JP2012007775A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2012007775A
JP2012007775A JP2010142312A JP2010142312A JP2012007775A JP 2012007775 A JP2012007775 A JP 2012007775A JP 2010142312 A JP2010142312 A JP 2010142312A JP 2010142312 A JP2010142312 A JP 2010142312A JP 2012007775 A JP2012007775 A JP 2012007775A
Authority
JP
Japan
Prior art keywords
side connection
valve
refrigerant
liquid
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010142312A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kawabe
義和 川邉
Kazuhiko Marumoto
一彦 丸本
Akira Fujitaka
章 藤高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010142312A priority Critical patent/JP2012007775A/en
Publication of JP2012007775A publication Critical patent/JP2012007775A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the problem with a pump-down operation, wherein there is a possibility that hydrofluoroolefin may be decomposed due to a rise of a temperature of a sliding part during the pump-down operation since the hydrofluoroolefin is liable to be decomposed.SOLUTION: An outdoor machine 100 includes: a compressor 1; an outdoor heat exchanger 2; an outdoor blower 3; an expansion valve 4; a liquid-side connecting valve 5; and a gas-side connecting valve 8. An indoor machine 101 includes an indoor heat exchanger 6 and an indoor blower 7. HFO-1234yf is used as a coolant. A time of the pump-down operation is shortened by recovering the coolants from both liquid-side connecting piping 21 and gas-side connecting piping 22 by switching the liquid-side connecting valve 5, the rise of the temperature of the sliding part of the compressor 1 is suppressed, and the decomposition of the coolant is prevented, thus improving reliability.

Description

本発明は、作動冷媒を用いて冷凍、ヒートポンプサイクルを構成して冷暖房をおこなう空気調和機に関するもので、特に室内機と室外機を接続配管で繋いでサイクルを構成する装置において、炭素間に二重結合を有する作動冷媒を使用するに当たり、作動冷媒を室外機に回収するポンプダウン作業時に、圧縮機の温度上昇を抑えて冷媒の分解を防ぐため、ポンプダウンを速やかに行うことのできる技術を提供するものである。   The present invention relates to an air conditioner that uses a working refrigerant to form a refrigeration and heat pump cycle for air conditioning, and particularly in an apparatus that forms a cycle by connecting an indoor unit and an outdoor unit with a connecting pipe. When using a working refrigerant with multiple bonds, a technology that can quickly pump down to prevent decomposition of the refrigerant by suppressing a rise in the temperature of the compressor during pump down work to collect the working refrigerant in the outdoor unit. It is to provide.

分離型の空気調和機は、通常、室外機に冷媒が予め封入されており、室内機と室外機を液側、ガス側の接続配管で繋いだ後、作動冷媒を接続配管および室内機に開放して設置を行うものである。そして、一旦設置した装置を移設したりするために、室内機、室外機、接続配管を取り外す場合には、冷媒を室外機に回収するポンプダウン作業を行う。   In the separation type air conditioner, the refrigerant is usually sealed in the outdoor unit, and after connecting the indoor unit and the outdoor unit with the connection pipe on the liquid side and the gas side, the working refrigerant is opened to the connection pipe and the indoor unit. To install. And in order to transfer the apparatus once installed, when removing an indoor unit, an outdoor unit, and connection piping, the pump down operation | work which collect | recovers refrigerant | coolants to an outdoor unit is performed.

従来ポンプダウン作業は、室外機に設けられた液側の開閉弁を閉じて冷房運転を行い、所定の時間が経過したところで、室外機に設けられたガス側の開閉弁を閉じ、運転を停止して行う(特許文献1参照)。   Conventional pump-down operation is performed by closing the liquid-side on-off valve provided in the outdoor unit and performing cooling operation. When a predetermined time has elapsed, the gas-side on-off valve provided in the outdoor unit is closed and the operation is stopped. (See Patent Document 1).

このとき、室内機側の作業冷媒はガス側の接続配管から圧縮機へ吸引され、最終的に液側接続配管内の作動冷媒が圧縮機へ吸引されてポンプダウンは終了する。   At this time, the working refrigerant on the indoor unit side is sucked into the compressor from the gas-side connecting pipe, and finally the working refrigerant in the liquid-side connecting pipe is sucked into the compressor, and the pump-down ends.

液側の開閉弁を閉じてから運転停止までのポンプダウン時間が短いと、室内機側に作動冷媒が残留し接続配管をはずした際に大気放出されてしまう。逆にポンプダウン時間を長くしすぎると、作動冷媒が流れてこない状態で圧縮機を運転することになり圧縮機内部、特に摺動部の温度が上昇する。   If the pump-down time from the closing of the liquid-side on / off valve to the stoppage of operation is short, the working refrigerant remains on the indoor unit side and is released into the atmosphere when the connection pipe is removed. On the other hand, if the pump down time is too long, the compressor is operated in a state where the working refrigerant does not flow, and the temperature inside the compressor, particularly the sliding portion, rises.

一方、近年は地球温暖化が大きな問題となり、温暖化係数の低い作動冷媒を使用しようという動きが顕著になってきており、自然冷媒や、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンなどの冷媒が注目されている。   On the other hand, in recent years, global warming has become a major problem, and the movement to use working refrigerants with low global warming potential has become prominent. Natural refrigerants, hydrofluoroolefins having a double bond between carbon and carbon, etc. The refrigerant is attracting attention.

ハイドロフルオロオレフィンは、R134aの代替冷媒として特に注目されており、自動車用エアコンディショナーへの実用化の検討が推進されている。その温暖化係数(100年)はHFO1234yfの場合は4と、R134aの1,300、エアコンなどで使用されているR410Aの1730に比べてきわめて小さい。この温暖化係数が小さいという特性は、炭素間に2重結合を有し分解し易いことに起因している。   Hydrofluoroolefins are particularly attracting attention as alternative refrigerants for R134a, and studies on practical application to automotive air conditioners are being promoted. The warming potential (100 years) is 4 in the case of HFO1234yf, which is very small compared to 1,300 for R134a and 1730 for R410A used in air conditioners. This characteristic that the warming coefficient is small is attributed to the fact that there is a double bond between carbon and it is easy to decompose.

特開平5−157382号公報JP-A-5-157382

上記従来の空気調和機のポンプダウン運転を、ハイドロフルオロオレフィンを使用する空気調和機に適応すると、圧縮機内部の温度上昇で作動冷媒が分解する可能性がある。   When the pump-down operation of the conventional air conditioner is applied to an air conditioner using hydrofluoroolefin, the working refrigerant may be decomposed due to a temperature rise inside the compressor.

従来の空気調和機では、作動冷媒が分解しにくいものであったため、圧縮機において最も耐熱温度の低い材料はモーターの絶縁皮膜であり、その耐熱温度は120℃程度が一般的であった。最も温度が上昇すると考えられるメカ摺動面においては、200℃程度の温度になっても問題は生じなかった。   In the conventional air conditioner, since the working refrigerant is difficult to decompose, the material having the lowest heat resistant temperature in the compressor is a motor insulating film, and the heat resistant temperature is generally about 120 ° C. On the mechanical sliding surface where the temperature is considered to rise the most, no problem occurred even when the temperature reached about 200 ° C.

ところが、ハイドロフルオロオレフィンは分解し易いため、ポンプダウン運転時の摺動部の温度上昇により分解する可能性がある。   However, since hydrofluoroolefin is easy to decompose | disassemble, there exists a possibility of decomposition | disassembly by the temperature rise of a sliding part at the time of pump down operation.

作動流体である冷媒が分解すること自体望ましいことではないし、分解時の生成物が金属表面や有機材料に悪影響を及ぼす可能性もある。   It is not desirable that the refrigerant, which is a working fluid, decompose itself, and the product at the time of decomposition may adversely affect the metal surface and organic material.

従って本発明は、こうした課題を解決し、圧縮機内部の温度上昇を抑え確実なポンプダウンを行うことで、信頼性の高い空気調和機を提供するものである。   Therefore, the present invention provides a highly reliable air conditioner by solving such problems and performing a reliable pump down while suppressing a temperature rise inside the compressor.

上記従来の課題を解決するために、本発明の空気調和機は、作動冷媒としてハイドロフルオロオレフィンを含む冷媒を用いた空気調和機において、ポンプダウン運転を行う際に、ガス側接続配管、液側接続配管の両方から冷媒を室外機に回収するものである。   In order to solve the above-described conventional problems, the air conditioner of the present invention uses a gas side connection pipe, a liquid side when performing a pump-down operation in an air conditioner using a refrigerant containing hydrofluoroolefin as a working refrigerant. The refrigerant is recovered from both connection pipes to the outdoor unit.

これにより、液側接続配管内に存在する液冷媒の回収が容易に行うことができ、速やかにポンプダウンを終了し、圧縮機内部の温度上昇を抑制することができる。   Thereby, the liquid refrigerant existing in the liquid side connection pipe can be easily recovered, the pump-down can be finished quickly, and the temperature rise inside the compressor can be suppressed.

本発明の空気調和機は、ポンプダウン時の温度上昇による冷媒分解を回避し信頼性の高い装置を提供することができる。   The air conditioner of the present invention can provide a highly reliable device that avoids refrigerant decomposition due to temperature rise when the pump is down.

本発明の実施の形態1における空気調和機の構成図The block diagram of the air conditioner in Embodiment 1 of this invention 本発明の実施の形態2における空気調和機の構成図The block diagram of the air conditioner in Embodiment 2 of this invention

第1の発明は、作動冷媒を圧縮する圧縮手段、室外熱交換器、膨張弁、室外送風機、液側接続バルブ、ガス側接続バルブを有する室外機と、室内熱交換器、室内送風機を有する室内機とを、液側接続配管とガス側接続配管とで接続して、作動冷媒としてハイドロフルオロオレフィンを含む冷媒を用いた、冷凍サイクルあるいはヒートポンプサイクルを構成する空気調和機であって、室外機に作動冷媒を回収するポンプダウン運転を行う際に、液側接続配管とガス側接続配管の両方から冷媒を回収するものである。   The first invention includes an outdoor unit having compression means for compressing a working refrigerant, an outdoor heat exchanger, an expansion valve, an outdoor fan, a liquid side connection valve, a gas side connection valve, an indoor heat exchanger, and an indoor fan. Is an air conditioner that constitutes a refrigeration cycle or a heat pump cycle using a refrigerant containing hydrofluoroolefin as a working refrigerant, and connected to the outdoor unit by a liquid side connection pipe and a gas side connection pipe When performing the pump-down operation for collecting the working refrigerant, the refrigerant is collected from both the liquid side connection pipe and the gas side connection pipe.

これにより、液側接続配管内に存在する液冷媒の回収が容易に行うことができ、速やかにポンプダウンを終了し、圧縮機内部の温度上昇を抑制することができる。   Thereby, the liquid refrigerant existing in the liquid side connection pipe can be easily recovered, the pump-down can be finished quickly, and the temperature rise inside the compressor can be suppressed.

従って、冷媒であるハイドロフルオロオレフィンの分解を防ぎ、信頼性の高い装置を提供することができる。   Therefore, decomposition of the hydrofluoroolefin as a refrigerant can be prevented and a highly reliable device can be provided.

第2の発明は、第1の発明において、ガス側接続バルブと液側接続バルブとを接続するバイパス回路とを有し、液側接続バルブは液側接続配管を膨張弁に接続された配管とバイパス回路のいずれか一方に連通させる切換え弁であり、通常運転時には膨張弁に接続された配管と液側接続配管とを連通させ、ポンプダウン運転時には膨張弁に接続された配管とバイパス回路とを連通させるものである。   A second invention includes a bypass circuit for connecting the gas side connection valve and the liquid side connection valve in the first invention, wherein the liquid side connection valve includes a pipe connected to the expansion valve and the liquid side connection pipe. This is a switching valve that communicates with one of the bypass circuits.In normal operation, the piping connected to the expansion valve communicates with the liquid side connection piping, and during pump-down operation, the piping connected to the expansion valve and the bypass circuit are connected. It communicates.

これにより、液側接続バルブを切換えるだけで、簡単にガス側接続配管と液側接続配管の両方から冷媒を回収する構成を実現することができる。   Thereby, the structure which collect | recovers a refrigerant | coolant easily from both gas side connection piping and liquid side connection piping is realizable only by switching a liquid side connection valve.

従って、簡単な操作で、速やかにポンプダウンを終了し信頼性の高い装置を提供することができる。   Accordingly, it is possible to provide a highly reliable apparatus that can quickly finish pumping down with a simple operation.

第3の発明は、第2の発明において、液側接続バルブとガス側接続バルブとが、コアを押し込むことで開くことのできるアクセスバルブを有する三方弁であって、ポンプダウン運転時には、液側接続バルブとガス側接続バルブのアクセスバルブを接続する着脱式バイパス手段を装着するものである。   A third invention is the three-way valve according to the second invention, wherein the liquid-side connection valve and the gas-side connection valve have an access valve that can be opened by pushing the core. A detachable bypass means for connecting the connection valve and the access valve of the gas side connection valve is mounted.

これにより、ポンプダウン運転の際にだけ着脱式バイパス手段を冶工具として使用するので、装置に装備する必要がなくなる。   Thereby, since the detachable bypass means is used as a tool only during the pump down operation, it is not necessary to equip the apparatus.

従って、装置を安価に提供することができる。   Therefore, the apparatus can be provided at low cost.

第4の発明は、第3の発明において、着脱式バイパス手段が、コアを押し込むことのできる継ぎ手部と、内部の空気を排出するための吸引用バルブとを有するものである。   In a fourth aspect based on the third aspect, the detachable bypass means includes a joint portion that can push the core and a suction valve for discharging the internal air.

これにより、着脱式バイパス手段を取り付けた際に内部の空気を容易に排出することができる。   Thereby, the internal air can be easily discharged when the detachable bypass means is attached.

従って、空気の混入を防ぎ、信頼性の高いポンプダウン運転を行うことができる。   Therefore, mixing of air can be prevented and highly reliable pump down operation can be performed.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の第1の実施の形態における空気調和機の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of an air conditioner according to a first embodiment of the present invention.

図1に示すように、第1の実施の形態における空気調和機は、室外機100と室内機101を、接続配管である、液側接続配管21およびガス側接続配管22で接続して装置を構成している。   As shown in FIG. 1, the air conditioner in 1st Embodiment connects the outdoor unit 100 and the indoor unit 101 with the liquid side connection piping 21 and the gas side connection piping 22 which are connection piping, and is apparatus. It is composed.

室外機100には、圧縮手段である圧縮機1、室外熱交換器2、室外送風機3、作動冷媒を減圧膨張させる膨張弁4、三方弁である液側接続バルブ5、ガス側接続バルブ8が備えられている。そして、液側接続バルブ5は液側接続配管21の接続を、膨張弁4かあるいはバイパス回路11かに切換えている。そして、バイパス回路11は液側接続バルブ5から、ガス側接続バルブ8の、ガス側接続配管22側の接続ポートと接続している。   The outdoor unit 100 includes a compressor 1 that is a compression means, an outdoor heat exchanger 2, an outdoor blower 3, an expansion valve 4 that decompresses and expands working refrigerant, a liquid side connection valve 5 that is a three-way valve, and a gas side connection valve 8. Is provided. The liquid side connection valve 5 switches the connection of the liquid side connection pipe 21 to the expansion valve 4 or the bypass circuit 11. The bypass circuit 11 is connected from the liquid side connection valve 5 to the connection port on the gas side connection pipe 22 side of the gas side connection valve 8.

また、室内機101には、室内熱交換器6、室内送風機7を備えている。そして、圧縮機1、室外熱交換器2、膨張弁4、液側接続バルブ5、液側接続配管21、室内熱交換器6、ガス側接続配管22、ガス側接続バルブ8は、配管で接続され、作動冷媒が流れる冷媒回路を構成している。作動冷媒としては炭素間に二重結合を有し温暖化係数の小さな、ハイドロフルオロオレフィンであるHFO−1234yfを使用している。   The indoor unit 101 includes an indoor heat exchanger 6 and an indoor blower 7. The compressor 1, the outdoor heat exchanger 2, the expansion valve 4, the liquid side connection valve 5, the liquid side connection pipe 21, the indoor heat exchanger 6, the gas side connection pipe 22, and the gas side connection valve 8 are connected by piping. And constitutes a refrigerant circuit through which the working refrigerant flows. As the working refrigerant, HFO-1234yf, which is a hydrofluoroolefin having a double bond between carbons and having a small warming potential, is used.

また、この空気調和機には、ポンプダウンの1つの工程が終了したことを表示する出力手段である作業指示ランプ9と、作業者が1つの工程を完了したことを入力する入力手段である作業完了ボタン10を備えている。作業指示ランプ9と作業完了ボタン10は、例えば、空気調和機の制御装置を構成する室外機制御基板や、制御装置と通信を行うリモコンに設けられている。   The air conditioner also includes a work instruction lamp 9 which is an output means for displaying that one process of pumping down is completed, and a work which is an input means for inputting that a worker has completed one process. A completion button 10 is provided. The work instruction lamp 9 and the work completion button 10 are provided on, for example, an outdoor unit control board constituting a control device of the air conditioner or a remote controller that communicates with the control device.

以上のように構成された空気調和機の通常の運転動作について説明する。室内機101から室外機100に戻ってきた作動冷媒は、ガス側接続バルブ8を経て圧縮機1に吸い込まれて圧縮され、高温高圧の冷媒となって室外熱交換器2に送られ、室外送風機3によって送られてくる空気で冷却され凝縮し、膨張弁4で減圧され、液側接続バルブ5を経て室内機101へ送られ、室内熱交換器6で室内送風機7により送られてきた空気から熱を奪い蒸発して、室外機100へ戻る。室内熱交換器6で室内送風機7により送られてきた空気から熱を奪うことで、室内機101が設置された空間の空気の冷却、つまり冷房が行われる。   The normal operation of the air conditioner configured as described above will be described. The working refrigerant that has returned from the indoor unit 101 to the outdoor unit 100 is sucked into the compressor 1 through the gas side connection valve 8 and compressed, and is sent to the outdoor heat exchanger 2 as a high-temperature and high-pressure refrigerant. 3 is cooled and condensed by the air sent by 3, decompressed by the expansion valve 4, sent to the indoor unit 101 through the liquid side connection valve 5, and from the air sent by the indoor blower 7 in the indoor heat exchanger 6. It takes heat and evaporates and returns to the outdoor unit 100. By taking heat from the air sent by the indoor blower 7 in the indoor heat exchanger 6, the air in the space where the indoor unit 101 is installed is cooled, that is, cooled.

次に、このような空気調和機の設置時、移設時について説明する。   Next, the time of installation and relocation of such an air conditioner will be described.

図1に示される分離型空気調和機では、設置前は室外機100に冷媒が封入されている。設置時には、液側接続配管21およびガス側接続配管22で室内機101と室外機100とを接続する。その後、ガス側接続バルブ8のサービスポート12と真空ポンプとをホースで接続する。そして、真空ポンプを運転して室内機101側の配管(液側接続バルブ5からガス側接続バルブ8までの配管であって、室内熱交換器6を含む)内の空気をガス側接続バルブ8のサービスポート12から真空引きする。その後、液側接続バルブ5、ガス側接続バルブ8を開けて冷媒を配管内に開放して設置を行う。このとき、バイパス回路11は室内機101側に繋がっており、室内機101側の配管と同様に真空に引かれた後、冷媒で満たされることになる。   In the separation type air conditioner shown in FIG. 1, the refrigerant is sealed in the outdoor unit 100 before installation. At the time of installation, the indoor unit 101 and the outdoor unit 100 are connected by the liquid side connection pipe 21 and the gas side connection pipe 22. Thereafter, the service port 12 of the gas side connection valve 8 and the vacuum pump are connected by a hose. Then, by operating the vacuum pump, the air in the pipe on the indoor unit 101 side (the pipe from the liquid side connection valve 5 to the gas side connection valve 8 and including the indoor heat exchanger 6) is exchanged with the gas side connection valve 8. The service port 12 is evacuated. Thereafter, the liquid side connection valve 5 and the gas side connection valve 8 are opened to open the refrigerant in the pipe for installation. At this time, the bypass circuit 11 is connected to the indoor unit 101 side and, like the piping on the indoor unit 101 side, is evacuated and then filled with the refrigerant.

また、設置した空気調和機を移動させる場合には、作動冷媒を室外機100に再び回収し液側接続配管21およびガス側接続配管22をはずして移動させる。このような、作動冷媒を再び室外機100に回収する作業をポンプダウンという。   Further, when the installed air conditioner is moved, the working refrigerant is again collected in the outdoor unit 100 and moved by removing the liquid side connection pipe 21 and the gas side connection pipe 22. Such an operation of collecting the working refrigerant again in the outdoor unit 100 is referred to as pump down.

ポンプダウンは、従来の空気調和機の場合、予備運転として所定の時間、冷房運転を行った後、液側接続バルブ5の代わりに設けられた二方弁を閉切り、3分程度冷房運転を続け、ガス側接続バルブ8の代わりに設けられた三方弁を締切り、運転を停止する。このとき、ゲージマニホールドなどの圧力測定手段をガス側接続バルブ8の代わりに設けられた三方弁のサービスポートに接続してポンプダウンを行う場合は、圧力測定手段の表示が負圧になるまで、液側接続バルブ5の代わりに設けられた二方弁を閉切った状態での冷房運転を行う。   In the case of a conventional air conditioner, the pump down is performed for a predetermined time as a preliminary operation, and then the two-way valve provided in place of the liquid side connection valve 5 is closed and the cooling operation is performed for about 3 minutes. Subsequently, the three-way valve provided in place of the gas side connection valve 8 is closed, and the operation is stopped. At this time, when the pressure measurement means such as a gauge manifold is connected to the service port of the three-way valve provided in place of the gas side connection valve 8 and pumping down is performed, until the pressure measurement means displays negative pressure, Cooling operation is performed with the two-way valve provided instead of the liquid side connection valve 5 closed.

このとき、ポンプダウンが十分でなければ、接続配管および室内機101側の配管に作動冷媒が残留する。その結果、そのまま、接続配管をはずすと、作動冷媒を大気放出することになる。温暖化係数が小さいとはいえ、フッ素化合物が大気放出されるのは望ましいとは言えず、装置内の作動冷媒が減るという観点からも作動冷媒はできる限り回収するのが望ましい。しかし、ポンプダウン運転を長時間続けると、作動冷媒が循環しない状態での運転が続くため、圧縮機1の摺動部の冷却が妨げられ、圧縮機1の摺動部の温度が上昇する。   At this time, if the pump down is not sufficient, the working refrigerant remains in the connection pipe and the pipe on the indoor unit 101 side. As a result, if the connection pipe is removed as it is, the working refrigerant is released into the atmosphere. Although the global warming potential is small, it is not desirable that the fluorine compound is released into the atmosphere, and it is desirable to collect the working refrigerant as much as possible from the viewpoint of reducing the working refrigerant in the apparatus. However, if the pump-down operation is continued for a long time, the operation in a state where the working refrigerant does not circulate continues, so that cooling of the sliding portion of the compressor 1 is hindered, and the temperature of the sliding portion of the compressor 1 rises.

ここで、本実施の形態の空気調和機では、作動冷媒としてHFO−1234yfを使用しているが、この冷媒は、炭素間に二重結合を有しているがゆえに分解し易く、酸素が存在する雰囲気中であれば温度が上昇すれば容易に分解し、酸を生じたりさまざまな有機物を生じたりし、圧縮機1の摺動部や配管などの金属部品、圧縮機1のモーター巻線や各弁部における有機材料にダメージを与える可能性がある。   Here, in the air conditioner of the present embodiment, HFO-1234yf is used as a working refrigerant. However, since this refrigerant has a double bond between carbons, it is easily decomposed and oxygen is present. If the temperature rises, it will easily decompose and produce acid and various organic substances, metal parts such as the sliding parts and piping of the compressor 1, motor windings of the compressor 1, etc. There is a possibility of damaging the organic material in each valve part.

さらに、酸素が存在しない場合においても、高温部では冷媒が分解する。圧縮機1において最も耐熱温度の低い材料はモーターの絶縁皮膜であり、その耐熱温度は120℃程度が一般的である。最も温度が上昇すると考えられるメカ摺動面においては、200℃程度の温度になる。従来は冷媒が分解しにくいものであったため問題は発生しなかったが、冷媒としてHFO−1234yfを使用する装置では、分解し易いため、ポンプダウン運転時の摺動部の温度上昇により、作動冷媒が分解する可能性がある。   Further, even when oxygen is not present, the refrigerant is decomposed at the high temperature portion. The material having the lowest heat resistant temperature in the compressor 1 is an insulating film of a motor, and the heat resistant temperature is generally about 120 ° C. The mechanical sliding surface that is considered to have the highest temperature reaches a temperature of about 200 ° C. Conventionally, since the refrigerant was difficult to decompose, no problem occurred. However, in the apparatus using HFO-1234yf as the refrigerant, it is easy to decompose, and therefore the working refrigerant is increased due to the temperature rise of the sliding portion during the pump down operation. May break down.

そこで、本発明の実施の形態1の空気調和機は、以下のようにしてポンプダウン運転の時間を短縮し、圧縮機1の摺動部の温度上昇を抑え、作動冷媒の分解を防いで信頼性の向上を図るものである。   Therefore, the air conditioner of Embodiment 1 of the present invention shortens the time of the pump-down operation as follows, suppresses the temperature rise of the sliding portion of the compressor 1, and prevents the working refrigerant from being decomposed and is reliable. It is intended to improve the performance.

まず、基本的な考え方は、ポンプダウン運転の際に液側接続配管21とガス側接続配管22の両方から冷媒を室外機100へ回収することである。   First, the basic idea is to collect the refrigerant from both the liquid side connection pipe 21 and the gas side connection pipe 22 to the outdoor unit 100 during the pump down operation.

この理由を以下に説明する。液側接続配管21は断熱材で覆われているため、液側接続配管21の内部の液冷媒は、吸熱による蒸発が行われにくい。このため、液側接続配管21の内部に存在する作動冷媒は低圧側で最も乾き度が低い状態にある。なお、これに対し、室内熱交換器6では液冷媒があっても空気と熱交換して速やかに蒸発する。また、ガス側接続配管22も断熱材で覆われているので、作動冷媒の速やかな蒸発は望めないが、室内熱交換器6で蒸発した作動冷媒と共に圧縮機1に運ばれていくので、速やかに圧縮機1に回収される。   The reason for this will be described below. Since the liquid side connection pipe 21 is covered with a heat insulating material, the liquid refrigerant inside the liquid side connection pipe 21 is not easily evaporated by heat absorption. For this reason, the working refrigerant present inside the liquid side connection pipe 21 is in a state where the dryness is the lowest on the low pressure side. On the other hand, in the indoor heat exchanger 6, even if there is a liquid refrigerant, heat is exchanged with the air and it is quickly evaporated. Further, since the gas side connection pipe 22 is also covered with the heat insulating material, it is not possible to expect rapid evaporation of the working refrigerant, but since it is carried to the compressor 1 together with the working refrigerant evaporated in the indoor heat exchanger 6, Is recovered by the compressor 1.

液冷媒は、ポンプダウン運転を行う際に滞留し易く、液溜りが生じるとその部分の冷媒は蒸発してから圧縮機1に回収されるので周囲から熱を吸収する必要がある。一部の液冷媒が周囲から蒸発熱をもらって蒸発すると、周囲の温度はその分下がっていく。蒸発、温度低下を繰り返していくうち液冷媒の周囲の温度は下がり、ますます、液冷媒は蒸発しにくくなって冷媒回収に時間がかかるようになる。   The liquid refrigerant is likely to stay during the pump-down operation, and when the liquid pool is generated, the refrigerant in that portion is evaporated and then collected by the compressor 1, so it is necessary to absorb heat from the surroundings. When a part of the liquid refrigerant evaporates with the heat of evaporation from the surroundings, the ambient temperature decreases accordingly. As the evaporation and temperature decrease are repeated, the ambient temperature of the liquid refrigerant decreases, and the liquid refrigerant becomes more difficult to evaporate and it takes time to recover the refrigerant.

一方、液冷媒の量が少ないと周囲の温度は比較的高い温度に保たれ、液冷媒は蒸発し易い状態が保たれる。その結果、作動冷媒の回収が速やかに行われ、圧縮機1の摺動部の温度上昇を抑え、冷媒の分解を防いで信頼性の向上が図れる。   On the other hand, when the amount of liquid refrigerant is small, the ambient temperature is kept at a relatively high temperature, and the liquid refrigerant is kept in a state where it is easily evaporated. As a result, the working refrigerant can be quickly recovered, the temperature rise of the sliding portion of the compressor 1 can be suppressed, and the refrigerant can be prevented from being decomposed to improve the reliability.

液側接続配管21、ガス側接続配管22の両方から冷媒を室外機100へ回収する方法は次の通りである。ポンプダウンは、予備運転として所定の時間、冷房運転を行った後、液側接続バルブ5を、液側接続配管21とバイパス回路11とが連通するように切り換える。これにより、膨張弁4に接続された配管は圧縮機1の吸入側には連通しない状態となる。そして、3分程度冷房運転を続け、液側接続配管21内の冷媒はバイパス回路11を介して、また、ガス側接続配管22内の冷媒は直接、圧縮機1へと回収する。その後、ガス側接続バルブ8を締切り、運転を停止する。このとき、ゲージマニホールドなどの圧力測定手段をガス側接続バルブ8のサービスポート12に接続してポンプダウンを行う場合は、圧力測定手段の表示が負圧になるまで、液側接続バルブ5を液側接続配管21とバイパス回路11とが連通するように切り換えた状態での冷房運転を行う。   A method of recovering the refrigerant from both the liquid side connection pipe 21 and the gas side connection pipe 22 to the outdoor unit 100 is as follows. In the pump down, after performing a cooling operation for a predetermined time as a preliminary operation, the liquid side connection valve 5 is switched so that the liquid side connection pipe 21 and the bypass circuit 11 communicate with each other. As a result, the pipe connected to the expansion valve 4 does not communicate with the suction side of the compressor 1. Then, the cooling operation is continued for about 3 minutes, and the refrigerant in the liquid side connection pipe 21 is recovered to the compressor 1 directly through the bypass circuit 11 and the refrigerant in the gas side connection pipe 22 is directly recovered. Thereafter, the gas side connection valve 8 is closed and the operation is stopped. At this time, when pressure measurement means such as a gauge manifold is connected to the service port 12 of the gas side connection valve 8 and pumping down is performed, the liquid side connection valve 5 is kept until the pressure measurement means displays negative pressure. The cooling operation is performed in a state where the side connection pipe 21 and the bypass circuit 11 are switched so as to communicate with each other.

本実施の形態のように、液側接続配管21とガス側接続配管22の両方から冷媒を回収すると、室内熱交換器6が液溜りの生じる場所となる。しかし、上述のように、室内熱交換器6では液冷媒があっても空気と熱交換して蒸発し、液、ガス状態を問わず液側接続配管21およびガス側接続配管22内の冷媒と共に、速やかに室外機100へ回収される。   When the refrigerant is recovered from both the liquid side connection pipe 21 and the gas side connection pipe 22 as in the present embodiment, the indoor heat exchanger 6 becomes a place where a liquid pool is generated. However, as described above, in the indoor heat exchanger 6, even if there is a liquid refrigerant, it exchanges heat with air and evaporates, together with the refrigerant in the liquid side connection pipe 21 and the gas side connection pipe 22 regardless of the liquid or gas state. , Promptly collected in the outdoor unit 100.

本実施の形態では、液側接続バルブ5が液側接続配管21の接続を、膨張弁4かあるいはバイパス回路11かに切換えるよう構成されているので、液側接続バルブ5を操作するだけで、膨張弁4の先は封止され、液側接続配管21はバイパス回路11によってガス側接続バルブ8に接続されるので、簡単な操作で、液側接続配管21とガス側接続配管22の両方から冷媒を室外機100へ回収することができる。つまり、本実施の形態の空気調和機は、ポンプダウン時の温度上昇による作動冷媒の分解の回避を、実現することができる。   In the present embodiment, since the liquid side connection valve 5 is configured to switch the connection of the liquid side connection pipe 21 to the expansion valve 4 or the bypass circuit 11, only by operating the liquid side connection valve 5, Since the tip of the expansion valve 4 is sealed and the liquid side connection pipe 21 is connected to the gas side connection valve 8 by the bypass circuit 11, both the liquid side connection pipe 21 and the gas side connection pipe 22 can be easily operated. The refrigerant can be collected in the outdoor unit 100. That is, the air conditioner of the present embodiment can avoid the decomposition of the working refrigerant due to the temperature rise at the time of pump down.

また、本実施の形態では、作業手順を進めて良い状態になったことを知らせる出力手段である作業指示ランプ9と、作業者が1つの作業を完了したことを入力する入力手段である作業完了ボタン10を備えており、作業者が作業を進めて良い状態になったらそれを知らせる作業指示ランプ9を点灯あるいは点滅させ、作業者が1つの作業を終了したら作業完了ボタン10で作業の完了を入力することで、1つ1つの作業を確実に遂行し作業ミスの発生を減らすことができる。   In this embodiment, the work instruction lamp 9 which is an output means for notifying that the work procedure is ready to proceed and the work completion which is an input means for inputting that the worker has completed one work. A button 10 is provided. When the worker is ready to proceed with the work, the work instruction lamp 9 is turned on or blinking to notify the user. When the worker finishes one work, the work completion button 10 is used to complete the work. By inputting, it is possible to reliably perform each work and reduce the occurrence of work errors.

例えば、ポンプダウンを実施する際に、まず作業者が作業完了ボタン10を押し作業の開始を入力する。すると、制御装置(図示せず)は、空気調和機の冷房運転を開始する。そして、一定時間、冷房運転を実施したところで、作業指示ランプ9の1回点滅を繰り返す。これを確認した作業者はポンプダウン運転の開始のため、液側接続バルブ5を操作し、作業完了ボタン10を押す。そして、所定の時間が過ぎたところで空気調和機は作業指示ランプ9の2回点滅を繰り返し、ポンプダウン運転の工程の終了を告げる。これを確認した作業者がガス側接続バルブ8を閉切り、作業完了ボタン10を押すと空気調和機は運転を停止する。これでポンプダウンは終了である。   For example, when pumping down is performed, the worker first presses the work completion button 10 and inputs the start of the work. Then, a control device (not shown) starts the cooling operation of the air conditioner. Then, when the cooling operation is performed for a certain time, the work instruction lamp 9 blinks once. The worker who confirmed this operates the liquid side connection valve 5 and presses the work completion button 10 to start the pump down operation. Then, when the predetermined time has passed, the air conditioner repeats blinking of the work instruction lamp 9 twice to inform the end of the pump down operation process. When the worker who has confirmed this closes the gas side connection valve 8 and presses the work completion button 10, the air conditioner stops operation. This completes the pump down.

つまり、本実施の形態の空気調和機は、作業指示ランプ9、作業完了ボタン10により、1つ1つの工程を確実に遂行でき、作業ミスを減らすことができる。   That is, the air conditioner according to the present embodiment can reliably perform each process by the work instruction lamp 9 and the work completion button 10 and reduce work mistakes.

なお、本実施の形態では、液側接続バルブ5やガス側接続バルブ8の操作は、作業者が行い、それらの操作の完了は作業完了ボタン10を押すことで入力するものとしたが、液側接続バルブ5やガス側接続バルブ8の操作も制御装置が自動的に行うことで、作業完了ボタン10を廃止することも可能である。この際には、さらに作業ミスを減らすことができることはいうまでもない。   In the present embodiment, the operation of the liquid side connection valve 5 and the gas side connection valve 8 is performed by an operator, and the completion of these operations is input by pressing the work completion button 10. The operation of the side connection valve 5 and the gas side connection valve 8 is also automatically performed by the control device, so that the work completion button 10 can be eliminated. In this case, it goes without saying that work errors can be further reduced.

(実施の形態2)
図2は、本発明の第2の実施の形態における空気調和機の構成図を示すものである。
(Embodiment 2)
FIG. 2 shows a configuration diagram of an air conditioner according to the second embodiment of the present invention.

図2に示すように、図1の空気調和機において、液側接続バルブ5をサービスポート12を備えた液側接続用三方弁15に変更し、バイパス回路11を、サービスポート12のコアを任意のタイミングで押し込むことのできる継ぎ手部33、開閉弁と真空ポンプへの接続口とを有する吸引用バルブ32を備えた着脱式バイパス回路31に変更したものである。着脱式バイパス回路31は、液側接続用三方弁15とガス側接続バルブ8のサービスポート12にポンプダウンのときだけ接続される。   As shown in FIG. 2, in the air conditioner of FIG. 1, the liquid side connection valve 5 is changed to a liquid side connection three-way valve 15 provided with a service port 12, and the bypass circuit 11 and the core of the service port 12 are optional. It is changed to a detachable bypass circuit 31 having a joint valve 33 that can be pushed in at a timing, a suction valve 32 having an opening / closing valve and a connection port to a vacuum pump. The detachable bypass circuit 31 is connected to the liquid side connection three-way valve 15 and the service port 12 of the gas side connection valve 8 only when the pump is down.

本実施の形態では、ポンプダウンのときだけ、着脱式バイパス回路31が取り付けられるので、通常運転時には、空気調和機の室外機100に着脱式バイパス回路31は装備されておらず、装置を安価に提供することができる。   In the present embodiment, the detachable bypass circuit 31 is attached only when the pump is down. Therefore, during normal operation, the outdoor unit 100 of the air conditioner is not equipped with the detachable bypass circuit 31, and the apparatus is inexpensive. Can be provided.

また、着脱式バイパス回路31を取り付けた際に、吸引用バルブ32から内部の空気を排出してからポンプダウンを行えば、冷媒中に空気が混入するのを防ぎ、信頼性の高い作業が行える。   Further, when the detachable bypass circuit 31 is attached, if the air is exhausted from the suction valve 32 and then pumped down, the air can be prevented from being mixed into the refrigerant and a highly reliable operation can be performed. .

なお、以上の実施の形態における空気調和機は暖房運転を行うことができない冷房専用機であるが、圧縮機1の出口に作動冷媒の流れ方向を切り換える四方弁を備え暖房運転を行うことができる冷暖機種でも同様の効果が得られる。   In addition, although the air conditioner in the above embodiment is a cooling only machine which cannot perform heating operation, it can equip with the four-way valve which switches the flow direction of a working refrigerant at the exit of the compressor 1, and can perform heating operation. The same effect can be obtained even in cool and warm models.

また、冷媒はHFO−1234yfを使用したが、HFO−1234zeであっても、HFO−1234yfあるいはHFO−1234zeを含む混合冷媒であっても同様の効果を奏するものである。このような、混合冷媒としては、例えば、HFO−1234yfとHFC−32との混合冷媒などがある。   Moreover, although HFO-1234yf was used as the refrigerant, even if it is HFO-1234ze or a mixed refrigerant containing HFO-1234yf or HFO-1234ze, the same effect can be obtained. An example of such a mixed refrigerant is a mixed refrigerant of HFO-1234yf and HFC-32.

以上のように、本発明にかかる空気調和機は、ポンプダウン運転を行う際に、液側接続配管、ガス側接続配管の両方から冷媒を回収してポンプダウン運転を行うものである。これにより、速やかにポンプダウンを終了し、圧縮機内部の温度上昇を抑制することができる。   As described above, when performing the pump-down operation, the air conditioner according to the present invention recovers the refrigerant from both the liquid-side connection pipe and the gas-side connection pipe and performs the pump-down operation. As a result, the pump-down can be quickly finished, and the temperature rise inside the compressor can be suppressed.

その結果、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンのような、分解しやすい冷媒も使用することができ、環境性に優れている。   As a result, a refrigerant that is easily decomposed, such as a hydrofluoroolefin having a double bond between carbon and carbon, can be used, and the environment is excellent.

そして、空気調和機だけに止まらず、セパレート型のショーケースや冷凍機、ヒートポンプ式の温水器などに広く適用することができ、効果をもたらすものである。   Further, the present invention is not limited to the air conditioner, and can be widely applied to a separate type showcase, a refrigerator, a heat pump type water heater, and the like, and brings about an effect.

1 圧縮機
2 室外熱交換器
3 室外送風機
4 膨張弁
5 液側接続バルブ
6 室内熱交換器
7 室内送風機
8 ガス側接続バルブ
9 作業指示ランプ
10 作業完了ボタン
11 バイパス回路
12 サービスポート
21 液側接続配管
22 ガス側接続配管
100 室外機
101 室内機
DESCRIPTION OF SYMBOLS 1 Compressor 2 Outdoor heat exchanger 3 Outdoor blower 4 Expansion valve 5 Liquid side connection valve 6 Indoor heat exchanger 7 Indoor blower 8 Gas side connection valve 9 Work instruction lamp 10 Work completion button 11 Bypass circuit 12 Service port 21 Liquid side connection Piping 22 Gas side connection piping 100 Outdoor unit 101 Indoor unit

Claims (4)

作動冷媒を圧縮する圧縮手段、室外熱交換器、膨張弁、室外送風機、液側接続バルブ、ガス側接続バルブを有する室外機と、室内熱交換器、室内送風機を有する室内機とを、液側接続配管とガス側接続配管とで接続して、前記作動冷媒としてハイドロフルオロオレフィンを含む冷媒を用いた、冷凍サイクルあるいはヒートポンプサイクルを構成する空気調和機であって、前記室外機に前記作動冷媒を回収するポンプダウン運転を行う際に、前記液側接続配管と前記ガス側接続配管の両方から冷媒を回収することを特徴とする空気調和機。 Compressing means for compressing working refrigerant, outdoor heat exchanger, expansion valve, outdoor fan, liquid side connection valve, outdoor unit having gas side connection valve, indoor heat exchanger, indoor unit having indoor fan, liquid side An air conditioner constituting a refrigeration cycle or a heat pump cycle using a refrigerant containing hydrofluoroolefin as the working refrigerant, connected by a connection pipe and a gas side connection pipe, wherein the working refrigerant is supplied to the outdoor unit An air conditioner that collects refrigerant from both the liquid-side connection pipe and the gas-side connection pipe when performing a pump-down operation for recovery. 前記ガス側接続バルブと前記液側接続バルブとを接続するバイパス回路とを有し、前記液側接続バルブは前記液側接続配管を前記膨張弁に接続された配管と前記バイパス回路のいずれか一方に連通させる切換え弁であり、通常運転時には前記膨張弁に接続された配管と前記液側接続配管とを連通させ、前記ポンプダウン運転時には前記膨張弁に接続された配管と前記バイパス回路とを連通させることを特徴とする請求項1に記載の空気調和機。 A bypass circuit for connecting the gas side connection valve and the liquid side connection valve, wherein the liquid side connection valve is either one of the pipe connected to the expansion valve and the bypass circuit. A switching valve that communicates with the expansion valve during normal operation, and communicates the pipe connected to the liquid side connection piping with the bypass circuit during the pump-down operation. The air conditioner according to claim 1, wherein 前記液側接続バルブと前記ガス側接続バルブとが、コアを押し込むことで開くことのできるアクセスバルブを有する三方弁であって、前記ポンプダウン運転時には、前記液側接続バルブと前記ガス側接続バルブの前記アクセスバルブを接続する着脱式バイパス手段を装着することを特徴とする請求項1に記載の空気調和機。 The liquid side connection valve and the gas side connection valve are three-way valves having an access valve that can be opened by pushing in a core, and the liquid side connection valve and the gas side connection valve during the pump down operation The air conditioner according to claim 1, further comprising a detachable bypass means for connecting the access valve. 前記着脱式バイパス手段が、前記コアを押し込むことのできる継ぎ手部と、内部の空気を排出するための吸引用バルブとを有することを特徴とする請求項3に記載の空気調和機。 The air conditioner according to claim 3, wherein the detachable bypass means includes a joint portion through which the core can be pushed in, and a suction valve for discharging the internal air.
JP2010142312A 2010-06-23 2010-06-23 Air conditioner Pending JP2012007775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142312A JP2012007775A (en) 2010-06-23 2010-06-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142312A JP2012007775A (en) 2010-06-23 2010-06-23 Air conditioner

Publications (1)

Publication Number Publication Date
JP2012007775A true JP2012007775A (en) 2012-01-12

Family

ID=45538536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142312A Pending JP2012007775A (en) 2010-06-23 2010-06-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP2012007775A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075272A (en) * 2013-10-09 2015-04-20 株式会社富士通ゼネラル Air conditioner
JPWO2015140874A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Air conditioner
WO2017191814A1 (en) * 2016-05-02 2017-11-09 東芝キヤリア株式会社 Refrigeration cycle device
CN113757945A (en) * 2021-09-26 2021-12-07 Tcl空调器(中山)有限公司 Air conditioner control method and device, air conditioner and computer readable storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075272A (en) * 2013-10-09 2015-04-20 株式会社富士通ゼネラル Air conditioner
JPWO2015140874A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Air conditioner
WO2017191814A1 (en) * 2016-05-02 2017-11-09 東芝キヤリア株式会社 Refrigeration cycle device
JPWO2017191814A1 (en) * 2016-05-02 2018-11-01 東芝キヤリア株式会社 Refrigeration cycle equipment
GB2565463A (en) * 2016-05-02 2019-02-13 Toshiba Carrier Corp Refrigeration cycle device
GB2565463B (en) * 2016-05-02 2021-03-03 Toshiba Carrier Corp Refrigeration cycle apparatus
CN113757945A (en) * 2021-09-26 2021-12-07 Tcl空调器(中山)有限公司 Air conditioner control method and device, air conditioner and computer readable storage medium

Similar Documents

Publication Publication Date Title
JP5336039B2 (en) Refrigerant charging method in refrigeration apparatus using carbon dioxide as refrigerant
JP5677233B2 (en) Outdoor unit and refrigeration cycle apparatus including the outdoor unit
JP4187020B2 (en) Air conditioner and cleaning method thereof
JP2012007775A (en) Air conditioner
EP2921801B1 (en) Method of part replacement for refrigeration cycle apparatus
JP4120221B2 (en) Refrigerant and oil recovery operation method, and refrigerant and oil recovery control device
US11112154B2 (en) Air conditioner
JP2006308222A (en) Air conditioner, heat source unit, and renovation method for air conditioner
JP2012007774A (en) Air conditioner
JP4906792B2 (en) Vapor compression heat pump equipment
JP5542722B2 (en) Refrigeration equipment
JP2018173196A5 (en)
JP2005249297A (en) Refrigerant collecting device, refrigerant collection connecting device and refrigerant collecting method
JP6417775B2 (en) Refrigeration equipment
JP3956997B1 (en) Refrigerating machine oil recovery method
JP4082224B2 (en) Refrigerant recovery device
WO2012137260A1 (en) Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device
AU2014345151B2 (en) Refrigeration cycle apparatus, method of manufacturing the same, and method of installing the same
CN215595820U (en) Machine and air conditioner in air conditioner evacuating device, air conditioning
WO2023053573A1 (en) Heat source unit and refrigerant processing method
JP2008069988A (en) Refrigerant circuit device
JP2003314878A (en) Control method for air conditioner, and air conditioner
JP4569174B2 (en) Air conditioner
JPH07146037A (en) Collecting method of refrigerant
KR100919610B1 (en) Forst free airconditioner