JP2015075272A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2015075272A
JP2015075272A JP2013211533A JP2013211533A JP2015075272A JP 2015075272 A JP2015075272 A JP 2015075272A JP 2013211533 A JP2013211533 A JP 2013211533A JP 2013211533 A JP2013211533 A JP 2013211533A JP 2015075272 A JP2015075272 A JP 2015075272A
Authority
JP
Japan
Prior art keywords
refrigerant
recovery operation
outdoor
heat exchanger
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211533A
Other languages
Japanese (ja)
Other versions
JP6075264B2 (en
Inventor
松永 隆廣
Takahiro Matsunaga
隆廣 松永
下谷 亮
Akira Shitaya
亮 下谷
圭人 川合
Keito Kawai
圭人 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2013211533A priority Critical patent/JP6075264B2/en
Publication of JP2015075272A publication Critical patent/JP2015075272A/en
Application granted granted Critical
Publication of JP6075264B2 publication Critical patent/JP6075264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of recovering a refrigerant in an outdoor unit without going through an indoor unit during a refrigerant recovery operation, and capable of reducing a refrigerant leakage amount even in the air conditioner in which the amount of sealed refrigerant is large.SOLUTION: When performing a refrigerant recovery operation for recovering a refrigerant in an outdoor unit 2, an outdoor expansion valve 25, a liquid refrigerant shut-off valve 51 and an indoor expansion valve 81 are closed, the refrigerant staying in an indoor unit 3 and a gas refrigerant pipeline 102 is recovered in the outdoor unit 2, and a gas refrigerant shut-off valve 52 is closed. After that, the refrigerant staying in a liquid refrigerant pipeline 101 is recovered from a bypass circuit comprising a first bypass pipe 27a, a cooling side pipeline 27d of a supercooling heat exchanger 27 and a second bypass pipe 27b, and the liquid refrigerant shut-off valve 51 is closed. Thus, the refrigerant staying in the liquid refrigerant pipeline 101 can be recovered in the outdoor unit 2 without going through the indoor unit 3, and a refrigerant leakage amount can be reduced.

Description

本発明は、室外機と室内機とが複数の冷媒配管で接続された空気調和機に係わり、より詳細には、空気調和機に封入された冷媒を室外機に回収する冷媒回収運転に関するものである。   The present invention relates to an air conditioner in which an outdoor unit and an indoor unit are connected by a plurality of refrigerant pipes. More specifically, the present invention relates to a refrigerant recovery operation for recovering a refrigerant sealed in the air conditioner to an outdoor unit. is there.

現在、空気調和機などの冷媒には、オゾン層を破壊しないHFC系冷媒が使用されている。しかし、このHFC系冷媒は、温暖化係数が非常に高く、温暖化防止のため、排出規制の対象となっている。そのため、空気調和機における冷媒漏れ量の削減については、様々な方法が提案されており、例えば、室内機側で冷媒が漏れた場合に、室外機側に冷媒を回収することが提案されている。   Currently, HFC refrigerants that do not destroy the ozone layer are used for refrigerants such as air conditioners. However, this HFC-based refrigerant has a very high global warming potential and is subject to emission regulations to prevent global warming. Therefore, various methods have been proposed for reducing the amount of refrigerant leakage in an air conditioner. For example, when refrigerant leaks on the indoor unit side, it is proposed to collect the refrigerant on the outdoor unit side. .

特許文献1に記載の空気調和機は、圧縮機、室外熱交換器を有する室外機と、室内熱交換器を有する室内機とが、液冷媒配管およびガス冷媒配管により順次接続され、液冷媒配管およびガス冷媒配管の途中には、液冷媒配管開閉弁およびガス冷媒配管開閉弁が設けられている。さらに、空気調和機は、室内機を設置した室内に冷媒漏洩検知装置を設け、冷媒漏洩検知装置が所定以上の冷媒の漏洩を検知したとき、室内機と、ガス冷媒配管と、液冷媒配管とに滞留している冷媒を室外機に回収する冷媒回収運転を行う。冷媒回収運転は、液冷媒配管開閉弁を閉じ、所定時間、あるいは圧縮機の吸入側圧力が所定の値に低下するまで圧縮機を運転し、冷媒を室外機に回収した後、ガス冷媒配管開閉弁を閉じる。室外機に回収された冷媒は、液冷媒配管開閉弁が閉じられているので室外熱交換器に溜まる。このとき、液冷媒配管に滞留する冷媒は、室内機からガス冷媒配管と流れて室外機に回収される。   In an air conditioner described in Patent Document 1, an outdoor unit having a compressor and an outdoor heat exchanger and an indoor unit having an indoor heat exchanger are sequentially connected by a liquid refrigerant pipe and a gas refrigerant pipe, and the liquid refrigerant pipe In the middle of the gas refrigerant pipe, a liquid refrigerant pipe on-off valve and a gas refrigerant pipe on-off valve are provided. Furthermore, the air conditioner is provided with a refrigerant leakage detection device in a room where the indoor unit is installed, and when the refrigerant leakage detection device detects leakage of a refrigerant exceeding a predetermined level, the indoor unit, a gas refrigerant pipe, a liquid refrigerant pipe, A refrigerant recovery operation is performed to recover the refrigerant remaining in the outdoor unit to the outdoor unit. In the refrigerant recovery operation, the liquid refrigerant piping on-off valve is closed and the compressor is operated for a predetermined time or until the suction side pressure of the compressor drops to a predetermined value. Close the valve. The refrigerant collected in the outdoor unit is accumulated in the outdoor heat exchanger because the liquid refrigerant piping on-off valve is closed. At this time, the refrigerant staying in the liquid refrigerant pipe flows from the indoor unit to the gas refrigerant pipe and is collected in the outdoor unit.

特開平5−118720号公報Japanese Patent Laid-Open No. 5-118720

特許文献1に記載の空気調和機では、冷媒回収運転時は、液冷媒配管に滞留する冷媒が、必ず室内機を介して室外機に回収されるので、室内機で冷媒漏れが発生している場合、冷媒回収運転で液冷媒配管に滞留する冷媒が室内機を流れるときにさらに室内に冷媒が漏れる虞があった。   In the air conditioner described in Patent Document 1, the refrigerant stagnating in the liquid refrigerant pipe is always recovered to the outdoor unit through the indoor unit during the refrigerant recovery operation, and thus refrigerant leakage occurs in the indoor unit. In this case, when the refrigerant staying in the liquid refrigerant pipe flows through the indoor unit in the refrigerant recovery operation, the refrigerant may leak further into the room.

また、一般的にビル等に設置される大型の空気調和機では、家庭用の空気調和機に比べ、封入冷媒量が多くなる。これは、ビル等に設置される大型の空気調和機は、複数の室内機がビル全体に渡り配置されるため、家庭用の空気調和機に比べ、室外機と室内機を接続する冷媒配管が長くなるためであり、冷媒配管が長くなる分、空気調和機に必要な冷媒量が多くなる。従って、大型の空気調和機において室内機で冷媒漏れが発生した場合には、家庭用の空気調和機と比べて冷媒漏れ量が多くなる虞があり、この冷媒漏れ量を削減する対策が求められる。   In general, a large-scale air conditioner installed in a building or the like has a larger amount of enclosed refrigerant than a domestic air conditioner. This is because a large-scale air conditioner installed in a building or the like has a plurality of indoor units arranged over the entire building, and therefore has a refrigerant pipe that connects the outdoor unit and the indoor unit compared to a home air conditioner. This is because the length of the refrigerant pipe increases, and the amount of refrigerant necessary for the air conditioner increases. Therefore, when a refrigerant leak occurs in an indoor unit in a large air conditioner, there is a risk that the amount of refrigerant leak may be larger than that in a home air conditioner, and measures to reduce this refrigerant leak amount are required. .

本発明は、上記の問題点を解決し、冷媒回収運転時に冷媒漏れ量を削減できる空気調和機の提供を目的とする。   An object of the present invention is to solve the above problems and provide an air conditioner that can reduce the amount of refrigerant leakage during the refrigerant recovery operation.

上記の課題を解決するために、本発明の空気調和機は、圧縮機と室外熱交換器と室外側開閉弁とアキュムレータとを有する室外機と、室内熱交換器と室内側開閉弁とを有する室内機とを、液冷媒配管とガス冷媒配管で接続したものである。また、室外機は、液冷媒配管の冷媒の流れを遮断することが可能な液冷媒遮断機構と、ガス冷媒配管の冷媒の流れを遮断することが可能なガス冷媒遮断機構と、室外側開閉弁と液冷媒遮断機構の間とガス冷媒遮断機構とアキュムレータの間とをバイパスする冷媒回収用開閉弁を有するバイパス回路と、を有し、室外機に冷媒を回収する冷媒回収運転を実行する際、液冷媒遮断機構を閉じ、ガス冷媒遮断機構を開いて、室内機およびガス冷媒配管に滞留する冷媒を回収するガス冷媒回収運転、および/または、ガス冷媒遮断機構を閉じ、液冷媒遮断機構を開いて、液冷媒配管に滞留する冷媒を回収する液冷媒回収運転、を行うものである。   In order to solve the above-described problems, an air conditioner of the present invention includes an outdoor unit having a compressor, an outdoor heat exchanger, an outdoor open / close valve, and an accumulator, an indoor heat exchanger, and an indoor open / close valve. The indoor unit is connected with a liquid refrigerant pipe and a gas refrigerant pipe. The outdoor unit includes a liquid refrigerant shut-off mechanism capable of shutting off a refrigerant flow in the liquid refrigerant pipe, a gas refrigerant shut-off mechanism capable of shutting off a refrigerant flow in the gas refrigerant pipe, and an outdoor on-off valve. A bypass circuit having a refrigerant recovery on-off valve that bypasses between the liquid refrigerant blocking mechanism and the gas refrigerant blocking mechanism and the accumulator, and when performing a refrigerant recovery operation for recovering the refrigerant in the outdoor unit, Close the liquid refrigerant shut-off mechanism, open the gas refrigerant shut-off mechanism, close the gas refrigerant shut-off mechanism and / or open the liquid refrigerant shut-off mechanism. Thus, a liquid refrigerant recovery operation for recovering the refrigerant staying in the liquid refrigerant pipe is performed.

上記のように構成した本発明の空気調和機によれば、冷媒回収運転の際、室内機とガス冷媒配管とに滞留する冷媒を室外機に回収し、バイパス回路を介して液冷媒配管の冷媒を室外機に回収するので、液冷媒配管の冷媒を室内機を介さずに回収でき、冷媒漏れ量を削減できる。   According to the air conditioner of the present invention configured as described above, during the refrigerant recovery operation, the refrigerant staying in the indoor unit and the gas refrigerant pipe is collected in the outdoor unit, and the refrigerant in the liquid refrigerant pipe is passed through the bypass circuit. Is collected in the outdoor unit, the refrigerant in the liquid refrigerant pipe can be collected without going through the indoor unit, and the amount of refrigerant leakage can be reduced.

本発明の実施例1である空気調和機の冷媒回路図であり、冷房運転と暖房運転を行う場合の冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure of the air conditioner which is Example 1 of this invention, and is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the case of performing cooling operation and heating operation. 本発明の実施例1における、冷媒回収運転の一つであるガス冷媒回収運転時の弁の開閉状態および冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the opening-and-closing state of the valve at the time of the gas refrigerant | coolant recovery driving | operation which is one of the refrigerant | coolant recovery driving | operations, and the flow of a refrigerant | coolant in Example 1 of this invention. 本発明の実施例1における、冷媒回収運転の一つである液冷媒回収運転時の弁の開閉状態および冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the open / close state of the valve at the time of the liquid refrigerant recovery operation which is one of the refrigerant recovery operations in Example 1 of this invention, and the flow of a refrigerant | coolant. 本発明の実施例1における、熱交冷媒排出運転時の弁の開閉状態および冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the opening-and-closing state of the valve at the time of heat exchanger discharge operation | movement, and the flow of a refrigerant | coolant in Example 1 of this invention. 本発明の実施例1における、余剰冷媒排出運転時の弁の開閉状態および冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the opening-and-closing state of the valve at the time of the excess refrigerant | coolant discharge operation in Example 1 of this invention, and the flow of a refrigerant | coolant. 本発明の実施例1における、冷媒回収運転の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of refrigerant | coolant collection | recovery driving | operation in Example 1 of this invention. 本発明の実施例1における、熱交冷媒排出運転の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the heat exchanger refrigerant | coolant discharge driving | operation in Example 1 of this invention. 本発明の実施例1における、余剰冷媒排出運転の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the excess refrigerant | coolant discharge driving | operation in Example 1 of this invention. 本発明の実施例2である空気調和機の冷媒回路図であり、冷房運転と暖房運転を行う場合の冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure of the air conditioner which is Example 2 of this invention, and is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the case of performing cooling operation and heating operation.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。以下の説明では、1台の室外機と1台の室内機が冷媒配管で接続された空気調和機を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In the following description, an air conditioner in which one outdoor unit and one indoor unit are connected by a refrigerant pipe will be described as an example. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1に示すのは、本実施例における空気調和機1である。空気調和機1は、圧縮機21、流路切換手段である四方弁22、室外熱交換器23、室外ファン24、室外側開閉弁である室外膨張弁25、アキュムレータ26、過冷却熱交換器27、冷媒回収用開閉弁である過冷却膨張弁28、液冷媒遮断機構である液冷媒遮断弁51、ガス冷媒遮断機構であるガス冷媒遮断弁52を有する室外機2と、室内側開閉弁である室内膨張弁81、室内熱交換器82、室内ファン83を有する室内機3と、室外機2と室内機3を繋ぐ液冷媒配管101とガス冷媒配管102とを備え、室外ファン24と室内ファン83を除く各構成が相互に冷媒配管で接続されて冷媒回路が形成されている。   FIG. 1 shows an air conditioner 1 according to this embodiment. The air conditioner 1 includes a compressor 21, a four-way valve 22 that is a flow path switching unit, an outdoor heat exchanger 23, an outdoor fan 24, an outdoor expansion valve 25 that is an outdoor on-off valve, an accumulator 26, and a supercooling heat exchanger 27. An outdoor unit 2 having a supercooling expansion valve 28 serving as a refrigerant recovery on-off valve, a liquid refrigerant shut-off valve 51 serving as a liquid refrigerant shut-off mechanism, a gas refrigerant shut-off valve 52 serving as a gas refrigerant shut-off mechanism, and an indoor side open / close valve. The indoor unit 3 includes an indoor expansion valve 81, an indoor heat exchanger 82, and an indoor fan 83, a liquid refrigerant pipe 101 and a gas refrigerant pipe 102 that connect the outdoor unit 2 and the indoor unit 3, and the outdoor fan 24 and the indoor fan 83. Each component except for is connected to each other through a refrigerant pipe to form a refrigerant circuit.

まずは、室外機2の各構成を説明する。圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで運転容量を可変できる容量可変型圧縮機である。圧縮機21の吐出側は四方弁22に冷媒配管で接続され、圧縮機21の吸入側はアキュムレータ26に冷媒配管で接続される。   First, each configuration of the outdoor unit 2 will be described. The compressor 21 is a variable capacity compressor that can vary its operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The discharge side of the compressor 21 is connected to the four-way valve 22 by refrigerant piping, and the suction side of the compressor 21 is connected to the accumulator 26 by refrigerant piping.

