JP2015087071A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2015087071A
JP2015087071A JP2013227259A JP2013227259A JP2015087071A JP 2015087071 A JP2015087071 A JP 2015087071A JP 2013227259 A JP2013227259 A JP 2013227259A JP 2013227259 A JP2013227259 A JP 2013227259A JP 2015087071 A JP2015087071 A JP 2015087071A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
outdoor
accumulator
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013227259A
Other languages
Japanese (ja)
Other versions
JP6291794B2 (en
Inventor
松永 隆廣
Takahiro Matsunaga
隆廣 松永
下谷 亮
Akira Shitaya
亮 下谷
圭人 川合
Keito Kawai
圭人 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2013227259A priority Critical patent/JP6291794B2/en
Publication of JP2015087071A publication Critical patent/JP2015087071A/en
Application granted granted Critical
Publication of JP6291794B2 publication Critical patent/JP6291794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which, even in an air conditioner having a large sealed refrigerant amount, solves a state where one of an outdoor heat exchanger and an accumulator becomes full with a liquid during a refrigerant recovery operation, and which can continue the refrigerant recovery operation.SOLUTION: While a refrigerant recovery operation is being performed for recovering a refrigerant to an outdoor unit 2 including a plurality of refrigerant recovery parts, a refrigerant recovery amount recovered at least in one of the refrigerant recovery parts becomes equal to or more than an allowable refrigerant recovery amount which can be recovered in the refrigerant recovery part, the refrigerant recovery operation is interrupted, and the staying refrigerant is discharged to other refrigerant recovery parts from the refrigerant recovery part in which the refrigerant recovery amount is equal to or more than the allowable amount. The refrigerant staying in the refrigerant recovery part is discharged to a predetermined amount or less, the refrigerant recovery operation is resumed.

Description

本発明は、室外機と室内機とが複数の冷媒配管で接続された空気調和機に係わり、より詳細には、空気調和機に封入された冷媒を室外機に回収する冷媒回収運転に関するものである。   The present invention relates to an air conditioner in which an outdoor unit and an indoor unit are connected by a plurality of refrigerant pipes. More specifically, the present invention relates to a refrigerant recovery operation for recovering a refrigerant sealed in the air conditioner to an outdoor unit. is there.

現在、空気調和機などの冷媒には、オゾン層を破壊しないHFC系冷媒が使用されている。しかし、このHFC系冷媒は、温暖化係数が非常に高く、温暖化防止のため、排出規制の対象となっている。そのため、空気調和機における冷媒漏れ量の削減については、様々な方法が提案されており、例えば、室内機側で冷媒が漏れた場合に、室外機側に冷媒を回収することが提案されている。   Currently, HFC refrigerants that do not destroy the ozone layer are used for refrigerants such as air conditioners. However, this HFC-based refrigerant has a very high global warming potential and is subject to emission regulations to prevent global warming. Therefore, various methods have been proposed for reducing the amount of refrigerant leakage in an air conditioner. For example, when refrigerant leaks on the indoor unit side, it is proposed to collect the refrigerant on the outdoor unit side. .

特許文献1に記載の空気調和機は、圧縮機、室外熱交換器を有する室外機と、室内熱交換器を有する室内機とが、液冷媒配管およびガス冷媒配管により順次接続され、液冷媒配管およびガス冷媒配管の途中には、液冷媒配管開閉弁およびガス冷媒配管開閉弁が設けられている。さらに、空気調和機は、室内機を設置した室内に冷媒漏洩検知装置を設け、冷媒漏洩検知装置が所定以上の冷媒の漏洩を検知したとき、室内機と、ガス冷媒配管と、液冷媒配管とに滞留している冷媒を室外機に回収する冷媒回収運転を行う。冷媒回収運転は、液冷媒配管開閉弁を閉じ、所定時間、あるいは圧縮機の吸入側圧力が所定の値に低下するまで圧縮機を運転し、冷媒を室外機に回収した後、ガス冷媒配管開閉弁を閉じる。室外機に回収された冷媒は、液冷媒配管開閉弁が閉じられているので室外熱交換器に溜まる。このとき、液冷媒配管に滞留する冷媒は、室内機からガス冷媒配管と流れて室外機に回収される。   In an air conditioner described in Patent Document 1, an outdoor unit having a compressor and an outdoor heat exchanger and an indoor unit having an indoor heat exchanger are sequentially connected by a liquid refrigerant pipe and a gas refrigerant pipe, and the liquid refrigerant pipe In the middle of the gas refrigerant pipe, a liquid refrigerant pipe on-off valve and a gas refrigerant pipe on-off valve are provided. Furthermore, the air conditioner is provided with a refrigerant leakage detection device in a room where the indoor unit is installed, and when the refrigerant leakage detection device detects leakage of a refrigerant exceeding a predetermined level, the indoor unit, a gas refrigerant pipe, a liquid refrigerant pipe, A refrigerant recovery operation is performed to recover the refrigerant remaining in the outdoor unit to the outdoor unit. In the refrigerant recovery operation, the liquid refrigerant piping on-off valve is closed and the compressor is operated for a predetermined time or until the suction side pressure of the compressor drops to a predetermined value. Close the valve. The refrigerant collected in the outdoor unit is accumulated in the outdoor heat exchanger because the liquid refrigerant piping on-off valve is closed. At this time, the refrigerant staying in the liquid refrigerant pipe flows from the indoor unit to the gas refrigerant pipe and is collected in the outdoor unit.

特開平5−118720号公報Japanese Patent Laid-Open No. 5-118720

特許文献1に記載の空気調和機では、冷媒回収運転により室外機に回収された冷媒は、全て室外熱交換器に貯えられる。一方、空気調和機がビル等に設置される大型の空気調和機の場合は、冷媒回路に封入される冷媒量が室外熱交換器に貯えることができる冷媒量より多くなる場合がある。この場合、室外熱交換器に回収しきれない冷媒が冷媒回路に残留し、残留した冷媒が冷媒回路から漏れて冷媒漏れ量が増大する虞がある。   In the air conditioner described in Patent Document 1, all of the refrigerant recovered in the outdoor unit by the refrigerant recovery operation is stored in the outdoor heat exchanger. On the other hand, when the air conditioner is a large air conditioner installed in a building or the like, the amount of refrigerant sealed in the refrigerant circuit may be larger than the amount of refrigerant that can be stored in the outdoor heat exchanger. In this case, there is a possibility that the refrigerant that cannot be recovered by the outdoor heat exchanger remains in the refrigerant circuit, and the remaining refrigerant leaks from the refrigerant circuit, increasing the amount of refrigerant leakage.

そこで、室外熱交換器以外に冷媒を回収できる場所を用意して冷媒回収量を増やすことが考えられ、例えば、圧縮機の吸入側に接続されるアキュムレータを、室外熱交換器に加えて冷媒回収部とすることが考えられる。しかし、室外熱交換器とアキュムレータとの内容積が異なることや、冷媒回収運転時は、室外熱交換器が圧縮機の吐出側、アキュムレータが圧縮機の吸入側となること、等によって、室外熱交換器もしくはアキュムレータのいずれか一方が、室外熱交換器もしくはアキュムレータに冷媒を回収できる許容冷媒回収量以上(以降、満液と記載)となる虞がある。   Therefore, it is conceivable to prepare a place where the refrigerant can be collected in addition to the outdoor heat exchanger to increase the refrigerant collection amount. For example, an accumulator connected to the suction side of the compressor is added to the outdoor heat exchanger to collect the refrigerant. Can be considered as a part. However, the outdoor heat exchanger and the accumulator have different internal volumes, and during the refrigerant recovery operation, the outdoor heat exchanger becomes the discharge side of the compressor, the accumulator becomes the suction side of the compressor, etc. There is a risk that either the exchanger or the accumulator will exceed the allowable refrigerant recovery amount (hereinafter referred to as full liquid) that can recover the refrigerant to the outdoor heat exchanger or accumulator.

室外熱交換器が満液となれば、圧縮機の吐出側の圧力が上昇して吐出圧力保護により圧縮機が停止する虞がある。また、アキュムレータが満液となれば、アキュムレータから流出した液冷媒が圧縮機に吸入されて液圧縮を起こし圧縮機が破損する虞がある。つまり、室外熱交換器もしくはアキュムレータのいずれか一方が満液となれば、冷媒回収運転を継続することができなくなる虞があった。   If the outdoor heat exchanger becomes full, the pressure on the discharge side of the compressor may rise and the compressor may stop due to discharge pressure protection. If the accumulator is full, the liquid refrigerant flowing out of the accumulator may be sucked into the compressor to cause liquid compression and the compressor may be damaged. That is, if either the outdoor heat exchanger or the accumulator is full, there is a possibility that the refrigerant recovery operation cannot be continued.

本発明は、上記の問題点を解決し、冷媒回収運転の際に室外熱交換器もしくはアキュムレータのいずれか一方が満液となる状態を解消し、冷媒回収運転を継続できる空気調和機の提供を目的とする。   The present invention provides an air conditioner that solves the above-mentioned problems, eliminates the state in which either the outdoor heat exchanger or the accumulator is full during the refrigerant recovery operation, and can continue the refrigerant recovery operation. Objective.

上記の課題を解決するために、本発明の空気調和機は、複数の冷媒回収部を有する室外機と、室内機と、制御手段とを有する空気調和機であって、空気調和機の冷媒を複数の冷媒回収部に回収する冷媒回収運転を実行しているとき、少なくとも一つの冷媒回収部に回収された冷媒回収量が冷媒回路部に回収できる許容冷媒回収量以上であると判断したときは、冷媒回収運転を中断し、少なくとも一つの冷媒回収部に滞留している冷媒を冷媒回収部から排出した後、冷媒回収運転を再開するものである。   In order to solve the above problems, an air conditioner of the present invention is an air conditioner having an outdoor unit having a plurality of refrigerant recovery units, an indoor unit, and a control means, and the refrigerant of the air conditioner When it is determined that the refrigerant recovery amount recovered by at least one refrigerant recovery unit is equal to or greater than the allowable refrigerant recovery amount recoverable by the refrigerant circuit unit when performing the refrigerant recovery operation of recovering to a plurality of refrigerant recovery units Then, after the refrigerant recovery operation is interrupted and the refrigerant staying in at least one refrigerant recovery unit is discharged from the refrigerant recovery unit, the refrigerant recovery operation is resumed.

上記のように構成した本発明の空気調和機によれば、冷媒回収運転の際に室外熱交換器もしくはアキュムレータのいずれか一方が満液となる状態を解消し、冷媒回収運転を継続できる。   According to the air conditioner of the present invention configured as described above, the state in which either the outdoor heat exchanger or the accumulator becomes full during the refrigerant recovery operation is eliminated, and the refrigerant recovery operation can be continued.

