JP2012215368A - Refrigerator system having refrigerant leakage prevention function - Google Patents

Refrigerator system having refrigerant leakage prevention function Download PDF

Info

Publication number
JP2012215368A
JP2012215368A JP2011082095A JP2011082095A JP2012215368A JP 2012215368 A JP2012215368 A JP 2012215368A JP 2011082095 A JP2011082095 A JP 2011082095A JP 2011082095 A JP2011082095 A JP 2011082095A JP 2012215368 A JP2012215368 A JP 2012215368A
Authority
JP
Japan
Prior art keywords
refrigerant
path
valve
differential pressure
refrigerant leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011082095A
Other languages
Japanese (ja)
Other versions
JP5762801B2 (en
Inventor
Wataru Sugiyama
渉 杉山
Koichi Yoshino
浩一 吉野
Hiroshi Masuda
洋 増田
Akihiro Kondo
昭大 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011082095A priority Critical patent/JP5762801B2/en
Publication of JP2012215368A publication Critical patent/JP2012215368A/en
Application granted granted Critical
Publication of JP5762801B2 publication Critical patent/JP5762801B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant leakage prevention technique that minimizes a refrigerant leakage risk, concerning a refrigerator system using a refrigerant fluorocarbon.SOLUTION: The refrigerator system 10 includes: a forward path 21 where a fluorocarbon refrigerant supplied to cooling coils 16 (16a, 16b, 16c, 16d) flows; a backward path 22 where the fluorocarbon refrigerant exchanging heat at the cooling coils 16 flows; a differential pressure detection unit 32 for detecting a differential pressure between the forward path 21 and the backward path 22; shut-off valves 23 (23A, 23B) for blocking the forward path 21 and backward path 22 based on the differential pressure; and a bypass valve 31 for bypassing the forward path 21 and backward path 22 in synchronism with the blocking.

Description

本発明は、フロン冷媒を用いる冷凍機システムの冷媒漏洩防止技術に関する。   The present invention relates to a refrigerant leakage prevention technique for a refrigerator system using a chlorofluorocarbon refrigerant.

一般に、冷房装置を含む冷凍機システムの冷媒漏洩に対する安全性は、アンモニア等の毒性の高い冷媒や腐食性の高い冷媒を用いる場合に関して検討されている(特許文献1−3参照)。例えば、アンモニア吸収冷凍機における安全装置としては、冷媒漏洩を検知し、冷媒管路を切替え、漏洩箇所に吸収液を投入し冷媒を吸収させるというものがある。   In general, safety against refrigerant leakage of a refrigerator system including a cooling device has been studied in the case of using a highly toxic refrigerant such as ammonia or a highly corrosive refrigerant (see Patent Documents 1-3). For example, as a safety device in an ammonia absorption refrigerator, there is one that detects refrigerant leakage, switches a refrigerant pipe, and injects an absorbing liquid into the leakage portion to absorb the refrigerant.

特開平8−210741号公報Japanese Patent Laid-Open No. 8-210741 特開2003−329339号公報JP 2003-329339 A 特開平8−200904号公報JP-A-8-200904

フロン冷媒を用いる冷凍機システムにおいては、フロンが人体に対して比較的無害であるという一般的認識から、特に漏洩対策が施されていなかった。
しかしながら、米国国立安全衛生研究所(NIOSH)が発表しているIDLH(Immediately Dangerous Life & Health;極短時間[30分暴露レベル]において人体に対して悪影響を与える許容濃度)によると、冷凍機用冷媒として使用されている代替フロンにおいても許容値の記載がある。
In a refrigerator system using a chlorofluorocarbon refrigerant, no countermeasures against leakage have been taken because of the general recognition that chlorofluorocarbon is relatively harmless to the human body.
However, according to IDLH (Immediately Dangerous Life &Health; an acceptable concentration that adversely affects the human body in a very short time [30 minutes exposure level]) published by the US National Institute of Health and Safety (NIOSH) There is also a description of allowable values for alternative CFCs used as refrigerants.

このために、漏洩したフロンが人体の健康に与える影響の評価及び冷媒の漏洩対策が必要となってきている。現在、代替フロンとして用いられている冷媒において、NIOSHのIDLHで規定されている許容濃度は、R−123(4000ppm)、R−134a(50000ppm)となっている。   For this reason, it is necessary to evaluate the influence of leaked Freon on human health and to take measures against refrigerant leakage. In the refrigerant currently used as an alternative chlorofluorocarbon, the permissible concentrations specified by the IDLH of NIOSH are R-123 (4000 ppm) and R-134a (50000 ppm).