四方弁22は、冷媒の流れる方向を切換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは圧縮機21の吐出側と、ポートbは室外熱交換器23と、ポートcはアキュムレータ26と、ポートdはガス冷媒遮断弁52を介して室内機3と、それぞれ冷媒配管で接続される。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and includes four ports a, b, c, and d. Port a is connected to the discharge side of the compressor 21, port b is connected to the outdoor heat exchanger 23, port c is connected to the accumulator 26, and port d is connected to the indoor unit 3 via the gas refrigerant shut-off valve 52 through refrigerant piping. The

室外熱交換器23は、冷媒と室外空気との熱交換を行うものであり、一方の冷媒出入り口が四方弁22のポートbと、他方の冷媒出入り口が室外膨張弁25を介して室内機3とそれぞれ冷媒配管で接続される。室外膨張弁25は、室外熱交換器23における冷媒流量を調整するものであり、図示しないパルスモータにより駆動され、パルスモータに与えるパルス数によって弁の開度が調整される。室外膨張弁25は、一方のポートが室外熱交換器23と、他方のポートは過冷却熱交換器27の被冷却側配管27cとそれぞれ冷媒配管で接続される。尚、本実施例では、室外側開閉弁を室外膨張弁としているが、これに限定されるものではなく、例えば、電磁開閉弁と減圧手段(キャピラリーチューブや電子膨張弁)とを並列に組み合わせて冷媒流量を調整する機能を有するようにした構成であってもよい。   The outdoor heat exchanger 23 performs heat exchange between the refrigerant and the outdoor air, and one refrigerant inlet / outlet is connected to the port b of the four-way valve 22, and the other refrigerant inlet / outlet is connected to the indoor unit 3 via the outdoor expansion valve 25. Each is connected by refrigerant piping. The outdoor expansion valve 25 adjusts the refrigerant flow rate in the outdoor heat exchanger 23, is driven by a pulse motor (not shown), and the opening degree of the valve is adjusted by the number of pulses applied to the pulse motor. In the outdoor expansion valve 25, one port is connected to the outdoor heat exchanger 23, and the other port is connected to the cooled side pipe 27c of the supercooling heat exchanger 27 through a refrigerant pipe. In this embodiment, the outdoor open / close valve is an outdoor expansion valve. However, the present invention is not limited to this. For example, an electromagnetic open / close valve and a pressure reducing means (capillary tube or electronic expansion valve) are combined in parallel. It may be configured to have a function of adjusting the refrigerant flow rate.

室外ファン24は、室外熱交換器23近傍に配置され、図示しないファンモータによって回転することで、室外機2内に室外空気を取り込み、室外熱交換器23で冷媒と熱交換させて室外機2外に放出する。   The outdoor fan 24 is disposed in the vicinity of the outdoor heat exchanger 23 and is rotated by a fan motor (not shown), thereby taking outdoor air into the outdoor unit 2 and exchanging heat with refrigerant in the outdoor heat exchanger 23. Release outside.

アキュムレータ26は、室内機3の運転負荷の変化に応じて発生する余剰冷媒を溜めることが可能な容器であり、冷媒流入側が四方弁22のポートcに冷媒配管で接続され、冷媒流出側が圧縮機21の吸入側に冷媒配管で接続される。尚、アキュムレータ26には、アキュムレータ26を加熱する図示しない電気ヒータ(例えば、ベルトヒータ)を取り付けている。   The accumulator 26 is a container capable of accumulating surplus refrigerant generated in response to a change in the operating load of the indoor unit 3. The refrigerant inflow side is connected to the port c of the four-way valve 22 by a refrigerant pipe, and the refrigerant outflow side is a compressor. 21 is connected to the suction side by a refrigerant pipe. The accumulator 26 is provided with an electric heater (not shown) (for example, a belt heater) that heats the accumulator 26.

過冷却熱交換器27は、外側の被冷却側配管(外管)27cと内側の冷却側配管(内管)27dとを同軸配管とした2重管熱交換器となっており、被冷却側配管27cの冷媒と冷却側配管27dの冷媒との熱交換を行うものである。被冷却側配管27cは、一端が室外膨張弁25と、他端が液冷媒遮断弁51とそれぞれ冷媒配管で接続され、冷却側配管27dは、一端が室外膨張弁25と過冷却熱交換器27との間の分岐部61に第1バイパス管27aで接続され、他端が四方弁22のポートcとアキュムレータ26との間の合流部62に第2バイパス管27bで接続される。尚、第1バイパス管27aは、過冷却熱交換器27と液冷媒遮断弁51の間の冷媒配管から分岐する構成であってもよい。分岐部61と冷却側配管27dとを接続する第1バイパス管27aには、過冷却膨張弁28が設けられている。過冷却膨張弁28は、過冷却熱交換器27の冷却側配管27dへの冷媒流量を調整するものであり、図示しないパルスモータにより駆動され、パルスモータに与えるパルス数によって弁の開度が調整される。尚、本実施例では、冷媒回収用開閉弁を過冷却膨張弁としているが、これに限定されるものではなく、例えば、電磁開閉弁と減圧手段(キャピラリーチューブや電子膨張弁)とを並列に組み合わせて冷媒流量を調整する機能を有するようにした構成であってもよい。   The subcooling heat exchanger 27 is a double pipe heat exchanger in which an outer cooled side pipe (outer pipe) 27c and an inner cooled side pipe (inner pipe) 27d are coaxial pipes. Heat exchange is performed between the refrigerant in the pipe 27c and the refrigerant in the cooling side pipe 27d. One end of the cooled side pipe 27c is connected to the outdoor expansion valve 25 and the other end is connected to the liquid refrigerant shut-off valve 51 by a refrigerant pipe. The cooling side pipe 27d has one end connected to the outdoor expansion valve 25 and the subcooling heat exchanger 27. The other end is connected to the junction 62 between the port c of the four-way valve 22 and the accumulator 26 via the second bypass pipe 27b. The first bypass pipe 27a may be configured to branch from a refrigerant pipe between the supercooling heat exchanger 27 and the liquid refrigerant cutoff valve 51. A supercooling expansion valve 28 is provided in the first bypass pipe 27a that connects the branch portion 61 and the cooling side pipe 27d. The supercooling expansion valve 28 adjusts the refrigerant flow rate to the cooling side pipe 27d of the supercooling heat exchanger 27, is driven by a pulse motor (not shown), and the opening degree of the valve is adjusted by the number of pulses applied to the pulse motor. Is done. In this embodiment, the refrigerant recovery on-off valve is a supercooled expansion valve, but the invention is not limited to this. For example, an electromagnetic on-off valve and a pressure reducing means (capillary tube or electronic expansion valve) are arranged in parallel. It may be configured to have a function of adjusting the refrigerant flow rate in combination.

液冷媒遮断弁51は、室外機2と室内機3とを接続する液冷媒配管101における冷媒の流れを遮断するものであり、一方が過冷却熱交換器27の被冷却側配管27cと、他方が液冷媒配管101の一端とそれぞれ冷媒配管で接続される。   The liquid refrigerant shut-off valve 51 shuts off the refrigerant flow in the liquid refrigerant pipe 101 that connects the outdoor unit 2 and the indoor unit 3, one side being the cooled side pipe 27 c of the supercooling heat exchanger 27 and the other side. Are connected to one end of the liquid refrigerant pipe 101 by a refrigerant pipe.

ガス冷媒遮断弁52は、室外機2と室内機3とを接続するガス冷媒配管102における冷媒の流れを遮断するものであり、一方がガス冷媒配管102の一端と、他方が四方弁22のポートdとそれぞれ冷媒配管で接続される。   The gas refrigerant shut-off valve 52 shuts off the refrigerant flow in the gas refrigerant pipe 102 connecting the outdoor unit 2 and the indoor unit 3, one end of the gas refrigerant pipe 102 and the other port of the four-way valve 22. d and refrigerant pipes respectively.

また、室外機2には、圧縮機21の吐出側に吐出圧力検知手段である吐出圧力センサ31、吐出温度検知手段である吐出温度センサ41を備え、圧縮機21の吸入側に吸入圧力検知手段である吸入圧力センサ32、吸入温度検知手段である吸入温度センサ42が備えられている。図示しないが、その他にも、室外熱交換器23に流入あるいは流出する冷媒の温度や、過冷却熱交換器27の被冷却側配管27cに流入あるいは流出する冷媒の温度や、過冷却熱交換器27の冷却側配管27dから流出する冷媒の温度や、外気温度を検出するための各種温度センサが設けられている。   The outdoor unit 2 includes a discharge pressure sensor 31 that is a discharge pressure detection unit and a discharge temperature sensor 41 that is a discharge temperature detection unit on the discharge side of the compressor 21, and a suction pressure detection unit on the suction side of the compressor 21. A suction pressure sensor 32, and a suction temperature sensor 42 serving as suction temperature detection means. Although not shown, in addition, the temperature of the refrigerant flowing into or out of the outdoor heat exchanger 23, the temperature of the refrigerant flowing into or out of the cooled side pipe 27c of the supercooling heat exchanger 27, the supercooling heat exchanger Various temperature sensors for detecting the temperature of the refrigerant flowing out from the cooling side pipe 27d and the outside air temperature are provided.

また、室外機2には、室外制御装置29が備えられている。室外制御装置29には、図示しない通信部や制御部を備えている。通信部は、図示しない通信線を介して、後述する室内制御装置84と随時運転情報のやり取りを行っている。制御部は、各センサで検知した結果や室内機3から送られてくる要求能力等の運転情報を用いて、圧縮機21の駆動制御、四方弁22の切換制御、室外ファン24の駆動制御、室外膨張弁25や過冷却膨張弁28の開度制御、液冷媒遮断弁51やガス冷媒遮断弁52の開閉制御、運転時間の計測、吐出過熱度や吸入過熱度の算出、アキュムレータ26に取り付けた図示しない電気ヒータの通電/非通電、等を行う。   The outdoor unit 2 is provided with an outdoor control device 29. The outdoor control device 29 includes a communication unit and a control unit (not shown). The communication unit exchanges operation information with the indoor control device 84, which will be described later, via a communication line (not shown). The control unit uses the operation information such as the result detected by each sensor and the required capacity sent from the indoor unit 3 to control the drive of the compressor 21, the switching control of the four-way valve 22, the drive control of the outdoor fan 24, Opening control of outdoor expansion valve 25 and supercooling expansion valve 28, opening / closing control of liquid refrigerant shutoff valve 51 and gas refrigerant shutoff valve 52, measurement of operation time, calculation of discharge superheat degree and suction superheat degree, attached to accumulator 26 Energization / non-energization of an electric heater (not shown) is performed.

次に、室内機3の各構成を説明する。室内熱交換器82は、冷媒と室内空気との熱交換を行うものであり、一方の冷媒出入口がガス冷媒配管102の他端と、他方の冷媒出入り口が室内膨張弁81にそれぞれ冷媒配管で接続される。室内膨張弁81は、室内熱交換器82における冷媒流量を調整するものであり、図示しないパルスモータにより駆動され、パルスモータに与えるパルス数によって弁の開度が調整される。室内膨張弁81は、一方のポートが室内熱交換器82に、他方のポートが液冷媒配管101の他端に冷媒配管で接続される。尚、本実施例では、室内側開閉弁を室内膨張弁としているが、これに限定されるものではなく、例えば、電磁開閉弁と減圧手段(キャピラリーチューブや電子膨張弁)とを並列に組み合わせて冷媒流量を調整する機能を有するようにした構成であってもよい。   Next, each configuration of the indoor unit 3 will be described. The indoor heat exchanger 82 performs heat exchange between the refrigerant and the room air, and one refrigerant inlet / outlet is connected to the other end of the gas refrigerant pipe 102 and the other refrigerant inlet / outlet is connected to the indoor expansion valve 81 via the refrigerant pipe. Is done. The indoor expansion valve 81 adjusts the refrigerant flow rate in the indoor heat exchanger 82, is driven by a pulse motor (not shown), and the opening degree of the valve is adjusted by the number of pulses applied to the pulse motor. The indoor expansion valve 81 has one port connected to the indoor heat exchanger 82 and the other port connected to the other end of the liquid refrigerant pipe 101 through a refrigerant pipe. In this embodiment, the indoor open / close valve is an indoor expansion valve. However, the present invention is not limited to this. For example, an electromagnetic open / close valve and a pressure reducing means (capillary tube or electronic expansion valve) are combined in parallel. It may be configured to have a function of adjusting the refrigerant flow rate.

室内ファン83は、室内熱交換器82の近傍に配置され、図示しないファンモータによって回転することで、室内機3に室内空気を取り込み、室内熱交換器82で冷媒と熱交換させた室内空気を室内機3外に放出する。また、室内機3には、室内熱交換器82に流入あるいは流出する冷媒の温度や、室内の温度を検出するための各種温度センサが設けられている。   The indoor fan 83 is disposed in the vicinity of the indoor heat exchanger 82 and is rotated by a fan motor (not shown) so that the indoor air is taken into the indoor unit 3 and heat is exchanged with the refrigerant by the indoor heat exchanger 82. Release outside the indoor unit 3. The indoor unit 3 is also provided with various temperature sensors for detecting the temperature of the refrigerant flowing into or out of the indoor heat exchanger 82 and the indoor temperature.

また、室内機3には、室内制御装置84が備えられている。室内制御装置84は、図示しない通信部や制御部を備えている。通信部は、図示しない通信線を介して、室外制御装置29と随時運転情報のやり取りを行っている。制御部は、各センサで検知した結果や、室外制御装置29から送られてくる運転情報に応じて、室内膨張弁81の開度制御、室内ファン83の駆動制御、等を行う。   The indoor unit 3 includes an indoor control device 84. The indoor control device 84 includes a communication unit and a control unit (not shown). The communication unit exchanges operation information with the outdoor control device 29 at any time via a communication line (not shown). The control unit performs the opening control of the indoor expansion valve 81, the drive control of the indoor fan 83, and the like according to the results detected by the sensors and the operation information sent from the outdoor control device 29.

以上のように、室外機2と、室内機3とが、液冷媒配管101とガス冷媒配管102とで接続されて空気調和機1が構成されている。そして、本実施例の空気調和機1は、四方弁22を切り換えて冷房運転、または、暖房運転を行うとともに、室内機3の運転負荷に合わせて、各機器の制御を行っている。   As described above, the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 3 with the liquid refrigerant pipe 101 and the gas refrigerant pipe 102. The air conditioner 1 according to the present embodiment switches the four-way valve 22 to perform the cooling operation or the heating operation, and controls each device according to the operation load of the indoor unit 3.

次に本実施例の空気調和機1の運転動作について説明する。本実施例の空気調和機1は、冷房運転と、暖房運転と、本発明に関わる冷媒回収運転とが実施できる。   Next, the operation | movement operation | movement of the air conditioner 1 of a present Example is demonstrated. The air conditioner 1 according to the present embodiment can perform a cooling operation, a heating operation, and a refrigerant recovery operation according to the present invention.

まず、冷房運転ついて図1を用いて説明する。   First, the cooling operation will be described with reference to FIG.

冷房運転時は、四方弁22のポートaとbが連通するように、また、ポートcとdが連通するように切り替えて四方弁22が実線で示されている状態となり、実線矢印で示している方向に冷媒が循環する。室外熱交換器23は凝縮器として機能し、室内熱交換器82は蒸発器として機能し、液冷媒遮断弁51とガス冷媒遮断弁52は、常時開かれた状態である。室外膨張弁25は全開とされる。過冷却膨張弁28は、過冷却膨張弁28から流出した冷媒が、第1バイパス管27aを通過して過冷却熱交換器27の冷却側配管27dへ流入し、過冷却熱交換器27の被冷却側配管27cを流れる冷媒と熱交換した後に過冷却熱交換器27の冷却側配管27dの冷媒出口側の過熱度に応じて開度が調整される。室内膨張弁81は、室内熱交換器82の冷媒出口側の過熱度に応じて開度が調整される。室外ファン24は、吐出圧力センサ31で検出する吐出圧力、もしくは、吐出圧力センサ31で検出する値から換算した室外熱交換器23での凝縮温度が一定になるように回転数が制御される。室内ファン83は、使用者が設定する風量に対応する回転数で駆動する。   During the cooling operation, the four-way valve 22 is switched to communicate with the ports a and b and the ports c and d to communicate with each other, and the four-way valve 22 is indicated by a solid line. The refrigerant circulates in the direction in which it is located. The outdoor heat exchanger 23 functions as a condenser, the indoor heat exchanger 82 functions as an evaporator, and the liquid refrigerant shut-off valve 51 and the gas refrigerant shut-off valve 52 are always open. The outdoor expansion valve 25 is fully opened. In the supercooling expansion valve 28, the refrigerant flowing out of the supercooling expansion valve 28 passes through the first bypass pipe 27 a and flows into the cooling side pipe 27 d of the supercooling heat exchanger 27. After heat exchange with the refrigerant flowing through the cooling side pipe 27c, the opening degree is adjusted according to the degree of superheat on the refrigerant outlet side of the cooling side pipe 27d of the supercooling heat exchanger 27. The opening of the indoor expansion valve 81 is adjusted according to the degree of superheat on the refrigerant outlet side of the indoor heat exchanger 82. The rotational speed of the outdoor fan 24 is controlled so that the discharge pressure detected by the discharge pressure sensor 31 or the condensation temperature in the outdoor heat exchanger 23 converted from the value detected by the discharge pressure sensor 31 is constant. The indoor fan 83 is driven at a rotational speed corresponding to the air volume set by the user.

次に、暖房運転ついて図1を用いて説明する。   Next, the heating operation will be described with reference to FIG.

暖房運転時は、四方弁22のポートaとdが連通するように、また、ポートbとcが連通するように切り替えて四方弁22が点線で示されている状態となり、点線矢印で示している方向に冷媒が循環する。室内熱交換器82は凝縮器として機能し、室外熱交換器23は蒸発器として機能する。液冷媒遮断弁51とガス冷媒遮断弁52は、常時開かれた状態である。室内膨張弁81は、室内熱交換器82の冷媒出口側における過冷却度に応じて開度が調整される。過冷却膨張弁28は、過冷却膨張弁28から流出した冷媒が、第1バイパス管27aを通過して過冷却熱交換器27の冷却側配管27dへ流入し、過冷却熱交換器27の被冷却側配管27cを流れる冷媒と熱交換した後に過冷却熱交換器27の冷却側配管27dの冷媒出口側の過熱度に応じて開度が調整される。室外膨張弁25は、室外熱交換器23の冷媒出口側の過熱度に応じて開度が調整される。室外ファン24は、吸入圧力センサ32で検出する吸入圧力、もしくは、吸入圧力センサ32で検出する値から換算した室外熱交換器23での蒸発温度が一定になるように回転数を制御する。室内ファン83は、使用者が設定する風量に対応する回転数で駆動する。   During the heating operation, the four-way valve 22 is switched to communicate with the ports a and d of the four-way valve 22 and the ports b and c to communicate with each other, and the four-way valve 22 is indicated by a dotted line. The refrigerant circulates in the direction in which it is located. The indoor heat exchanger 82 functions as a condenser, and the outdoor heat exchanger 23 functions as an evaporator. The liquid refrigerant cutoff valve 51 and the gas refrigerant cutoff valve 52 are always open. The opening of the indoor expansion valve 81 is adjusted according to the degree of supercooling on the refrigerant outlet side of the indoor heat exchanger 82. In the supercooling expansion valve 28, the refrigerant flowing out of the supercooling expansion valve 28 passes through the first bypass pipe 27 a and flows into the cooling side pipe 27 d of the supercooling heat exchanger 27. After heat exchange with the refrigerant flowing through the cooling side pipe 27c, the opening degree is adjusted according to the degree of superheat on the refrigerant outlet side of the cooling side pipe 27d of the supercooling heat exchanger 27. The opening degree of the outdoor expansion valve 25 is adjusted according to the degree of superheat on the refrigerant outlet side of the outdoor heat exchanger 23. The outdoor fan 24 controls the rotation speed so that the suction pressure detected by the suction pressure sensor 32 or the evaporation temperature in the outdoor heat exchanger 23 converted from the value detected by the suction pressure sensor 32 becomes constant. The indoor fan 83 is driven at a rotational speed corresponding to the air volume set by the user.

次に、本発明に関わる冷媒回収運転について図2および図3を用いて説明する。本発明の冷媒回収運転は、室内機3とガス冷媒配管102とに滞留する冷媒を回収するガス冷媒回収運転と、液冷媒配管101に滞留する冷媒を回収する液冷媒回収運転とからなり、室内で冷媒漏れを検知した場合、ガス冷媒回収運転を先に行い、続けて液冷媒回収運転を行う。図2は、ガス冷媒回収運転時の各弁の開閉状態を示す。図3は、液冷媒回収運転時の各弁の開閉状態を示す。各弁の開閉状態は、閉じている場合を黒塗りにし、開いている場合を白抜きに図示する。また、各冷媒回収運転時の冷媒の流れを一点鎖線矢印で図示する。   Next, the refrigerant recovery operation according to the present invention will be described with reference to FIGS. The refrigerant recovery operation of the present invention includes a gas refrigerant recovery operation that recovers refrigerant that stays in the indoor unit 3 and the gas refrigerant pipe 102, and a liquid refrigerant recovery operation that recovers refrigerant that stays in the liquid refrigerant pipe 101. When a refrigerant leak is detected in step 1, the gas refrigerant recovery operation is performed first, followed by the liquid refrigerant recovery operation. FIG. 2 shows the open / closed state of each valve during the gas refrigerant recovery operation. FIG. 3 shows the open / closed state of each valve during the liquid refrigerant recovery operation. The open / closed state of each valve is shown in black when it is closed, and white when it is open. Moreover, the flow of the refrigerant at the time of each refrigerant recovery operation is illustrated by a one-dot chain line arrow.

本発明における冷媒回収運転の目的は、室内機3を介さずに液冷媒配管101に滞留する冷媒を回収することである。そのために、液冷媒配管101側から圧縮機21吸入側に冷媒を流すためのバイパス回路を備える必要がある。本実施例においては、このバイパス回路は第1バイパス管27aと第2バイパス管27bと過冷却熱交換器27の冷却側配管27dとで構成される。また、室内機3と液冷媒配管101とガス冷媒配管102とに滞留する冷媒が多量である場合、室外熱交換器23だけでは、冷媒を回収しきれない場合があり、回収しきれないと、室内機3と液冷媒配管101とガス冷媒配管102とに滞留する冷媒量が多くなり、冷媒回路における室内側(室内熱交換器82、液冷媒配管101やガス冷媒配管102の一部)から室内に漏れる冷媒量が多くなる虞があった。そこで、本実施例においては、室外機2内での室外熱交換器23以外の冷媒の回収場所として、アキュムレータ26を用いる。   The purpose of the refrigerant recovery operation in the present invention is to recover the refrigerant staying in the liquid refrigerant pipe 101 without going through the indoor unit 3. Therefore, it is necessary to provide a bypass circuit for flowing the refrigerant from the liquid refrigerant pipe 101 side to the compressor 21 suction side. In the present embodiment, this bypass circuit includes a first bypass pipe 27a, a second bypass pipe 27b, and a cooling side pipe 27d of the supercooling heat exchanger 27. In addition, when a large amount of refrigerant stays in the indoor unit 3, the liquid refrigerant pipe 101, and the gas refrigerant pipe 102, the outdoor heat exchanger 23 alone may not be able to recover the refrigerant. The amount of refrigerant that stays in the indoor unit 3, the liquid refrigerant pipe 101, and the gas refrigerant pipe 102 increases, and the room from the indoor side (the indoor heat exchanger 82, the liquid refrigerant pipe 101, and part of the gas refrigerant pipe 102) in the refrigerant circuit. There was a risk that the amount of refrigerant leaking into the tank would increase. Therefore, in this embodiment, the accumulator 26 is used as a refrigerant collection place other than the outdoor heat exchanger 23 in the outdoor unit 2.

冷媒回収運転は、室外制御装置29が、室内に設置される冷媒検知センサからの出力信号を受信するか、サービスマンによる室内制御装置84や図示しないリモコンの操作によって送信された冷媒回収運転開始信号を受信するか、あるいは、室外制御装置29が直接操作されることで開始される。冷媒回収運転を実行するときは、室外制御装置29は、四方弁22が、図2に示す実線で示されている状態、つまり、冷房運転を行う時の状態となっているか否かを確認する。このとき、四方弁22が点線で示される状態であれば、室外制御装置29は、四方弁22を実線で示されている状態に切り換える。   In the refrigerant recovery operation, the outdoor control device 29 receives an output signal from a refrigerant detection sensor installed in the room, or a refrigerant recovery operation start signal transmitted by a serviceman operating the indoor control device 84 or a remote controller (not shown). Or the outdoor control device 29 is directly operated. When the refrigerant recovery operation is executed, the outdoor control device 29 confirms whether or not the four-way valve 22 is in the state indicated by the solid line shown in FIG. 2, that is, the state when the cooling operation is performed. . At this time, if the four-way valve 22 is in a state indicated by a dotted line, the outdoor control device 29 switches the four-way valve 22 to a state indicated by a solid line.

まず、ガス冷媒回収運転について、各弁の開閉動作と冷媒の流れを説明する。   First, in the gas refrigerant recovery operation, the opening / closing operation of each valve and the flow of the refrigerant will be described.

室外制御装置29は、ガス冷媒回収運転を行うとき、室内膨張弁81を閉じるよう室内制御装置84に指示するとともに、室外膨張弁25と、過冷却膨張弁28と、液冷媒遮断弁51とを閉じる。これにより、冷媒回路は、図2に示す状態となる。そして、室外制御装置29は、室外機2に回収した冷媒を凝縮させて室外熱交換器23に回収するために圧縮機21および室外ファン24を駆動し、また、室内熱交換器82に滞留する冷媒を蒸発させて室外機2に回収するために室内ファン83を駆動してガス冷媒回収運転を開始する。   When performing the gas refrigerant recovery operation, the outdoor control device 29 instructs the indoor control device 84 to close the indoor expansion valve 81, and sets the outdoor expansion valve 25, the supercooling expansion valve 28, and the liquid refrigerant cutoff valve 51. close up. Thereby, a refrigerant circuit will be in the state shown in FIG. The outdoor control device 29 drives the compressor 21 and the outdoor fan 24 in order to condense the refrigerant collected in the outdoor unit 2 and collect it in the outdoor heat exchanger 23, and stays in the indoor heat exchanger 82. In order to evaporate the refrigerant and collect it in the outdoor unit 2, the indoor fan 83 is driven to start the gas refrigerant recovery operation.

圧縮機21を起動すると、室内機3における室内膨張弁81より室内熱交換器82側に滞留する冷媒と、ガス冷媒配管102に滞留する冷媒とが、図2に示す一点鎖線矢印のように流れて室外機2に流入する。室外機2に流入した冷媒は、四方弁22、合流部62を介してアキュムレータ26に流入する。アキュムレータ26に流入した冷媒のうち、液冷媒はアキュムレータ26に滞留し、ガス冷媒は圧縮機21に吸入され、圧縮機21から四方弁22を介して室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外膨張弁25に向かって流出するが、室外膨張弁25は閉じられているので、室外熱交換器23に冷媒が溜まっていく。   When the compressor 21 is started, the refrigerant staying on the indoor heat exchanger 82 side from the indoor expansion valve 81 in the indoor unit 3 and the refrigerant staying on the gas refrigerant pipe 102 flow as indicated by a one-dot chain line arrow shown in FIG. Flow into the outdoor unit 2. The refrigerant that has flowed into the outdoor unit 2 flows into the accumulator 26 through the four-way valve 22 and the junction portion 62. Of the refrigerant that has flowed into the accumulator 26, the liquid refrigerant stays in the accumulator 26, the gas refrigerant is sucked into the compressor 21, and flows into the outdoor heat exchanger 23 from the compressor 21 through the four-way valve 22. The refrigerant that has flowed into the outdoor heat exchanger 23 flows toward the outdoor expansion valve 25, but the outdoor expansion valve 25 is closed, so that the refrigerant accumulates in the outdoor heat exchanger 23.

ガス冷媒回収運転を行っているときは、室内膨張弁81を閉じているので、液冷媒配管101に滞留する冷媒が室内機3に流入することがない。また、室外膨張弁25と、過冷却膨張弁28と、液冷媒遮断弁51とを閉じているので、室外機2における室外膨張弁25と液冷媒遮断弁51との間の冷媒配管に滞留する冷媒および合流部61と過冷却膨張弁28との間の第1バイパス管27aに滞留する冷媒は、室外膨張弁25と過冷却膨張弁28と液冷媒遮断弁51との間に閉じ込められた状態となるので、この場所に滞留する冷媒が、過冷却熱交換器27から合流部62を介してアキュムレータ26に流れない。   When the gas refrigerant recovery operation is performed, the indoor expansion valve 81 is closed, so that the refrigerant staying in the liquid refrigerant pipe 101 does not flow into the indoor unit 3. Further, since the outdoor expansion valve 25, the supercooling expansion valve 28, and the liquid refrigerant shut-off valve 51 are closed, the refrigerant stays in the refrigerant pipe between the outdoor expansion valve 25 and the liquid refrigerant shut-off valve 51 in the outdoor unit 2. The refrigerant and the refrigerant staying in the first bypass pipe 27 a between the junction 61 and the supercooling expansion valve 28 are confined between the outdoor expansion valve 25, the supercooling expansion valve 28, and the liquid refrigerant shut-off valve 51. Therefore, the refrigerant staying at this place does not flow from the supercooling heat exchanger 27 to the accumulator 26 through the junction 62.

ガス冷媒回収運転を行っているとき、室外制御装置29は、吸入圧力センサ32が検出した吸入圧力を定期的に取り込んでおり、取り込んだ吸入圧力が第1の所定閾圧力(例えば、0.01MPa)以下となれば、室内機3およびガス冷媒配管102に滞留する冷媒の回収が完了したと判断する。また、ガス冷媒回収運転において、室内機3およびガス冷媒配管102内の圧力が大気圧以下になると、冷媒漏れ部から室内機3およびガス冷媒配管102に空気が流入し、冷媒漏れ部の大きさによっては、圧縮機21が空気を吸入し続け、吸入圧力が第1の所定閾圧力以下にならない場合があるため、室外制御装置29は、ガス冷媒回収運転を開始してからの運転時間を計測し、ガス冷媒回収運転の運転時間が第1の所定時間(例えば、180秒)を経過すれば、室内機3およびガス冷媒配管102に滞留する冷媒の回収が完了したと判断する。運転時間については、予め試験で確認したものであり、設置状況に合わせて、室内機3およびガス冷媒配管102に滞留する冷媒を回収できる時間に設定している。そして、室外制御装置29は、ガス冷媒遮断弁52を閉じて、ガス冷媒回収運転を終了する。ガス冷媒回収運転が終了と同時に液冷媒回収運転に切り替えるので、圧縮機21と室外ファン24と室内ファン83は駆動させたままにする。   When performing the gas refrigerant recovery operation, the outdoor control device 29 periodically takes in the suction pressure detected by the suction pressure sensor 32, and the taken-in suction pressure is a first predetermined threshold pressure (for example, 0.01 MPa). If it becomes below, it will be judged that collection | recovery of the refrigerant | coolant stagnated in the indoor unit 3 and gas refrigerant | coolant piping 102 was completed. Further, in the gas refrigerant recovery operation, when the pressure in the indoor unit 3 and the gas refrigerant pipe 102 becomes equal to or lower than the atmospheric pressure, air flows into the indoor unit 3 and the gas refrigerant pipe 102 from the refrigerant leak part, and the size of the refrigerant leak part. In some cases, the compressor 21 continues to suck air, and the suction pressure may not be lower than the first predetermined threshold pressure. Therefore, the outdoor control device 29 measures the operation time after starting the gas refrigerant recovery operation. When the operation time of the gas refrigerant recovery operation passes a first predetermined time (for example, 180 seconds), it is determined that the recovery of the refrigerant staying in the indoor unit 3 and the gas refrigerant pipe 102 is completed. The operation time is confirmed in advance by a test, and is set to a time during which the refrigerant staying in the indoor unit 3 and the gas refrigerant pipe 102 can be recovered according to the installation situation. Then, the outdoor control device 29 closes the gas refrigerant shutoff valve 52 and ends the gas refrigerant recovery operation. Since the gas refrigerant recovery operation is switched to the liquid refrigerant recovery operation at the same time as the end of the gas refrigerant recovery operation, the compressor 21, the outdoor fan 24, and the indoor fan 83 are kept driven.

次に、液冷媒回収運転について各弁の開閉状態と冷媒の流れを説明する。   Next, the open / close state of each valve and the flow of the refrigerant in the liquid refrigerant recovery operation will be described.

室外制御装置29は、液冷媒回収運転を行うとき、室外膨張弁25および室内膨張弁81は閉じたままとし、過冷却膨張弁28と、液冷媒遮断弁51とを開く。これにより、冷媒回路は図3に示す状態となり、液冷媒回収運転が開始される。圧縮機21と室外ファン24と室内ファン83は、ガス冷媒回収運転から継続して駆動している。   When performing the liquid refrigerant recovery operation, the outdoor control device 29 keeps the outdoor expansion valve 25 and the indoor expansion valve 81 closed, and opens the supercooling expansion valve 28 and the liquid refrigerant cutoff valve 51. As a result, the refrigerant circuit enters the state shown in FIG. 3, and the liquid refrigerant recovery operation is started. The compressor 21, the outdoor fan 24, and the indoor fan 83 are continuously driven from the gas refrigerant recovery operation.

液冷媒回収運転を開始すると、液冷媒配管101に滞留する冷媒とが図3に示す一点鎖線矢印のように流れて室外機2に流入する。室外機2に流入した冷媒は、過冷却熱交換器27の被冷却側配管27c、第1バイパス管27a、過冷却熱交換器27の冷却側配管27d、第2バイパス管27bおよび合流部62を介してアキュムレータ26に流入する。アキュムレータ26に流入した冷媒のうち、液冷媒はアキュムレータ26に滞留し、ガス冷媒は圧縮機21に吸入され、圧縮機21から四方弁22を介して室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外膨張弁25に向かって流出するが、室外膨張弁25は閉じられているので、室外熱交換器23に冷媒が溜まっていく。   When the liquid refrigerant recovery operation is started, the refrigerant staying in the liquid refrigerant pipe 101 flows as indicated by a one-dot chain line arrow shown in FIG. 3 and flows into the outdoor unit 2. The refrigerant flowing into the outdoor unit 2 passes through the cooled side pipe 27c of the supercooling heat exchanger 27, the first bypass pipe 27a, the cooling side pipe 27d of the supercooling heat exchanger 27, the second bypass pipe 27b, and the junction 62. Through the accumulator 26. Of the refrigerant that has flowed into the accumulator 26, the liquid refrigerant stays in the accumulator 26, the gas refrigerant is sucked into the compressor 21, and flows into the outdoor heat exchanger 23 from the compressor 21 through the four-way valve 22. The refrigerant that has flowed into the outdoor heat exchanger 23 flows toward the outdoor expansion valve 25, but the outdoor expansion valve 25 is closed, so that the refrigerant accumulates in the outdoor heat exchanger 23.

液冷媒回収運転を行っているときは、室内膨張弁81を閉じ、室外機2の液冷媒配管101側から室外機2に冷媒を回収しているので、液冷媒配管101に滞留する冷媒が室内機3に流入することがない。また、ガス冷媒遮断弁52を閉じているので、液冷媒配管101に滞留する冷媒が、第1バイパス管27a、過冷却熱交換器27の冷却側配管27d、第2バイパス管27bから合流部62および四方弁22を介して、室内機3およびガス冷媒配管102に流入することはない。   When the liquid refrigerant recovery operation is performed, the indoor expansion valve 81 is closed and the refrigerant is recovered from the liquid refrigerant pipe 101 side of the outdoor unit 2 to the outdoor unit 2, so that the refrigerant staying in the liquid refrigerant pipe 101 is stored indoors. It does not flow into the machine 3. Further, since the gas refrigerant shutoff valve 52 is closed, the refrigerant staying in the liquid refrigerant pipe 101 flows from the first bypass pipe 27a, the cooling side pipe 27d of the supercooling heat exchanger 27, and the second bypass pipe 27b to the junction 62. And it does not flow into the indoor unit 3 and the gas refrigerant pipe 102 via the four-way valve 22.

液冷媒回収運転を行っているときに、室外制御装置29は、吸入圧力センサ32が検出した吸入圧力を定期的に取り込んでおり、取り込んだ吸入圧力が第2の所定閾圧力(例えば、0.05MPa)以下となれば、液冷媒配管101に滞留する冷媒の回収が完了したと判断する。また、室内膨張弁81よりも液冷媒配管101側で冷媒漏れが発生する場合もあるため、室外制御装置29は、ガス冷媒回収運転と同様に、液冷媒回収運転が開始してからの運転時間を計測し、取り込んだ吸入圧力が第2の所定閾圧力以下とならなくても、液冷媒回収運転の運転時間が第2の所定時間(例えば、360秒)を経過すれば、室内機3および液冷媒配管101に滞留する冷媒の回収が完了したと判断する。運転時間については、ガス冷媒回収運転と同様に、予め試験で確認したものであり、設置状況に合わせて、室内機3および液冷媒配管101に滞留する冷媒を回収できる時間に設定している。そして、室外制御装置29は、液冷媒遮断弁51を閉じて、圧縮機21と室外ファン24と室内ファン83を停止し、液冷媒回収運転を終了する。   During the liquid refrigerant recovery operation, the outdoor control device 29 periodically takes in the suction pressure detected by the suction pressure sensor 32, and the taken-in suction pressure is a second predetermined threshold pressure (for example, 0. 0). 05 MPa) or less, it is determined that the recovery of the refrigerant staying in the liquid refrigerant pipe 101 has been completed. In addition, since the refrigerant leakage may occur on the liquid refrigerant pipe 101 side with respect to the indoor expansion valve 81, the outdoor control device 29 operates similarly to the gas refrigerant recovery operation after the liquid refrigerant recovery operation is started. Even if the taken-in suction pressure does not become the second predetermined threshold pressure or less, if the operation time of the liquid refrigerant recovery operation passes the second predetermined time (for example, 360 seconds), the indoor unit 3 and It is determined that the recovery of the refrigerant staying in the liquid refrigerant pipe 101 has been completed. As with the gas refrigerant recovery operation, the operation time is confirmed in advance by a test, and is set to a time during which the refrigerant staying in the indoor unit 3 and the liquid refrigerant pipe 101 can be recovered according to the installation situation. Then, the outdoor control device 29 closes the liquid refrigerant cutoff valve 51, stops the compressor 21, the outdoor fan 24, and the indoor fan 83, and ends the liquid refrigerant recovery operation.

尚、ガス冷媒回収運転には第1の所定閾圧力と第1の所定時間、液冷媒回収運転には第2の所定閾圧力と第2の所定時間と冷媒回収運転毎に設けているが、これに限らず、第1の閾圧力と第2の所定閾圧力、第1の所定時間と第2の所定時間を同じ値として冷媒回収運転の完了を判断してもよい。   The gas refrigerant recovery operation is provided for the first predetermined threshold pressure and the first predetermined time, and the liquid refrigerant recovery operation is provided for the second predetermined threshold pressure, the second predetermined time and the refrigerant recovery operation. Not limited to this, the completion of the refrigerant recovery operation may be determined by setting the first threshold pressure and the second predetermined threshold pressure, and the first predetermined time and the second predetermined time as the same value.

以上説明したように、冷媒回収運転においては、室内膨張弁81を閉じた後、ガス冷媒回収運転、液冷媒回収運転の順で冷媒回収運転を行う。先にガス冷媒回収運転を行って、室内機3およびガス冷媒配管102に滞留する冷媒を回収した後に、液冷媒回収運転を行って、室内機3を介さずに液冷媒配管101に滞留する冷媒を回収するので、室内への冷媒漏れを最小限に抑えることができる。   As described above, in the refrigerant recovery operation, after the indoor expansion valve 81 is closed, the refrigerant recovery operation is performed in the order of the gas refrigerant recovery operation and the liquid refrigerant recovery operation. A refrigerant that stays in the liquid refrigerant pipe 101 without going through the indoor unit 3 after performing a gas refrigerant recovery operation and recovering the refrigerant that stays in the indoor unit 3 and the gas refrigerant pipe 102 before performing a liquid refrigerant recovery operation. Thus, refrigerant leakage into the room can be minimized.

上述した冷媒回収運転を行うとき、室内への冷媒漏れを最小限に抑えるために、冷媒回路における室内側の冷媒をできる限り室外機2に回収することが望ましい。しかし、室外熱交換器23とアキュムレータ26との内容積の違いや回収した冷媒の状態(ガス冷媒と液冷媒の割合)によって、同じ割合で室外熱交換器23とアキュムレータ26に冷媒が溜まるとは限らず、いずれか一方に偏って溜まる場合がある。この場合、例えば、室外機2に回収した冷媒が室外熱交換器23に偏ると、室外熱交換器23に冷媒を回収できる場所が無くなり、この状況で圧縮機21を駆動し続けると圧縮機21が故障し、冷媒回収運転の継続ができなくなる。このような状況を回避するために、室外熱交換器23がアキュムレータ26よりも先に満液になった(例えば、室外熱交換器23の内容積の80%以上が液冷媒で満たされる)、もしくは、アキュムレータ26が室外熱交換器23よりも先に満液になった(例えば、アキュムレータ26の内容積の90%以上が液冷媒で満たされる)場合、室外制御装置29は、室外熱交換器23もしくはアキュムレータ26の満液を解消するために熱交冷媒排出運転または余剰冷媒排出運転を実行する。これら熱交冷媒排出運転および余剰冷媒排出運転について図4および図5を用いて説明する。図4は、熱交冷媒排出運転時の各弁の開閉状態を示す。図5は、余剰冷媒排出運転時の各弁の開閉状態を示す。各弁の開閉状態は、閉じている場合を黒塗りにし、開いている場合を白抜きに図示する。また、各冷媒排出運転時の冷媒の流れを一点鎖線矢印で図示する。   When performing the above-described refrigerant recovery operation, it is desirable to recover the indoor-side refrigerant in the refrigerant circuit to the outdoor unit 2 as much as possible in order to minimize refrigerant leakage into the room. However, the refrigerant accumulates in the outdoor heat exchanger 23 and the accumulator 26 at the same rate depending on the difference in the internal volume between the outdoor heat exchanger 23 and the accumulator 26 and the state of the recovered refrigerant (ratio of gas refrigerant and liquid refrigerant). Not limited to this, there may be a case where it is biased toward either one. In this case, for example, if the refrigerant recovered in the outdoor unit 2 is biased to the outdoor heat exchanger 23, there is no place in the outdoor heat exchanger 23 where the refrigerant can be recovered. If the compressor 21 is continuously driven in this situation, the compressor 21 Breaks down and refrigerant recovery operation cannot be continued. In order to avoid such a situation, the outdoor heat exchanger 23 became full before the accumulator 26 (for example, 80% or more of the internal volume of the outdoor heat exchanger 23 is filled with the liquid refrigerant). Alternatively, when the accumulator 26 becomes full before the outdoor heat exchanger 23 (for example, 90% or more of the internal volume of the accumulator 26 is filled with liquid refrigerant), the outdoor control device 29 23 or a heat exchanger discharge operation or a surplus refrigerant discharge operation is executed to eliminate the full liquid in the accumulator 26. These heat exchange refrigerant discharge operation and excess refrigerant discharge operation will be described with reference to FIGS. 4 and 5. FIG. 4 shows the open / closed state of each valve during the heat-exchange refrigerant discharge operation. FIG. 5 shows the open / close state of each valve during the surplus refrigerant discharge operation. The open / closed state of each valve is shown in black when it is closed, and white when it is open. Moreover, the flow of the refrigerant at the time of each refrigerant discharge operation is illustrated by a one-dot chain line arrow.

まず、熱交冷媒排出運転について各弁の開閉状態と冷媒の流れを説明する。   First, the open / close state of each valve and the flow of the refrigerant in the heat exchanger refrigerant discharge operation will be described.

室外制御装置29は、冷媒回収運転時に、室外熱交換器23が液冷媒で満たされてくると、室外熱交換器23で冷媒が凝縮できなくなり、圧縮機21の吐出側の圧力が上昇する。そこで、吐出圧力センサ31で検出した吐出圧力が第3の所定閾圧力(例えば、3.5MPa)以上になると、室外熱交換器23が満液であると判断し、吐出圧力上昇による圧縮機21の故障や配管折れを防ぐため、冷媒回収運転を中断して熱交冷媒排出運転を行う。   When the outdoor heat exchanger 23 is filled with liquid refrigerant during the refrigerant recovery operation, the outdoor control device 29 cannot condense the refrigerant in the outdoor heat exchanger 23 and the pressure on the discharge side of the compressor 21 increases. Therefore, when the discharge pressure detected by the discharge pressure sensor 31 is equal to or higher than a third predetermined threshold pressure (for example, 3.5 MPa), it is determined that the outdoor heat exchanger 23 is full, and the compressor 21 due to an increase in discharge pressure. In order to prevent malfunctions and broken pipes, the refrigerant recovery operation is interrupted and the heat exchange refrigerant discharge operation is performed.

熱交冷媒排出運転を行うとき、液冷媒遮断弁51およびガス冷媒遮断弁52を閉じた後に、室外膨張弁25を開く。これにより、冷媒回路は図4の状態となり、熱交冷媒排出運転が開始される。   When the heat-exchange refrigerant discharge operation is performed, the outdoor expansion valve 25 is opened after the liquid refrigerant cutoff valve 51 and the gas refrigerant cutoff valve 52 are closed. Thereby, a refrigerant circuit will be in the state of FIG. 4, and a heat exchange refrigerant | coolant discharge operation is started.

熱交冷媒排出運転が開始されると、室外熱交換器23に滞留する冷媒が図4に示す一点鎖線矢印のように流れてアキュムレータ26に流入する。液冷媒遮断弁51とガス冷媒遮断弁52とを閉じているので、室外熱交換器23から流出した冷媒が室内機3と液冷媒配管101とガス冷媒配管102に流入することがなく、室外熱交換器23の満液を解消できる。室外制御装置29は、室外熱交換器23に滞留した冷媒が流出すれば、吐出圧力が低下するので、第4の所定閾圧力(例えば、3.0MPa)以下になると、室外熱交換器23の満液が解消されたと判断し、熱交冷媒回収運転を終了して冷媒回収運転を再開する。尚、第3の所定閾圧力や第4の所定閾圧力は予め試験で求めたものであり、吐出圧力が3.5MPaは室外熱交換器23の80%が液冷媒で満たされたときの値であり、吐出圧力が3.0MPaは室外熱交換器23の20%が液冷媒で満たされたときの値である。   When the heat-exchange refrigerant discharge operation is started, the refrigerant staying in the outdoor heat exchanger 23 flows as shown by a one-dot chain line arrow shown in FIG. 4 and flows into the accumulator 26. Since the liquid refrigerant shut-off valve 51 and the gas refrigerant shut-off valve 52 are closed, the refrigerant flowing out of the outdoor heat exchanger 23 does not flow into the indoor unit 3, the liquid refrigerant pipe 101, and the gas refrigerant pipe 102, and the outdoor heat The full liquid of the exchanger 23 can be eliminated. If the refrigerant staying in the outdoor heat exchanger 23 flows out, the outdoor control device 29 decreases the discharge pressure. Therefore, when the outdoor control device 29 falls below a fourth predetermined threshold pressure (for example, 3.0 MPa), the outdoor heat exchanger 23 It is determined that the full liquid has been eliminated, the heat exchange refrigerant recovery operation is terminated, and the refrigerant recovery operation is resumed. The third predetermined threshold pressure and the fourth predetermined threshold pressure are obtained in advance by a test, and the discharge pressure is 3.5 MPa, which is a value when 80% of the outdoor heat exchanger 23 is filled with liquid refrigerant. The discharge pressure of 3.0 MPa is a value when 20% of the outdoor heat exchanger 23 is filled with the liquid refrigerant.

次に、余剰冷媒排出運転について各弁の開閉状態と冷媒の流れを説明する。   Next, the open / close state of each valve and the flow of the refrigerant will be described for the surplus refrigerant discharge operation.

室外制御装置29は、冷媒回収運転時に、アキュムレータ26が液冷媒で満たされてくると、アキュムレータ26から少しずつ液冷媒が流出し始めることで、圧縮機21から吐出される吐出温度が下がり、圧縮機21の吐出側の過熱度(以下、吐出過熱度とする)が小さくなる。そこで、吐出温度センサ41で検出した吐出温度と吐出圧力センサ31で検出した吐出圧力から換算した吐出圧力飽和温度との差から算出する吐出過熱度が第1の所定閾温度(例えば、4℃)以下になると、アキュムレータ26が満液であると判断し、液圧縮による圧縮機21の故障を防ぐため、冷媒回収運転を中断して余剰冷媒排出運転を行う。   When the accumulator 26 is filled with the liquid refrigerant during the refrigerant recovery operation, the outdoor control device 29 starts to flow out of the liquid refrigerant little by little from the accumulator 26, so that the discharge temperature discharged from the compressor 21 decreases and the compression is performed. The degree of superheat on the discharge side of the machine 21 (hereinafter referred to as discharge superheat degree) is reduced. Therefore, the discharge superheat calculated from the difference between the discharge temperature detected by the discharge temperature sensor 41 and the discharge pressure saturation temperature converted from the discharge pressure detected by the discharge pressure sensor 31 is the first predetermined threshold temperature (for example, 4 ° C.). If it becomes below, it will be judged that the accumulator 26 is full, and in order to prevent the failure of the compressor 21 by liquid compression, a refrigerant | coolant collection | recovery operation is interrupted and an excess refrigerant | coolant discharge | release operation is performed.

余剰冷媒排出運転を行うとき、液冷媒遮断弁51およびガス冷媒遮断弁52を閉じる。これにより、冷媒回路は図5の状態となり、余剰冷媒排出運転が開始される。尚、余剰冷媒排出運転を行うとき、アキュムレータ26に取り付けた図示しない電気ヒータに通電する。   When the surplus refrigerant discharge operation is performed, the liquid refrigerant cutoff valve 51 and the gas refrigerant cutoff valve 52 are closed. As a result, the refrigerant circuit enters the state shown in FIG. 5 and the surplus refrigerant discharge operation is started. When the surplus refrigerant discharge operation is performed, an electric heater (not shown) attached to the accumulator 26 is energized.

余剰冷媒排出運転が開始されると、アキュムレータ26に滞留する冷媒が図5に示す一点鎖線矢印のように流れて室外熱交換器23に流入する。このとき、液冷媒遮断弁51とガス冷媒遮断弁52とを閉じているので、アキュムレータ26に流入する冷媒は無い。また、アキュムレータ26を電気ヒータで加熱して温めることでアキュムレータ26に滞留する液冷媒の一部が蒸発してガス冷媒となるので、アキュムレータ26から冷媒を排出させることができる。このように、アキュムレータ26に流入する冷媒がなく、かつ、アキュムレータ26から冷媒を排出させることによって、アキュムレータ26の満液を解消できる。室外制御装置29は、アキュムレータ26に滞留する液冷媒が減少してアキュムレータ26から液冷媒の流出が収まると、圧縮機21の吐出側の過熱度が大きくなるので、第2の所定閾温度(例えば、8℃)以上になると、アキュムレータ26の満液が解消されたと判断し、余剰冷媒回収運転を終了して冷媒回収運転を再開する。尚、第1の所定閾温度と第1の所定閾温度は予め試験で求めたものであり、吐出過熱度が4℃はアキュムレータ26の90%が液冷媒で満たされたときの値であり、吐出過熱度が8℃はアキュムレータ26の50%が液冷媒で満たされたときの値である。   When the surplus refrigerant discharge operation is started, the refrigerant staying in the accumulator 26 flows as indicated by a one-dot chain line arrow shown in FIG. 5 and flows into the outdoor heat exchanger 23. At this time, since the liquid refrigerant cutoff valve 51 and the gas refrigerant cutoff valve 52 are closed, there is no refrigerant flowing into the accumulator 26. Further, by heating the accumulator 26 with an electric heater and heating it, a part of the liquid refrigerant staying in the accumulator 26 evaporates to become a gas refrigerant, so that the refrigerant can be discharged from the accumulator 26. In this way, there is no refrigerant flowing into the accumulator 26, and by discharging the refrigerant from the accumulator 26, the full liquid in the accumulator 26 can be eliminated. When the liquid refrigerant staying in the accumulator 26 decreases and the outflow of the liquid refrigerant stops from the accumulator 26, the outdoor control device 29 increases the degree of superheat on the discharge side of the compressor 21, so that the second predetermined threshold temperature (for example, 8 ° C.), it is determined that the full liquid in the accumulator 26 has been eliminated, the surplus refrigerant recovery operation is terminated, and the refrigerant recovery operation is restarted. The first predetermined threshold temperature and the first predetermined threshold temperature are obtained in advance by a test, and the discharge superheat degree is 4 ° C., which is a value when 90% of the accumulator 26 is filled with the liquid refrigerant. The discharge superheat degree of 8 ° C. is a value when 50% of the accumulator 26 is filled with the liquid refrigerant.

以上説明したように、冷媒回収運転時に、室外熱交換器23が満液となれば熱交冷媒排出運転を行い、アキュムレータ26が満液となれば余剰冷媒排出運転を行うことで、それぞれの満液を解消することができ、冷媒回収運転を継続できる。ただし、例えば、室外熱交換器23が満液となれば、熱交冷媒排出運転を行い室外熱交換器23に滞留する冷媒がアキュムレータ26に流入するが、室外熱交換器23の満液が解消する前にアキュムレータ26が満液になるという場合のように、熱交冷媒排出運転時もしくは余剰冷媒排出運転時に、室外熱交換器23およびアキュムレータ26の満液が解消できない場合、室外機2に冷媒回収場所が無くなるので冷媒回収運転を終了する。尚、冷媒回収運転時に室外熱交換器23とアキュムレータ26とが同時に満液となった場合も冷媒回収運転を終了する。   As described above, during the refrigerant recovery operation, if the outdoor heat exchanger 23 becomes full, the heat exchange refrigerant discharge operation is performed, and if the accumulator 26 becomes full, the excess refrigerant discharge operation is performed. The liquid can be eliminated, and the refrigerant recovery operation can be continued. However, for example, when the outdoor heat exchanger 23 becomes full, the heat exchange refrigerant discharge operation is performed and the refrigerant staying in the outdoor heat exchanger 23 flows into the accumulator 26, but the full heat of the outdoor heat exchanger 23 is eliminated. When the accumulator 26 is full before the refrigerant is discharged, if the full heat of the outdoor heat exchanger 23 and the accumulator 26 cannot be eliminated during the heat exchange refrigerant discharge operation or the surplus refrigerant discharge operation, the refrigerant is supplied to the outdoor unit 2. Since there is no recovery place, the refrigerant recovery operation is terminated. Note that the refrigerant recovery operation is also terminated when the outdoor heat exchanger 23 and the accumulator 26 become full at the same time during the refrigerant recovery operation.

次に、図6、図7、図8に示すフローチャートを用いて冷媒回収運転に関する処理の流れを説明する。図6に示すフローチャートは、室外制御装置29が実行する冷媒回収運転に関する処理の流れを示すものであり、図7は、図6に示すフローチャートのサブルーチンであり、熱交冷媒排出運転に関する処理の流れを示すものであり、図8は、図6に示すフローチャートのサブルーチンであり、余剰冷媒排出運転に関する処理の流れを示すものである。いずれのフローチャートにおいても、STはステップを表しこれに続く数字はステップ番号を表している。   Next, the flow of processing relating to the refrigerant recovery operation will be described using the flowcharts shown in FIGS. 6, 7, and 8. The flowchart shown in FIG. 6 shows the flow of processing related to the refrigerant recovery operation executed by the outdoor control device 29, and FIG. 7 is the subroutine of the flowchart shown in FIG. FIG. 8 is a subroutine of the flowchart shown in FIG. 6 and shows the flow of processing relating to the surplus refrigerant discharge operation. In any flowchart, ST represents a step, and the number following this represents a step number.

まずは、図6を用いて冷媒回収運転時の処理について説明する。   First, the process at the time of refrigerant | coolant collection | recovery driving | operation is demonstrated using FIG.

室外制御装置29は、冷媒検知センサからの入力やサービスマンからの指示により冷媒回収運転を開始する。まず、室外制御装置29は、ガス冷媒回収運転準備を行う(ST1)。ガス冷媒回収運転準備では、室外制御装置29は、室外膨張弁25と、過冷却膨張弁28と、液冷媒遮断弁51とを閉じて、圧縮機21と、室外ファン24とを駆動する。また、室外制御装置29は、室内制御装置84に、室内膨張弁81を閉じて、室内ファン83を駆動するように指示する。   The outdoor control device 29 starts the refrigerant recovery operation in response to an input from the refrigerant detection sensor or an instruction from a service person. First, the outdoor control device 29 prepares for a gas refrigerant recovery operation (ST1). In the gas refrigerant recovery operation preparation, the outdoor control device 29 closes the outdoor expansion valve 25, the supercooling expansion valve 28, and the liquid refrigerant cutoff valve 51, and drives the compressor 21 and the outdoor fan 24. In addition, the outdoor control device 29 instructs the indoor control device 84 to close the indoor expansion valve 81 and drive the indoor fan 83.

次に、室外制御装置29は、ガス冷媒回収運転時間を計測するため、タイマー計測を開始する(ST2)。   Next, the outdoor control device 29 starts timer measurement in order to measure the gas refrigerant recovery operation time (ST2).

次に、室外制御装置29は、吐出圧力センサ31、吸入圧力センサ32、吐出温度センサ41で検出している圧力・温度データを取り込む(ST3)。尚、室外制御装置29は、吐出圧力センサ31、吸入圧力センサ32、吐出温度センサ41で検出している圧力・温度データを定期的(例えば1秒毎)に取り込んで記憶している。   Next, the outdoor control device 29 takes in the pressure / temperature data detected by the discharge pressure sensor 31, the suction pressure sensor 32, and the discharge temperature sensor 41 (ST3). In addition, the outdoor control device 29 fetches and stores pressure / temperature data detected by the discharge pressure sensor 31, the suction pressure sensor 32, and the discharge temperature sensor 41 at regular intervals (for example, every second).

次に、室外制御装置29は、ST3で取り込んだ圧力・温度データを用いて、アキュムレータ26が満液であるか否かを判断する(ST4)。アキュムレータ26が満液の状態で冷媒回収運転を実行すると、圧縮機21への液戻りによる故障が発生する虞がある。これを回避するため、室外熱交換器23が満液であるか否かの判断よりもアキュムレータ26が満液であるか否かの判断を先に行う。具体的には、取り込んだ吐出温度センサ41の検出値と、吐出圧力センサ31の検出値から換算した吐出圧力飽和温度との差である吐出過熱度が第1の所定閾温度の4℃以下であるか否かで、アキュムレータ26が満液であるか否かを判断する。アキュムレータ26が満液である場合(ST4−Yes)、室外制御装置29は、ST19に処理を進める。アキュムレータ26が満液ではない場合(ST4−No)、室外制御装置29は、ST5に処理を進める。   Next, the outdoor control device 29 determines whether or not the accumulator 26 is full using the pressure / temperature data acquired in ST3 (ST4). If the refrigerant recovery operation is executed while the accumulator 26 is full, a failure due to liquid return to the compressor 21 may occur. In order to avoid this, it is determined first whether or not the accumulator 26 is full, rather than whether or not the outdoor heat exchanger 23 is full. Specifically, the discharge superheat degree that is the difference between the detected value of the discharge temperature sensor 41 taken in and the discharge pressure saturation temperature converted from the detection value of the discharge pressure sensor 31 is 4 ° C. or less of the first predetermined threshold temperature. Whether or not the accumulator 26 is full is determined based on whether or not there is. When the accumulator 26 is full (ST4-Yes), the outdoor control device 29 advances the process to ST19. When the accumulator 26 is not full (ST4-No), the outdoor control device 29 advances the process to ST5.

ST19に処理が進むと、ST3で取り込んだ圧力・温度データを用いて、室外熱交換器23が満液であるか否かを判断する。具体的には、取り込んだ吐出圧力センサ31で検出した吐出圧力が第3の所定閾圧力の3.5MPa以上であるか否かで室外熱交換器23が満液であるか否かを判断する。室外熱交換器23が満液である場合(ST19−Yes)、室外熱交換器23およびアキュムレータ26が同時に満液となり、これ以上の冷媒回収運転が行えないので、室外制御装置29は、過冷却膨張弁28と、液冷媒遮断弁51と、ガス冷媒遮断弁52とを閉じて、圧縮機21と、室外ファン24とを停止させ冷媒回収運転を終了し、本発明に関わる処理を終了する。室外熱交換器23が満液ではない場合(ST19−No)、室外制御装置29は、冷媒回収運転を一時中断し、余剰冷媒排出運転を行い(ST20)、ST16に処理を進める。   When the process proceeds to ST19, it is determined whether or not the outdoor heat exchanger 23 is full using the pressure / temperature data taken in ST3. Specifically, it is determined whether or not the outdoor heat exchanger 23 is full based on whether or not the discharge pressure detected by the taken-in discharge pressure sensor 31 is equal to or higher than the third predetermined threshold pressure of 3.5 MPa. . When the outdoor heat exchanger 23 is full (ST19-Yes), the outdoor heat exchanger 23 and the accumulator 26 are full at the same time, and no further refrigerant recovery operation can be performed. The expansion valve 28, the liquid refrigerant shut-off valve 51, and the gas refrigerant shut-off valve 52 are closed, the compressor 21 and the outdoor fan 24 are stopped, the refrigerant recovery operation is finished, and the processing related to the present invention is finished. When the outdoor heat exchanger 23 is not full (ST19-No), the outdoor control device 29 temporarily stops the refrigerant recovery operation, performs the excess refrigerant discharge operation (ST20), and proceeds to ST16.

ST5に処理が進むと、ST3で取り込んだ圧力・温度データを用いて、室外熱交換器23が液冷媒で満たされた状態であるか否かを判断する。具体的には、取り込んだ吐出圧力センサ31で検出した吐出圧力が第3の所定閾圧力の3.5MPa以上であるか否かで室外熱交換器23が満液であるか否かを判断する。室外熱交換器23が満液である場合(ST5−Yes)、室外制御装置29は、冷媒回収運転を一時中断し、熱交冷媒排出運転を行い(ST15)、ST16に処理を進める。室外熱交換器23が満液ではない場合(ST5−No)、室外制御装置29は、冷媒回収運転を継続して、ST6に処理を進める。   When the process proceeds to ST5, it is determined whether or not the outdoor heat exchanger 23 is in a state filled with the liquid refrigerant using the pressure / temperature data taken in ST3. Specifically, it is determined whether or not the outdoor heat exchanger 23 is full based on whether or not the discharge pressure detected by the taken-in discharge pressure sensor 31 is equal to or higher than the third predetermined threshold pressure of 3.5 MPa. . When the outdoor heat exchanger 23 is full (ST5-Yes), the outdoor control device 29 temporarily interrupts the refrigerant recovery operation, performs the heat exchanger discharge operation (ST15), and proceeds to ST16. When the outdoor heat exchanger 23 is not full (ST5-No), the outdoor control device 29 continues the refrigerant recovery operation and advances the process to ST6.

ST16では、室外制御装置29は、後述する満液フラグが「0」であるか否かを判断する。満液フラグが「0」である場合は、熱交冷媒排出運転(ST15)もしくは余剰冷媒排出運転(ST20)を行ったことで、室外熱交換器23もしくはアキュムレータ26の満液が解消できたことを表し、満液フラグ「1」の場合は、熱交冷媒排出運転(ST15)もしくは余剰冷媒排出運転(ST20)を行っても、室外熱交換器23およびアキュムレータ26の満液が解消できなかったことを表す。満液フラグが「0」であれば(ST16−Yes)、室外制御装置29は、ST6に処理を進める。満液フラグが「1」であれば(ST16−No)、室外制御装置29は、冷媒回収運転を終了し、本発明に関わる処理を終了する。   In ST16, the outdoor control device 29 determines whether or not a full liquid flag to be described later is “0”. When the full liquid flag is “0”, the full liquid in the outdoor heat exchanger 23 or the accumulator 26 has been eliminated by performing the heat exchanger refrigerant discharge operation (ST15) or the surplus refrigerant discharge operation (ST20). In the case of the full liquid flag “1”, the full liquid in the outdoor heat exchanger 23 and the accumulator 26 could not be resolved even if the heat exchanger refrigerant discharge operation (ST15) or the surplus refrigerant discharge operation (ST20) was performed. Represents that. If the full liquid flag is “0” (ST16-Yes), the outdoor control device 29 advances the process to ST6. If the full liquid flag is “1” (ST16-No), the outdoor control device 29 ends the refrigerant recovery operation and ends the processing relating to the present invention.

次に、室外制御装置29は、ガス冷媒の回収が完了したか否かを判断する。これは、室内機3およびガス冷媒配管102に滞留する冷媒を室外機2に回収できたか否かを判断するものであり、具体的には、取り込んだ吸入圧力センサ32で検出した吸入圧力が第1の所定閾圧力の0.05MPa以下であるか否か、もしくは、ST2でタイマー計測してから第1の所定時間の180秒経過したか否かでガス冷媒の回収が完了したか否かを判断する。ガス冷媒の回収が完了していれば(ST6−Yes)、室外制御装置29は、ガス冷媒遮断弁52を閉じて、ガス冷媒回収運転を終了する(ST7)。ガス冷媒の回収が完了していなければ(ST6−No)、室外制御装置29は、ST3に処理を戻し、ガス冷媒回収運転を継続する。   Next, the outdoor control device 29 determines whether or not the recovery of the gas refrigerant has been completed. This is to determine whether or not the refrigerant staying in the indoor unit 3 and the gas refrigerant pipe 102 has been recovered in the outdoor unit 2. Specifically, the suction pressure detected by the suction pressure sensor 32 taken in is the first. Whether or not the recovery of the gas refrigerant is completed depending on whether or not the predetermined threshold pressure of 1 is 0.05 MPa or less, or whether or not 180 seconds of the first predetermined time have elapsed since the timer measurement in ST2. to decide. If the recovery of the gas refrigerant has been completed (ST6-Yes), the outdoor control device 29 closes the gas refrigerant cutoff valve 52 and ends the gas refrigerant recovery operation (ST7). If the recovery of the gas refrigerant has not been completed (ST6-No), the outdoor control device 29 returns the process to ST3 and continues the gas refrigerant recovery operation.

ガス冷媒回収運転が終了すると、次に、室外制御装置29は、液冷媒回収運転準備を行う(ST8)。液冷媒回収運転準備では、室外制御装置29は、過冷却膨張弁28と、液冷媒遮断弁51とを開く。   When the gas refrigerant recovery operation is finished, the outdoor control device 29 next prepares for the liquid refrigerant recovery operation (ST8). In the liquid refrigerant recovery operation preparation, the outdoor control device 29 opens the supercooling expansion valve 28 and the liquid refrigerant cutoff valve 51.

次に、室外制御装置29は、液冷媒回収運転時間を計測するため、タイマー計測を開始する(ST9)。   Next, the outdoor control device 29 starts timer measurement in order to measure the liquid refrigerant recovery operation time (ST9).

次に、室外制御装置29は、吐出圧力センサ31、吸入圧力センサ32、吐出温度センサ41で検出している圧力・温度データ取り込み処理を行う(ST10)。   Next, the outdoor control device 29 performs a process for taking in pressure / temperature data detected by the discharge pressure sensor 31, the suction pressure sensor 32, and the discharge temperature sensor 41 (ST10).

次に、室外制御装置29は、ST10で取り込んだ圧力・温度データを用いて、室外熱交換器23およびアキュムレータ26が満液であるか否かを判定する。尚、本判定に関わる処理である、ST11、ST12、ST17、ST18、ST21、ST22については、前述したST4、ST5、ST15、ST16、ST19、ST20と同様の処理であるので、詳細な説明は省略する。   Next, the outdoor control device 29 determines whether or not the outdoor heat exchanger 23 and the accumulator 26 are full using the pressure / temperature data acquired in ST10. Note that ST11, ST12, ST17, ST18, ST21, and ST22, which are processes related to this determination, are the same as ST4, ST5, ST15, ST16, ST19, and ST20 described above, and thus detailed description thereof is omitted. To do.

ST12において室外熱交換器23が満液ではない(ST12−No)、もしくは、ST18において冷媒回収運転を再開できる(ST18−Yes)と判断し、ST13に処理が進むと、次に、室外制御装置29は、液冷媒の回収が完了したか否かを判断する。これは、液冷媒配管101に滞留する冷媒を室外機2に回収できたか否かを判断するものであり、具体的には、取り込んだ吸入圧力センサ32で検出した吸入圧力が第2の所定閾圧力の0.05MPa以下であるか否か、もしくは、ST9でタイマー計測を開始してから第2の所定時間の360秒経過したか否かで液冷媒の回収が完了したか否かを判断する。液冷媒の回収が完了していれば(ST13−Yes)、室外制御装置29は、過冷却膨張弁28と、液冷媒遮断弁51とを閉じて、圧縮機21と室外ファン24とを停止し、液冷媒回収運転を終了する(ST14)。液冷媒の回収が完了していなければ(ST13−No)、室外制御装置29は、ST10に処理を戻し、液冷媒回収運転を継続する。   When it is determined in ST12 that the outdoor heat exchanger 23 is not full (ST12-No) or the refrigerant recovery operation can be resumed in ST18 (ST18-Yes), the process proceeds to ST13, and then the outdoor control device 29 determines whether the recovery of the liquid refrigerant has been completed. This is to determine whether or not the refrigerant staying in the liquid refrigerant pipe 101 can be collected in the outdoor unit 2. Specifically, the suction pressure detected by the suction pressure sensor 32 taken in is a second predetermined threshold value. It is determined whether or not the recovery of the liquid refrigerant is completed depending on whether or not the pressure is 0.05 MPa or less or whether or not 360 seconds of the second predetermined time have elapsed since the start of the timer measurement in ST9. . If the recovery of the liquid refrigerant is completed (ST13-Yes), the outdoor control device 29 closes the supercooling expansion valve 28 and the liquid refrigerant shut-off valve 51, and stops the compressor 21 and the outdoor fan 24. Then, the liquid refrigerant recovery operation is terminated (ST14). If the recovery of the liquid refrigerant has not been completed (ST13-No), the outdoor control device 29 returns the process to ST10 and continues the liquid refrigerant recovery operation.

次に、図7を用いて、図6のST15、または、ST17で行う、熱交冷媒排出運転について説明する。   Next, the heat exchanger discharge operation performed in ST15 or ST17 in FIG. 6 will be described with reference to FIG.

まず、室外制御装置29は、熱交冷媒排出運転準備を行う(ST101)。具体的には、冷媒回収運転を中断するため、液冷媒遮断弁51およびガス冷媒遮断弁52を閉じ、室外熱交換器23内に滞留する冷媒を排出するため、室外膨張弁25を開く。   First, the outdoor control device 29 prepares for a heat exchange refrigerant discharge operation (ST101). Specifically, in order to interrupt the refrigerant recovery operation, the liquid refrigerant shut-off valve 51 and the gas refrigerant shut-off valve 52 are closed, and the outdoor expansion valve 25 is opened in order to discharge the refrigerant staying in the outdoor heat exchanger 23.

次に、室外制御装置29は、吐出圧力センサ31、吸入圧力センサ32、吐出温度センサ41で検出している圧力・温度データを取り込む(ST102)。   Next, the outdoor control device 29 takes in the pressure / temperature data detected by the discharge pressure sensor 31, the suction pressure sensor 32, and the discharge temperature sensor 41 (ST102).

次に、室外制御装置29は、室外熱交換器23の液冷媒が排出されたか否かを判断する(ST103)。具体的には、取り込んだ吐出圧力センサ31で検出した吐出圧力が第4の所定閾圧力の3.0MPa以下であるか否かで室外熱交換器23の液冷媒が排出されたか否かを判断する。室外熱交換器23の液冷媒が排出された場合(ST103−Yes)、室外制御装置29は、室外熱交換器23の満液を解消できたので、満液フラグを「0」(ST104)にし、室外膨張弁25を閉じて、ガス冷媒回収運転時(図6のST15)に熱交冷媒排出運転を行う場合はガス冷媒遮断弁52を開き、液冷媒回収運転時(図6のST17)で熱交冷媒排出運転を行う場合は液冷媒遮断弁51を開いて熱交冷媒排出運転を終了する。室外熱交換器23の液冷媒が排出されていない場合(ST103−No)、室外制御装置29は、ST105に処理を進める。   Next, the outdoor control device 29 determines whether or not the liquid refrigerant in the outdoor heat exchanger 23 has been discharged (ST103). Specifically, it is determined whether or not the liquid refrigerant in the outdoor heat exchanger 23 has been discharged depending on whether or not the discharge pressure detected by the taken-in discharge pressure sensor 31 is not more than the fourth predetermined threshold pressure of 3.0 MPa. To do. When the liquid refrigerant in the outdoor heat exchanger 23 is discharged (ST103-Yes), the outdoor control device 29 can eliminate the full liquid in the outdoor heat exchanger 23, and therefore sets the full liquid flag to “0” (ST104). When the outdoor expansion valve 25 is closed and the heat exchanger discharge operation is performed during the gas refrigerant recovery operation (ST15 in FIG. 6), the gas refrigerant shut-off valve 52 is opened and the liquid refrigerant recovery operation (ST17 in FIG. 6). When performing the heat exchanger refrigerant discharge operation, the liquid refrigerant shut-off valve 51 is opened to end the heat exchanger refrigerant discharge operation. When the liquid refrigerant in the outdoor heat exchanger 23 is not discharged (ST103-No), the outdoor control device 29 advances the process to ST105.

ST105では、室外制御装置29は、アキュムレータ26が満液であるか否かを判断する。具体的には、吐出過熱度が第1の所定閾温度の4℃以下であるか否かで、アキュムレータ26が満液であるか否かを判断する。アキュムレータ26が満液である場合(ST105−Yes)、室外制御装置29は、室外熱交換器23およびアキュムレータ26の満液を解消できなかったので、満液フラグを「1」(ST106)にして、熱交冷媒排出運転を終了する。アキュムレータ26が満液ではない場合(ST105−No)、室外制御装置29は、ST102に処理を戻し、熱交冷媒排出運転を継続する。   In ST105, the outdoor control device 29 determines whether or not the accumulator 26 is full. Specifically, whether or not the accumulator 26 is full is determined based on whether or not the discharge superheat degree is 4 ° C. or less, which is the first predetermined threshold temperature. If the accumulator 26 is full (ST105-Yes), the outdoor control device 29 has not been able to eliminate the full liquid in the outdoor heat exchanger 23 and the accumulator 26, so the full liquid flag is set to “1” (ST106). Then, the heat exchanger refrigerant discharge operation is terminated. When the accumulator 26 is not full (ST105-No), the outdoor control device 29 returns the process to ST102 and continues the heat exchange refrigerant discharge operation.

次に、図8を用いて、図6のST20、または、ST22で行う、余剰冷媒排出運転について説明する。   Next, the surplus refrigerant discharge operation performed in ST20 or ST22 of FIG. 6 will be described with reference to FIG.

まず、室外制御装置29は、余剰冷媒排出運転準備を行う(ST201)。具体的には、冷媒回収運転を中断するため、液冷媒遮断弁51およびガス冷媒遮断弁52を閉じる。このとき、室外制御装置29は、アキュムレータ26に取り付けた図示しない電気ヒータに通電を開始する。   First, the outdoor control device 29 prepares for excess refrigerant discharge operation (ST201). Specifically, in order to interrupt the refrigerant recovery operation, the liquid refrigerant cutoff valve 51 and the gas refrigerant cutoff valve 52 are closed. At this time, the outdoor control device 29 starts energizing an electric heater (not shown) attached to the accumulator 26.

次に、室外制御装置29は、吐出圧力センサ31、吸入圧力センサ32、吐出温度センサ41で検出している圧力・温度データを取り込む(ST202)。   Next, the outdoor control device 29 takes in the pressure / temperature data detected by the discharge pressure sensor 31, the suction pressure sensor 32, and the discharge temperature sensor 41 (ST202).

次に、室外制御装置29は、アキュムレータ26の液冷媒が排出されたか否かを判断する。(ST203)。具体的には、取り込んだ吐出温度センサ41の検出値と吐出圧力センサ31の検出値から換算した吐出圧力飽和温度との差である吐出過熱度が第2の所定閾温度の8℃以上であるか否かでアキュムレータ26の液冷媒が排出されたか否かを判断する。アキュムレータ26の液冷媒が排出された場合(ST203−Yes)、室外制御装置29は、アキュムレータ26の満液が解消できたので、満液フラグを「0」(ST204)にし、アキュムレータ26に取り付けた図示しない電気ヒータへの通電を止め、ガス冷媒回収運転時(図6のST20)に余剰冷媒回収運転を行う場合は、ガス冷媒遮断弁52を開き、液冷媒回収運転時(図6のST22)に余剰冷媒回収運転を行う場合は、液冷媒遮断弁51を開いて余剰冷媒排出運転を終了させる。アキュムレータ26の液冷媒が排出されていない場合(ST203−No)、室外制御装置29は、ST205に処理を進める。   Next, the outdoor control device 29 determines whether or not the liquid refrigerant in the accumulator 26 has been discharged. (ST203). Specifically, the discharge superheat degree that is the difference between the detected value of the discharged discharge temperature sensor 41 and the discharge pressure saturation temperature converted from the detected value of the discharge pressure sensor 31 is equal to or higher than the second predetermined threshold temperature of 8 ° C. Whether or not the liquid refrigerant in the accumulator 26 has been discharged. When the liquid refrigerant in the accumulator 26 has been discharged (ST203-Yes), the outdoor control device 29 has cleared the full liquid in the accumulator 26, so the full liquid flag is set to “0” (ST204) and attached to the accumulator 26. When the electric heater (not shown) is turned off and the surplus refrigerant recovery operation is performed during the gas refrigerant recovery operation (ST20 in FIG. 6), the gas refrigerant shut-off valve 52 is opened and the liquid refrigerant recovery operation is performed (ST22 in FIG. 6). When the surplus refrigerant recovery operation is performed, the liquid refrigerant shut-off valve 51 is opened to end the surplus refrigerant discharge operation. When the liquid refrigerant in the accumulator 26 has not been discharged (ST203—No), the outdoor control device 29 advances the process to ST205.

ST205において、室外制御装置29は、室外熱交換器23が満液であるか否かを判断する。具体的には、吐出圧力が第3の所定閾圧力の3.5MPa以上であるか否かで室外熱交換器23が満液であるか否かを判断する。室外熱交換器23が満液である場合(ST205−Yes)、室外制御装置29は、室外熱交換器23およびアキュムレータ26の満液を解消できなかったので、満液フラグを「1」(ST206)にして、アキュムレータ26に取り付けた図示しない電気ヒータへの通電を止め、余剰冷媒排出運転を終了する。室外熱交換器23満液ではない場合(ST205−No)、室外制御装置29は、ST202に処理を戻す。余剰冷媒排出運転を継続する。   In ST205, the outdoor control device 29 determines whether or not the outdoor heat exchanger 23 is full. Specifically, it is determined whether or not the outdoor heat exchanger 23 is full based on whether or not the discharge pressure is equal to or higher than the third predetermined threshold pressure of 3.5 MPa. When the outdoor heat exchanger 23 is full (ST205-Yes), the outdoor control device 29 has not been able to eliminate the full liquid in the outdoor heat exchanger 23 and the accumulator 26, so the full liquid flag is set to “1” (ST206). ), The energization of the electric heater (not shown) attached to the accumulator 26 is stopped, and the surplus refrigerant discharge operation is terminated. When the outdoor heat exchanger 23 is not full (ST205-No), the outdoor control device 29 returns the process to ST202. Continue surplus refrigerant discharge operation.

以上説明した通り、本実施例によれば、室内機3を介さずに液冷媒配管101に滞留する冷媒を室外機2に回収することができる。さらに冷媒排出運転を行うことで室外熱交換器23もしくはアキュムレータ26の満液を解消し、冷媒回収運転を継続できるので、冷媒回路における室内側に滞留する冷媒を出来る限り多く回収することができ、室内への冷媒漏れ量を削減できる。   As described above, according to the present embodiment, the refrigerant staying in the liquid refrigerant pipe 101 without using the indoor unit 3 can be collected in the outdoor unit 2. Further, by performing the refrigerant discharge operation, the fullness of the outdoor heat exchanger 23 or the accumulator 26 is eliminated, and the refrigerant recovery operation can be continued, so that it is possible to recover as much refrigerant as possible staying indoors in the refrigerant circuit, The amount of refrigerant leakage into the room can be reduced.

尚、本実施例では、室外熱交換器23が満液であるか否かを吐出圧力を用いて判断したが、これに限らず、例えば、室外熱交換器23に複数の温度センサを取り付け、複数の温度センサの検出値を用いて、室外熱交換器23が満液であるか否かを判断してもよい。また、アキュムレータ26が満液であるか否かを吐出過熱度を用いて判定したが、これに限らず、例えば、吐出温度センサ41の検出値や吸入温度センサ42の検出値を用いて、アキュムレータ26が満液であるか否かを判断してもよい。   In this embodiment, whether or not the outdoor heat exchanger 23 is full is determined using the discharge pressure. However, the present invention is not limited to this. For example, a plurality of temperature sensors are attached to the outdoor heat exchanger 23. It may be determined whether or not the outdoor heat exchanger 23 is full using detection values of a plurality of temperature sensors. Whether or not the accumulator 26 is full is determined using the discharge superheat degree. However, the present invention is not limited to this. For example, the accumulator is detected using the detection value of the discharge temperature sensor 41 or the detection value of the suction temperature sensor 42. It may be determined whether or not 26 is full.

次に本発明による空気調和機1の第2の実施例について説明する。尚、本実施例では、冷媒回収運転による各弁の動作やその効果については、第1の実施例と同じであるため、詳細な説明を省略する。第1の実施例と異なるのは、ガス冷媒遮断弁52を逆止弁53にしたことである。   Next, a second embodiment of the air conditioner 1 according to the present invention will be described. In this embodiment, the operation of each valve and its effect by the refrigerant recovery operation are the same as those in the first embodiment, and thus detailed description thereof is omitted. The difference from the first embodiment is that the gas refrigerant shutoff valve 52 is a check valve 53.

図9は、第2の実施例における空気調和機1の冷媒回路構成である。図9では、図1で説明したガス冷媒遮断弁52を無くし、四方弁22のポートcとアキュムレータ26を接続する冷媒配管におけるポートcと合流部62との間に、四方弁22のポートcからアキュムレータ26へ冷媒が流れる方向に逆止弁53を取り付ける。逆止弁53の働きにより、液冷媒回収運転時に、液冷媒配管101に滞留する冷媒が、第1バイパス管27a、過冷却熱交換器27の冷却側配管27d、第2バイパス管27bから合流部62および四方弁22を介して、室内機3およびガス冷媒配管102に冷媒が流出し、室内に冷媒が漏れることはない。   FIG. 9 shows a refrigerant circuit configuration of the air conditioner 1 according to the second embodiment. In FIG. 9, the gas refrigerant shutoff valve 52 described in FIG. 1 is eliminated, and the port c of the four-way valve 22 is connected between the port c of the refrigerant pipe connecting the port c of the four-way valve 22 and the accumulator 26 and the junction 62. A check valve 53 is attached in the direction in which the refrigerant flows to the accumulator 26. Due to the function of the check valve 53, the refrigerant staying in the liquid refrigerant pipe 101 during the liquid refrigerant recovery operation is joined from the first bypass pipe 27a, the cooling side pipe 27d of the supercooling heat exchanger 27, and the second bypass pipe 27b. The refrigerant does not flow out into the indoor unit 3 and the gas refrigerant pipe 102 through the 62 and the four-way valve 22, and the refrigerant does not leak into the room.

以上説明した実施例では、ガス冷媒遮断弁52を逆止弁53としたことで、より安価な構成で本発明を実施できる。また、室外制御装置29によるガス冷媒遮断弁52の開閉制御が無く、冷媒回収運転に関わる制御をより簡略化できる。   In the embodiment described above, the gas refrigerant shut-off valve 52 is the check valve 53, so that the present invention can be implemented with a cheaper configuration. Further, there is no open / close control of the gas refrigerant shutoff valve 52 by the outdoor control device 29, and the control related to the refrigerant recovery operation can be further simplified.

以上説明した通り、本発明の空気調和機は、室内機を介さずに液冷媒配管に滞留する冷媒を室外機に回収することができるので、室内機で冷媒漏れが発生した場合でも、室内への冷媒漏れを最小限に抑えることができる。また、室外熱交換器に加えアキュムレータにも冷媒を滞留させることで、封入冷媒量が多い空気調和機においても冷媒回収運転が確実に行える。   As described above, since the air conditioner of the present invention can collect the refrigerant staying in the liquid refrigerant pipe without passing through the indoor unit in the outdoor unit, even if a refrigerant leak occurs in the indoor unit, it can be taken indoors. The refrigerant leakage can be minimized. Further, by allowing the refrigerant to stay in the accumulator in addition to the outdoor heat exchanger, the refrigerant recovery operation can be performed reliably even in an air conditioner having a large amount of enclosed refrigerant.

尚、以上説明した実施例では、ガス冷媒回収運転を行ってから液冷媒回収運転を行う順番で説明したが、本発明は、これに限るものではなく、液冷媒配管から冷媒漏れが発生した場合は、液冷媒回収運転を行ってからガス冷媒回収運転を行ってもよい。冷媒漏れ部に応じてガス冷媒回収運転と液冷媒回収運転とを行う順番決定すれば、より室内への冷媒漏れ量を削減できる。また、ガス冷媒回収運転と液冷媒回収運転のどちらかだけを行うだけでも室内への冷媒漏れ量を削減できる。また、四方弁を備えた冷暖房切換型の空気調和機だけではなく、冷房専用の空気調和機で実施しても同様の効果が得られる。また、過冷却熱交換器を介して液冷媒配管の冷媒を回収したが、本発明は、これに限るものではなく、過冷却熱交換器を備えない空気調和機においては、室外膨張弁と液冷媒遮断弁の間とガス冷媒遮断弁とアキュムレータの間とをバイパスする、過冷却熱交換器の冷却側配管、第1バイパス管および第2バイパス管と同様の冷媒回収用開閉弁を有するバイパス回路を備えた構成でもよい。また、室外機に、バイパス回路、液冷媒遮断弁、ガス冷媒遮断弁を備える必要はなく、各接続配管の途中、または、室外機と各接続配管の間にこれらの構成を備えてもよい。   In the embodiment described above, the description has been given in the order in which the liquid refrigerant recovery operation is performed after the gas refrigerant recovery operation is performed. However, the present invention is not limited to this, and when the refrigerant leaks from the liquid refrigerant pipe The gas refrigerant recovery operation may be performed after the liquid refrigerant recovery operation. If the order in which the gas refrigerant recovery operation and the liquid refrigerant recovery operation are performed in accordance with the refrigerant leakage portion is determined, the amount of refrigerant leakage into the room can be further reduced. Moreover, the amount of refrigerant leaking into the room can be reduced only by performing either the gas refrigerant recovery operation or the liquid refrigerant recovery operation. Further, the same effect can be obtained when the present invention is implemented not only with a cooling / heating switching type air conditioner including a four-way valve but also with an air conditioner dedicated to cooling. Further, the refrigerant in the liquid refrigerant pipe is recovered via the supercooling heat exchanger, but the present invention is not limited to this, and in an air conditioner that does not include the supercooling heat exchanger, the outdoor expansion valve and the liquid A bypass circuit having a refrigerant recovery on-off valve similar to the cooling side piping, the first bypass pipe, and the second bypass pipe of the supercooling heat exchanger that bypasses between the refrigerant cutoff valves and between the gas refrigerant cutoff valve and the accumulator. The structure provided with may be sufficient. Moreover, it is not necessary to provide a bypass circuit, a liquid refrigerant | coolant cutoff valve, and a gas refrigerant cutoff valve in an outdoor unit, You may provide these structures in the middle of each connection piping, or between an outdoor unit and each connection piping.

尚、以上説明した実施例では、余剰冷媒排出運転時にアキュムレータに取り付けた電気ヒータを用いて冷媒を蒸発させる場合について説明したが、圧縮機から吐出された高温の冷媒をアキュムレータに流入させることでアキュムレータに滞留する冷媒を蒸発させてもよく、例えば、圧縮機と室外熱交換器の間とガス冷媒遮断弁とアキュムレータの間とをバイパスするバイパス管と開閉弁とを有するバイパス回路を備えた構成とし、開閉弁を開くことで圧縮機から吐出された高温の冷媒をアキュムレータに流入させ冷媒を蒸発させてもよい。   In the embodiment described above, the case where the refrigerant is evaporated using the electric heater attached to the accumulator during the surplus refrigerant discharge operation has been described. However, the accumulator can be obtained by causing the high-temperature refrigerant discharged from the compressor to flow into the accumulator. The refrigerant staying in the tank may be evaporated, for example, having a bypass circuit having a bypass pipe and an on-off valve that bypasses between the compressor and the outdoor heat exchanger, and between the gas refrigerant shut-off valve and the accumulator. Alternatively, the refrigerant may be evaporated by opening the on-off valve so that the high-temperature refrigerant discharged from the compressor flows into the accumulator.

1 空気調和機
2 室外機
3 室内機
21 圧縮機
22 四方弁
23 室外熱交換器
24 室外ファン
25 室外膨張弁
26 アキュムレータ
27 過冷却熱交換器
27a 第1バイパス管
27b 第2バイパス管
27c 被冷却側配管
27d 冷却側配管
28 過冷却膨張弁
31 吐出圧力センサ
32 吸入圧力センサ
41 吐出温度センサ
42 吸入温度センサ
51 液冷媒遮断弁
52 ガス冷媒遮断弁
53 逆止弁
81 室内膨張弁
101 液冷媒配管
102 ガス冷媒配管
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 Indoor unit 21 Compressor 22 Four-way valve 23 Outdoor heat exchanger 24 Outdoor fan 25 Outdoor expansion valve 26 Accumulator 27 Supercooling heat exchanger 27a First bypass pipe 27b Second bypass pipe 27c Cooled side Pipe 27d Cooling side pipe 28 Supercooling expansion valve 31 Discharge pressure sensor 32 Suction pressure sensor 41 Discharge temperature sensor 42 Suction temperature sensor 51 Liquid refrigerant shutoff valve 52 Gas refrigerant shutoff valve 53 Check valve 81 Indoor expansion valve 101 Liquid refrigerant pipe 102 Gas Refrigerant piping

Claims (6)

圧縮機と室外熱交換器と室外側開閉弁とアキュムレータとを有する室外機と、室内熱交換器と室内側開閉弁とを有する室内機とが、液冷媒配管とガス冷媒配管により接続される空気調和機であって、
前記空気調和機は、前記液冷媒配管の冷媒の流れを遮断可能な液冷媒遮断機構と、前記ガス冷媒配管の冷媒の流れを遮断可能なガス冷媒遮断機構と、前記室外側開閉弁と前記液冷媒遮断機構の間と前記ガス冷媒遮断機構と前記アキュムレータの間とをバイパスする冷媒回収用開閉弁を有するバイパス回路と、前記各冷媒遮断機構や前記全ての開閉弁の開閉制御を行う制御手段と、を有し、
前記制御手段は、前記室外機に冷媒を回収する冷媒回収運転を実行する際、
前記液冷媒遮断機構を閉じ、前記ガス冷媒遮断機構を開いて、前記室内機、および、前記ガス冷媒配管に滞留する冷媒を回収するガス冷媒回収運転、および/または、
前記ガス冷媒遮断機構を閉じ、前記液冷媒遮断機構を開いて、前記液冷媒配管に滞留する冷媒を回収する液冷媒回収運転、がある、
ことを特徴とする空気調和機。
An air in which an outdoor unit having a compressor, an outdoor heat exchanger, an outdoor open / close valve, and an accumulator, and an indoor unit having an indoor heat exchanger and an indoor open / close valve are connected by a liquid refrigerant pipe and a gas refrigerant pipe. A harmony machine,
The air conditioner includes a liquid refrigerant blocking mechanism that can block a refrigerant flow in the liquid refrigerant pipe, a gas refrigerant blocking mechanism that can block a refrigerant flow in the gas refrigerant pipe, the outdoor on-off valve, and the liquid A bypass circuit having a refrigerant recovery on-off valve that bypasses between the refrigerant shut-off mechanism and between the gas refrigerant shut-off mechanism and the accumulator, and a control means for performing on-off control of each of the refrigerant shut-off mechanisms and all the on-off valves; Have
When the control means executes a refrigerant recovery operation for recovering the refrigerant in the outdoor unit,
A gas refrigerant recovery operation in which the liquid refrigerant shut-off mechanism is closed, the gas refrigerant shut-off mechanism is opened, and the refrigerant staying in the indoor unit and the gas refrigerant pipe is recovered; and / or
There is a liquid refrigerant recovery operation in which the gas refrigerant shut-off mechanism is closed, the liquid refrigerant shut-off mechanism is opened, and the refrigerant staying in the liquid refrigerant pipe is recovered.
An air conditioner characterized by that.
前記室外機は、前記圧縮機から吐出された冷媒を前記室外熱交換器もしくは前記室内熱交換器に流れるように切り換える流路切換手段をさらに有し、
前記ガス冷媒遮断機構に代えて、逆止弁を備え、
前記逆止弁は、前記流路切換手段と前記アキュムレータとを接続する冷媒配管に備えられ、前記流路切換手段から前記アキュムレータへ向かって冷媒が流れるように配置され、前記バイパス回路の一端は前記逆止弁の流出側に接続する、
ことを特徴とする請求項1に記載の空気調和機。
The outdoor unit further includes a flow path switching means for switching the refrigerant discharged from the compressor to flow to the outdoor heat exchanger or the indoor heat exchanger,
In place of the gas refrigerant shut-off mechanism, a check valve is provided,
The check valve is provided in a refrigerant pipe connecting the flow path switching means and the accumulator, and is arranged so that the refrigerant flows from the flow path switching means toward the accumulator, and one end of the bypass circuit is Connect to the check valve outflow side,
The air conditioner according to claim 1.
前記制御手段は、前記室内機もしくは前記ガス冷媒配管で冷媒漏れが発生した時に、前記冷媒回収運転を実行する際、前記ガス冷媒回収運転を先に開始し、前記液冷媒回収運転を後で行う、
ことを特徴とする請求項1または請求項2に記載の空気調和機。
When the refrigerant recovery operation is executed when the refrigerant leaks in the indoor unit or the gas refrigerant pipe, the control unit starts the gas refrigerant recovery operation first and performs the liquid refrigerant recovery operation later. ,
The air conditioner according to claim 1 or 2, characterized by the above.
前記制御手段は、前記液冷媒配管で冷媒漏れが発生した時に、前記冷媒回収運転を実行する際、前記液冷媒回収運転を先に開始し、前記ガス冷媒回収運転を後で行う、
ことを特徴とする請求項1または請求項2に記載の空気調和機。
The control means starts the liquid refrigerant recovery operation first and performs the gas refrigerant recovery operation later when performing the refrigerant recovery operation when a refrigerant leak occurs in the liquid refrigerant pipe.
The air conditioner according to claim 1 or 2, characterized by the above.
前記室外機は、前記圧縮機の吸入側に吸入圧力を検出する吸入圧力検知手段を有し、
前記制御手段は、前記ガス冷媒回収運転を行っているときに、前記吸入圧力検知手段で検出した前記吸入圧力が第1の所定閾圧力以下である場合は、前記ガス冷媒回収運転を終了し、前記液冷媒回収運転を行っているときに、前記吸入圧力検知手段で検出した前記吸入圧力が第2の所定閾圧力以下である場合は、前記液冷媒回収運転を終了する、
ことを特徴とする請求項1乃至請求項4に記載の空気調和機。
The outdoor unit has suction pressure detection means for detecting suction pressure on the suction side of the compressor;
The control means ends the gas refrigerant recovery operation when the suction pressure detected by the suction pressure detection means is equal to or lower than a first predetermined threshold pressure during the gas refrigerant recovery operation. When the liquid refrigerant recovery operation is being performed, if the suction pressure detected by the suction pressure detection means is equal to or lower than a second predetermined threshold pressure, the liquid refrigerant recovery operation is terminated.
The air conditioner according to any one of claims 1 to 4, wherein:
前記制御手段は、ガス冷媒回収運転、または、液冷媒回収運転の運転時間の計測を行い、前記ガス冷媒回収運転の運転時間が第1の所定時間を経過すれば、前記ガス冷媒回収運転を終了し、前記液冷媒回収運転の運転時間が第2の所定時間を経過すれば、前記液冷媒回収運転を終了する、
ことを特徴とする請求項1乃至請求項4に記載の空気調和機。
The control means measures the operation time of the gas refrigerant recovery operation or the liquid refrigerant recovery operation, and ends the gas refrigerant recovery operation when the operation time of the gas refrigerant recovery operation has passed the first predetermined time. When the operation time of the liquid refrigerant recovery operation has passed the second predetermined time, the liquid refrigerant recovery operation is terminated.
The air conditioner according to any one of claims 1 to 4, wherein:
JP2013211533A 2013-10-09 2013-10-09 Air conditioner Expired - Fee Related JP6075264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211533A JP6075264B2 (en) 2013-10-09 2013-10-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211533A JP6075264B2 (en) 2013-10-09 2013-10-09 Air conditioner

Publications (2)

Publication Number Publication Date
JP2015075272A true JP2015075272A (en) 2015-04-20
JP6075264B2 JP6075264B2 (en) 2017-02-08

Family

ID=53000262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211533A Expired - Fee Related JP6075264B2 (en) 2013-10-09 2013-10-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP6075264B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087071A (en) * 2013-10-31 2015-05-07 株式会社富士通ゼネラル Air conditioner
JP6377299B1 (en) * 2017-10-05 2018-08-22 三菱電機株式会社 Air conditioner
WO2019053771A1 (en) * 2017-09-12 2019-03-21 三菱電機株式会社 Air conditioning device
US20200011580A1 (en) * 2017-03-13 2020-01-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN111121154A (en) * 2020-01-20 2020-05-08 青岛海信日立空调系统有限公司 Multi-connected air conditioner
CN111121155A (en) * 2020-01-20 2020-05-08 青岛海信日立空调系统有限公司 Multi-connected air conditioner
WO2020158653A1 (en) * 2019-01-31 2020-08-06 ダイキン工業株式会社 Refrigerant cycle device
JPWO2019198134A1 (en) * 2018-04-09 2020-10-22 三菱電機株式会社 Air conditioner
WO2020250889A1 (en) * 2019-06-14 2020-12-17 ダイキン工業株式会社 Refrigeration cycle device
JP2021134949A (en) * 2020-02-25 2021-09-13 パナソニックIpマネジメント株式会社 Air conditioner
JP2022543000A (en) * 2019-10-29 2022-10-07 ダイキン工業株式会社 refrigerant system
WO2024121946A1 (en) * 2022-12-06 2024-06-13 三菱電機株式会社 Device for automatically switching refrigerant recovery operation, and refrigerant recovery device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118720A (en) * 1991-10-30 1993-05-14 Hitachi Ltd Control of refrigerator
JPH05248717A (en) * 1992-03-05 1993-09-24 Daikin Ind Ltd Air conditioner and pump-down operating method
JPH074796A (en) * 1993-06-18 1995-01-10 Mitsubishi Electric Corp Air-conditioning equipment
JP2002228281A (en) * 2001-01-31 2002-08-14 Sanyo Electric Co Ltd Air conditioner
JP2011021837A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling refrigerating cycle device
JP2012007775A (en) * 2010-06-23 2012-01-12 Panasonic Corp Air conditioner
JP2013122364A (en) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp Refrigeration and air conditioning device and refrigeration and air conditioning system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118720A (en) * 1991-10-30 1993-05-14 Hitachi Ltd Control of refrigerator
JPH05248717A (en) * 1992-03-05 1993-09-24 Daikin Ind Ltd Air conditioner and pump-down operating method
JPH074796A (en) * 1993-06-18 1995-01-10 Mitsubishi Electric Corp Air-conditioning equipment
JP2002228281A (en) * 2001-01-31 2002-08-14 Sanyo Electric Co Ltd Air conditioner
JP2011021837A (en) * 2009-07-16 2011-02-03 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling refrigerating cycle device
JP2012007775A (en) * 2010-06-23 2012-01-12 Panasonic Corp Air conditioner
JP2013122364A (en) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp Refrigeration and air conditioning device and refrigeration and air conditioning system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087071A (en) * 2013-10-31 2015-05-07 株式会社富士通ゼネラル Air conditioner
US20200011580A1 (en) * 2017-03-13 2020-01-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US11609031B2 (en) * 2017-03-13 2023-03-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2019053771A1 (en) * 2017-09-12 2019-03-21 三菱電機株式会社 Air conditioning device
EP3680585A4 (en) * 2017-10-05 2020-09-23 Mitsubishi Electric Corporation Air conditioning device
JP6377299B1 (en) * 2017-10-05 2018-08-22 三菱電機株式会社 Air conditioner
WO2019069422A1 (en) * 2017-10-05 2019-04-11 三菱電機株式会社 Air conditioning device
US11231199B2 (en) 2017-10-05 2022-01-25 Mitsubishi Electric Corporation Air-conditioning apparatus with leak detection control
CN111164360A (en) * 2017-10-05 2020-05-15 三菱电机株式会社 Air conditioning apparatus
JPWO2019198134A1 (en) * 2018-04-09 2020-10-22 三菱電機株式会社 Air conditioner
WO2020158653A1 (en) * 2019-01-31 2020-08-06 ダイキン工業株式会社 Refrigerant cycle device
JP2020122646A (en) * 2019-01-31 2020-08-13 ダイキン工業株式会社 Refrigerant cycle device
US11536502B2 (en) 2019-01-31 2022-12-27 Daikin Industries, Ltd. Refrigerant cycle apparatus
WO2020250889A1 (en) * 2019-06-14 2020-12-17 ダイキン工業株式会社 Refrigeration cycle device
JP2020204422A (en) * 2019-06-14 2020-12-24 ダイキン工業株式会社 Refrigerant cycle device
US11598560B2 (en) 2019-06-14 2023-03-07 Daikin Industries, Ltd. Refrigerant cycle apparatus
AU2020290866B2 (en) * 2019-06-14 2022-03-10 Daikin Industries, Ltd. Refrigerant cycle apparatus
JP7057510B2 (en) 2019-06-14 2022-04-20 ダイキン工業株式会社 Refrigerant cycle device
JP2022543000A (en) * 2019-10-29 2022-10-07 ダイキン工業株式会社 refrigerant system
JP7390471B2 (en) 2019-10-29 2023-12-01 ダイキン工業株式会社 refrigerant system
CN111121155A (en) * 2020-01-20 2020-05-08 青岛海信日立空调系统有限公司 Multi-connected air conditioner
CN111121154A (en) * 2020-01-20 2020-05-08 青岛海信日立空调系统有限公司 Multi-connected air conditioner
JP2021134949A (en) * 2020-02-25 2021-09-13 パナソニックIpマネジメント株式会社 Air conditioner
JP7478967B2 (en) 2020-02-25 2024-05-08 パナソニックIpマネジメント株式会社 Air Conditioning Equipment
WO2024121946A1 (en) * 2022-12-06 2024-06-13 三菱電機株式会社 Device for automatically switching refrigerant recovery operation, and refrigerant recovery device

Also Published As

Publication number Publication date
JP6075264B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP6075264B2 (en) Air conditioner
JP6291794B2 (en) Air conditioner
JP6935720B2 (en) Refrigeration equipment
JP6402661B2 (en) Refrigeration equipment
JP5570531B2 (en) Heat pump equipment
US9228765B2 (en) Refrigeration cycle device
KR101479458B1 (en) Refrigeration device
JP2017142039A (en) Air conditioner
US10753645B2 (en) Refrigeration cycle apparatus
CN110709650B (en) Heat pump utilization equipment
US9909792B2 (en) Refrigeration cycle apparatus
JP6634517B2 (en) Refrigeration cycle device
WO2017175299A1 (en) Refrigeration cycle device
JP2019143877A (en) Air conditioning system
JP2023509017A (en) air conditioner
EP3467399B1 (en) Heat-pump utilization device
JP5573370B2 (en) Refrigeration cycle apparatus and control method thereof
JP2019143876A (en) Air conditioning system
JP2017015294A (en) Air conditioning device
JP4269476B2 (en) Refrigeration equipment
JP2012197959A (en) Air conditioning apparatus
JPH02140572A (en) Heat pump type refrigerating plant
JP2015132445A (en) Feedwater heating system
JP6107726B2 (en) Air conditioner
JP7199594B2 (en) Air conditioner and method for discharging air from air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R151 Written notification of patent or utility model registration

Ref document number: 6075264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees