Those skilled in the art can implement the present invention in various other modes without departing from the gist of the present invention.

例えば、暖房運転を停止した場合、室内膨張弁22を全閉状態にすると共に、室外膨張弁15を全閉状態にしても良い。この場合、室外膨張弁15を閉じて所定時間経過後、室内膨張弁22を閉じることが好ましい。ここで、所定時間とは、室外膨張弁15と室内膨張弁22との間にある冷媒が、室内機20内に移動するのに必要な時間である。室外膨張弁15と室内膨張弁22とを閉じることにより、運転停止中に室外機10から室内機20へ冷媒が流入するのをさらに抑制することができる。また、暖房運転停止時に液接続配管3内にある冷媒も、室外機10に回収することができる。よって、液接続配管3は、施工によっては室内へ露出することもあるので、室内において冷媒漏洩が発生したとしても、漏洩する冷媒の量を抑えることができる。   For example, when the heating operation is stopped, the indoor expansion valve 22 may be fully closed and the outdoor expansion valve 15 may be fully closed. In this case, it is preferable to close the indoor expansion valve 22 after the outdoor expansion valve 15 is closed and a predetermined time has elapsed. Here, the predetermined time is a time required for the refrigerant between the outdoor expansion valve 15 and the indoor expansion valve 22 to move into the indoor unit 20. By closing the outdoor expansion valve 15 and the indoor expansion valve 22, it is possible to further suppress the refrigerant from flowing from the outdoor unit 10 to the indoor unit 20 during operation stop. Moreover, the refrigerant in the liquid connection pipe 3 when the heating operation is stopped can also be collected in the outdoor unit 10. Therefore, since the liquid connection pipe 3 may be exposed to the room depending on the construction, even if the refrigerant leaks in the room, the amount of the leaked refrigerant can be suppressed.

空気調和機1において使用する冷媒に応じて、空調運転停止時に圧縮機11を運転または停止させる機能を、予め制御装置19に持たせても良い。   Depending on the refrigerant used in the air conditioner 1, the control device 19 may have a function of operating or stopping the compressor 11 when the air conditioning operation is stopped.

制御装置19は、室外機10設けられていたが、室内機20に設けられていても良い。   The control device 19 is provided in the outdoor unit 10, but may be provided in the indoor unit 20.

1:空気調和機、10:室外機、11:圧縮機、12:切換え弁、13:室外熱交換器、15:室外膨張弁、16:外気温度検出装置、17:冷媒温度検出装置、19:制御装置、20:室内機、21:室内熱交換器、22:室内膨張弁 1: air conditioner, 10: outdoor unit, 11: compressor, 12: switching valve, 13: outdoor heat exchanger, 15: outdoor expansion valve, 16: outdoor temperature detector, 17: refrigerant temperature detector, 19: Control device, 20: indoor unit, 21: indoor heat exchanger, 22: indoor expansion valve

Claims (4)

冷媒を吐出する圧縮機と、前記圧縮機から吐出された前記冷媒の流れる方向を切換える切換え弁とを有する室外機と、
室内熱交換器と、前記室内熱交換器への前記冷媒の流量を制御可能な室内膨張弁とを有し、冷媒配管を介して前記室外機に接続される室内機と、
前記室外機および前記室内機により形成される冷凍サイクルを制御する制御部と、を備え、
前記制御部は、暖房運転を停止した場合に、前記切換え弁を切換えて前記冷媒の流れる方向を冷房運転時の方向に切換えるとともに、前記室内膨張弁を全閉状態にし、
前記室外機は、前記室外熱交換器と前記室内膨張弁とに間に設けられた室外膨張弁を有し、
前記制御部は、暖房運転を停止した場合、前記室外膨張弁を全閉状態にし、その後、前記室内膨張弁を全閉状態にする、
空気調和機。
An outdoor unit having a compressor that discharges refrigerant, and a switching valve that switches a flow direction of the refrigerant discharged from the compressor;
An indoor heat exchanger, an indoor expansion valve capable of controlling the flow rate of the refrigerant to the indoor heat exchanger, and an indoor unit connected to the outdoor unit via a refrigerant pipe;
A controller that controls a refrigeration cycle formed by the outdoor unit and the indoor unit,
The control unit, when the heating operation is stopped, switches the switching valve to switch the flow direction of the refrigerant to the direction of the cooling operation, and makes the indoor expansion valve fully closed ,
The outdoor unit has an outdoor expansion valve provided between the outdoor heat exchanger and the indoor expansion valve,
When the heating operation is stopped, the control unit fully closes the outdoor expansion valve, and then fully closes the indoor expansion valve.
Air conditioner.
前記制御部は、暖房運転を停止した場合に、前記圧縮機を動作させる、
請求項1に記載の空気調和機。
The control unit operates the compressor when the heating operation is stopped.
The air conditioner according to claim 1.
前記室外機は、温度を検出する温度検出器を有し、
前記制御部は、暖房運転を停止した場合、前記温度検出器により検出される温度が所定の判定値以下であるか否かを判断し、
前記温度検出器により検出される温度が、前記所定の判定値以下である場合、前記制御部は、除霜運転を実行し、前記除霜運転終了後に、前記室内膨張弁を全閉状態にし、
前記温度検出器により検出される温度が、前記所定の判定値より大きい場合、前記制御部は、前記切換え弁を切換えて前記冷媒の流れる方向を冷房運転時の方向に切換えるとともに、前記室内膨張弁を全閉状態にする、
請求項1又は請求項2に記載の空気調和機。
The outdoor unit has a temperature detector for detecting temperature,
The controller determines whether the temperature detected by the temperature detector is equal to or lower than a predetermined determination value when the heating operation is stopped,
When the temperature detected by the temperature detector is equal to or lower than the predetermined determination value, the control unit performs a defrosting operation, and after the defrosting operation is finished, the indoor expansion valve is fully closed,
When the temperature detected by the temperature detector is greater than the predetermined determination value, the control unit switches the switching valve to switch the direction of the refrigerant flow to the direction during cooling operation, and the indoor expansion valve Fully closed,
The air conditioner according to claim 1 or 2.
前記冷媒は、燃焼性のある冷媒、HFC32、プロパンガス、または自然冷媒であるCOである、
請求項1乃至請求項3のいずれか一項に記載の空気調和機。

The refrigerant is a combustible refrigerant, HFC32, propane gas, or CO 2 which is a natural refrigerant.
The air conditioner as described in any one of Claims 1 thru | or 3 .

JP2013249189A 2013-12-02 2013-12-02 Air conditioner Active JP6238202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013249189A JP6238202B2 (en) 2013-12-02 2013-12-02 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013249189A JP6238202B2 (en) 2013-12-02 2013-12-02 Air conditioner

Publications (2)

Publication Number Publication Date
JP2015105808A JP2015105808A (en) 2015-06-08
JP6238202B2 true JP6238202B2 (en) 2017-11-29

Family

ID=53436010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013249189A Active JP6238202B2 (en) 2013-12-02 2013-12-02 Air conditioner

Country Status (1)

Country Link
JP (1) JP6238202B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011899A (en) * 2017-06-30 2019-01-24 株式会社富士通ゼネラル Air conditioning device
CN109269011B (en) * 2018-09-11 2021-09-21 奥克斯空调股份有限公司 Air conditioner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140574A (en) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd Air conditioning apparatus
JP3109500B2 (en) * 1998-12-16 2000-11-13 ダイキン工業株式会社 Refrigeration equipment
JP3744774B2 (en) * 2000-06-12 2006-02-15 三洋電機株式会社 Heat pump air conditioner
JP2002061996A (en) * 2000-08-10 2002-02-28 Sanyo Electric Co Ltd Air conditioner
KR100471723B1 (en) * 2002-05-17 2005-03-08 삼성전자주식회사 Air conditioner and control method thereof
JP4164566B2 (en) * 2003-11-07 2008-10-15 日立アプライアンス株式会社 Air conditioner
JP3941817B2 (en) * 2005-04-18 2007-07-04 ダイキン工業株式会社 Air conditioner
JP6079055B2 (en) * 2012-02-06 2017-02-15 ダイキン工業株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
JP2015105808A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
CN111201411B (en) Refrigerating device
CN109844426B (en) Refrigerating device
US10451306B2 (en) Air-conditioning apparatus
WO2018012489A1 (en) Refrigeration system
JP6479162B2 (en) Air conditioner
JP5939828B2 (en) Heat pump cycle equipment
WO2014034099A1 (en) Refrigeration system
US9494363B2 (en) Air-conditioning apparatus
JP5847366B1 (en) Air conditioner
JP5908183B1 (en) Air conditioner
JP2017142038A (en) Refrigeration cycle device
EP3217115B1 (en) Air conditioning apparatus
JP6038382B2 (en) Air conditioner
WO2016208042A1 (en) Air-conditioning device
JPWO2016121068A1 (en) Refrigeration cycle equipment
JP2019002639A (en) Refrigerant leakage detection method of ari conditioner, and air conditioner
JP6238202B2 (en) Air conditioner
WO2017056394A1 (en) Refrigeration device
WO2016203507A1 (en) Refrigeration cycle device
JP2017067397A (en) Refrigerator
JP6257812B2 (en) Air conditioner
JP7187898B2 (en) refrigeration cycle equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

R150 Certificate of patent or registration of utility model

Ref document number: 6238202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150