本発明はこのような事情を考慮してなされたもので、冷媒フロンを用いる冷凍機システムにおいて、冷媒漏洩リスクを最小限に留める冷媒漏洩防止技術を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a refrigerant leakage prevention technique that minimizes the risk of refrigerant leakage in a refrigerator system using refrigerant freon.

冷媒漏洩防止機能を有する冷凍機システムにおいて、冷却コイルに供給するフロン冷媒が流動する往路と、前記冷却コイルで熱交換した前記フロン冷媒が流動する復路と、前記往路及び前記復路の差圧を検知する差圧検知部と、前記差圧に基づき前記往路及び前記復路を遮断する遮断弁と、前記遮断に同期して前記往路及び前記復路をバイパスさせるバイパス弁と、を備えることを特徴とする。   In a refrigerator system having a refrigerant leakage prevention function, a forward path through which a chlorofluorocarbon refrigerant to be supplied to a cooling coil flows, a backward path through which the chlorofluorocarbon refrigerant heat-exchanged by the cooling coil flows, and a differential pressure between the forward path and the backward path are detected. And a bypass valve that shuts off the forward path and the return path based on the differential pressure, and a bypass valve that bypasses the forward path and the return path in synchronization with the cutoff.

本発明により、冷媒フロンを用いる冷凍機システムにおいて、冷媒漏洩リスクを最小限に留める冷媒漏洩防止技術が提供される。   The present invention provides a refrigerant leakage prevention technique that minimizes the risk of refrigerant leakage in a refrigerator system that uses refrigerant freon.

本発明に係る冷媒漏洩防止機能を有する冷凍機システムの第1実施形態を示すブロック図。1 is a block diagram showing a first embodiment of a refrigerator system having a refrigerant leakage prevention function according to the present invention. 第1実施形態に係る冷媒漏洩防止機能を有する冷凍機システムの変形例を示すブロック図。The block diagram which shows the modification of the refrigerator system which has the refrigerant | coolant leak prevention function which concerns on 1st Embodiment. 第1実施形態に係る冷媒漏洩防止機能を有する冷凍機システムの動作を説明するフローチャート。The flowchart explaining operation | movement of the refrigerator system which has the refrigerant | coolant leakage prevention function which concerns on 1st Embodiment. 第2実施形態に係る冷媒漏洩防止機能を有する冷凍機システムのブロック図。The block diagram of the refrigerator system which has the refrigerant | coolant leak prevention function which concerns on 2nd Embodiment. 第2実施形態に係る冷媒漏洩防止機能を有する冷凍機システムの動作を説明するフローチャート。The flowchart explaining operation | movement of the refrigerator system which has the refrigerant | coolant leak prevention function which concerns on 2nd Embodiment. 第3実施形態に係る冷媒漏洩防止機能を有する冷凍機システムのブロック図。The block diagram of the refrigerator system which has the refrigerant | coolant leakage prevention function which concerns on 3rd Embodiment. 第3実施形態に係る冷媒漏洩防止機能を有する冷凍機システムの動作を説明するフローチャート。The flowchart explaining operation | movement of the refrigerator system which has the refrigerant | coolant leakage prevention function which concerns on 3rd Embodiment.

(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1に示すように、冷媒漏洩防止機能を有する冷凍機システム10(以下、単に「冷凍機システム10」という)は、冷却コイル16(16a,16b,16c,16d)に供給するフロン冷媒が流動する往路21と、この冷却コイル16で熱交換したフロン冷媒が流動する復路22と、これら往路21及び復路22の差圧を検知する差圧検知部32と、この差圧に基づき往路21及び復路22を遮断する遮断弁23(23A,23B)と、この遮断に同期して往路21及び復路22をバイパスさせるバイパス弁31と、を備えている。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, in a refrigerator system 10 having a refrigerant leakage prevention function (hereinafter simply referred to as “refrigerator system 10”), the fluorocarbon refrigerant supplied to the cooling coil 16 (16a, 16b, 16c, 16d) flows. , The return path 22 through which the chlorofluorocarbon refrigerant heat-exchanged by the cooling coil 16 flows, the differential pressure detection unit 32 that detects the differential pressure between the forward path 21 and the return path 22, and the forward path 21 and the return path based on the differential pressure. And a bypass valve 31 that bypasses the forward path 21 and the return path 22 in synchronization with the cutoff.

各実施形態における冷凍機システム10は、直膨型の冷却コイル16(16a,16b,16c,16d)で居室内の空気を冷却している。
モータ駆動による圧縮機12は、フロン冷媒を圧縮機潤滑油と混合させて加圧・圧縮する。そして、油分離機14によりこの混合液は、フロン冷媒と圧縮機潤滑油とに分離され、フロン冷媒は凝縮器11に送られ、圧縮機潤滑油はポンプPで油冷却機15に送られ冷却された後に圧縮機12に戻される。
The refrigerator system 10 in each embodiment cools the air in a living room with a direct expansion type cooling coil 16 (16a, 16b, 16c, 16d).
The compressor 12 driven by a motor pressurizes and compresses the CFC refrigerant mixed with compressor lubricating oil. Then, the mixed liquid is separated into a chlorofluorocarbon refrigerant and a compressor lubricating oil by the oil separator 14, the chlorofluorocarbon refrigerant is sent to the condenser 11, and the compressor lubricating oil is sent to the oil cooler 15 by the pump P to be cooled. Is then returned to the compressor 12.

凝縮器11は、冷却コイル16における熱交換で気化したフロン冷媒を凝縮して液化するもので、空冷式又は水冷式である。水冷式を採用した場合は、施工コストの低減、メンテナンス性の向上、及び冷媒配管の削減に伴う冷媒漏洩リスクの低減が期待できる。   The condenser 11 condenses and liquefies the chlorofluorocarbon refrigerant vaporized by heat exchange in the cooling coil 16, and is of an air cooling type or a water cooling type. In the case of adopting the water cooling method, it can be expected that the construction cost can be reduced, the maintainability can be improved, and the risk of refrigerant leakage accompanying the reduction of refrigerant piping can be reduced.

凝縮器11から出力されるフロン冷媒は、往路21を流動し、冷却コイル16で熱交換をした後に、復路22を経て圧縮機12に返送される。
往路21は、先端が分岐して複数の冷却コイル16(16a,16b,16c,16d)のそれぞれに接続し、復路22も、基端が分岐して複数の冷却コイル16(16a,16b,16c,16d)のそれぞれに接続している。なお、冷却コイル16は、複数のものを例示しているが単数をとる場合もある。
The chlorofluorocarbon refrigerant output from the condenser 11 flows through the forward path 21, exchanges heat with the cooling coil 16, and then returns to the compressor 12 through the backward path 22.
The forward path 21 branches at the distal end and connects to each of the plurality of cooling coils 16 (16a, 16b, 16c, 16d), and the return path 22 also branches at the proximal end to form the plurality of cooling coils 16 (16a, 16b, 16c). , 16d). In addition, although the cooling coil 16 illustrated the some thing, it may take a single.

膨張弁24(24A,24B)は、往路21及び復路22を循環するフロン冷媒の流量を調整している。
そして、往路21の途中からフロン冷媒の一部が、油冷却機15の冷媒として送られ、アキュームレータ13において循環するフロン冷媒の脈動を抑制している。
The expansion valve 24 (24A, 24B) adjusts the flow rate of the chlorofluorocarbon refrigerant circulating in the forward path 21 and the return path 22.
A part of the chlorofluorocarbon refrigerant is sent from the middle of the forward path 21 as the refrigerant of the oil cooler 15 to suppress pulsation of the chlorofluorocarbon refrigerant circulating in the accumulator 13.

図2は、第1実施形態に係る冷凍機システムの変形例を示している。なお、図2において図1と同一又は相当する部分は、同一符号で示し、重複する説明を省略する。
この変形例においては、複合弁25(25A,25B)が、遮断弁23(図1)及び膨張弁24としての機能を兼ねている。
FIG. 2 shows a modification of the refrigerator system according to the first embodiment. 2 that are the same as or correspond to those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
In this modification, the composite valve 25 (25A, 25B) also functions as the shutoff valve 23 (FIG. 1) and the expansion valve 24.

図3のフローチャートに基づいて第1実施形態に係る冷凍機システムの動作を説明する。
まず、初期状態設定として遮断弁23を開状態として(S11)、バイパス弁31を閉状態とする(S12)。そして、圧縮機12を起動させて往路21、冷却コイル16、復路22の方向にフロン冷媒を循環させて、居室内の空気を冷却する(S13)。
The operation of the refrigerator system according to the first embodiment will be described based on the flowchart of FIG.
First, as an initial state setting, the shutoff valve 23 is opened (S11), and the bypass valve 31 is closed (S12). Then, the compressor 12 is activated to circulate the chlorofluorocarbon refrigerant in the direction of the forward path 21, the cooling coil 16, and the return path 22 to cool the air in the room (S13).

そして、フロン冷媒が流動する往路21及び復路22の差圧ΔPを差圧検知部32で検知する(S14)。フロン冷媒が正常に循環している場合、この差圧ΔPは、規定範囲内にあるが(S15:No)、冷却コイル16(16a,16b,16c,16d)において冷媒漏れが生じると、差圧ΔPは、規定範囲を外れる(S15:Yes)。   Then, the differential pressure detector 32 detects the differential pressure ΔP between the forward path 21 and the backward path 22 through which the chlorofluorocarbon refrigerant flows (S14). When the chlorofluorocarbon refrigerant circulates normally, the differential pressure ΔP is within the specified range (S15: No), but if refrigerant leakage occurs in the cooling coil 16 (16a, 16b, 16c, 16d), the differential pressure ΔP is out of the specified range (S15: Yes).

すると、遮断弁23が閉状態となり(S16)、冷却コイル16へのフロン冷媒の供給を停止する。そして、バイパス弁31が開状態となり(S17)、フロン冷媒はこのバイパス弁31を経由して凝縮器11を循環することになりサージング現象による圧縮機12の破損を防止する。このように、各実施形態において、フロン冷媒の漏洩事故が発生しても、圧縮機12を停止させる必要がない。   Then, the shutoff valve 23 is closed (S16), and the supply of the chlorofluorocarbon refrigerant to the cooling coil 16 is stopped. Then, the bypass valve 31 is opened (S17), and the chlorofluorocarbon refrigerant circulates through the condenser 11 via the bypass valve 31 to prevent the compressor 12 from being damaged by the surging phenomenon. Thus, in each embodiment, it is not necessary to stop the compressor 12 even if a CFC refrigerant leakage accident occurs.

(第2実施形態)
図4に示すように第2実施形態に係る冷凍機システム10は、遮断弁23(23A,23B)及び差圧検知部32が、複数の冷却コイル16(16a,16b,16c,16d)のそれぞれに対応して設けられ、冷媒の漏洩した冷却コイル16に対応する遮断弁23のみが閉状態(図中、塗りつぶし)となり、その他の冷却コイル16に対応する開状態(図中、白抜き)の遮断弁23がバイパス弁31(図1参照)として機能する。
なお、図4において図1と同一又は相当する部分は、同一符号で示し、重複する説明を省略する。
(Second Embodiment)
As shown in FIG. 4, in the refrigerator system 10 according to the second embodiment, the shut-off valve 23 (23A, 23B) and the differential pressure detection unit 32 are provided for each of the plurality of cooling coils 16 (16a, 16b, 16c, 16d). Only the shut-off valve 23 corresponding to the cooling coil 16 in which the refrigerant has leaked is in a closed state (filled in the figure), and is in an open state (open in the figure) corresponding to the other cooling coils 16. The shut-off valve 23 functions as a bypass valve 31 (see FIG. 1).
4 that are the same as or correspond to those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図5のフローチャートに基づいて第2実施形態に係る冷凍機システムの動作を説明する。
まず、初期状態設定として遮断弁23を開状態として(S21)、圧縮機12を起動させる(S22)。フロン冷媒が、往路21、冷却コイル16、復路22の方向に循環して居室内の空気が冷却され、差圧検知部32で差圧ΔPが検知される(S23)。
The operation of the refrigerator system according to the second embodiment will be described based on the flowchart of FIG.
First, as an initial state setting, the shut-off valve 23 is opened (S21), and the compressor 12 is started (S22). The chlorofluorocarbon refrigerant circulates in the direction of the forward path 21, the cooling coil 16, and the return path 22 to cool the air in the room, and the differential pressure detector 32 detects the differential pressure ΔP (S23).

フロン冷媒が正常に循環している場合、この差圧ΔPは、規定範囲内にあるが(S24:No)、冷却コイル16(16a,16b,16c,16d)のいずれかにおいて冷媒漏れが生じると、対応する冷却コイル16の流路の差圧ΔPは、規定範囲を外れる(S24:Yes)。   When the chlorofluorocarbon refrigerant circulates normally, this differential pressure ΔP is within the specified range (S24: No), but if refrigerant leakage occurs in any of the cooling coils 16 (16a, 16b, 16c, 16d). The differential pressure ΔP in the flow path of the corresponding cooling coil 16 is out of the specified range (S24: Yes).

すると、差圧ΔPが規定範囲を外れた流路に配置される遮断弁23が閉状態となり(S25)、対応する冷却コイル16へのフロン冷媒の供給を停止する。しかし、冷媒漏れの無い冷却コイル16においては、対応する遮断弁23は開状態のままであるので、引き続き居室の空調が継続される。
このように、第2実施形態によれば、複数ある冷却コイル16(16a,16b,16c,16d)のうちいずれかにおいてフロン冷媒の漏洩事故が発生しても、正常な冷却コイル16に設けられた遮断弁23をバイパスしてフロン冷媒は循環することになる。そして、漏洩事故が発生しても、全ての冷却コイル16の冷却機能を停止させる必要がない。
Then, the shutoff valve 23 arranged in the flow path where the differential pressure ΔP is out of the specified range is closed (S25), and the supply of the chlorofluorocarbon refrigerant to the corresponding cooling coil 16 is stopped. However, in the cooling coil 16 having no refrigerant leakage, the corresponding shut-off valve 23 remains open, so that the air conditioning of the room is continued.
As described above, according to the second embodiment, even if a CFC refrigerant leakage accident occurs in any one of the plurality of cooling coils 16 (16a, 16b, 16c, 16d), the normal cooling coil 16 is provided. The chlorofluorocarbon refrigerant circulates bypassing the shut-off valve 23. And even if a leakage accident occurs, it is not necessary to stop the cooling function of all the cooling coils 16.

(第3実施形態)
図6に示すように第3実施形態に係る冷凍機システム10は、冷却コイル16(16a,16b,16c,16d)のそれぞれにフロンガス検出器33が設けられている。なお、図6において図1と同一又は相当する部分は、同一符号で示し、重複する説明を省略する。なお、図6において、差圧検知部32(図4)が除外されているが、フロンガス検出器33とダブルチェックする意味で、この差圧検知部32を設けてもよい。
(Third embodiment)
As shown in FIG. 6, in the refrigerator system 10 according to the third embodiment, a chlorofluorocarbon gas detector 33 is provided in each of the cooling coils 16 (16a, 16b, 16c, 16d). 6 that are the same as or correspond to those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted. In FIG. 6, the differential pressure detection unit 32 (FIG. 4) is excluded, but this differential pressure detection unit 32 may be provided in the sense of double checking with the Freon gas detector 33.

図7のフローチャートに基づいて第3実施形態に係る冷凍機システムの動作を説明する。
まず、初期状態設定として遮断弁23を開状態として(S31)、圧縮機12を起動させる(S32)。フロン冷媒が、往路21、冷却コイル16、復路22の方向に循環して居室内の空気が冷却される。
The operation of the refrigerator system according to the third embodiment will be described based on the flowchart of FIG.
First, as an initial state setting, the shut-off valve 23 is opened (S31), and the compressor 12 is started (S32). CFC refrigerant circulates in the direction of the forward path 21, the cooling coil 16, and the return path 22 to cool the air in the room.

フロン冷媒が正常に循環している場合、フロンガス検出器33は、無反応であるが(S33:No)、冷却コイル16(16a,16b,16c,16d)のいずれかにおいて冷媒漏れが生じると、対応するフロンガス検出器33は、フロンガスを検知する(S33:Yes)。   When the chlorofluorocarbon refrigerant circulates normally, the chlorofluorocarbon gas detector 33 is unreacted (S33: No), but if any refrigerant leakage occurs in any of the cooling coils 16 (16a, 16b, 16c, 16d), The corresponding chlorofluorocarbon detector 33 detects chlorofluorocarbon (S33: Yes).

すると、フロンガスの検知された流路に配置される遮断弁23が閉状態となり(S34)、対応する冷却コイル16へのフロン冷媒の供給を停止する。
しかし、冷媒漏れの無い冷却コイル16においては、対応する遮断弁23は開状態のままであるので、フロン冷媒は、この開状態の遮断弁23をバイパスして居室の空調が継続される。
このように、第3実施形態によれば、複数ある冷却コイル16(16a,16b,16c,16d)のうちいずれかにおいてフロン冷媒の漏洩事故が発生しても、全ての冷却コイル16の冷却機能を停止させる必要がない。
Then, the shutoff valve 23 arranged in the flow path in which the chlorofluorocarbon gas is detected is closed (S34), and the supply of the chlorofluorocarbon refrigerant to the corresponding cooling coil 16 is stopped.
However, in the cooling coil 16 having no refrigerant leakage, the corresponding shut-off valve 23 remains in the open state, so that the chlorofluorocarbon refrigerant continues to air-condition the room by bypassing the open shut-off valve 23.
As described above, according to the third embodiment, even if a CFC refrigerant leakage accident occurs in any one of the plurality of cooling coils 16 (16a, 16b, 16c, 16d), the cooling function of all the cooling coils 16 is achieved. There is no need to stop.

本発明は前記した実施形態に限定されるものでなく、共通する技術思想の範囲内において、適宜変形して実施することができる。また、冷凍機システムの冷媒漏洩防止機能は、コンピュータによって各手段を各機能プログラムとして実現することも可能であり、冷凍機システムの冷媒漏洩プログラムとして発明を実施することも可能である。   The present invention is not limited to the above-described embodiments, and can be appropriately modified and implemented within the scope of the common technical idea. In addition, the refrigerant leakage prevention function of the refrigerator system can be realized by a computer as each function program, and the invention can be implemented as a refrigerant leakage program of the refrigerator system.

10…冷凍機システム、11…凝縮器、12…圧縮機、13…アキュームレータ、14…油分離機、15…油冷却機、16(16a,16b,16c,16d)…冷却コイル、21…往路、22…復路、23(23A,23B)…遮断弁、24(24A,24B)…膨張弁、25(25A,25B)…複合弁、31…バイパス弁、32…差圧検知部、33…フロンガス検出器。   DESCRIPTION OF SYMBOLS 10 ... Refrigerator system, 11 ... Condenser, 12 ... Compressor, 13 ... Accumulator, 14 ... Oil separator, 15 ... Oil cooler, 16 (16a, 16b, 16c, 16d) ... Cooling coil, 21 ... Outward path, 22 ... Return path, 23 (23A, 23B) ... Shut-off valve, 24 (24A, 24B) ... Expansion valve, 25 (25A, 25B) ... Compound valve, 31 ... Bypass valve, 32 ... Differential pressure detector, 33 ... Freon gas detection vessel.

Claims (5)

冷却コイルに供給するフロン冷媒が流動する往路と、
前記冷却コイルで熱交換した前記フロン冷媒が流動する復路と、
前記往路及び前記復路の差圧を検知する差圧検知部と、
前記差圧に基づき前記往路及び前記復路を遮断する遮断弁と、
前記遮断に同期して前記往路及び前記復路をバイパスさせるバイパス弁と、を備えることを特徴とする冷媒漏洩防止機能を有する冷凍機システム。
A forward path through which the fluorocarbon refrigerant supplied to the cooling coil flows;
A return path through which the fluorocarbon refrigerant heat-exchanged by the cooling coil flows;
A differential pressure detector for detecting the differential pressure of the forward path and the backward path;
A shutoff valve that shuts off the forward path and the return path based on the differential pressure;
A refrigerating machine system having a refrigerant leakage prevention function, comprising: a bypass valve that bypasses the forward path and the backward path in synchronization with the shut-off.
前記遮断弁は、膨張弁としての機能も兼ねることを特徴とする請求項1に記載の冷媒漏洩防止機能を有する冷凍機システム。   The refrigerator system having a refrigerant leakage prevention function according to claim 1, wherein the shut-off valve also functions as an expansion valve. 前記往路は、先端が分岐して複数の冷却コイルのそれぞれに接続し、
前記復路も、基端が分岐して前記複数の冷却コイルのそれぞれに接続し、
前記遮断弁及び前記差圧検知部が、前記複数の冷却コイルのそれぞれに対応して設けられ、
冷媒の漏洩した冷却コイルに対応する遮断弁のみが閉状態となり、その他の冷却コイルに対応する開状態の遮断弁が前記バイパス弁として機能することを特徴とする請求項1又は請求項2に記載の冷媒漏洩防止機能を有する冷凍機システム。
The forward path is branched at the tip and connected to each of the plurality of cooling coils,
The return path also has a proximal end branched and connected to each of the plurality of cooling coils,
The shut-off valve and the differential pressure detection unit are provided corresponding to each of the plurality of cooling coils,
3. Only the shut-off valve corresponding to the cooling coil in which the refrigerant has leaked is closed, and the open shut-off valves corresponding to the other cooling coils function as the bypass valve. Refrigerator system with refrigerant leakage prevention function.
前記冷却コイルのそれぞれにフロンガス検出器が設けられていることを特徴とする請求項1から請求項3のいずれか1項に記載の冷媒漏洩防止機能を有する冷凍機システム。   The refrigerator system having a refrigerant leakage prevention function according to any one of claims 1 to 3, wherein a freon gas detector is provided in each of the cooling coils. 前記熱交換により気化したフロン冷媒を凝縮して液化する凝縮器は、水冷式であることを特徴とする請求項1から請求項4のいずれか1項に記載の冷媒漏洩防止機能を有する冷凍機システム。   5. The refrigerator having a refrigerant leakage preventing function according to claim 1, wherein the condenser that condenses and liquefies the chlorofluorocarbon refrigerant vaporized by the heat exchange is a water-cooled type. system.
JP2011082095A 2011-04-01 2011-04-01 Refrigerator system with refrigerant leakage prevention function Expired - Fee Related JP5762801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011082095A JP5762801B2 (en) 2011-04-01 2011-04-01 Refrigerator system with refrigerant leakage prevention function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082095A JP5762801B2 (en) 2011-04-01 2011-04-01 Refrigerator system with refrigerant leakage prevention function

Publications (2)

Publication Number Publication Date
JP2012215368A true JP2012215368A (en) 2012-11-08
JP5762801B2 JP5762801B2 (en) 2015-08-12

Family

ID=47268272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082095A Expired - Fee Related JP5762801B2 (en) 2011-04-01 2011-04-01 Refrigerator system with refrigerant leakage prevention function

Country Status (1)

Country Link
JP (1) JP5762801B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166703A (en) * 2015-03-10 2016-09-15 パナソニックIpマネジメント株式会社 Air conditioning unit
WO2017191814A1 (en) * 2016-05-02 2017-11-09 東芝キヤリア株式会社 Refrigeration cycle device
JP2018054237A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
WO2018105511A1 (en) * 2016-12-06 2018-06-14 伸和コントロールズ株式会社 Refrigeration device
KR20230000247A (en) * 2021-06-24 2023-01-02 엘지전자 주식회사 Air conditioner and a method controling the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342698A (en) * 1991-05-20 1992-11-30 Mitsubishi Heavy Ind Ltd Leak detecting method for cold plate
JPH0868569A (en) * 1994-08-31 1996-03-12 Matsushita Electric Ind Co Ltd Ammonia absorption type heat pump system
JPH09138013A (en) * 1995-11-15 1997-05-27 Sanyo Electric Co Ltd Water-cooling type refrigerator
JPH11102453A (en) * 1997-09-26 1999-04-13 Hitachi Ltd Method of calculating disposal charge for disused refrigerator or the like, and record medium recorded with disposal charge calculation program
JPH11211293A (en) * 1998-01-26 1999-08-06 Sanyo Electric Co Ltd Refrigerator
JP2003106730A (en) * 2001-09-27 2003-04-09 Toshiba Corp Refrigerator
JP2003178361A (en) * 2001-12-07 2003-06-27 Sanden Corp Automatic vending machine
JP2005241050A (en) * 2004-02-24 2005-09-08 Mitsubishi Electric Building Techno Service Co Ltd Air conditioning system
JP2011021838A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling refrigerating cycle device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342698A (en) * 1991-05-20 1992-11-30 Mitsubishi Heavy Ind Ltd Leak detecting method for cold plate
JPH0868569A (en) * 1994-08-31 1996-03-12 Matsushita Electric Ind Co Ltd Ammonia absorption type heat pump system
JPH09138013A (en) * 1995-11-15 1997-05-27 Sanyo Electric Co Ltd Water-cooling type refrigerator
JPH11102453A (en) * 1997-09-26 1999-04-13 Hitachi Ltd Method of calculating disposal charge for disused refrigerator or the like, and record medium recorded with disposal charge calculation program
JPH11211293A (en) * 1998-01-26 1999-08-06 Sanyo Electric Co Ltd Refrigerator
JP2003106730A (en) * 2001-09-27 2003-04-09 Toshiba Corp Refrigerator
JP2003178361A (en) * 2001-12-07 2003-06-27 Sanden Corp Automatic vending machine
JP2005241050A (en) * 2004-02-24 2005-09-08 Mitsubishi Electric Building Techno Service Co Ltd Air conditioning system
JP2011021838A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling refrigerating cycle device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166703A (en) * 2015-03-10 2016-09-15 パナソニックIpマネジメント株式会社 Air conditioning unit
WO2017191814A1 (en) * 2016-05-02 2017-11-09 東芝キヤリア株式会社 Refrigeration cycle device
GB2565463B (en) * 2016-05-02 2021-03-03 Toshiba Carrier Corp Refrigeration cycle apparatus
JPWO2017191814A1 (en) * 2016-05-02 2018-11-01 東芝キヤリア株式会社 Refrigeration cycle equipment
GB2565463A (en) * 2016-05-02 2019-02-13 Toshiba Carrier Corp Refrigeration cycle device
CN109804209B (en) * 2016-09-30 2020-05-12 大金工业株式会社 Air conditioner
JP2018054237A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
WO2018062177A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
CN109804209A (en) * 2016-09-30 2019-05-24 大金工业株式会社 Air-conditioning device
US10670282B2 (en) 2016-09-30 2020-06-02 Daikin Industries, Ltd. Air conditioning apparatus
EP3521732A4 (en) * 2016-09-30 2019-08-07 Daikin Industries, Ltd. Air conditioner
CN110114623A (en) * 2016-12-06 2019-08-09 伸和控制工业股份有限公司 Refrigerating plant
KR20190085013A (en) * 2016-12-06 2019-07-17 신와 콘트롤즈 가부시키가이샤 Freezing device
KR102173063B1 (en) * 2016-12-06 2020-11-02 신와 콘트롤즈 가부시키가이샤 Refrigeration unit
WO2018105511A1 (en) * 2016-12-06 2018-06-14 伸和コントロールズ株式会社 Refrigeration device
TWI722261B (en) * 2016-12-06 2021-03-21 日商伸和控制工業股份有限公司 Freezer
CN110114623B (en) * 2016-12-06 2021-05-11 伸和控制工业股份有限公司 Refrigerating device
US11204193B2 (en) 2016-12-06 2021-12-21 Shinwa Controls Co., Ltd Refrigeration apparatus
KR20230000247A (en) * 2021-06-24 2023-01-02 엘지전자 주식회사 Air conditioner and a method controling the same
KR102510223B1 (en) * 2021-06-24 2023-03-16 엘지전자 주식회사 Air conditioner and a method controling the same

Also Published As

Publication number Publication date
JP5762801B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5762801B2 (en) Refrigerator system with refrigerant leakage prevention function
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
JP6079055B2 (en) Refrigeration equipment
JP3109500B2 (en) Refrigeration equipment
JP6079061B2 (en) Refrigeration equipment
WO2013057991A1 (en) Rankine cycle
EP3252402B1 (en) Heat pump
EP2998665B1 (en) Refrigeration device
WO2018078729A1 (en) Refrigeration cycle device
JP2017044454A (en) Refrigeration cycle device and control method for the same
KR20070099015A (en) Refrigerant cycle with three-way service valve for environmentally friendly refrigerant
JP2007170683A (en) Air conditioner
WO2019035205A1 (en) Air conditioning device
JP2008051495A (en) Cooler
JP6393181B2 (en) Refrigeration cycle equipment
CN112277988A (en) Air conditioning unit for railway vehicle and control method
RU2582321C2 (en) Coolant pipeline and vehicle air conditioning system
JP3932111B2 (en) Ammonia compression refrigeration system leakage ammonia detection method, harm spread prevention method and its device
JP2018044686A (en) Refrigeration system
JP2007101043A (en) Heat cycle
JPWO2017098655A1 (en) Refrigeration cycle equipment
JP2004324949A (en) Refrigerant circuit and refrigerating machine comprising the same
JP2017067397A (en) Refrigerator
JP2021116940A (en) Freezer and use method of the same
JP2003336917A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R151 Written notification of patent or utility model registration

Ref document number: 5762801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees