JPWO2017191814A1 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JPWO2017191814A1
JPWO2017191814A1 JP2018515720A JP2018515720A JPWO2017191814A1 JP WO2017191814 A1 JPWO2017191814 A1 JP WO2017191814A1 JP 2018515720 A JP2018515720 A JP 2018515720A JP 2018515720 A JP2018515720 A JP 2018515720A JP WO2017191814 A1 JPWO2017191814 A1 JP WO2017191814A1
Authority
JP
Japan
Prior art keywords
valve
refrigerant
heat exchanger
refrigeration cycle
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018515720A
Other languages
Japanese (ja)
Other versions
JP6634517B2 (en
Inventor
優太 立石
優太 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Publication of JPWO2017191814A1 publication Critical patent/JPWO2017191814A1/en
Application granted granted Critical
Publication of JP6634517B2 publication Critical patent/JP6634517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/221Preventing leaks from developing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks

Abstract

冷凍サイクルからの冷媒の漏洩を検知する検知手段を設ける。この検知手段が前記冷媒の漏洩を検知した場合に、冷凍サイクル中の冷媒を同冷凍サイクルの圧縮機側に回収する冷媒回収運転を実行する。Detection means for detecting leakage of refrigerant from the refrigeration cycle is provided. When this detection means detects the leakage of the refrigerant, a refrigerant recovery operation is performed to recover the refrigerant in the refrigeration cycle to the compressor side of the refrigeration cycle.

Description

本発明の実施形態は、冷媒の漏洩を検出する機能を備えた冷凍サイクル装置に関する。   Embodiments described herein relate generally to a refrigeration cycle apparatus having a function of detecting refrigerant leakage.

空気調和機などの冷凍サイクル装置は、圧縮機、凝縮器、減圧器、蒸発器などを順に配管接続して構成された冷凍サイクルを備える。圧縮機は、冷媒を吸込んで圧縮し吐出する。この圧縮機から吐出される冷媒が凝縮器、減圧器、および蒸発器を通って圧縮機に吸込まれる。   A refrigeration cycle apparatus such as an air conditioner includes a refrigeration cycle configured by connecting a compressor, a condenser, a decompressor, an evaporator, and the like in order. The compressor sucks in the refrigerant, compresses it, and discharges it. The refrigerant discharged from the compressor is sucked into the compressor through the condenser, the decompressor, and the evaporator.

特開平5−118720号公報Japanese Patent Laid-Open No. 5-118720

上記冷凍サイクルにおける各管の接続部や継ぎ目などから冷媒が漏洩することがある。万一、多量の冷媒が室内空間に漏洩した場合、室内の酸素量が相対的に低下して室内が酸素不足となる可能性がある。   In some cases, the refrigerant leaks from a connection portion or a joint of each pipe in the refrigeration cycle. In the unlikely event that a large amount of refrigerant leaks into the indoor space, there is a possibility that the amount of oxygen in the room will decrease relatively and the room will become deficient in oxygen.

本発明の実施形態の目的は、冷媒が漏洩した場合に室内の酸素不足を防ぐことができる冷凍サイクル装置を提供することである。   The objective of embodiment of this invention is providing the refrigerating-cycle apparatus which can prevent indoor oxygen shortage, when a refrigerant | coolant leaks.

請求項1の冷凍サイクル装置は、圧縮機、室外熱交換器、減圧器、室内熱交換器を順に配管接続し、前記圧縮機が吐出する冷媒を前記室外熱交換器、前記減圧器、前記室内熱交換器に通して前記圧縮機に戻す冷凍サイクルと;前記冷媒の漏洩を検知する検知手段と;前記検知手段が前記冷媒の漏洩を検知した場合に、前記冷凍サイクル中の前記冷媒を同冷凍サイクルの前記圧縮機側に回収する冷媒回収運転を実行する制御手段と;を備える。   The refrigeration cycle apparatus according to claim 1, wherein a compressor, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are connected by piping in order, and refrigerant discharged from the compressor is supplied to the outdoor heat exchanger, the decompressor, and the indoor A refrigeration cycle that passes through a heat exchanger and returns to the compressor; detection means for detecting leakage of the refrigerant; and when the detection means detects leakage of the refrigerant, the refrigerant in the refrigeration cycle is refrigerated. Control means for performing a refrigerant recovery operation for recovery on the compressor side of the cycle.

図1は、本発明の一実施形態の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention. 図2は、本発明の一実施形態の制御を示すフローチャートである。FIG. 2 is a flowchart showing the control of one embodiment of the present invention.

以下、本発明の一実施形態として、冷凍サイクル装置たとえば空気調和機への適用について説明する。   Hereinafter, application to a refrigeration cycle apparatus such as an air conditioner will be described as an embodiment of the present invention.

空気調和機は、図1に示すように、室外機Aおよび室内機Bを含む。室外機Aは、圧縮機1、四方弁2、室外熱交換器3、減圧器である電動膨張弁(第1電動膨張弁)4、液側パックドバルブ5、ガス側パックドバルブ6、アキュームレータ7、室外ファン8、室外制御器30などを含む。室内機Bは、液側パックドバルブ21、減圧器である電動膨張弁(第2電動膨張弁)22、室内熱交換器23、ガス側パックドバルブ24、室内ファン25、室内制御器40などを含む。   As shown in FIG. 1, the air conditioner includes an outdoor unit A and an indoor unit B. The outdoor unit A includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an electric expansion valve (first electric expansion valve) 4 as a decompressor, a liquid side packed valve 5, a gas side packed valve 6, an accumulator 7, The outdoor fan 8 and the outdoor controller 30 are included. The indoor unit B includes a liquid side packed valve 21, an electric expansion valve (second electric expansion valve) 22, which is a decompressor, an indoor heat exchanger 23, a gas side packed valve 24, an indoor fan 25, an indoor controller 40, and the like. .

圧縮機1は、冷媒を吸込んで圧縮し吐出する。この圧縮機1の吐出口にガス側管71を介して四方弁2が接続され、その四方弁2にガス側管72を介して室外熱交換器3の一端が接続されている。この室外熱交換器3の他端に液側管73を介して電動膨張弁4の一端が接続され、その電動膨張弁4の他端に液側管74を介して液側パックドバルブ5の一端が接続されている。この液側パックドバルブ5の他端に液側管75を介して液側パックドバルブ21の一端が接続され、その液側パックドバルブ21の他端に液側管76を介して電動膨張弁22の一端が接続されている。この電動膨張弁22の他端に液側管77を介して室内熱交換器23の一端が接続され、その室内熱交換器23の他端にガス側管78を介してガス側パックドバルブ24の一端が接続されている。このガス側パックドバルブ24の他端にガス側管79を介してガス側パックドバルブ6の一端が接続され、そのガス側パックドバルブ6の他端にガス側管81を介して上記四方弁2が接続されている。この四方弁2にガス側管82を介してアキュームレータ7の一端が接続され、そのアキュームレータ7の他端にガス側管83を介して圧縮機1の吸込口が接続されている。   The compressor 1 sucks in the refrigerant, compresses it, and discharges it. A four-way valve 2 is connected to the discharge port of the compressor 1 via a gas side pipe 71, and one end of the outdoor heat exchanger 3 is connected to the four-way valve 2 via a gas side pipe 72. One end of the electric expansion valve 4 is connected to the other end of the outdoor heat exchanger 3 via a liquid side pipe 73, and one end of the liquid side packed valve 5 is connected to the other end of the electric expansion valve 4 via a liquid side pipe 74. Is connected. One end of the liquid side packed valve 21 is connected to the other end of the liquid side packed valve 5 via a liquid side pipe 75, and the other end of the liquid side packed valve 21 is connected to the other end of the electric expansion valve 22 via a liquid side pipe 76. One end is connected. One end of the indoor heat exchanger 23 is connected to the other end of the electric expansion valve 22 via a liquid side pipe 77, and the other end of the indoor heat exchanger 23 is connected to the gas side packed valve 24 via a gas side pipe 78. One end is connected. One end of the gas side packed valve 6 is connected to the other end of the gas side packed valve 24 via a gas side pipe 79, and the other end of the gas side packed valve 6 is connected to the four-way valve 2 via a gas side pipe 81. It is connected. One end of an accumulator 7 is connected to the four-way valve 2 via a gas side pipe 82, and the suction port of the compressor 1 is connected to the other end of the accumulator 7 via a gas side pipe 83.

これらの配管接続により、冷房運転および暖房運転が可能なヒートポンプ式の冷凍サイクルが構成されている。   These pipe connections constitute a heat pump refrigeration cycle capable of cooling operation and heating operation.

電動膨張弁4,22は、入力される駆動パルスの数に応じて開度が連続的に変化するパルスモータバルブ(PMV)である。室外熱交換器3の近傍に、外気を吸込んで室外熱交換器3に通す室外ファン8が配置されている。室内熱交換器23の近傍に、室内空気を吸込んで室内熱交換器23に通す室内ファン25が配置されている。   The electric expansion valves 4 and 22 are pulse motor valves (PMV) whose opening degree changes continuously according to the number of input drive pulses. An outdoor fan 8 that sucks outside air and passes it through the outdoor heat exchanger 3 is disposed in the vicinity of the outdoor heat exchanger 3. An indoor fan 25 that sucks indoor air and passes it through the indoor heat exchanger 23 is disposed in the vicinity of the indoor heat exchanger 23.

液側パックドバルブ5,21の相互間の液側管75にバイパス管91の一端が接続され、そのバイパス管91の他端がガス側パックドバルブ24,6の相互間のガス側管79に接続されている。そして、バイパス管91に、圧力調整弁13が配置されている。圧力調整弁13は、バイパス管91の一端側の圧力(液側管75内の冷媒の圧力)P1とバイパス管91の他端側の圧力(ガス側管79内の冷媒の圧力)P2との差ΔPに応じて機械的に作動するもので、その差圧ΔPが所定値ΔPs未満の場合は閉成し所定値ΔP以上の場合に開放する。   One end of the bypass pipe 91 is connected to the liquid side pipe 75 between the liquid side packed valves 5 and 21, and the other end of the bypass pipe 91 is connected to the gas side pipe 79 between the gas side packed valves 24 and 6. Has been. A pressure regulating valve 13 is disposed in the bypass pipe 91. The pressure regulating valve 13 is configured such that a pressure on one end side of the bypass pipe 91 (pressure of the refrigerant in the liquid side pipe 75) P1 and a pressure on the other end side of the bypass pipe 91 (pressure of the refrigerant in the gas side pipe 79) P2. It operates mechanically according to the difference ΔP, and closes when the differential pressure ΔP is less than the predetermined value ΔPs, and opens when the differential pressure ΔP is greater than the predetermined value ΔP.

液側管75において、バイパス管91の接続位置よりも室内熱交換器23側の位置(液側パックドバルブ21寄りの位置)に、冷媒回収用の液側開閉弁11が配置されている。ガス側管79において、バイパス管91の接続位置よりも室内熱交換器23側の位置(ガス側パックドバルブ24寄りの位置)に、冷媒回収用のガス側開閉弁12が配置されている。液側開閉弁11およびガス側開閉弁12は、システム制御器50により開閉が制御される電動式の開閉弁であって、後述の冷媒回収運転が実行されない場合は開放され、その冷媒回収運転が実行される場合はそれぞれ所定のタイミングで閉成される。   In the liquid side pipe 75, the liquid side opening / closing valve 11 for recovering the refrigerant is disposed at a position closer to the indoor heat exchanger 23 than the connection position of the bypass pipe 91 (position closer to the liquid side packed valve 21). In the gas side pipe 79, the gas side on-off valve 12 for refrigerant recovery is disposed at a position closer to the indoor heat exchanger 23 than the connection position of the bypass pipe 91 (position closer to the gas side packed valve 24). The liquid-side on-off valve 11 and the gas-side on-off valve 12 are electrically operated on-off valves whose opening / closing is controlled by the system controller 50, and are opened when the refrigerant recovery operation described later is not executed. When executed, each is closed at a predetermined timing.

冷房運転時は、図1に実線矢印で示すように、圧縮機1から吐出されるガス状の冷媒(ガス冷媒という)がガス側管71、四方弁2、ガス側管72を通って室外熱交換器3に流入する。室外熱交換器3に流入したガス冷媒は、室外ファン8から供給される室外空気に熱を放出して液化する。この室外熱交換器3から流出する液状の冷媒(液冷媒という)は液側管73、電動膨張弁4、液側管74、液側パックドバルブ5、液側管75、液側開閉弁11、液側パックドバルブ21、液側管76、電動膨張弁22、液側管77を通って室内熱交換器23に流入する。室内熱交換器23に流入した液冷媒は、室内ファン25から供給される室内空気から熱を奪って気化する。この室内熱交換器23から流出するガス冷媒はガス側管78、ガス側パックドバルブ24、ガス側管79、ガス側開閉弁12、ガス側パックドバルブ6、ガス側管81、四方弁2、ガス側管82、アキュームレータ7、ガス側管83を通って圧縮機1に吸込まれる。すなわち、室外熱交換器3が凝縮器として機能し、室内熱交換器23が蒸発器として機能する。   During the cooling operation, as indicated by solid arrows in FIG. 1, the gaseous refrigerant (referred to as gas refrigerant) discharged from the compressor 1 passes through the gas side pipe 71, the four-way valve 2, and the gas side pipe 72, and the outdoor heat It flows into the exchanger 3. The gas refrigerant that has flowed into the outdoor heat exchanger 3 is liquefied by releasing heat to the outdoor air supplied from the outdoor fan 8. The liquid refrigerant (referred to as liquid refrigerant) flowing out from the outdoor heat exchanger 3 is the liquid side pipe 73, the electric expansion valve 4, the liquid side pipe 74, the liquid side packed valve 5, the liquid side pipe 75, the liquid side on-off valve 11, It flows into the indoor heat exchanger 23 through the liquid side packed valve 21, the liquid side pipe 76, the electric expansion valve 22, and the liquid side pipe 77. The liquid refrigerant that has flowed into the indoor heat exchanger 23 takes heat from the indoor air supplied from the indoor fan 25 and vaporizes. The gas refrigerant flowing out of the indoor heat exchanger 23 is gas side pipe 78, gas side packed valve 24, gas side pipe 79, gas side on-off valve 12, gas side packed valve 6, gas side pipe 81, four-way valve 2, gas The air is sucked into the compressor 1 through the side pipe 82, the accumulator 7, and the gas side pipe 83. That is, the outdoor heat exchanger 3 functions as a condenser, and the indoor heat exchanger 23 functions as an evaporator.

この冷房運転時、電動膨張弁4は、室外熱交換器3における冷媒の過冷却度が設定値一定となるように開度が制御される。電動膨張弁22は、室内熱交換器23における冷媒の過熱度が設定値一定となるように開度が制御される。また、電動膨張弁22は、冷房運転の停止時に全閉される。   During the cooling operation, the opening degree of the electric expansion valve 4 is controlled so that the degree of supercooling of the refrigerant in the outdoor heat exchanger 3 becomes a set value. The opening degree of the electric expansion valve 22 is controlled so that the degree of superheat of the refrigerant in the indoor heat exchanger 23 becomes a constant set value. The electric expansion valve 22 is fully closed when the cooling operation is stopped.

暖房運転時は、四方弁2の流路が切換わることにより、圧縮機1から吐出されるガス冷媒がガス側管71、四方弁2、ガス側管81、ガス側パックドバルブ6、ガス側管79、ガス側開閉弁12、ガス側パックドバルブ24、ガス側管78を通って室内熱交換器23に流れ、室内熱交換器23から流出する液冷媒が液側管77、電動膨張弁22、液側管76、液側パックドバルブ21、液側管75、液側開閉弁11、液側パックドバルブ5、液側管74、電動膨張弁4、液側管73を通って室外熱交換器3に流れる。室外熱交換器3から流出するガス冷媒はガス側管72、四方弁2、ガス側管82、アキュームレータ7、ガス側管83を通って圧縮機1に吸込まれる。すなわち、室内熱交換器23が凝縮器として機能し、室外熱交換器3が蒸発器として機能する。   During the heating operation, the flow path of the four-way valve 2 is switched so that the gas refrigerant discharged from the compressor 1 causes the gas side pipe 71, the four-way valve 2, the gas side pipe 81, the gas side packed valve 6, and the gas side pipe. 79, the liquid refrigerant flowing into the indoor heat exchanger 23 through the gas side open / close valve 12, the gas side packed valve 24, and the gas side pipe 78 and flowing out of the indoor heat exchanger 23, the liquid side pipe 77, the electric expansion valve 22, The outdoor heat exchanger 3 passes through the liquid side pipe 76, the liquid side packed valve 21, the liquid side pipe 75, the liquid side on-off valve 11, the liquid side packed valve 5, the liquid side pipe 74, the electric expansion valve 4, and the liquid side pipe 73. Flowing into. The gas refrigerant flowing out of the outdoor heat exchanger 3 is sucked into the compressor 1 through the gas side pipe 72, the four-way valve 2, the gas side pipe 82, the accumulator 7, and the gas side pipe 83. That is, the indoor heat exchanger 23 functions as a condenser, and the outdoor heat exchanger 3 functions as an evaporator.

この暖房運転時、電動膨張弁22は、室内熱交換器23における冷媒の過冷却度が設定値一定となるように制御される。電動膨張弁4は、室外熱交換器3における冷媒の過熱度が設定値一定となるように開度が制御される。また、電動膨張弁22は、暖房運転の停止時に全閉される。   During the heating operation, the electric expansion valve 22 is controlled such that the degree of refrigerant supercooling in the indoor heat exchanger 23 is constant. The opening degree of the electric expansion valve 4 is controlled so that the degree of superheat of the refrigerant in the outdoor heat exchanger 3 is constant. The electric expansion valve 22 is fully closed when the heating operation is stopped.

これら冷房運転時および暖房運転時、ヒートポンプ式冷凍サイクルから冷媒が漏洩していなければ、液側管75内の冷媒の圧力P1とガス側管79内の冷媒の圧力P2との差ΔPが所定値ΔPs未満となり、よって圧力調整弁13が閉成状態を保つ。冷房運転時および暖房運転の停止時も、ヒートポンプ式冷凍サイクルから冷媒が漏洩していなければ、液側管75内の冷媒の圧力P1とガス側管79内の冷媒の圧力P2との差ΔPが所定値ΔPs未満となり、よって圧力調整弁13が閉成状態を保つ。   If the refrigerant does not leak from the heat pump refrigeration cycle during the cooling operation and the heating operation, the difference ΔP between the refrigerant pressure P1 in the liquid side pipe 75 and the refrigerant pressure P2 in the gas side pipe 79 is a predetermined value. Therefore, the pressure regulating valve 13 is kept closed. If the refrigerant does not leak from the heat pump refrigeration cycle even during the cooling operation and the heating operation stop, the difference ΔP between the refrigerant pressure P1 in the liquid side pipe 75 and the refrigerant pressure P2 in the gas side pipe 79 is Therefore, the pressure adjustment valve 13 is kept closed.

室外制御器30に、室内制御器40およびシステム制御器50がそれぞれ通信線接続されている。室内制御器40に、リモートコントロール式の操作表示器(リモコン)51および冷媒漏洩検知器(検知手段)60がそれぞれ通信線接続されている。そして、システム制御器50に、液側開閉弁11およびガス側開閉弁12がそれぞれ信号線接続されている。   An indoor controller 40 and a system controller 50 are connected to the outdoor controller 30 via communication lines. A remote control type operation indicator (remote controller) 51 and a refrigerant leakage detector (detection means) 60 are connected to the indoor controller 40 via communication lines. The system controller 50 is connected to the liquid side on / off valve 11 and the gas side on / off valve 12 via signal lines.

冷媒漏洩検知器60は、ヒートポンプ式冷凍サイクルからの冷媒の漏洩を検知するもので、例えばガス冷媒を検知するガスセンサであって、室内機Bが設置される室内空間または室内機Bの近傍に配置される。操作表示器51は、運転モードや室内温度を設定するための操作部51aを有するとともに、その操作部51aの設定内容等を文字や画像で表示する表示部51bを有する。   The refrigerant leakage detector 60 detects refrigerant leakage from the heat pump refrigeration cycle. For example, the refrigerant leakage detector 60 is a gas sensor that detects gas refrigerant, and is disposed in the indoor space where the indoor unit B is installed or in the vicinity of the indoor unit B. Is done. The operation display 51 includes an operation unit 51a for setting the operation mode and the room temperature, and also includes a display unit 51b for displaying the setting contents of the operation unit 51a and the like with characters and images.

室外制御器30は、システム制御器50からの指令に応じて圧縮機1の運転、四方弁2の流路、電動膨張弁4の開度、室外ファン8の運転を制御するとともに、システム制御器50からの指令に応じて室内制御器40に対し所定の室内制御を指令する。室内制御器40は、室外制御器30からの指令に応じて、電動膨張弁22の開度および室内ファン25の運転を制御する。   The outdoor controller 30 controls the operation of the compressor 1, the flow path of the four-way valve 2, the opening degree of the electric expansion valve 4, and the operation of the outdoor fan 8 according to a command from the system controller 50, and the system controller In response to a command from 50, a predetermined indoor control is commanded to the indoor controller 40. The indoor controller 40 controls the opening degree of the electric expansion valve 22 and the operation of the indoor fan 25 in accordance with a command from the outdoor controller 30.

システム制御器50は、室外制御器30を介して室外機Aを制御するとともに、室外制御器30および室内制御器40を介して室内機Bおよび操作表示器51を制御する。とくに、システム制御器50は、冷媒の漏洩に関わる主要な機能(制御手段)として、冷媒漏洩検知器60の検知結果を室内制御器40および室外制御器30を介して受け、その冷媒漏洩検知器60が冷媒の漏洩を検知した場合にヒートポンプ式冷凍サイクル中の冷媒を同ヒートポンプ式冷凍サイクルの室外機A側(圧縮機1側)に回収する冷媒回収運転を実行する。この冷媒回収運転は、室内機Bの移設や交換などに際して室内機B側の冷媒を室外機A側に回収するために行う一般的な冷媒回収運転と基本的に同じである。   The system controller 50 controls the outdoor unit A through the outdoor controller 30, and controls the indoor unit B and the operation indicator 51 through the outdoor controller 30 and the indoor controller 40. In particular, the system controller 50 receives the detection result of the refrigerant leak detector 60 via the indoor controller 40 and the outdoor controller 30 as a main function (control means) related to refrigerant leakage, and the refrigerant leak detector. When the refrigerant | coolant 60 detects leakage of a refrigerant | coolant, the refrigerant | coolant collection | recovery driving | operation which collect | recovers the refrigerant | coolants in a heat pump type refrigerating cycle to the outdoor unit A side (compressor 1 side) of the heat pump type refrigerating cycle is performed. This refrigerant recovery operation is basically the same as a general refrigerant recovery operation performed to recover the refrigerant on the indoor unit B side to the outdoor unit A side when the indoor unit B is moved or replaced.

具体的には、システム制御器50は、冷媒漏洩検知器60が冷媒の漏洩を検知した場合に、圧縮機1を所定周波数で運転し、四方弁2を冷房流路に設定してヒートポンプ式冷凍サイクルにおける冷媒の流れを冷房時の流れに設定し、電動膨張弁4を所定開度に設定し、電動膨張弁22を全開し、かつ液側開閉弁11およびガス側開閉弁12を開放することにより、冷媒回収運転を開始する。続いて、システム制御器50は、この冷媒回収運転の開始から一定時間t1後に液側開閉弁11を閉成し、この液側開閉弁11の閉成から一定時間t2後にガス側開閉弁12を閉成し、このガス側開閉弁12の閉成から一定時間t3後に圧縮機1を停止し、この圧縮機1の停止に伴い電動膨張弁4を全開することのより、冷媒回収運転を終了する。なお、システム制御器50は、この冷媒回収運転の実行中は室外ファン8および室内ファン25の運転を停止する。   Specifically, when the refrigerant leak detector 60 detects refrigerant leakage, the system controller 50 operates the compressor 1 at a predetermined frequency and sets the four-way valve 2 as a cooling flow path to perform heat pump refrigeration. The refrigerant flow in the cycle is set to the flow during cooling, the electric expansion valve 4 is set to a predetermined opening, the electric expansion valve 22 is fully opened, and the liquid side opening / closing valve 11 and the gas side opening / closing valve 12 are opened. Thus, the refrigerant recovery operation is started. Subsequently, the system controller 50 closes the liquid side opening / closing valve 11 after a certain time t1 from the start of the refrigerant recovery operation, and turns the gas side opening / closing valve 12 after the certain time t2 after the liquid side opening / closing valve 11 is closed. The compressor 1 is stopped after a certain time t3 from the closing of the gas side on-off valve 12, and the electric expansion valve 4 is fully opened along with the stop of the compressor 1 to complete the refrigerant recovery operation. . The system controller 50 stops the operation of the outdoor fan 8 and the indoor fan 25 during the execution of the refrigerant recovery operation.

つぎに、システム制御器50が実行する制御を図2のフローチャートを参照しながら説明する。
室内機B側の液側管75,76,77、液側パックドバルブ21、電動膨張弁22、室内熱交換器23、ガス側パックドバルブ24、ガス側管78,79などの接続部や継ぎ目から冷媒が漏洩した場合、その冷媒の漏洩が冷媒漏洩検知器60で検知される。この場合、漏洩した冷媒がガス冷媒であれば、そのガス冷媒がそのまま冷媒漏洩検知器60で検知される。漏洩した冷媒が液冷媒であれば、その液冷媒から気化したガス冷媒が冷媒漏洩検知器60で検知される。
Next, the control executed by the system controller 50 will be described with reference to the flowchart of FIG.
From connection parts and joints such as liquid side pipes 75, 76, 77 on the indoor unit B side, liquid side packed valve 21, electric expansion valve 22, indoor heat exchanger 23, gas side packed valve 24, gas side pipes 78, 79, etc. When the refrigerant leaks, the refrigerant leak detector 60 detects the refrigerant leak. In this case, if the leaked refrigerant is a gas refrigerant, the gas refrigerant is detected as it is by the refrigerant leak detector 60. If the leaked refrigerant is a liquid refrigerant, the gas refrigerant evaporated from the liquid refrigerant is detected by the refrigerant leak detector 60.

システム制御器50は、冷媒漏洩検知器60が冷媒の漏洩を検知した場合に(ステップS1のYES)、冷媒が漏洩した旨を操作表示器51の文字表示やアイコン画像表示により報知するとともに(ステップS2)、冷媒回収運転を実行する(ステップS3)。   When the refrigerant leak detector 60 detects the refrigerant leak (YES in step S1), the system controller 50 notifies the fact that the refrigerant has leaked by displaying characters or displaying an icon image on the operation indicator 51 (step S1). S2) A refrigerant recovery operation is executed (step S3).

すなわち、システム制御器50は、まず、四方弁2を冷房流路に設定して圧縮機1を所定周波数で運転するとともに、電動膨張弁4を所定開度に設定し、電動膨張弁22を全開し、かつ液側開閉弁11およびガス側開閉弁12を開放する。これにより、図1に実線矢印で示すように、圧縮機1から吐出されるガス冷媒が、ガス側管71、四方弁2、ガス側管72を通って室外熱交換器3に流入し、その室外熱交換器3内の冷媒(ガス冷媒および液冷媒)が液側管73、電動膨張弁4、液側管74、液側パックドバルブ5、液側管75、液側開閉弁11、液側パックドバルブ21を通って室内機Bに流れる。室内機Bに流れた冷媒は、液側管76、電動膨張弁22、液側管77、室内熱交換器23、ガス側管78、ガス側パックドバルブ24、ガス側管79、ガス側開閉弁12、ガス側パックドバルブ6を通って室外機A側に回収される。冷媒回収運転の開始となる。   That is, the system controller 50 first sets the four-way valve 2 to the cooling flow path, operates the compressor 1 at a predetermined frequency, sets the electric expansion valve 4 to a predetermined opening degree, and fully opens the electric expansion valve 22. In addition, the liquid side on / off valve 11 and the gas side on / off valve 12 are opened. As a result, as indicated by solid arrows in FIG. 1, the gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 through the gas side pipe 71, the four-way valve 2, and the gas side pipe 72, The refrigerant (gas refrigerant and liquid refrigerant) in the outdoor heat exchanger 3 is the liquid side pipe 73, the electric expansion valve 4, the liquid side pipe 74, the liquid side packed valve 5, the liquid side pipe 75, the liquid side on-off valve 11, and the liquid side. It flows to the indoor unit B through the packed valve 21. The refrigerant flowing into the indoor unit B is the liquid side pipe 76, the electric expansion valve 22, the liquid side pipe 77, the indoor heat exchanger 23, the gas side pipe 78, the gas side packed valve 24, the gas side pipe 79, and the gas side on-off valve. 12. Collected to the outdoor unit A side through the gas side packed valve 6. The refrigerant recovery operation starts.

この冷媒回収運転の開始に伴い、システム制御器50は、タイムカウントt1を開始し(ステップS4)、このタイムカウントt1が一定時間t1sに達するのを待つ(ステップS5のNO)。   With the start of the refrigerant recovery operation, the system controller 50 starts a time count t1 (step S4) and waits for the time count t1 to reach a certain time t1s (NO in step S5).

タイムカウントt1が一定時間t1sに達したとき(ステップS5のYES)、システム制御器50は、液側開閉弁11を閉成する(ステップS6)。液側開閉弁11が閉成すると、液側開閉弁11より下流の液側管75、液側パックドバルブ21、液側管76、電動膨張弁22、液側管77、室内熱交換器23、ガス側管78、ガス側パックドバルブ24、ガス側管79、ガス側開閉弁12に存する冷媒が、圧縮機1側に真空引きされて引き続き室外機A側に回収される。   When the time count t1 reaches the predetermined time t1s (YES in step S5), the system controller 50 closes the liquid side on-off valve 11 (step S6). When the liquid side on-off valve 11 is closed, the liquid side pipe 75, the liquid side packed valve 21, the liquid side pipe 76, the electric expansion valve 22, the liquid side pipe 77, the indoor heat exchanger 23 downstream from the liquid side on / off valve 11, The refrigerant existing in the gas side pipe 78, the gas side packed valve 24, the gas side pipe 79, and the gas side on-off valve 12 is evacuated to the compressor 1 side and subsequently recovered to the outdoor unit A side.

このステップS6での液側開閉弁11の閉成に伴い、システム制御器50は、タイムカウントt2を開始し(ステップS7)、このタイムカウントt2が一定時間t2sに達するのを待つ(ステップS8のNO)。   As the liquid side on-off valve 11 is closed in step S6, the system controller 50 starts a time count t2 (step S7) and waits for the time count t2 to reach a predetermined time t2s (in step S8). NO).

タイムカウントt2が一定時間t2sに達したとき(ステップS8のYES)、システム制御器50は、ガス側開閉弁12を閉成する(ステップS9)。ガス側開閉弁12が閉成すると、ガス側開閉弁12より下流のガス側管79、ガス側パックドバルブ6、ガス側管81などに回収された冷媒が室内機B側に戻らない。   When the time count t2 reaches the predetermined time t2s (YES in step S8), the system controller 50 closes the gas side on-off valve 12 (step S9). When the gas side opening / closing valve 12 is closed, the refrigerant recovered in the gas side pipe 79, the gas side packed valve 6, the gas side pipe 81, etc. downstream from the gas side opening / closing valve 12 does not return to the indoor unit B side.

このステップS8でのガス側開閉弁12の閉成に伴い、システム制御器50は、タイムカウントt3を開始し(ステップS10)、このタイムカウントt3が一定時間t3sに達するのを待つ(ステップS11のNO)。   As the gas side on-off valve 12 is closed in step S8, the system controller 50 starts a time count t3 (step S10) and waits for the time count t3 to reach a certain time t3s (in step S11). NO).

タイムカウントt3が一定時間t3sに達したとき(ステップS11のYES)、システム制御器50は、圧縮機1を停止する(ステップS12)。この停止により伴い、システム制御器50は、これまで所定開度に設定されていた電動膨張弁4を全開する(ステップS13)。この圧縮機1の停止および電動膨張弁4の全開により、冷媒回収運転が終了する。   When the time count t3 reaches the predetermined time t3s (YES in step S11), the system controller 50 stops the compressor 1 (step S12). With this stop, the system controller 50 fully opens the electric expansion valve 4 that has been set to a predetermined opening degree so far (step S13). The refrigerant recovery operation ends when the compressor 1 is stopped and the electric expansion valve 4 is fully opened.

上記ステップS9で液側開閉弁11が閉成したとき、液側開閉弁11より上流側の冷媒流路である液側管75、液側パックドバルブ5、液側管74、電動膨張弁4、液側管73などに冷媒が閉じ込められた状態となって液化するが、上記ステップS13で電動膨張弁4が全開するので、液側開閉弁11より上流側の冷媒流路に閉じ込められた液冷媒が図1に太線矢印で示すように電動膨張弁4および液側管73を通って室外熱交換器3に流れる。室外熱交換器3に流れた液冷媒は、そのまま室外熱交換器3に溜まり込む。つまり、室外熱交換器3が液冷媒の収容タンクとして機能する。   When the liquid side on / off valve 11 is closed in step S9, the liquid side pipe 75, the liquid side packed valve 5, the liquid side pipe 74, the electric expansion valve 4, which are the refrigerant flow channels upstream of the liquid side on / off valve 11, Although the refrigerant is confined in the liquid side pipe 73 and the like, it is liquefied. However, since the electric expansion valve 4 is fully opened in step S13, the liquid refrigerant confined in the refrigerant flow channel upstream of the liquid side on-off valve 11 is obtained. Flows to the outdoor heat exchanger 3 through the electric expansion valve 4 and the liquid side pipe 73 as indicated by the thick arrows in FIG. The liquid refrigerant that has flowed to the outdoor heat exchanger 3 accumulates in the outdoor heat exchanger 3 as it is. That is, the outdoor heat exchanger 3 functions as a liquid refrigerant storage tank.

なお、上記ステップS9で液側開閉弁11が閉成した後、室外機Aの周りの雰囲気温度が上昇すると、液側開閉弁11より上流側の冷媒流路に閉じ込められた液冷媒が気化することがある。気化したガス冷媒の圧力が液側開閉弁11、液側管75、液側パックドバルブ5、電動膨張弁4、液側管73などの冷凍サイクル部品の耐圧を超えた場合、その耐圧を超えた個所の冷凍サイクル部品に破裂や損傷が生じる可能性がある。冷凍サイクル部品の設計上の耐圧は、例えばR410A冷媒が使用されている場合に、高圧側で3.7〜4.15MPaである。   When the ambient temperature around the outdoor unit A rises after the liquid side opening / closing valve 11 is closed in step S9, the liquid refrigerant confined in the refrigerant flow channel upstream of the liquid side opening / closing valve 11 is vaporized. Sometimes. When the pressure of the vaporized gas refrigerant exceeded the pressure resistance of the refrigeration cycle components such as the liquid side on-off valve 11, the liquid side pipe 75, the liquid side packed valve 5, the electric expansion valve 4, and the liquid side pipe 73, the pressure resistance was exceeded. The refrigeration cycle parts at the location may be ruptured or damaged. The design pressure resistance of the refrigeration cycle component is 3.7 to 4.15 MPa on the high pressure side when, for example, R410A refrigerant is used.

しかしながら、液側開閉弁11より上流側の冷媒流路に閉じ込められた液冷媒が気化して圧力上昇すると、液側管75内の冷媒の圧力P1とガス側管79内の冷媒の圧力P2との差ΔPが増加する。この差圧ΔPが所定値ΔPs以上に増加した場合、その差圧ΔPにより圧力調整弁13が開く。圧力調整弁13が開くと、液側開閉弁11より上流側の冷媒流路に存するガス冷媒が図1に太線矢印で示すようにバイパス管91および圧力調整弁13を通ってガス側管79に流れる。ガス側管79に流れたガス冷媒は、圧縮機1側に真空引きされて室外機A側に回収される。これにより、圧力上昇による冷凍サイクル部品の破裂や損傷を防止することができる。   However, when the liquid refrigerant confined in the refrigerant flow path upstream of the liquid side opening / closing valve 11 is vaporized and rises in pressure, the refrigerant pressure P1 in the liquid side pipe 75 and the refrigerant pressure P2 in the gas side pipe 79 The difference ΔP increases. When the differential pressure ΔP increases to a predetermined value ΔPs or more, the pressure regulating valve 13 is opened by the differential pressure ΔP. When the pressure regulating valve 13 is opened, the gas refrigerant existing in the refrigerant flow path upstream from the liquid side opening / closing valve 11 passes through the bypass pipe 91 and the pressure regulating valve 13 to the gas side pipe 79 as shown by a thick arrow in FIG. Flowing. The gas refrigerant that has flowed to the gas side pipe 79 is evacuated to the compressor 1 side and recovered to the outdoor unit A side. Thereby, rupture and damage of the refrigeration cycle component due to pressure increase can be prevented.

以上のように、室内機B側の冷媒の漏洩を冷媒漏洩検知器60で検知し、その検知時に冷媒回収運転を実行してヒートポンプ式冷凍サイクル中の冷媒を同ヒートポンプ式冷凍サイクルの室外機A側に回収するので、冷媒の漏洩がいつまでも続かない。冷媒の漏洩を最小限に抑えることができる。多量の冷媒が室内空間に漏洩すると室内の酸素量が相対的に低下して室内が酸素不足となる可能性があるが、そのような不具合を未然に防ぐことができる。漏洩した冷媒による人体や環境への悪影響も軽減できる。   As described above, refrigerant leakage on the indoor unit B side is detected by the refrigerant leakage detector 60, and at the time of detection, the refrigerant recovery operation is performed to remove the refrigerant in the heat pump refrigeration cycle in the outdoor unit A of the heat pump refrigeration cycle. Since the refrigerant is collected to the side, the leakage of the refrigerant does not continue indefinitely. Refrigerant leakage can be minimized. If a large amount of refrigerant leaks into the indoor space, there is a possibility that the amount of oxygen in the room is relatively lowered and the room becomes deficient in oxygen, but such a problem can be prevented in advance. The adverse effects on the human body and the environment due to the leaked refrigerant can be reduced.

冷媒が漏洩した旨を操作表示器51で報知するので、冷媒の漏洩をユーザに的確に認識させることができる。冷媒の漏洩を認識したユーザは、点検および修理をサービス会社等に迅速に依頼することができる。   Since the operation indicator 51 notifies that the refrigerant has leaked, it is possible to make the user accurately recognize the leakage of the refrigerant. A user who recognizes the leakage of the refrigerant can promptly request a service company or the like for inspection and repair.

なお、上記実施形態では、冷媒漏洩検知器60としてガスセンサを用いる場合を例に説明したが、冷媒の漏洩を検知する手段に限定はなく、例えば冷媒が放出する赤外線エネルギーを捕らえるサーモグラフィカメラを用いてもよい。   In the above embodiment, the case where a gas sensor is used as the refrigerant leak detector 60 has been described as an example. However, the means for detecting the refrigerant leak is not limited. For example, a thermography camera that captures infrared energy released by the refrigerant is used. Also good.

上記実施形態では、冷凍サイクル装置として空気調和機を例に説明したが、冷凍サイクルを搭載した機器であれば、空気調和機に限らず他の機器にも同様に実施可能である。   In the said embodiment, although the air conditioner was demonstrated to the example as a refrigeration cycle apparatus, if it is an apparatus carrying a refrigeration cycle, it can implement not only to an air conditioner but to other apparatuses similarly.

上記実施形態では、バイパス管91および圧力調整弁13を室外機Aの外に配置する場合を例に説明したが、バイパス管91および圧力調整弁13を室外機Aの内部に配置してもよい。また、圧力調整弁13に代わる電動式の開閉弁をバイパス管91に配置し、かつこのバイパス管91および電動式の開閉弁を室外機Aの内部に配置し、その電動式の開閉弁の開閉を室外制御器30によって制御する構成としてもよい。   Although the case where the bypass pipe 91 and the pressure adjustment valve 13 are arranged outside the outdoor unit A has been described as an example in the above embodiment, the bypass pipe 91 and the pressure adjustment valve 13 may be arranged inside the outdoor unit A. . In addition, an electric on-off valve in place of the pressure regulating valve 13 is arranged in the bypass pipe 91, and the bypass pipe 91 and the electric on-off valve are arranged inside the outdoor unit A, and the electric on-off valve is opened and closed. May be configured to be controlled by the outdoor controller 30.

その他、上記各実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, each said embodiment and modification are shown as an example, and are not intending limiting the range of invention. The novel embodiments and modifications can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the spirit of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalents thereof.

本発明の冷凍サイクル装置は、冷凍サイクルを搭載した種々の機器への利用が可能である。   The refrigeration cycle apparatus of the present invention can be used for various devices equipped with a refrigeration cycle.

A…室外ユニット、B…室内ユニット、1…圧縮機、2…四方弁、3…室外熱交換器、4…電動膨張弁(減圧器)、7…アキュームレータ、71,72,78,79,81,82,83…ガス側管、73,74,75,76,77…液側管、91…バイパス管、11…液側開閉弁、12…ガス側開閉弁、13…圧力調整弁、30…室外制御器、40…室内制御器、50…システム制御器、60…冷媒漏洩検知器(検知手段)   A ... Outdoor unit, B ... Indoor unit, 1 ... Compressor, 2 ... 4-way valve, 3 ... Outdoor heat exchanger, 4 ... Electric expansion valve (pressure reducer), 7 ... Accumulator, 71, 72, 78, 79, 81 , 82, 83 ... gas side pipes, 73, 74, 75, 76, 77 ... liquid side pipes, 91 ... bypass pipes, 11 ... liquid side on / off valves, 12 ... gas side on / off valves, 13 ... pressure regulating valves, 30 ... Outdoor controller 40 ... Indoor controller 50 ... System controller 60 ... Refrigerant leak detector (detection means)

Claims (7)

圧縮機、室外熱交換器、減圧器、室内熱交換器を順に配管接続し、前記圧縮機が吐出する冷媒を前記室外熱交換器、前記減圧器、前記室内熱交換器に通して前記圧縮機に戻す冷凍サイクルと、
前記冷媒の漏洩を検知する検知手段と、
前記検知手段が前記冷媒の漏洩を検知した場合に、前記冷凍サイクル中の前記冷媒を同冷凍サイクルの前記圧縮機側に回収する冷媒回収運転を実行する制御手段と、
を備えることを特徴とする冷凍サイクル装置。
A compressor, an outdoor heat exchanger, a decompressor, and an indoor heat exchanger are connected in order, and the refrigerant discharged from the compressor passes through the outdoor heat exchanger, the decompressor, and the indoor heat exchanger, and the compressor A refrigeration cycle to return to
Detecting means for detecting leakage of the refrigerant;
Control means for performing a refrigerant recovery operation for recovering the refrigerant in the refrigeration cycle to the compressor side of the refrigeration cycle when the detection means detects leakage of the refrigerant;
A refrigeration cycle apparatus comprising:
前記圧縮機、前記室外熱交換器、前記減圧器を含む室外機と、
前記室内熱交換器を含む室内機と、
をさらに備え、
前記検知手段は、前記冷凍サイクルの前記室内機側から前記冷媒が漏洩した場合に、その漏洩した冷媒を検知する、
前記制御手段は、前記冷媒回収運転の実行により、前記冷凍サイクル中の前記冷媒を同冷凍サイクルの前記室外機側に回収する、
ことを特徴とする請求項1に記載の冷凍サイクル装置。
An outdoor unit including the compressor, the outdoor heat exchanger, and the decompressor;
An indoor unit including the indoor heat exchanger;
Further comprising
The detection means detects the leaked refrigerant when the refrigerant leaks from the indoor unit side of the refrigeration cycle,
The control means recovers the refrigerant in the refrigeration cycle to the outdoor unit side of the refrigeration cycle by executing the refrigerant recovery operation.
The refrigeration cycle apparatus according to claim 1.
前記冷凍サイクルは、前記減圧器と前記室内熱交換器とを接続し前記冷媒が液状態で流れる液側管、および前記室内熱交換器と前記圧縮機とを接続し前記冷媒がガス状態で流れるガス側管を含み、
前記液側管と前記ガス側管との間に接続されたバイパス管と、
前記バイパス管に配置され、前記液側管内の冷媒圧力と前記ガス側管内の冷媒圧力との差が所定値未満の場合に閉じて所定値以上の場合に開く圧力調整弁と、
をさらに備える
ことを特徴とする請求項1または請求項2に記載の冷凍サイクル装置。
The refrigeration cycle connects the decompressor and the indoor heat exchanger so that the refrigerant flows in a liquid state, and connects the indoor heat exchanger and the compressor so that the refrigerant flows in a gas state. Including gas side pipes,
A bypass pipe connected between the liquid side pipe and the gas side pipe;
A pressure regulating valve disposed in the bypass pipe and closed when a difference between the refrigerant pressure in the liquid side pipe and the refrigerant pressure in the gas side pipe is less than a predetermined value and opened when the difference is greater than or equal to a predetermined value;
The refrigeration cycle apparatus according to claim 1 or 2, further comprising:
前記液側管における前記バイパス管の接続位置よりも前記室内熱交換器側の位置に配置された液側開閉弁と、
前記ガス側管における前記バイパス管の接続位置よりも前記室内熱交換器側の位置に配置されたガス側開閉弁と、
をさらに備え、
前記制御手段は、前記検知手段が前記冷媒の漏洩を検知した場合に、前記圧縮機を運転するとともに前記液側開閉弁および前記ガス側開閉弁を開放することにより前記冷媒回収運転を開始し、この開始から一定時間t1後に前記液側開閉弁を閉成し、この液側開閉弁の閉成から一定時間t2後に前記ガス側開閉弁を閉成し、このガス側開閉弁の閉成から一定時間t3後に前記圧縮機を停止することにより前記冷媒回収運転を終了する、
ことを特徴とする請求項3記載の冷凍サイクル装置。
A liquid side on-off valve disposed at a position closer to the indoor heat exchanger than a connection position of the bypass pipe in the liquid side pipe;
A gas-side on-off valve disposed at a position closer to the indoor heat exchanger than a connection position of the bypass pipe in the gas-side pipe;
Further comprising
The control means starts the refrigerant recovery operation by operating the compressor and opening the liquid side on-off valve and the gas side on-off valve when the detecting means detects leakage of the refrigerant, The liquid side on / off valve is closed after a predetermined time t1 from the start, and the gas side on / off valve is closed after a predetermined time t2 from the closing of the liquid side on / off valve. The refrigerant recovery operation is terminated by stopping the compressor after time t3.
The refrigeration cycle apparatus according to claim 3.
前記減圧器は、電動膨張弁であり、
前記制御手段は、前記検知手段が前記冷媒の漏洩を検知した場合に、前記圧縮機を運転するとともに前記電動膨張弁を所定開度に設定しかつ前記液側開閉弁および前記ガス側開閉弁を開放することにより前記冷媒回収運転を開始し、この開始から一定時間t1後に前記液側開閉弁を閉成し、この液側開閉弁の閉成から一定時間t2後に前記ガス側開閉弁を閉成し、このガス側開閉弁の閉成から一定時間t3後に前記圧縮機を停止し、この停止に伴い前記電動膨張弁を全開することにより前記冷媒回収運転を終了する、
ことを特徴とする請求項4記載の冷凍サイクル装置。
The pressure reducer is an electric expansion valve,
When the detecting means detects leakage of the refrigerant, the control means operates the compressor, sets the electric expansion valve to a predetermined opening degree, and sets the liquid-side on-off valve and the gas-side on-off valve. The refrigerant recovery operation is started by opening, and the liquid side on / off valve is closed after a predetermined time t1 from the start, and the gas side on / off valve is closed after a predetermined time t2 from the closing of the liquid side on / off valve. Then, the compressor is stopped after a predetermined time t3 from the closing of the gas side on-off valve, and the refrigerant recovery operation is terminated by fully opening the electric expansion valve in accordance with the stop.
The refrigeration cycle apparatus according to claim 4.
前記冷凍サイクルは、前記圧縮機、四方弁、前記室外熱交換器、前記減圧器である第1電動膨張弁、第2電動膨張弁、前記室内熱交換器を順に配管接続し、冷房時は前記圧縮機が吐出する冷媒を前記四方弁、前記室外熱交換器、前記第1電動膨張弁、前記第2電動膨張弁、前記室内熱交換器、前記四方弁に通して前記圧縮機に吸込ませ、暖房時は前記圧縮機が吐出する冷媒を前記四方弁から前記室内熱交換器、前記第2電動膨張弁、前記第1電動膨張弁、前記室外熱交換器、前記四方弁に通して前記圧縮機に吸込ませるヒートポンプ式冷凍サイクルであって、前記第1電動膨張弁と前記第2電動膨張弁とを接続し前記冷媒が液状態で流れる液側管、および前記室内熱交換器と前記四方弁とを接続し前記冷媒がガス状態で流れるガス側管を含み、
前記室外機は、前記圧縮機、前記四方弁、前記室外熱交換器、前記第1電動膨張弁を含み、
前記室内機は、前記第2電動膨張弁および前記室内熱交換器を含む、
ことを特徴とする請求項3に記載の冷凍サイクル装置。
In the refrigeration cycle, the compressor, the four-way valve, the outdoor heat exchanger, the first electric expansion valve that is the pressure reducer, the second electric expansion valve, and the indoor heat exchanger are connected in order by piping. Refrigerant discharged from the compressor is sucked into the compressor through the four-way valve, the outdoor heat exchanger, the first electric expansion valve, the second electric expansion valve, the indoor heat exchanger, the four-way valve, During heating, the refrigerant discharged from the compressor is passed from the four-way valve to the indoor heat exchanger, the second electric expansion valve, the first electric expansion valve, the outdoor heat exchanger, and the four-way valve. A heat pump type refrigeration cycle to be sucked into a liquid side pipe connecting the first electric expansion valve and the second electric expansion valve and flowing the refrigerant in a liquid state, and the indoor heat exchanger and the four-way valve, Including a gas side pipe through which the refrigerant flows in a gas state
The outdoor unit includes the compressor, the four-way valve, the outdoor heat exchanger, the first electric expansion valve,
The indoor unit includes the second electric expansion valve and the indoor heat exchanger.
The refrigeration cycle apparatus according to claim 3.
前記液側管における前記バイパス管の接続位置よりも前記室内熱交換器側の位置に配置された液側開閉弁と、
前記ガス側管における前記バイパス管の接続位置よりも前記室内熱交換器側の位置に配置されたガス側開閉弁と、
をさらに備え、
前記制御手段は、前記検知手段が前記冷媒の漏洩を検知した場合に、前記圧縮機を運転し、前記ヒートポンプ式冷凍サイクルにおける前記冷媒の流れを前記冷房時の流れに設定し、前記第1電動膨張弁を所定開度に設定し、前記第2電動膨張弁を全開し、かつ前記液側開閉弁および前記ガス側開閉弁を開放することにより前記冷媒回収運転を開始し、この開始から一定時間t1後に前記液側開閉弁を閉成し、この液側開閉弁の閉成から一定時間t2後に前記ガス側開閉弁を閉成し、このガス側開閉弁の閉成から一定時間t3後に前記圧縮機を停止し、この停止に伴い前記第1電動膨張弁を全開することにより前記冷媒回収運転を終了する、
ことを特徴とする請求項6に記載の冷凍サイクル装置。
A liquid side on-off valve disposed at a position closer to the indoor heat exchanger than a connection position of the bypass pipe in the liquid side pipe;
A gas-side on-off valve disposed at a position closer to the indoor heat exchanger than a connection position of the bypass pipe in the gas-side pipe;
Further comprising
The control means operates the compressor when the detection means detects leakage of the refrigerant, sets the flow of the refrigerant in the heat pump refrigeration cycle to the flow during cooling, and the first electric motor The refrigerant recovery operation is started by setting the expansion valve to a predetermined opening, fully opening the second electric expansion valve, and opening the liquid side on-off valve and the gas side on-off valve. The liquid side on / off valve is closed after t1, the gas side on / off valve is closed after a predetermined time t2 from the closing of the liquid side on / off valve, and the compression is performed after a predetermined time t3 from the closing of the gas side on / off valve. Stop the machine, and complete the refrigerant recovery operation by fully opening the first electric expansion valve with the stop,
The refrigeration cycle apparatus according to claim 6.
JP2018515720A 2016-05-02 2017-04-28 Refrigeration cycle device Active JP6634517B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016092608 2016-05-02
JP2016092608 2016-05-02
PCT/JP2017/016964 WO2017191814A1 (en) 2016-05-02 2017-04-28 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2017191814A1 true JPWO2017191814A1 (en) 2018-11-01
JP6634517B2 JP6634517B2 (en) 2020-01-22

Family

ID=60202986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018515720A Active JP6634517B2 (en) 2016-05-02 2017-04-28 Refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP6634517B2 (en)
GB (1) GB2565463B (en)
WO (1) WO2017191814A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2603246B (en) * 2019-07-01 2023-03-01 Mitsubishi Electric Corp Air-conditioning apparatus
CN111121154B (en) * 2020-01-20 2021-06-08 青岛海信日立空调系统有限公司 Multi-connected air conditioner
CN111121155B (en) * 2020-01-20 2021-06-08 青岛海信日立空调系统有限公司 Multi-connected air conditioner
EP3913303B1 (en) * 2020-05-20 2022-11-02 Daikin Industries, Ltd. Heat pump system and controller for controlling operation of the same
CN112503723B (en) * 2020-12-08 2021-10-08 合肥美的暖通设备有限公司 Valve body detection method, air conditioning apparatus, and readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132391A (en) * 1996-10-30 1998-05-22 Mitsubishi Heavy Ind Ltd Freezing cycle
JP2011021837A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling refrigerating cycle device
JP2012007775A (en) * 2010-06-23 2012-01-12 Panasonic Corp Air conditioner
JP2012215368A (en) * 2011-04-01 2012-11-08 Toshiba Corp Refrigerator system having refrigerant leakage prevention function

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300170A (en) * 1988-05-25 1989-12-04 Daikin Ind Ltd Air conditioner
JP2002061996A (en) * 2000-08-10 2002-02-28 Sanyo Electric Co Ltd Air conditioner
JP2002228281A (en) * 2001-01-31 2002-08-14 Sanyo Electric Co Ltd Air conditioner
JP2012127519A (en) * 2010-12-13 2012-07-05 Panasonic Corp Air conditioner
JP6361263B2 (en) * 2014-04-23 2018-07-25 ダイキン工業株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132391A (en) * 1996-10-30 1998-05-22 Mitsubishi Heavy Ind Ltd Freezing cycle
JP2011021837A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling refrigerating cycle device
JP2012007775A (en) * 2010-06-23 2012-01-12 Panasonic Corp Air conditioner
JP2012215368A (en) * 2011-04-01 2012-11-08 Toshiba Corp Refrigerator system having refrigerant leakage prevention function

Also Published As

Publication number Publication date
GB2565463A (en) 2019-02-13
JP6634517B2 (en) 2020-01-22
GB2565463B (en) 2021-03-03
GB201817640D0 (en) 2018-12-12
WO2017191814A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
US10712035B2 (en) Air conditioner with refrigerant leakage control
WO2017191814A1 (en) Refrigeration cycle device
US11015828B2 (en) Refrigeration system with utilization unit leak detection
US11415345B2 (en) Refrigeration apparatus
CN109844426B (en) Refrigerating device
US11274871B2 (en) Refrigeration apparatus
US11098916B2 (en) Air conditioning system
JP6479162B2 (en) Air conditioner
JP5481981B2 (en) Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JP6540904B2 (en) Air conditioner
EP3073211B9 (en) Refrigeration cycle equipment
US20190170599A1 (en) Systems and methods for leak management utilizing sub-barometric refrigerant conduit sleeves
JPWO2007083794A1 (en) Air conditioner
US10598413B2 (en) Air-conditioning apparatus
GB2547583A (en) Air-conditioning Device
JP2019143877A (en) Air conditioning system
WO2017122479A1 (en) Refrigeration cycle device and control method for determination of leaks in bypass valve of refrigeration cycle device
JP2019143876A (en) Air conditioning system
JP5293474B2 (en) Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
GB2564367A (en) Air-conditioning device
JP2019184150A (en) Air conditioner
WO2019035205A1 (en) Air conditioning device
GB2560455A (en) Air-conditioning device
JP6238202B2 (en) Air conditioner
KR102582651B1 (en) Refrigerant recovery apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6634517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150