本発明の実施例1である空気調和機の冷媒回路図であり、冷房運転と暖房運転を行う場合の冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure of the air conditioner which is Example 1 of this invention, and is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the case of performing cooling operation and heating operation. 本発明の実施例1における、冷媒回収運転の一つであるガス冷媒回収運転時の弁の開閉状態および冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the opening-and-closing state of the valve at the time of the gas refrigerant | coolant recovery driving | operation which is one of the refrigerant | coolant recovery driving | operations, and the flow of a refrigerant | coolant in Example 1 of this invention. 本発明の実施例1における、冷媒回収運転の一つである液冷媒回収運転時の弁の開閉状態および冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the open / close state of the valve at the time of the liquid refrigerant recovery operation which is one of the refrigerant recovery operations in Example 1 of this invention, and the flow of a refrigerant | coolant. 本発明の実施例1における、熱交冷媒排出運転時の弁の開閉状態および冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the opening-and-closing state of the valve at the time of heat exchanger discharge operation | movement, and the flow of a refrigerant | coolant in Example 1 of this invention. 本発明の実施例1における、余剰冷媒排出運転時の弁の開閉状態および冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the opening-and-closing state of the valve at the time of the excess refrigerant | coolant discharge operation in Example 1 of this invention, and the flow of a refrigerant | coolant. 本発明の実施例1における、冷媒回収運転の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of refrigerant | coolant collection | recovery driving | operation in Example 1 of this invention. 本発明の実施例1における、熱交冷媒排出運転の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the heat exchanger refrigerant | coolant discharge driving | operation in Example 1 of this invention. 本発明の実施例1における、余剰冷媒排出運転の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the excess refrigerant | coolant discharge driving | operation in Example 1 of this invention. 本発明の実施例2である空気調和機の冷媒回路図であり、冷房運転と暖房運転を行う場合の冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure of the air conditioner which is Example 2 of this invention, and is a refrigerant circuit figure which shows the flow of the refrigerant | coolant in the case of performing cooling operation and heating operation. 本発明の実施例3である空気調和機の冷媒回路図であり、実施例3における余剰冷媒排出運転時の弁の開閉状態および冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit diagram of the air conditioner which is Example 3 of this invention, and is a refrigerant circuit diagram which shows the open / close state of the valve at the time of the excess refrigerant | coolant discharge operation in Example 3, and the flow of a refrigerant | coolant. 本発明の実施例4である空気調和機の冷媒回路図であり、実施例4における熱交冷媒排出運転時の弁の開閉状態および冷媒の流れを示す冷媒回路図である。It is a refrigerant circuit figure of the air conditioner which is Example 4 of this invention, and is a refrigerant circuit figure which shows the open / close state of the valve at the time of the heat exchanger refrigerant | coolant discharge operation in Example 4, and the flow of a refrigerant | coolant.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。以下の説明では、1台の室外機と1台の室内機が冷媒配管で接続された空気調和機を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In the following description, an air conditioner in which one outdoor unit and one indoor unit are connected by a refrigerant pipe will be described as an example. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1に示すのは、本実施例における空気調和機1である。空気調和機1は、圧縮機21、流路切換手段である四方弁22、室外熱交換器23、室外ファン24、室外側開閉弁である室外膨張弁25、アキュムレータ26、過冷却熱交換器27、冷媒回収用開閉弁である過冷却膨張弁28、液冷媒遮断機構である液冷媒遮断弁51、ガス冷媒遮断機構であるガス冷媒遮断弁52を有する室外機2と、室内膨張弁81、室内熱交換器82、室内ファン83を有する室内機3と、室外機2と室内機3を繋ぐ液冷媒配管101とガス冷媒配管102とを備え、室外ファン24と室内ファン83を除く各構成が相互に冷媒配管で接続されて冷媒回路が形成されている。   FIG. 1 shows an air conditioner 1 according to this embodiment. The air conditioner 1 includes a compressor 21, a four-way valve 22 that is a flow path switching unit, an outdoor heat exchanger 23, an outdoor fan 24, an outdoor expansion valve 25 that is an outdoor on-off valve, an accumulator 26, and a supercooling heat exchanger 27. An outdoor unit 2 having a supercooling expansion valve 28 as a refrigerant recovery on-off valve, a liquid refrigerant cutoff valve 51 as a liquid refrigerant cutoff mechanism, a gas refrigerant cutoff valve 52 as a gas refrigerant cutoff mechanism, an indoor expansion valve 81, The indoor unit 3 having the heat exchanger 82 and the indoor fan 83, the liquid refrigerant pipe 101 and the gas refrigerant pipe 102 connecting the outdoor unit 2 and the indoor unit 3, and the components other than the outdoor fan 24 and the indoor fan 83 are mutually connected. A refrigerant circuit is formed by being connected to each other by a refrigerant pipe.

まずは、室外機2の各構成を説明する。圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで運転容量を可変できる容量可変型圧縮機である。圧縮機21の吐出側は四方弁22に冷媒配管で接続され、圧縮機21の吸入側はアキュムレータ26に冷媒配管で接続される。   First, each configuration of the outdoor unit 2 will be described. The compressor 21 is a variable capacity compressor that can vary its operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The discharge side of the compressor 21 is connected to the four-way valve 22 by refrigerant piping, and the suction side of the compressor 21 is connected to the accumulator 26 by refrigerant piping.

四方弁22は、冷媒の流れる方向を切換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは圧縮機21の吐出側と、ポートbは室外熱交換器23と、ポートcはアキュムレータ26と、ポートdはガス冷媒遮断弁52を介して室内機3と、それぞれ冷媒配管で接続される。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and includes four ports a, b, c, and d. Port a is connected to the discharge side of the compressor 21, port b is connected to the outdoor heat exchanger 23, port c is connected to the accumulator 26, and port d is connected to the indoor unit 3 via the gas refrigerant shut-off valve 52 through refrigerant piping. The

室外熱交換器23は、冷媒と室外空気との熱交換を行うものであり、一方の冷媒出入り口が四方弁22のポートbと、他方の冷媒出入り口が室外膨張弁25を介して室内機3とそれぞれ冷媒配管で接続される。室外膨張弁25は、室外熱交換器23における冷媒流量を調整するものであり、図示しないパルスモータにより駆動され、パルスモータに与えるパルス数によって弁の開度が調整される。室外膨張弁25は、一方のポートが室外熱交換器23と、他方のポートは過冷却熱交換器27の被冷却側配管27cとそれぞれ冷媒配管で接続される。尚、本実施例では、室外側開閉弁を室外膨張弁としているが、これに限定されるものではなく、例えば、電磁開閉弁と減圧手段(キャピラリーチューブや電子膨張弁)とを並列に組み合わせて冷媒流量を調整する機能を有するようにした構成であってもよい。   The outdoor heat exchanger 23 performs heat exchange between the refrigerant and the outdoor air, and one refrigerant inlet / outlet is connected to the port b of the four-way valve 22, and the other refrigerant inlet / outlet is connected to the indoor unit 3 via the outdoor expansion valve 25. Each is connected by refrigerant piping. The outdoor expansion valve 25 adjusts the refrigerant flow rate in the outdoor heat exchanger 23, is driven by a pulse motor (not shown), and the opening degree of the valve is adjusted by the number of pulses applied to the pulse motor. In the outdoor expansion valve 25, one port is connected to the outdoor heat exchanger 23, and the other port is connected to the cooled side pipe 27c of the supercooling heat exchanger 27 through a refrigerant pipe. In this embodiment, the outdoor open / close valve is an outdoor expansion valve. However, the present invention is not limited to this. For example, an electromagnetic open / close valve and a pressure reducing means (capillary tube or electronic expansion valve) are combined in parallel. It may be configured to have a function of adjusting the refrigerant flow rate.

室外ファン24は、室外熱交換器23近傍に配置され、図示しないファンモータによって回転することで、室外機2内に室外空気を取り込み、室外熱交換器23で冷媒と熱交換させて室外機2外に放出する。   The outdoor fan 24 is disposed in the vicinity of the outdoor heat exchanger 23 and is rotated by a fan motor (not shown), thereby taking outdoor air into the outdoor unit 2 and exchanging heat with refrigerant in the outdoor heat exchanger 23. Release outside.

アキュムレータ26は、室内機3の運転負荷の変化に応じて発生する余剰冷媒を溜めることが可能な容器であり、冷媒流入側が四方弁22のポートcに冷媒配管で接続され、冷媒流出側が圧縮機21の吸入側に冷媒配管で接続される。尚、アキュムレータ26には、アキュムレータ26を加熱する図示しない電気ヒータ(例えば、ベルトヒータ)を取り付けている。   The accumulator 26 is a container capable of accumulating surplus refrigerant generated in response to a change in the operating load of the indoor unit 3. The refrigerant inflow side is connected to the port c of the four-way valve 22 by a refrigerant pipe, and the refrigerant outflow side is a compressor. 21 is connected to the suction side by a refrigerant pipe. The accumulator 26 is provided with an electric heater (not shown) (for example, a belt heater) that heats the accumulator 26.

過冷却熱交換器27は、外側の被冷却側配管(外管)27cと内側の冷却側配管(内管)27dとを同軸配管とした2重管熱交換器となっており、被冷却側配管27cの冷媒と冷却側配管27dの冷媒との熱交換を行うものである。被冷却側配管27cは、一端が室外膨張弁25と、他端が液冷媒遮断弁51とそれぞれ冷媒配管で接続され、冷却側配管27dは、一端が室外膨張弁25と過冷却熱交換器27との間の分岐部61に第1バイパス管27aで接続され、他端が四方弁22のポートcとアキュムレータ26との間の合流部62に第2バイパス管27bで接続される。尚、第1バイパス管27aは、過冷却熱交換器27と液冷媒遮断弁51の間の冷媒配管から分岐する構成であってもよい。分岐部61と冷却側配管27dとを接続する第1バイパス管27aには、過冷却膨張弁28が設けられている。過冷却膨張弁28は、過冷却熱交換器27の冷却側配管27dへの冷媒流量を調整するものであり、図示しないパルスモータにより駆動され、パルスモータに与えるパルス数によって弁の開度が調整される。尚、本実施例では、冷媒回収用開閉弁を過冷却膨張弁としているが、これに限定されるものではなく、例えば、電磁開閉弁と減圧手段(キャピラリーチューブや電子膨張弁)とを並列に組み合わせて冷媒流量を調整する機能を有するようにした構成であってもよい。   The subcooling heat exchanger 27 is a double pipe heat exchanger in which an outer cooled side pipe (outer pipe) 27c and an inner cooled side pipe (inner pipe) 27d are coaxial pipes. Heat exchange is performed between the refrigerant in the pipe 27c and the refrigerant in the cooling side pipe 27d. One end of the cooled side pipe 27c is connected to the outdoor expansion valve 25 and the other end is connected to the liquid refrigerant shut-off valve 51 by a refrigerant pipe. The cooling side pipe 27d has one end connected to the outdoor expansion valve 25 and the subcooling heat exchanger 27. The other end is connected to the junction 62 between the port c of the four-way valve 22 and the accumulator 26 via the second bypass pipe 27b. The first bypass pipe 27a may be configured to branch from a refrigerant pipe between the supercooling heat exchanger 27 and the liquid refrigerant cutoff valve 51. A supercooling expansion valve 28 is provided in the first bypass pipe 27a that connects the branch portion 61 and the cooling side pipe 27d. The supercooling expansion valve 28 adjusts the refrigerant flow rate to the cooling side pipe 27d of the supercooling heat exchanger 27, is driven by a pulse motor (not shown), and the opening degree of the valve is adjusted by the number of pulses applied to the pulse motor. Is done. In this embodiment, the refrigerant recovery on-off valve is a supercooled expansion valve, but the invention is not limited to this. For example, an electromagnetic on-off valve and a pressure reducing means (capillary tube or electronic expansion valve) are arranged in parallel. It may be configured to have a function of adjusting the refrigerant flow rate in combination.

液冷媒遮断弁51は、室外機2と室内機3とを接続する液冷媒配管101における冷媒の流れを遮断するものであり、一方が過冷却熱交換器27の被冷却側配管27cと、他方が液冷媒配管101の一端とそれぞれ冷媒配管で接続される。   The liquid refrigerant shut-off valve 51 shuts off the refrigerant flow in the liquid refrigerant pipe 101 that connects the outdoor unit 2 and the indoor unit 3, one side being the cooled side pipe 27 c of the supercooling heat exchanger 27 and the other side. Are connected to one end of the liquid refrigerant pipe 101 by a refrigerant pipe.

ガス冷媒遮断弁52は、室外機2と室内機3とを接続するガス冷媒配管102における冷媒の流れを遮断するものであり、一方がガス冷媒配管102の一端と、他方が四方弁22のポートdとそれぞれ冷媒配管で接続される。   The gas refrigerant shut-off valve 52 shuts off the refrigerant flow in the gas refrigerant pipe 102 connecting the outdoor unit 2 and the indoor unit 3, one end of the gas refrigerant pipe 102 and the other port of the four-way valve 22. d and refrigerant pipes respectively.

また、室外機2には、圧縮機21の吐出側に吐出圧力検知手段である吐出圧力センサ31、吐出温度検知手段である吐出温度センサ41を備え、圧縮機21の吸入側に吸入圧力検知手段である吸入圧力センサ32、吸入温度検知手段である吸入温度センサ42が備えられている。図示しないが、その他にも、室外熱交換器23に流入あるいは流出する冷媒の温度や、過冷却熱交換器27の被冷却側配管27cに流入あるいは流出する冷媒の温度や、過冷却熱交換器27の冷却側配管27dから流出する冷媒の温度や、外気温度を検出するための各種温度センサが設けられている。   The outdoor unit 2 includes a discharge pressure sensor 31 that is a discharge pressure detection unit and a discharge temperature sensor 41 that is a discharge temperature detection unit on the discharge side of the compressor 21, and a suction pressure detection unit on the suction side of the compressor 21. A suction pressure sensor 32, and a suction temperature sensor 42 serving as suction temperature detection means. Although not shown, in addition, the temperature of the refrigerant flowing into or out of the outdoor heat exchanger 23, the temperature of the refrigerant flowing into or out of the cooled side pipe 27c of the supercooling heat exchanger 27, the supercooling heat exchanger Various temperature sensors for detecting the temperature of the refrigerant flowing out from the cooling side pipe 27d and the outside air temperature are provided.

また、室外機2には、室外制御装置29が備えられている。室外制御装置29には、図示しない通信部や制御部を備えている。通信部は、図示しない通信線を介して、後述する室内制御装置84と随時運転情報のやり取りを行っている。制御部は、各センサで検知した結果や室内機3から送られてくる要求能力等の運転情報を用いて、圧縮機21の駆動制御、四方弁22の切換制御、室外ファン24の駆動制御、室外膨張弁25や過冷却膨張弁28の開度制御、液冷媒遮断弁51やガス冷媒遮断弁52の開閉制御、運転時間の計測、吐出過熱度や吸入過熱度の算出、アキュムレータ26に取り付けた図示しない電気ヒータの通電/非通電、等を行う。   The outdoor unit 2 is provided with an outdoor control device 29. The outdoor control device 29 includes a communication unit and a control unit (not shown). The communication unit exchanges operation information with the indoor control device 84, which will be described later, via a communication line (not shown). The control unit uses the operation information such as the result detected by each sensor and the required capacity sent from the indoor unit 3 to control the drive of the compressor 21, the switching control of the four-way valve 22, the drive control of the outdoor fan 24, Opening control of outdoor expansion valve 25 and supercooling expansion valve 28, opening / closing control of liquid refrigerant shutoff valve 51 and gas refrigerant shutoff valve 52, measurement of operation time, calculation of discharge superheat degree and suction superheat degree, attached to accumulator 26 Energization / non-energization of an electric heater (not shown) is performed.

次に、室内機3の各構成を説明する。室内熱交換器82は、冷媒と室内空気との熱交換を行うものであり、一方の冷媒出入口がガス冷媒配管102の他端と、他方の冷媒出入り口が室内膨張弁81にそれぞれ冷媒配管で接続される。室内膨張弁81は、室内熱交換器82における冷媒流量を調整するものであり、図示しないパルスモータにより駆動され、パルスモータに与えるパルス数によって弁の開度が調整される。室内膨張弁81は、一方のポートが室内熱交換器82に、他方のポートが液冷媒配管101の他端に冷媒配管で接続される。尚、本実施例では、室内側開閉弁を室内膨張弁としているが、これに限定されるものではなく、例えば、電磁開閉弁と減圧手段(キャピラリーチューブや電子膨張弁)とを並列に組み合わせて冷媒流量を調整する機能を有するようにした構成であってもよい。   Next, each configuration of the indoor unit 3 will be described. The indoor heat exchanger 82 performs heat exchange between the refrigerant and the room air, and one refrigerant inlet / outlet is connected to the other end of the gas refrigerant pipe 102 and the other refrigerant inlet / outlet is connected to the indoor expansion valve 81 via the refrigerant pipe. Is done. The indoor expansion valve 81 adjusts the refrigerant flow rate in the indoor heat exchanger 82, is driven by a pulse motor (not shown), and the opening degree of the valve is adjusted by the number of pulses applied to the pulse motor. The indoor expansion valve 81 has one port connected to the indoor heat exchanger 82 and the other port connected to the other end of the liquid refrigerant pipe 101 through a refrigerant pipe. In this embodiment, the indoor open / close valve is an indoor expansion valve. However, the present invention is not limited to this. For example, an electromagnetic open / close valve and a pressure reducing means (capillary tube or electronic expansion valve) are combined in parallel. It may be configured to have a function of adjusting the refrigerant flow rate.

室内ファン83は、室内熱交換器82の近傍に配置され、図示しないファンモータによって回転することで、室内機3に室内空気を取り込み、室内熱交換器82で冷媒と熱交換させた室内空気を室内機3外に放出する。また、室内機3には、室内熱交換器82に流入あるいは流出する冷媒の温度や、室内の温度を検出するための各種温度センサが設けられている。   The indoor fan 83 is disposed in the vicinity of the indoor heat exchanger 82 and is rotated by a fan motor (not shown) so that the indoor air is taken into the indoor unit 3 and heat is exchanged with the refrigerant by the indoor heat exchanger 82. Release outside the indoor unit 3. The indoor unit 3 is also provided with various temperature sensors for detecting the temperature of the refrigerant flowing into or out of the indoor heat exchanger 82 and the indoor temperature.

また、室内機3には、室内制御装置84が備えられている。室内制御装置84は、図示しない通信部や制御部を備えている。通信部は、図示しない通信線を介して、室外制御装置29と随時運転情報のやり取りを行っている。制御部は、各センサで検知した結果や、室外制御装置29から送られてくる運転情報に応じて、室内膨張弁81の開度制御、室内ファン83の駆動制御、等を行う。   The indoor unit 3 includes an indoor control device 84. The indoor control device 84 includes a communication unit and a control unit (not shown). The communication unit exchanges operation information with the outdoor control device 29 at any time via a communication line (not shown). The control unit performs the opening control of the indoor expansion valve 81, the drive control of the indoor fan 83, and the like according to the results detected by the sensors and the operation information sent from the outdoor control device 29.

以上のように、室外機2と、室内機3とが、液冷媒配管101とガス冷媒配管102とで接続されて空気調和機1が構成されている。そして、本実施例の空気調和機1は、四方弁22を切り換えて冷房運転、または、暖房運転を行うとともに、室内機3の運転負荷に合わせて、各機器の制御を行っている。   As described above, the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 3 with the liquid refrigerant pipe 101 and the gas refrigerant pipe 102. The air conditioner 1 according to the present embodiment switches the four-way valve 22 to perform the cooling operation or the heating operation, and controls each device according to the operation load of the indoor unit 3.

次に本実施例の空気調和機1の運転動作について説明する。本実施例の空気調和機1は、冷房運転と、暖房運転と、本発明に関わる冷媒回収運転とが実施できる。   Next, the operation | movement operation | movement of the air conditioner 1 of a present Example is demonstrated. The air conditioner 1 according to the present embodiment can perform a cooling operation, a heating operation, and a refrigerant recovery operation according to the present invention.

まず、冷房運転ついて図1を用いて説明する。   First, the cooling operation will be described with reference to FIG.

冷房運転時は、四方弁22のポートaとbが連通するように、また、ポートcとdが連通するように切り替えて四方弁22が実線で示されている状態となり、実線矢印で示している方向に冷媒が循環する。室外熱交換器23は凝縮器として機能し、室内熱交換器82は蒸発器として機能し、液冷媒遮断弁51とガス冷媒遮断弁52は、常時開かれた状態である。室外膨張弁25は全開とされる。過冷却膨張弁28は、過冷却膨張弁28から流出した冷媒が、第1バイパス管27aを通過して過冷却熱交換器27の冷却側配管27dへ流入し、過冷却熱交換器27の被冷却側配管27cを流れる冷媒と熱交換した後に過冷却熱交換器27の冷却側配管27dの冷媒出口側の過熱度に応じて開度が調整される。室内膨張弁81は、室内熱交換器82の冷媒出口側の過熱度に応じて開度が調整される。室外ファン24は、吐出圧力センサ31で検出する吐出圧力、もしくは、吐出圧力センサ31で検出する値から換算した室外熱交換器23での凝縮温度が一定になるように回転数が制御される。室内ファン83は、使用者が設定する風量に対応する回転数で駆動する。   During the cooling operation, the four-way valve 22 is switched to communicate with the ports a and b and the ports c and d to communicate with each other, and the four-way valve 22 is indicated by a solid line. The refrigerant circulates in the direction in which it is located. The outdoor heat exchanger 23 functions as a condenser, the indoor heat exchanger 82 functions as an evaporator, and the liquid refrigerant shut-off valve 51 and the gas refrigerant shut-off valve 52 are always open. The outdoor expansion valve 25 is fully opened. In the supercooling expansion valve 28, the refrigerant flowing out of the supercooling expansion valve 28 passes through the first bypass pipe 27 a and flows into the cooling side pipe 27 d of the supercooling heat exchanger 27. After heat exchange with the refrigerant flowing through the cooling side pipe 27c, the opening degree is adjusted according to the degree of superheat on the refrigerant outlet side of the cooling side pipe 27d of the supercooling heat exchanger 27. The opening of the indoor expansion valve 81 is adjusted according to the degree of superheat on the refrigerant outlet side of the indoor heat exchanger 82. The rotational speed of the outdoor fan 24 is controlled so that the discharge pressure detected by the discharge pressure sensor 31 or the condensation temperature in the outdoor heat exchanger 23 converted from the value detected by the discharge pressure sensor 31 is constant. The indoor fan 83 is driven at a rotational speed corresponding to the air volume set by the user.

次に、暖房運転ついて図1を用いて説明する。   Next, the heating operation will be described with reference to FIG.

暖房運転時は、四方弁22のポートaとdが連通するように、また、ポートbとcが連通するように切り替えて四方弁22が点線で示されている状態となり、点線矢印で示している方向に冷媒が循環する。室内熱交換器82は凝縮器として機能し、室外熱交換器23は蒸発器として機能する。液冷媒遮断弁51とガス冷媒遮断弁52は、常時開かれた状態である。室内膨張弁81は、室内熱交換器82の冷媒出口側における過冷却度に応じて開度が調整される。過冷却膨張弁28は、過冷却膨張弁28から流出した冷媒が、第1バイパス管27aを通過して過冷却熱交換器27の冷却側配管27dへ流入し、過冷却熱交換器27の被冷却側配管27cを流れる冷媒と熱交換した後に過冷却熱交換器27の冷却側配管27dの冷媒出口側の過熱度に応じて開度が調整される。室外膨張弁25は、室外熱交換器23の冷媒出口側の過熱度に応じて開度が調整される。室外ファン24は、吸入圧力センサ32で検出する吸入圧力、もしくは、吸入圧力センサ32で検出する値から換算した室外熱交換器23での蒸発温度が一定になるように回転数を制御する。室内ファン83は、使用者が設定する風量に対応する回転数で駆動する。   During the heating operation, the four-way valve 22 is switched to communicate with the ports a and d of the four-way valve 22 and the ports b and c to communicate with each other, and the four-way valve 22 is indicated by a dotted line. The refrigerant circulates in the direction in which it is located. The indoor heat exchanger 82 functions as a condenser, and the outdoor heat exchanger 23 functions as an evaporator. The liquid refrigerant cutoff valve 51 and the gas refrigerant cutoff valve 52 are always open. The opening of the indoor expansion valve 81 is adjusted according to the degree of supercooling on the refrigerant outlet side of the indoor heat exchanger 82. In the supercooling expansion valve 28, the refrigerant flowing out of the supercooling expansion valve 28 passes through the first bypass pipe 27 a and flows into the cooling side pipe 27 d of the supercooling heat exchanger 27. After heat exchange with the refrigerant flowing through the cooling side pipe 27c, the opening degree is adjusted according to the degree of superheat on the refrigerant outlet side of the cooling side pipe 27d of the supercooling heat exchanger 27. The opening degree of the outdoor expansion valve 25 is adjusted according to the degree of superheat on the refrigerant outlet side of the outdoor heat exchanger 23. The outdoor fan 24 controls the rotation speed so that the suction pressure detected by the suction pressure sensor 32 or the evaporation temperature in the outdoor heat exchanger 23 converted from the value detected by the suction pressure sensor 32 becomes constant. The indoor fan 83 is driven at a rotational speed corresponding to the air volume set by the user.

次に、本発明に関わる冷媒回収運転について図2および図3を用いて説明する。本発明の冷媒回収運転は、室内機3とガス冷媒配管102とに滞留する冷媒を回収するガス冷媒回収運転と、液冷媒配管101に滞留する冷媒を回収する液冷媒回収運転とからなり、室内で冷媒漏れを検知した場合、ガス冷媒回収運転を先に行い、続けて液冷媒回収運転を行う。図2は、ガス冷媒回収運転時の各弁の開閉状態を示す。図3は、液冷媒回収運転時の各弁の開閉状態を示す。各弁の開閉状態は、閉じている場合を黒塗りにし、開いている場合を白抜きに図示する。また、各冷媒回収運転時の冷媒の流れを一点鎖線矢印で図示する。   Next, the refrigerant recovery operation according to the present invention will be described with reference to FIGS. The refrigerant recovery operation of the present invention includes a gas refrigerant recovery operation that recovers refrigerant that stays in the indoor unit 3 and the gas refrigerant pipe 102, and a liquid refrigerant recovery operation that recovers refrigerant that stays in the liquid refrigerant pipe 101. When a refrigerant leak is detected in step 1, the gas refrigerant recovery operation is performed first, followed by the liquid refrigerant recovery operation. FIG. 2 shows the open / closed state of each valve during the gas refrigerant recovery operation. FIG. 3 shows the open / closed state of each valve during the liquid refrigerant recovery operation. The open / closed state of each valve is shown in black when it is closed, and white when it is open. Moreover, the flow of the refrigerant at the time of each refrigerant recovery operation is illustrated by a one-dot chain line arrow.

本発明における冷媒回収運転の目的は、室内機3を介さずに液冷媒配管101に滞留する冷媒を回収することである。そのために、液冷媒配管101側から圧縮機21吸入側に冷媒を流すためのバイパス回路を備える必要がある。本実施例においては、このバイパス回路は第1バイパス管27aと第2バイパス管27bと過冷却熱交換器27の冷却側配管27dとで構成される。また、室内機3と液冷媒配管101とガス冷媒配管102とに滞留する冷媒が多量である場合、室外熱交換器23だけでは、冷媒を回収しきれない場合があり、回収しきれないと、室内機3と液冷媒配管101とガス冷媒配管102とに滞留する冷媒量が多くなり、冷媒回路における室内側(室内熱交換器82、液冷媒配管101やガス冷媒配管102の一部)から室内に漏れる冷媒量が多くなる虞があった。そこで、本実施例においては、室外機2内での室外熱交換器23以外の冷媒の回収場所として、アキュムレータ26を用いる。   The purpose of the refrigerant recovery operation in the present invention is to recover the refrigerant staying in the liquid refrigerant pipe 101 without going through the indoor unit 3. Therefore, it is necessary to provide a bypass circuit for flowing the refrigerant from the liquid refrigerant pipe 101 side to the compressor 21 suction side. In the present embodiment, this bypass circuit includes a first bypass pipe 27a, a second bypass pipe 27b, and a cooling side pipe 27d of the supercooling heat exchanger 27. In addition, when a large amount of refrigerant stays in the indoor unit 3, the liquid refrigerant pipe 101, and the gas refrigerant pipe 102, the outdoor heat exchanger 23 alone may not be able to recover the refrigerant. The amount of refrigerant that stays in the indoor unit 3, the liquid refrigerant pipe 101, and the gas refrigerant pipe 102 increases, and the room from the indoor side (the indoor heat exchanger 82, the liquid refrigerant pipe 101, and part of the gas refrigerant pipe 102) in the refrigerant circuit. There was a risk that the amount of refrigerant leaking into the tank would increase. Therefore, in this embodiment, the accumulator 26 is used as a refrigerant collection place other than the outdoor heat exchanger 23 in the outdoor unit 2.

冷媒回収運転は、室外制御装置29が、室内に設置される冷媒検知センサからの出力信号を受信するか、サービスマンによる室内制御装置84や図示しないリモコンの操作によって送信された冷媒回収運転開始信号を受信するか、あるいは、室外制御装置29が直接操作されることで開始される。冷媒回収運転を実行するときは、室外制御装置29は、四方弁22が、図2に示す実線で示されている状態、つまり、冷房運転を行う時の状態となっているか否かを確認する。このとき、四方弁22が点線で示される状態であれば、室外制御装置29は、四方弁22を実線で示されている状態に切り換える。   In the refrigerant recovery operation, the outdoor control device 29 receives an output signal from a refrigerant detection sensor installed in the room, or a refrigerant recovery operation start signal transmitted by a serviceman operating the indoor control device 84 or a remote controller (not shown). Or the outdoor control device 29 is directly operated. When the refrigerant recovery operation is executed, the outdoor control device 29 confirms whether or not the four-way valve 22 is in the state indicated by the solid line shown in FIG. 2, that is, the state when the cooling operation is performed. . At this time, if the four-way valve 22 is in a state indicated by a dotted line, the outdoor control device 29 switches the four-way valve 22 to a state indicated by a solid line.

まず、ガス冷媒回収運転について、各弁の開閉動作と冷媒の流れを説明する。   First, in the gas refrigerant recovery operation, the opening / closing operation of each valve and the flow of the refrigerant will be described.

室外制御装置29は、ガス冷媒回収運転を行うとき、室内膨張弁81を閉じるよう室内制御装置84に指示するとともに、室外膨張弁25と、過冷却膨張弁28と、液冷媒遮断弁51とを閉じる。これにより、冷媒回路は、図2に示す状態となる。そして、室外制御装置29は、室外機2に回収した冷媒を凝縮させて室外熱交換器23に回収するために圧縮機21および室外ファン24を駆動し、また、室内熱交換器82に滞留する冷媒を蒸発させて室外機2に回収するために室内ファン83を駆動してガス冷媒回収運転を開始する。   When performing the gas refrigerant recovery operation, the outdoor control device 29 instructs the indoor control device 84 to close the indoor expansion valve 81, and sets the outdoor expansion valve 25, the supercooling expansion valve 28, and the liquid refrigerant cutoff valve 51. close up. Thereby, a refrigerant circuit will be in the state shown in FIG. The outdoor control device 29 drives the compressor 21 and the outdoor fan 24 in order to condense the refrigerant collected in the outdoor unit 2 and collect it in the outdoor heat exchanger 23, and stays in the indoor heat exchanger 82. In order to evaporate the refrigerant and collect it in the outdoor unit 2, the indoor fan 83 is driven to start the gas refrigerant recovery operation.

圧縮機21を起動すると、室内機3における室内膨張弁81より室内熱交換器82側に滞留する冷媒と、ガス冷媒配管102に滞留する冷媒とが、図2に示す一点鎖線矢印のように流れて室外機2に流入する。室外機2に流入した冷媒は、四方弁22、合流部62を介してアキュムレータ26に流入する。アキュムレータ26に流入した冷媒のうち、液冷媒はアキュムレータ26に滞留し、ガス冷媒は圧縮機21に吸入され、圧縮機21から四方弁22を介して室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外膨張弁25に向かって流出するが、室外膨張弁25は閉じられているので、室外熱交換器23に冷媒が溜まっていく。   When the compressor 21 is started, the refrigerant staying on the indoor heat exchanger 82 side from the indoor expansion valve 81 in the indoor unit 3 and the refrigerant staying on the gas refrigerant pipe 102 flow as indicated by a one-dot chain line arrow shown in FIG. Flow into the outdoor unit 2. The refrigerant that has flowed into the outdoor unit 2 flows into the accumulator 26 through the four-way valve 22 and the junction portion 62. Of the refrigerant that has flowed into the accumulator 26, the liquid refrigerant stays in the accumulator 26, the gas refrigerant is sucked into the compressor 21, and flows into the outdoor heat exchanger 23 from the compressor 21 through the four-way valve 22. The refrigerant that has flowed into the outdoor heat exchanger 23 flows toward the outdoor expansion valve 25, but the outdoor expansion valve 25 is closed, so that the refrigerant accumulates in the outdoor heat exchanger 23.

ガス冷媒回収運転を行っているときは、室内膨張弁81を閉じているので、液冷媒配管101に滞留する冷媒が室内機3に流入することがない。また、室外膨張弁25と、過冷却膨張弁28と、液冷媒遮断弁51とを閉じているので、室外機2における室外膨張弁25と液冷媒遮断弁51との間の冷媒配管に滞留する冷媒および合流部61と過冷却膨張弁28との間の第1バイパス管27aに滞留する冷媒は、室外膨張弁25と過冷却膨張弁28と液冷媒遮断弁51との間に閉じ込められた状態となるので、この場所に滞留する冷媒が、過冷却熱交換器27から合流部62を介してアキュムレータ26に流れない。   When the gas refrigerant recovery operation is performed, the indoor expansion valve 81 is closed, so that the refrigerant staying in the liquid refrigerant pipe 101 does not flow into the indoor unit 3. Further, since the outdoor expansion valve 25, the supercooling expansion valve 28, and the liquid refrigerant shut-off valve 51 are closed, the refrigerant stays in the refrigerant pipe between the outdoor expansion valve 25 and the liquid refrigerant shut-off valve 51 in the outdoor unit 2. The refrigerant and the refrigerant staying in the first bypass pipe 27 a between the junction 61 and the supercooling expansion valve 28 are confined between the outdoor expansion valve 25, the supercooling expansion valve 28, and the liquid refrigerant shut-off valve 51. Therefore, the refrigerant staying at this place does not flow from the supercooling heat exchanger 27 to the accumulator 26 through the junction 62.

ガス冷媒回収運転を行っているとき、室外制御装置29は、吸入圧力センサ32が検出した吸入圧力を定期的に取り込んでおり、取り込んだ吸入圧力が所定値であるガス冷媒回収運転終了閾値(例えば、0.01MPa)以下となれば、室内機3およびガス冷媒配管102に滞留する冷媒の回収が完了したと判断する。また、ガス冷媒回収運転において、室内機3およびガス冷媒配管102内の圧力が大気圧以下になると、冷媒漏れ部から室内機3およびガス冷媒配管102に空気が流入し、冷媒漏れ部の大きさによっては、圧縮機21が空気を吸入し続け、吸入圧力がガス冷媒回収運転終了閾値以下にならない場合があるため、室外制御装置29は、ガス冷媒回収運転を開始してからの運転時間を計測し、ガス冷媒回収運転の運転時間が所定時間であるガス冷媒回収運転終了閾時間(例えば、180秒)を経過すれば、室内機3およびガス冷媒配管102に滞留する冷媒の回収が完了したと判断する。運転時間については、予め試験で確認したものであり、設置状況に合わせて、室内機3およびガス冷媒配管102に滞留する冷媒を回収できる時間に設定している。そして、室外制御装置29は、ガス冷媒遮断弁52を閉じて、ガス冷媒回収運転を終了する。ガス冷媒回収運転が終了と同時に液冷媒回収運転に切り替えるので、圧縮機21と室外ファン24と室内ファン83は駆動させたままにする。   When the gas refrigerant recovery operation is performed, the outdoor control device 29 periodically takes in the suction pressure detected by the suction pressure sensor 32, and the gas refrigerant recovery operation end threshold (for example, the taken-in suction pressure is a predetermined value) (for example, , 0.01 MPa) or less, it is determined that the recovery of the refrigerant staying in the indoor unit 3 and the gas refrigerant pipe 102 has been completed. Further, in the gas refrigerant recovery operation, when the pressure in the indoor unit 3 and the gas refrigerant pipe 102 becomes equal to or lower than the atmospheric pressure, air flows into the indoor unit 3 and the gas refrigerant pipe 102 from the refrigerant leak part, and the size of the refrigerant leak part. In some cases, the compressor 21 continues to suck air, and the suction pressure may not be lower than the gas refrigerant recovery operation end threshold value. Therefore, the outdoor control device 29 measures the operation time after starting the gas refrigerant recovery operation. Then, if the gas refrigerant recovery operation end threshold time (for example, 180 seconds), which is the predetermined time of the gas refrigerant recovery operation, has elapsed, recovery of the refrigerant staying in the indoor unit 3 and the gas refrigerant pipe 102 is completed. to decide. The operation time is confirmed in advance by a test, and is set to a time during which the refrigerant staying in the indoor unit 3 and the gas refrigerant pipe 102 can be recovered according to the installation situation. Then, the outdoor control device 29 closes the gas refrigerant shutoff valve 52 and ends the gas refrigerant recovery operation. Since the gas refrigerant recovery operation is switched to the liquid refrigerant recovery operation at the same time as the end of the gas refrigerant recovery operation, the compressor 21, the outdoor fan 24, and the indoor fan 83 are kept driven.

次に、液冷媒回収運転について各弁の開閉状態と冷媒の流れを説明する。   Next, the open / close state of each valve and the flow of the refrigerant in the liquid refrigerant recovery operation will be described.

室外制御装置29は、液冷媒回収運転を行うとき、室外膨張弁25および室内膨張弁81は閉じたままとし、過冷却膨張弁28と、液冷媒遮断弁51とを開く。これにより、冷媒回路は図3に示す状態となり、液冷媒回収運転が開始される。圧縮機21と室外ファン24と室内ファン83は、ガス冷媒回収運転から継続して駆動している。   When performing the liquid refrigerant recovery operation, the outdoor control device 29 keeps the outdoor expansion valve 25 and the indoor expansion valve 81 closed, and opens the supercooling expansion valve 28 and the liquid refrigerant cutoff valve 51. As a result, the refrigerant circuit enters the state shown in FIG. 3, and the liquid refrigerant recovery operation is started. The compressor 21, the outdoor fan 24, and the indoor fan 83 are continuously driven from the gas refrigerant recovery operation.

液冷媒回収運転を開始すると、液冷媒配管101に滞留する冷媒とが図3に示す一点鎖線矢印のように流れて室外機2に流入する。室外機2に流入した冷媒は、過冷却熱交換器27の被冷却側配管27c、第1バイパス管27a、過冷却熱交換器27の冷却側配管27d、第2バイパス管27bおよび合流部62を介してアキュムレータ26に流入する。アキュムレータ26に流入した冷媒のうち、液冷媒はアキュムレータ26に滞留し、ガス冷媒は圧縮機21に吸入され、圧縮機21から四方弁22を介して室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外膨張弁25に向かって流出するが、室外膨張弁25は閉じられているので、室外熱交換器23に冷媒が溜まっていく。   When the liquid refrigerant recovery operation is started, the refrigerant staying in the liquid refrigerant pipe 101 flows as indicated by a one-dot chain line arrow shown in FIG. 3 and flows into the outdoor unit 2. The refrigerant flowing into the outdoor unit 2 passes through the cooled side pipe 27c of the supercooling heat exchanger 27, the first bypass pipe 27a, the cooling side pipe 27d of the supercooling heat exchanger 27, the second bypass pipe 27b, and the junction 62. Through the accumulator 26. Of the refrigerant that has flowed into the accumulator 26, the liquid refrigerant stays in the accumulator 26, the gas refrigerant is sucked into the compressor 21, and flows into the outdoor heat exchanger 23 from the compressor 21 through the four-way valve 22. The refrigerant that has flowed into the outdoor heat exchanger 23 flows toward the outdoor expansion valve 25, but the outdoor expansion valve 25 is closed, so that the refrigerant accumulates in the outdoor heat exchanger 23.

液冷媒回収運転を行っているときは、室内膨張弁81を閉じ、室外機2の液冷媒配管101側から室外機2に冷媒を回収しているので、液冷媒配管101に滞留する冷媒が室内機3に流入することがない。また、ガス冷媒遮断弁52を閉じているので、液冷媒配管101に滞留する冷媒が、第1バイパス管27a、過冷却熱交換器27の冷却側配管27d、第2バイパス管27bから合流部62および四方弁22を介して、室内機3およびガス冷媒配管102に流入することはない。   When the liquid refrigerant recovery operation is performed, the indoor expansion valve 81 is closed and the refrigerant is recovered from the liquid refrigerant pipe 101 side of the outdoor unit 2 to the outdoor unit 2, so that the refrigerant staying in the liquid refrigerant pipe 101 is stored indoors. It does not flow into the machine 3. Further, since the gas refrigerant shutoff valve 52 is closed, the refrigerant staying in the liquid refrigerant pipe 101 flows from the first bypass pipe 27a, the cooling side pipe 27d of the supercooling heat exchanger 27, and the second bypass pipe 27b to the junction 62. And it does not flow into the indoor unit 3 and the gas refrigerant pipe 102 via the four-way valve 22.

液冷媒回収運転を行っているときに、室外制御装置29は、吸入圧力センサ32が検出した吸入圧力を定期的に取り込んでおり、取り込んだ吸入圧力が所定値である液冷媒回収運転終了閾値(例えば、0.05MPa)以下となれば、液冷媒配管101に滞留する冷媒の回収が完了したと判断する。また、室内膨張弁81よりも液冷媒配管101側で冷媒漏れが発生する場合もあるため、室外制御装置29は、ガス冷媒回収運転と同様に、液冷媒回収運転が開始してからの運転時間を計測し、取り込んだ吸入圧力が液冷媒回収運転終了閾値以下とならなくても、液冷媒回収運転の運転時間が所定時間である液冷媒回収運転終了閾時間(例えば、360秒)を経過すれば、室内機3および液冷媒配管101に滞留する冷媒の回収が完了したと判断する。運転時間については、ガス冷媒回収運転と同様に、予め試験で確認したものであり、設置状況に合わせて、室内機3および液冷媒配管101に滞留する冷媒を回収できる時間に設定している。そして、室外制御装置29は、液冷媒遮断弁51を閉じて、圧縮機21と室外ファン24と室内ファン83を停止し、液冷媒回収運転を終了する。   During the liquid refrigerant recovery operation, the outdoor control device 29 periodically takes in the suction pressure detected by the suction pressure sensor 32, and the liquid refrigerant recovery operation end threshold value (in which the taken-in suction pressure is a predetermined value) For example, if the pressure is 0.05 MPa or less, it is determined that the recovery of the refrigerant staying in the liquid refrigerant pipe 101 is completed. In addition, since the refrigerant leakage may occur on the liquid refrigerant pipe 101 side with respect to the indoor expansion valve 81, the outdoor control device 29 operates similarly to the gas refrigerant recovery operation after the liquid refrigerant recovery operation is started. Even if the taken-in suction pressure does not fall below the liquid refrigerant recovery operation end threshold, the liquid refrigerant recovery operation end threshold time (for example, 360 seconds), which is the predetermined time of the liquid refrigerant recovery operation, elapses. For example, it is determined that the recovery of the refrigerant staying in the indoor unit 3 and the liquid refrigerant pipe 101 is completed. As with the gas refrigerant recovery operation, the operation time is confirmed in advance by a test, and is set to a time during which the refrigerant staying in the indoor unit 3 and the liquid refrigerant pipe 101 can be recovered according to the installation situation. Then, the outdoor control device 29 closes the liquid refrigerant cutoff valve 51, stops the compressor 21, the outdoor fan 24, and the indoor fan 83, and ends the liquid refrigerant recovery operation.

尚、ガス冷媒回収運転にはガス冷媒回収運転終了閾値とガス冷媒回収運転終了閾時間、液冷媒回収運転には液冷媒回収運転終了閾値と液冷媒回収運転終了閾時間、と冷媒回収運転毎に設けているが、これに限らず、ガス冷媒回収運転終了閾値と液冷媒回収運転終了閾値、ガス冷媒回収運転終了閾時間と液冷媒回収運転終了閾時間を同じ値として冷媒回収運転の完了を判断してもよい。   For gas refrigerant recovery operation, gas refrigerant recovery operation end threshold and gas refrigerant recovery operation end threshold time, and for liquid refrigerant recovery operation, liquid refrigerant recovery operation end threshold and liquid refrigerant recovery operation end threshold time, and for each refrigerant recovery operation. However, the present invention is not limited to this, and the completion of the refrigerant recovery operation is determined by setting the gas refrigerant recovery operation end threshold and the liquid refrigerant recovery operation end threshold, the gas refrigerant recovery operation end threshold time, and the liquid refrigerant recovery operation end threshold time to the same value. May be.

以上説明したように、冷媒回収運転においては、室内膨張弁81を閉じた後、ガス冷媒回収運転、液冷媒回収運転の順で冷媒回収運転を行う。先にガス冷媒回収運転を行って、室内機3およびガス冷媒配管102に滞留する冷媒を回収した後に、液冷媒回収運転を行って、室内機3を介さずに液冷媒配管101に滞留する冷媒を回収するので、室内への冷媒漏れを最小限に抑えることができる。   As described above, in the refrigerant recovery operation, after the indoor expansion valve 81 is closed, the refrigerant recovery operation is performed in the order of the gas refrigerant recovery operation and the liquid refrigerant recovery operation. A refrigerant that stays in the liquid refrigerant pipe 101 without going through the indoor unit 3 after performing a gas refrigerant recovery operation and recovering the refrigerant that stays in the indoor unit 3 and the gas refrigerant pipe 102 before performing a liquid refrigerant recovery operation. Thus, refrigerant leakage into the room can be minimized.

上述した冷媒回収運転を行うとき、室内への冷媒漏れを最小限に抑えるために、冷媒回路における室内側の冷媒をできる限り室外機2に回収することが望ましい。しかし、室外熱交換器23とアキュムレータ26との内容積の違いや回収した冷媒の状態(ガス冷媒と液冷媒の割合)によって、同じ割合で室外熱交換器23とアキュムレータ26に冷媒が溜まるとは限らず、いずれか一方が先に満液となる場合がある。この場合、例えば、室外熱交換器23が先に満液になると、室外熱交換器23に冷媒を回収できる場所が無くなり、この状況で圧縮機21を駆動し続けると圧縮機21が故障し、冷媒回収運転の継続ができなくなる。このような状況を回避するために、室外熱交換器23がアキュムレータ26よりも先に満液になった(例えば、室外熱交換器23の内容積の80%(室外熱交換器23の許容冷媒回収量)以上が液冷媒で満たされる)、もしくは、アキュムレータ26が室外熱交換器23よりも先に満液になった(例えば、アキュムレータ26の内容積の90%(アキュムレータ26の許容冷媒回収量)以上が液冷媒で満たされる)場合、室外制御装置29は、室外熱交換器23もしくはアキュムレータ26の満液を解消するために熱交冷媒排出運転または余剰冷媒排出運転を実行する。これら熱交冷媒排出運転および余剰冷媒排出運転について図4および図5を用いて説明する。図4は、熱交冷媒排出運転時の各弁の開閉状態を示す。図5は、余剰冷媒排出運転時の各弁の開閉状態を示す。各弁の開閉状態は、閉じている場合を黒塗りにし、開いている場合を白抜きに図示する。また、各冷媒排出運転時の冷媒の流れを一点鎖線矢印で図示する。   When performing the above-described refrigerant recovery operation, it is desirable to recover the indoor-side refrigerant in the refrigerant circuit to the outdoor unit 2 as much as possible in order to minimize refrigerant leakage into the room. However, the refrigerant accumulates in the outdoor heat exchanger 23 and the accumulator 26 at the same rate depending on the difference in the internal volume between the outdoor heat exchanger 23 and the accumulator 26 and the state of the recovered refrigerant (ratio of gas refrigerant and liquid refrigerant). Not limited to this, either one may become full first. In this case, for example, when the outdoor heat exchanger 23 becomes full first, there is no place where the refrigerant can be recovered in the outdoor heat exchanger 23. If the compressor 21 is continuously driven in this situation, the compressor 21 breaks down. The refrigerant recovery operation cannot be continued. In order to avoid such a situation, the outdoor heat exchanger 23 is full before the accumulator 26 (for example, 80% of the internal volume of the outdoor heat exchanger 23 (the allowable refrigerant of the outdoor heat exchanger 23). Or more, the accumulator 26 is full before the outdoor heat exchanger 23 (for example, 90% of the internal volume of the accumulator 26 (the allowable refrigerant recovery amount of the accumulator 26). When the above is filled with the liquid refrigerant), the outdoor control device 29 executes a heat exchange refrigerant discharge operation or a surplus refrigerant discharge operation in order to eliminate the full liquid in the outdoor heat exchanger 23 or the accumulator 26. These heat exchange refrigerant discharge operation and excess refrigerant discharge operation will be described with reference to FIGS. 4 and 5. FIG. 4 shows the open / closed state of each valve during the heat-exchange refrigerant discharge operation. FIG. 5 shows the open / close state of each valve during the surplus refrigerant discharge operation. The open / closed state of each valve is shown in black when it is closed, and white when it is open. Moreover, the flow of the refrigerant at the time of each refrigerant discharge operation is illustrated by a one-dot chain line arrow.

まず、熱交冷媒排出運転について各弁の開閉状態と冷媒の流れを説明する。尚、本実施例では、室外熱交換器23が満液であるか否かを示す、室外熱交換器23に滞留する冷媒量の変動に応じて変動する運転状態量として吐出圧力を用いて説明する。   First, the open / close state of each valve and the flow of the refrigerant in the heat exchanger refrigerant discharge operation will be described. In this embodiment, the discharge pressure is used as the operating state variable that varies depending on the variation in the amount of refrigerant that stays in the outdoor heat exchanger 23, which indicates whether or not the outdoor heat exchanger 23 is full. To do.

室外制御装置29は、冷媒回収運転時に、室外熱交換器23が液冷媒で満たされてくると、室外熱交換器23で冷媒が凝縮できなくなり、圧縮機21の吐出側の圧力が上昇する。そこで、吐出圧力センサ31で検出した吐出圧力が第1の所定閾値(例えば、3.5MPa)以上になると、室外熱交換器23が満液であると判断し、吐出圧力上昇による圧縮機21の故障や配管折れを防ぐため、冷媒回収運転を中断して熱交冷媒排出運転を行う。   When the outdoor heat exchanger 23 is filled with liquid refrigerant during the refrigerant recovery operation, the outdoor control device 29 cannot condense the refrigerant in the outdoor heat exchanger 23 and the pressure on the discharge side of the compressor 21 increases. Therefore, when the discharge pressure detected by the discharge pressure sensor 31 is equal to or higher than a first predetermined threshold (for example, 3.5 MPa), it is determined that the outdoor heat exchanger 23 is full, and the compressor 21 due to the increase in the discharge pressure is determined. In order to prevent failure and pipe breakage, the refrigerant recovery operation is interrupted and the heat exchange refrigerant discharge operation is performed.

熱交冷媒排出運転を行うとき、液冷媒遮断弁51およびガス冷媒遮断弁52を閉じた後に、室外膨張弁25を開く。これにより、冷媒回路は図4の状態となり、熱交冷媒排出運転が開始される。   When the heat-exchange refrigerant discharge operation is performed, the outdoor expansion valve 25 is opened after the liquid refrigerant cutoff valve 51 and the gas refrigerant cutoff valve 52 are closed. Thereby, a refrigerant circuit will be in the state of FIG. 4, and a heat exchange refrigerant | coolant discharge operation is started.

熱交冷媒排出運転が開始されると、室外熱交換器23に滞留する冷媒が図4に示す一点鎖線矢印のように流れてアキュムレータ26に流入する。液冷媒遮断弁51とガス冷媒遮断弁52とを閉じているので、室外熱交換器23から流出した冷媒が室内機3と液冷媒配管101とガス冷媒配管102に流入することがなく、室外熱交換器23の満液を解消できる。室外制御装置29は、室外熱交換器23に滞留した冷媒が流出すれば、吐出圧力が低下するので、第2の所定閾値(例えば、3.0MPa)以下になると、室外熱交換器23の満液が解消されたと判断し、熱交冷媒回収運転を終了して冷媒回収運転を再開する。尚、第1の所定閾値や第2の所定閾値は予め試験で求めたものであり、吐出圧力が3.5MPaは室外熱交換器23の80%が液冷媒で満たされたときの値であり、吐出圧力が3.0MPaは室外熱交換器23の20%が液冷媒で満たされたときの値である。   When the heat-exchange refrigerant discharge operation is started, the refrigerant staying in the outdoor heat exchanger 23 flows as shown by a one-dot chain line arrow shown in FIG. 4 and flows into the accumulator 26. Since the liquid refrigerant shut-off valve 51 and the gas refrigerant shut-off valve 52 are closed, the refrigerant flowing out of the outdoor heat exchanger 23 does not flow into the indoor unit 3, the liquid refrigerant pipe 101, and the gas refrigerant pipe 102, and the outdoor heat The full liquid of the exchanger 23 can be eliminated. When the refrigerant staying in the outdoor heat exchanger 23 flows out, the outdoor control device 29 decreases the discharge pressure. Therefore, when the outdoor control device 29 falls below the second predetermined threshold (for example, 3.0 MPa), the outdoor heat exchanger 23 is fully charged. It is determined that the liquid has been eliminated, the heat exchanger recovery operation is terminated, and the coolant recovery operation is restarted. The first predetermined threshold and the second predetermined threshold are obtained in advance by a test, and the discharge pressure of 3.5 MPa is a value when 80% of the outdoor heat exchanger 23 is filled with the liquid refrigerant. The discharge pressure of 3.0 MPa is a value when 20% of the outdoor heat exchanger 23 is filled with the liquid refrigerant.

次に、余剰冷媒排出運転について各弁の開閉状態と冷媒の流れを説明する。尚、本実施例では、アキュムレータ26が満液であるか否かを示す、アキュムレータ26に滞留する冷媒量の変動に応じて変動する運転状態量として吐出過熱度を用いて説明する。   Next, the open / close state of each valve and the flow of the refrigerant will be described for the surplus refrigerant discharge operation. In the present embodiment, the discharge superheat degree is described as an operation state amount that varies depending on the variation in the amount of refrigerant that stays in the accumulator 26 that indicates whether or not the accumulator 26 is full.

室外制御装置29は、冷媒回収運転時に、アキュムレータ26が液冷媒で満たされてくると、アキュムレータ26から少しずつ液冷媒が流出し始めることで、圧縮機21から吐出される吐出温度が下がり、圧縮機21の吐出側の過熱度(以下、吐出過熱度とする)が小さくなる。そこで、吐出温度センサ41で検出した吐出温度と吐出圧力センサ31で検出した吐出圧力から換算した吐出圧力飽和温度との差から算出する吐出過熱度が第3の所定閾値(例えば、4℃)以下になると、アキュムレータ26が満液であると判断し、液圧縮による圧縮機21の故障を防ぐため、冷媒回収運転を中断して余剰冷媒排出運転を行う。   When the accumulator 26 is filled with the liquid refrigerant during the refrigerant recovery operation, the outdoor control device 29 starts to flow out of the liquid refrigerant little by little from the accumulator 26, so that the discharge temperature discharged from the compressor 21 decreases and the compression is performed. The degree of superheat on the discharge side of the machine 21 (hereinafter referred to as discharge superheat degree) is reduced. Therefore, the discharge superheat calculated from the difference between the discharge temperature detected by the discharge temperature sensor 41 and the discharge pressure saturation temperature converted from the discharge pressure detected by the discharge pressure sensor 31 is a third predetermined threshold (for example, 4 ° C.) or less. Then, it is determined that the accumulator 26 is full, and the refrigerant recovery operation is interrupted and the excess refrigerant discharge operation is performed in order to prevent the compressor 21 from being broken due to liquid compression.

余剰冷媒排出運転を行うとき、液冷媒遮断弁51およびガス冷媒遮断弁52を閉じる。これにより、冷媒回路は図5の状態となり、余剰冷媒排出運転が開始される。尚、余剰冷媒排出運転を行うとき、アキュムレータ26に取り付けた図示しない電気ヒータに通電する。   When the surplus refrigerant discharge operation is performed, the liquid refrigerant cutoff valve 51 and the gas refrigerant cutoff valve 52 are closed. As a result, the refrigerant circuit enters the state shown in FIG. 5 and the surplus refrigerant discharge operation is started. When the surplus refrigerant discharge operation is performed, an electric heater (not shown) attached to the accumulator 26 is energized.

余剰冷媒排出運転が開始されると、アキュムレータ26に滞留する冷媒が図5に示す一点鎖線矢印のように流れて室外熱交換器23に流入する。このとき、液冷媒遮断弁51とガス冷媒遮断弁52とを閉じているので、アキュムレータ26に流入する冷媒は無い。また、アキュムレータ26を電気ヒータで加熱して温めることでアキュムレータ26に滞留する液冷媒の一部が蒸発してガス冷媒となるので、アキュムレータ26から冷媒を排出させることができる。このように、アキュムレータ26に流入する冷媒がなく、かつ、アキュムレータ26から冷媒を排出させることによって、アキュムレータ26の満液を解消できる。室外制御装置29は、アキュムレータ26に滞留する液冷媒が減少してアキュムレータ26から液冷媒の流出が収まると、圧縮機21の吐出側の過熱度が大きくなるので、第4の所定閾値(例えば、8℃)以上になると、アキュムレータ26の満液が解消されたと判断し、余剰冷媒回収運転を終了して冷媒回収運転を再開する。尚、第3の所定閾値と第4の所定閾値は予め試験で求めたものであり、吐出過熱度が4℃はアキュムレータ26の90%が液冷媒で満たされたときの値であり、吐出過熱度が8℃はアキュムレータ26の50%が液冷媒で満たされたときの値である。   When the surplus refrigerant discharge operation is started, the refrigerant staying in the accumulator 26 flows as indicated by a one-dot chain line arrow shown in FIG. 5 and flows into the outdoor heat exchanger 23. At this time, since the liquid refrigerant cutoff valve 51 and the gas refrigerant cutoff valve 52 are closed, there is no refrigerant flowing into the accumulator 26. Further, by heating the accumulator 26 with an electric heater and heating it, a part of the liquid refrigerant staying in the accumulator 26 evaporates to become a gas refrigerant, so that the refrigerant can be discharged from the accumulator 26. In this way, there is no refrigerant flowing into the accumulator 26, and by discharging the refrigerant from the accumulator 26, the full liquid in the accumulator 26 can be eliminated. When the liquid refrigerant staying in the accumulator 26 decreases and the outflow of the liquid refrigerant stops from the accumulator 26, the outdoor control device 29 increases the degree of superheat on the discharge side of the compressor 21. When the temperature reaches 8 ° C. or higher, it is determined that the accumulator 26 has been completely filled, the surplus refrigerant recovery operation is terminated, and the refrigerant recovery operation is restarted. The third predetermined threshold value and the fourth predetermined threshold value are obtained in advance in a test, and the discharge superheat degree is 4 ° C., which is a value when 90% of the accumulator 26 is filled with liquid refrigerant. The degree of 8 ° C. is a value when 50% of the accumulator 26 is filled with the liquid refrigerant.

以上説明したように、冷媒回収運転時に、室外熱交換器23が満液となれば熱交冷媒排出運転を行い、アキュムレータ26が満液となれば余剰冷媒排出運転を行うことで、それぞれの満液を解消することができ、冷媒回収運転を継続できる。ただし、例えば、室外熱交換器23が満液となれば、熱交冷媒排出運転を行い室外熱交換器23に滞留する冷媒がアキュムレータ26に流入するが、室外熱交換器23の満液が解消する前にアキュムレータ26が満液になるという場合のように、熱交冷媒排出運転時もしくは余剰冷媒排出運転時に、室外熱交換器23およびアキュムレータ26の満液が解消できない場合、室外機2に冷媒回収部が無くなるので冷媒回収運転を終了する。尚、冷媒回収運転時に室外熱交換器23とアキュムレータ26とが同時に満液となった場合も冷媒回収運転を終了する。   As described above, during the refrigerant recovery operation, if the outdoor heat exchanger 23 becomes full, the heat exchange refrigerant discharge operation is performed, and if the accumulator 26 becomes full, the excess refrigerant discharge operation is performed. The liquid can be eliminated, and the refrigerant recovery operation can be continued. However, for example, when the outdoor heat exchanger 23 becomes full, the heat exchange refrigerant discharge operation is performed and the refrigerant staying in the outdoor heat exchanger 23 flows into the accumulator 26, but the full heat of the outdoor heat exchanger 23 is eliminated. When the accumulator 26 is full before the refrigerant is discharged, if the full heat of the outdoor heat exchanger 23 and the accumulator 26 cannot be eliminated during the heat exchange refrigerant discharge operation or the surplus refrigerant discharge operation, the refrigerant is supplied to the outdoor unit 2. Since there is no recovery unit, the refrigerant recovery operation is terminated. Note that the refrigerant recovery operation is also terminated when the outdoor heat exchanger 23 and the accumulator 26 become full at the same time during the refrigerant recovery operation.

次に、図6、図7、図8に示すフローチャートを用いて冷媒回収運転に関する処理の流れを説明する。図6に示すフローチャートは、室外制御装置29が実行する冷媒回収運転に関する処理の流れを示すものであり、図7は、図6に示すフローチャートのサブルーチンであり、熱交冷媒排出運転に関する処理の流れを示すものであり、図8は、図6に示すフローチャートのサブルーチンであり、余剰冷媒排出運転に関する処理の流れを示すものである。いずれのフローチャートにおいても、STはステップを表しこれに続く数字はステップ番号を表している。   Next, the flow of processing relating to the refrigerant recovery operation will be described using the flowcharts shown in FIGS. 6, 7, and 8. The flowchart shown in FIG. 6 shows the flow of processing related to the refrigerant recovery operation executed by the outdoor control device 29, and FIG. 7 is the subroutine of the flowchart shown in FIG. FIG. 8 is a subroutine of the flowchart shown in FIG. 6 and shows the flow of processing relating to the surplus refrigerant discharge operation. In any flowchart, ST represents a step, and the number following this represents a step number.

まずは、図6を用いて冷媒回収運転時の処理について説明する。   First, the process at the time of refrigerant | coolant collection | recovery driving | operation is demonstrated using FIG.

室外制御装置29は、冷媒検知センサからの入力やサービスマンからの指示により冷媒回収運転を開始する。まず、室外制御装置29は、ガス冷媒回収運転準備を行う(ST1)。ガス冷媒回収運転準備では、室外制御装置29は、室外膨張弁25と、過冷却膨張弁28と、液冷媒遮断弁51とを閉じて、圧縮機21と、室外ファン24とを駆動する。また、室外制御装置29は、室内制御装置84に、室内膨張弁81を閉じて、室内ファン83を駆動するように指示する。   The outdoor control device 29 starts the refrigerant recovery operation in response to an input from the refrigerant detection sensor or an instruction from a service person. First, the outdoor control device 29 prepares for a gas refrigerant recovery operation (ST1). In the gas refrigerant recovery operation preparation, the outdoor control device 29 closes the outdoor expansion valve 25, the supercooling expansion valve 28, and the liquid refrigerant cutoff valve 51, and drives the compressor 21 and the outdoor fan 24. In addition, the outdoor control device 29 instructs the indoor control device 84 to close the indoor expansion valve 81 and drive the indoor fan 83.

次に、室外制御装置29は、ガス冷媒回収運転時間を計測するため、タイマー計測を開始する(ST2)。   Next, the outdoor control device 29 starts timer measurement in order to measure the gas refrigerant recovery operation time (ST2).

次に、室外制御装置29は、吐出圧力センサ31、吸入圧力センサ32、吐出温度センサ41で検出している圧力・温度データを取り込む(ST3)。尚、室外制御装置29は、吐出圧力センサ31、吸入圧力センサ32、吐出温度センサ41で検出している圧力・温度データを定期的(例えば1秒毎)に取り込んで記憶している。   Next, the outdoor control device 29 takes in the pressure / temperature data detected by the discharge pressure sensor 31, the suction pressure sensor 32, and the discharge temperature sensor 41 (ST3). In addition, the outdoor control device 29 fetches and stores pressure / temperature data detected by the discharge pressure sensor 31, the suction pressure sensor 32, and the discharge temperature sensor 41 at regular intervals (for example, every second).

次に、室外制御装置29は、ST3で取り込んだ圧力・温度データを用いて、アキュムレータ26が満液であるか否かを判断する(ST4)。アキュムレータ26が満液の状態で冷媒回収運転を実行すると、圧縮機21への液戻りによる故障が発生する虞がある。これを回避するため、室外熱交換器23が満液であるか否かの判断よりもアキュムレータ26が満液であるか否かの判断を先に行う。具体的には、取り込んだ吐出温度センサ41の検出値と、吐出圧力センサ31の検出値から換算した吐出圧力飽和温度との差である吐出過熱度が第3の所定閾値の4℃以下であるか否かで、アキュムレータ26が満液であるか否かを判断する。アキュムレータ26が満液である場合(ST4−Yes)、室外制御装置29は、ST19に処理を進める。アキュムレータ26が満液ではない場合(ST4−No)、室外制御装置29は、ST5に処理を進める。   Next, the outdoor control device 29 determines whether or not the accumulator 26 is full using the pressure / temperature data acquired in ST3 (ST4). If the refrigerant recovery operation is executed while the accumulator 26 is full, a failure due to liquid return to the compressor 21 may occur. In order to avoid this, it is determined first whether or not the accumulator 26 is full, rather than whether or not the outdoor heat exchanger 23 is full. Specifically, the discharge superheat degree, which is the difference between the detected value of the discharged discharge temperature sensor 41 and the discharge pressure saturation temperature converted from the detection value of the discharge pressure sensor 31, is 4 ° C. or less, which is a third predetermined threshold value. Whether or not the accumulator 26 is full. When the accumulator 26 is full (ST4-Yes), the outdoor control device 29 advances the process to ST19. When the accumulator 26 is not full (ST4-No), the outdoor control device 29 advances the process to ST5.

ST19に処理が進むと、ST3で取り込んだ圧力・温度データを用いて、室外熱交換器23が満液であるか否かを判断する。具体的には、取り込んだ吐出圧力センサ31で検出した吐出圧力が第1の所定閾値の3.5MPa以上であるか否かで室外熱交換器23が満液であるか否かを判断する。室外熱交換器23が満液である場合(ST19−Yes)、室外熱交換器23およびアキュムレータ26が同時に満液となり、これ以上の冷媒回収運転が行えないので、室外制御装置29は、過冷却膨張弁28と、液冷媒遮断弁51と、ガス冷媒遮断弁52とを閉じて、圧縮機21と、室外ファン24とを停止させ冷媒回収運転を終了し、本発明に関わる処理を終了する。室外熱交換器23が満液ではない場合(ST19−No)、室外制御装置29は、冷媒回収運転を一時中断し、余剰冷媒排出運転を行い(ST20)、ST16に処理を進める。   When the process proceeds to ST19, it is determined whether or not the outdoor heat exchanger 23 is full using the pressure / temperature data taken in ST3. Specifically, whether or not the outdoor heat exchanger 23 is full is determined based on whether or not the discharge pressure detected by the taken-in discharge pressure sensor 31 is equal to or higher than the first predetermined threshold value of 3.5 MPa. When the outdoor heat exchanger 23 is full (ST19-Yes), the outdoor heat exchanger 23 and the accumulator 26 are full at the same time, and no further refrigerant recovery operation can be performed. The expansion valve 28, the liquid refrigerant shut-off valve 51, and the gas refrigerant shut-off valve 52 are closed, the compressor 21 and the outdoor fan 24 are stopped, the refrigerant recovery operation is finished, and the processing related to the present invention is finished. When the outdoor heat exchanger 23 is not full (ST19-No), the outdoor control device 29 temporarily stops the refrigerant recovery operation, performs the excess refrigerant discharge operation (ST20), and proceeds to ST16.

ST5に処理が進むと、ST3で取り込んだ圧力・温度データを用いて、室外熱交換器23が液冷媒で満たされた状態であるか否かを判断する。具体的には、取り込んだ吐出圧力センサ31で検出した吐出圧力が第1の所定閾値の3.5MPa以上であるか否かで室外熱交換器23が満液であるか否かを判断する。室外熱交換器23が満液である場合(ST5−Yes)、室外制御装置29は、冷媒回収運転を一時中断し、熱交冷媒排出運転を行い(ST15)、ST16に処理を進める。室外熱交換器23が満液ではない場合(ST5−No)、室外制御装置29は、冷媒回収運転を継続して、ST6に処理を進める。   When the process proceeds to ST5, it is determined whether or not the outdoor heat exchanger 23 is in a state filled with the liquid refrigerant using the pressure / temperature data taken in ST3. Specifically, whether or not the outdoor heat exchanger 23 is full is determined based on whether or not the discharge pressure detected by the taken-in discharge pressure sensor 31 is equal to or higher than the first predetermined threshold value of 3.5 MPa. When the outdoor heat exchanger 23 is full (ST5-Yes), the outdoor control device 29 temporarily interrupts the refrigerant recovery operation, performs the heat exchanger discharge operation (ST15), and proceeds to ST16. When the outdoor heat exchanger 23 is not full (ST5-No), the outdoor control device 29 continues the refrigerant recovery operation and advances the process to ST6.

ST16では、室外制御装置29は、後述する満液フラグが「0」であるか否かを判断する。満液フラグが「0」である場合は、熱交冷媒排出運転(ST15)もしくは余剰冷媒排出運転(ST20)を行ったことで、室外熱交換器23もしくはアキュムレータ26の満液が解消できたことを表し、満液フラグ「1」の場合は、熱交冷媒排出運転(ST15)もしくは余剰冷媒排出運転(ST20)を行っても、室外熱交換器23およびアキュムレータ26の満液が解消できなかったことを表す。満液フラグが「0」であれば(ST16−Yes)、室外制御装置29は、ST6に処理を進める。満液フラグが「1」であれば(ST16−No)、室外制御装置29は、冷媒回収運転を終了し、本発明に関わる処理を終了する。   In ST16, the outdoor control device 29 determines whether or not a full liquid flag to be described later is “0”. When the full liquid flag is “0”, the full liquid in the outdoor heat exchanger 23 or the accumulator 26 has been eliminated by performing the heat exchanger refrigerant discharge operation (ST15) or the surplus refrigerant discharge operation (ST20). In the case of the full liquid flag “1”, the full liquid in the outdoor heat exchanger 23 and the accumulator 26 could not be resolved even if the heat exchanger refrigerant discharge operation (ST15) or the surplus refrigerant discharge operation (ST20) was performed. Represents that. If the full liquid flag is “0” (ST16-Yes), the outdoor control device 29 advances the process to ST6. If the full liquid flag is “1” (ST16-No), the outdoor control device 29 ends the refrigerant recovery operation and ends the processing relating to the present invention.

次に、室外制御装置29は、ガス冷媒の回収が完了したか否かを判断する。これは、室内機3およびガス冷媒配管102に滞留する冷媒を室外機2に回収できたか否かを判断するものであり、具体的には、取り込んだ吸入圧力センサ32で検出した吸入圧力がガス冷媒回収運転終了閾値の0.05MPa以下であるか否か、もしくは、ST2でタイマー計測してからガス冷媒回収運転終了閾時間の180秒経過したか否かでガス冷媒の回収が完了したか否かを判断する。ガス冷媒の回収が完了していれば(ST6−Yes)、室外制御装置29は、ガス冷媒遮断弁52を閉じて、ガス冷媒回収運転を終了する(ST7)。ガス冷媒の回収が完了していなければ(ST6−No)、室外制御装置29は、ST3に処理を戻し、ガス冷媒回収運転を継続する。   Next, the outdoor control device 29 determines whether or not the recovery of the gas refrigerant has been completed. This is to determine whether or not the refrigerant staying in the indoor unit 3 and the gas refrigerant pipe 102 has been recovered in the outdoor unit 2. Specifically, the suction pressure detected by the taken-in suction pressure sensor 32 is the gas. Whether or not the recovery of the gas refrigerant is completed depending on whether or not the refrigerant recovery operation end threshold value is 0.05 MPa or less, or whether the gas refrigerant recovery operation end threshold time of 180 seconds has elapsed since the timer measurement in ST2. Determine whether. If the recovery of the gas refrigerant has been completed (ST6-Yes), the outdoor control device 29 closes the gas refrigerant cutoff valve 52 and ends the gas refrigerant recovery operation (ST7). If the recovery of the gas refrigerant has not been completed (ST6-No), the outdoor control device 29 returns the process to ST3 and continues the gas refrigerant recovery operation.

ガス冷媒回収運転が終了すると、次に、室外制御装置29は、液冷媒回収運転準備を行う(ST8)。液冷媒回収運転準備では、室外制御装置29は、過冷却膨張弁28と、液冷媒遮断弁51とを開く。   When the gas refrigerant recovery operation is finished, the outdoor control device 29 next prepares for the liquid refrigerant recovery operation (ST8). In the liquid refrigerant recovery operation preparation, the outdoor control device 29 opens the supercooling expansion valve 28 and the liquid refrigerant cutoff valve 51.

次に、室外制御装置29は、液冷媒回収運転時間を計測するため、タイマー計測を開始する(ST9)。   Next, the outdoor control device 29 starts timer measurement in order to measure the liquid refrigerant recovery operation time (ST9).

次に、室外制御装置29は、吐出圧力センサ31、吸入圧力センサ32、吐出温度センサ41で検出している圧力・温度データ取り込み処理を行う(ST10)。   Next, the outdoor control device 29 performs a process for taking in pressure / temperature data detected by the discharge pressure sensor 31, the suction pressure sensor 32, and the discharge temperature sensor 41 (ST10).

次に、室外制御装置29は、ST10で取り込んだ圧力・温度データを用いて、室外熱交換器23およびアキュムレータ26が満液であるか否かを判定する。尚、本判定に関わる処理である、ST11、ST12、ST17、ST18、ST21、ST22については、前述したST4、ST5、ST15、ST16、ST19、ST20と同様の処理であるので、詳細な説明は省略する。   Next, the outdoor control device 29 determines whether or not the outdoor heat exchanger 23 and the accumulator 26 are full using the pressure / temperature data acquired in ST10. Note that ST11, ST12, ST17, ST18, ST21, and ST22, which are processes related to this determination, are the same as ST4, ST5, ST15, ST16, ST19, and ST20 described above, and thus detailed description thereof is omitted. To do.

ST12において室外熱交換器23が満液ではない(ST12−No)、もしくは、ST18において冷媒回収運転を再開できる(ST18−Yes)と判断し、ST13に処理が進むと、次に、室外制御装置29は、液冷媒の回収が完了したか否かを判断する。これは、液冷媒配管101に滞留する冷媒を室外機2に回収できたか否かを判断するものであり、具体的には、取り込んだ吸入圧力センサ32で検出した吸入圧力が液冷媒回収運転終了閾値の0.05MPa以下であるか否か、もしくは、ST9でタイマー計測を開始してから液冷媒回収運転終了閾時間の360秒経過したか否かで液冷媒の回収が完了したか否かを判断する。液冷媒の回収が完了していれば(ST13−Yes)、室外制御装置29は、過冷却膨張弁28と、液冷媒遮断弁51とを閉じて、圧縮機21と室外ファン24とを停止し、液冷媒回収運転を終了する(ST14)。液冷媒の回収が完了していなければ(ST13−No)、室外制御装置29は、ST10に処理を戻し、液冷媒回収運転を継続する。   When it is determined in ST12 that the outdoor heat exchanger 23 is not full (ST12-No) or the refrigerant recovery operation can be resumed in ST18 (ST18-Yes), the process proceeds to ST13, and then the outdoor control device 29 determines whether the recovery of the liquid refrigerant has been completed. This is to determine whether or not the refrigerant staying in the liquid refrigerant pipe 101 has been collected in the outdoor unit 2, and specifically, the suction pressure detected by the taken-in suction pressure sensor 32 is the end of the liquid refrigerant collection operation. Whether or not the recovery of the liquid refrigerant is completed depending on whether or not the threshold value is 0.05 MPa or less, or whether or not the liquid refrigerant recovery operation end threshold time has elapsed after starting the timer measurement in ST9. to decide. If the recovery of the liquid refrigerant is completed (ST13-Yes), the outdoor control device 29 closes the supercooling expansion valve 28 and the liquid refrigerant shut-off valve 51, and stops the compressor 21 and the outdoor fan 24. Then, the liquid refrigerant recovery operation is terminated (ST14). If the recovery of the liquid refrigerant has not been completed (ST13-No), the outdoor control device 29 returns the process to ST10 and continues the liquid refrigerant recovery operation.

次に、図7を用いて、図6のST15、または、ST17で行う、熱交冷媒排出運転について説明する。   Next, the heat exchanger discharge operation performed in ST15 or ST17 in FIG. 6 will be described with reference to FIG.

まず、室外制御装置29は、熱交冷媒排出運転準備を行う(ST101)。具体的には、冷媒回収運転を中断するため、液冷媒遮断弁51およびガス冷媒遮断弁52を閉じ、室外熱交換器23内に滞留する冷媒を排出するため、室外膨張弁25を開く。   First, the outdoor control device 29 prepares for a heat exchange refrigerant discharge operation (ST101). Specifically, in order to interrupt the refrigerant recovery operation, the liquid refrigerant shut-off valve 51 and the gas refrigerant shut-off valve 52 are closed, and the outdoor expansion valve 25 is opened in order to discharge the refrigerant staying in the outdoor heat exchanger 23.

次に、室外制御装置29は、吐出圧力センサ31、吸入圧力センサ32、吐出温度センサ41で検出している圧力・温度データを取り込む(ST102)。   Next, the outdoor control device 29 takes in the pressure / temperature data detected by the discharge pressure sensor 31, the suction pressure sensor 32, and the discharge temperature sensor 41 (ST102).

次に、室外制御装置29は、室外熱交換器23の液冷媒が排出されたか否かを判断する(ST103)。具体的には、取り込んだ吐出圧力センサ31で検出した吐出圧力が第2の所定閾値の3.0MPa以下であるか否かで室外熱交換器23の液冷媒が排出されたか否かを判断する。室外熱交換器23の液冷媒が排出された場合(ST103−Yes)、室外制御装置29は、室外熱交換器23の満液を解消できたので、満液フラグを「0」(ST104)にし、室外膨張弁25を閉じて、ガス冷媒回収運転時(図6のST15)に熱交冷媒排出運転を行う場合はガス冷媒遮断弁52を開き、液冷媒回収運転時(図6のST17)で熱交冷媒排出運転を行う場合は液冷媒遮断弁51を開いて熱交冷媒排出運転を終了する。室外熱交換器23の液冷媒が排出されていない場合(ST103−No)、室外制御装置29は、ST105に処理を進める。   Next, the outdoor control device 29 determines whether or not the liquid refrigerant in the outdoor heat exchanger 23 has been discharged (ST103). Specifically, it is determined whether or not the liquid refrigerant in the outdoor heat exchanger 23 has been discharged based on whether or not the discharge pressure detected by the taken-in discharge pressure sensor 31 is equal to or lower than the second predetermined threshold value of 3.0 MPa. . When the liquid refrigerant in the outdoor heat exchanger 23 is discharged (ST103-Yes), the outdoor control device 29 can eliminate the full liquid in the outdoor heat exchanger 23, and therefore sets the full liquid flag to “0” (ST104). When the outdoor expansion valve 25 is closed and the heat exchanger discharge operation is performed during the gas refrigerant recovery operation (ST15 in FIG. 6), the gas refrigerant shut-off valve 52 is opened and the liquid refrigerant recovery operation (ST17 in FIG. 6). When performing the heat exchanger refrigerant discharge operation, the liquid refrigerant shut-off valve 51 is opened to end the heat exchanger refrigerant discharge operation. When the liquid refrigerant in the outdoor heat exchanger 23 is not discharged (ST103-No), the outdoor control device 29 advances the process to ST105.

ST105では、室外制御装置29は、アキュムレータ26が満液であるか否かを判断する。具体的には、吐出過熱度が第3の所定閾値の4℃以下であるか否かで、アキュムレータ26が満液であるか否かを判断する。アキュムレータ26が満液である場合(ST105−Yes)、室外制御装置29は、室外熱交換器23およびアキュムレータ26の満液を解消できなかったので、満液フラグを「1」(ST106)にして、熱交冷媒排出運転を終了する。アキュムレータ26が満液ではない場合(ST105−No)、室外制御装置29は、ST102に処理を戻し、熱交冷媒排出運転を継続する。   In ST105, the outdoor control device 29 determines whether or not the accumulator 26 is full. Specifically, it is determined whether or not the accumulator 26 is full based on whether or not the discharge superheat degree is 4 ° C. or less, which is a third predetermined threshold value. If the accumulator 26 is full (ST105-Yes), the outdoor control device 29 has not been able to eliminate the full liquid in the outdoor heat exchanger 23 and the accumulator 26, so the full liquid flag is set to “1” (ST106). Then, the heat exchanger refrigerant discharge operation is terminated. When the accumulator 26 is not full (ST105-No), the outdoor control device 29 returns the process to ST102 and continues the heat exchange refrigerant discharge operation.

次に、図8を用いて、図6のST20、または、ST22で行う、余剰冷媒排出運転について説明する。   Next, the surplus refrigerant discharge operation performed in ST20 or ST22 of FIG. 6 will be described with reference to FIG.

まず、室外制御装置29は、余剰冷媒排出運転準備を行う(ST201)。具体的には、冷媒回収運転を中断するため、液冷媒遮断弁51およびガス冷媒遮断弁52を閉じる。このとき、室外制御装置29は、アキュムレータ26に取り付けた図示しない電気ヒータに通電を開始する。   First, the outdoor control device 29 prepares for excess refrigerant discharge operation (ST201). Specifically, in order to interrupt the refrigerant recovery operation, the liquid refrigerant cutoff valve 51 and the gas refrigerant cutoff valve 52 are closed. At this time, the outdoor control device 29 starts energizing an electric heater (not shown) attached to the accumulator 26.

次に、室外制御装置29は、吐出圧力センサ31、吸入圧力センサ32、吐出温度センサ41で検出している圧力・温度データを取り込む(ST202)。   Next, the outdoor control device 29 takes in the pressure / temperature data detected by the discharge pressure sensor 31, the suction pressure sensor 32, and the discharge temperature sensor 41 (ST202).

次に、室外制御装置29は、アキュムレータ26の液冷媒が排出されたか否かを判断する。(ST203)。具体的には、取り込んだ吐出温度センサ41の検出値と吐出圧力センサ31の検出値から換算した吐出圧力飽和温度との差である吐出過熱度が第4の所定閾値の8℃以上であるか否かでアキュムレータ26の液冷媒が排出されたか否かを判断する。アキュムレータ26の液冷媒が排出された場合(ST203−Yes)、室外制御装置29は、アキュムレータ26の満液が解消できたので、満液フラグを「0」(ST204)にし、アキュムレータ26に取り付けた図示しない電気ヒータへの通電を止め、ガス冷媒回収運転時(図6のST20)に余剰冷媒回収運転を行う場合は、ガス冷媒遮断弁52を開き、液冷媒回収運転時(図6のST22)に余剰冷媒回収運転を行う場合は、液冷媒遮断弁51を開いて余剰冷媒排出運転を終了させる。アキュムレータ26の液冷媒が排出されていない場合(ST203−No)、室外制御装置29は、ST205に処理を進める。   Next, the outdoor control device 29 determines whether or not the liquid refrigerant in the accumulator 26 has been discharged. (ST203). Specifically, whether the discharge superheat degree, which is the difference between the detected value of the discharge temperature sensor 41 taken in and the discharge pressure saturation temperature converted from the detection value of the discharge pressure sensor 31, is equal to or higher than the fourth predetermined threshold value of 8 ° C. It is determined whether or not the liquid refrigerant in the accumulator 26 has been discharged. When the liquid refrigerant in the accumulator 26 has been discharged (ST203-Yes), the outdoor control device 29 has cleared the full liquid in the accumulator 26, so the full liquid flag is set to “0” (ST204) and attached to the accumulator 26. When the electric heater (not shown) is turned off and the surplus refrigerant recovery operation is performed during the gas refrigerant recovery operation (ST20 in FIG. 6), the gas refrigerant shut-off valve 52 is opened and the liquid refrigerant recovery operation is performed (ST22 in FIG. 6). When the surplus refrigerant recovery operation is performed, the liquid refrigerant shut-off valve 51 is opened to end the surplus refrigerant discharge operation. When the liquid refrigerant in the accumulator 26 has not been discharged (ST203—No), the outdoor control device 29 advances the process to ST205.

ST205において、室外制御装置29は、室外熱交換器23が満液であるか否かを判断する。具体的には、吐出圧力が第1の所定閾値の3.5MPa以上であるか否かで室外熱交換器23が満液であるか否かを判断する。室外熱交換器23が満液である場合(ST205−Yes)、室外制御装置29は、室外熱交換器23およびアキュムレータ26の満液を解消できなかったので、満液フラグを「1」(ST206)にして、アキュムレータ26に取り付けた図示しない電気ヒータへの通電を止め、余剰冷媒排出運転を終了する。室外熱交換器23満液ではない場合(ST205−No)、室外制御装置29は、ST202に処理を戻す。余剰冷媒排出運転を継続する。   In ST205, the outdoor control device 29 determines whether or not the outdoor heat exchanger 23 is full. Specifically, it is determined whether or not the outdoor heat exchanger 23 is full based on whether or not the discharge pressure is equal to or higher than the first predetermined threshold of 3.5 MPa. When the outdoor heat exchanger 23 is full (ST205-Yes), the outdoor control device 29 has not been able to eliminate the full liquid in the outdoor heat exchanger 23 and the accumulator 26, so the full liquid flag is set to “1” (ST206). ), The energization of the electric heater (not shown) attached to the accumulator 26 is stopped, and the surplus refrigerant discharge operation is terminated. When the outdoor heat exchanger 23 is not full (ST205-No), the outdoor control device 29 returns the process to ST202. Continue surplus refrigerant discharge operation.

以上説明した通り、本実施例によれば、室内機3を介さずに液冷媒配管101に滞留する冷媒を室外機2に回収することができる。さらに冷媒排出運転を行うことで室外熱交換器23もしくはアキュムレータ26の満液を解消し、冷媒回収運転を継続できるので、冷媒回路における室内側に滞留する冷媒を出来る限り多く回収することができ、室内への冷媒漏れ量を削減できる。   As described above, according to the present embodiment, the refrigerant staying in the liquid refrigerant pipe 101 without using the indoor unit 3 can be collected in the outdoor unit 2. Further, by performing the refrigerant discharge operation, the fullness of the outdoor heat exchanger 23 or the accumulator 26 is eliminated, and the refrigerant recovery operation can be continued, so that it is possible to recover as much refrigerant as possible staying indoors in the refrigerant circuit, The amount of refrigerant leakage into the room can be reduced.

尚、本実施例では、室外熱交換器23が満液であるか否かを示す、室外熱交換器23に滞留する冷媒量の変動に応じて変動する運転状態量として吐出圧力を用いる場合を説明したが、これに限らず、例えば、室外熱交換器23に複数の温度センサを取り付け、複数の温度センサの検出値を用いて、室外熱交換器23内の液面高さを検知して、室外熱交換器23が満液であるか否かを判断してもよい。また、アキュムレータ26が満液であるか否かを示す、アキュムレータ26に滞留する冷媒量の変動に応じて変動する運転状態量として吐出過熱度を用いる場合を説明したが、これに限らず、例えば、吐出温度センサ41の検出値や吸入温度センサ42の検出値を用いて、アキュムレータ26が満液であるか否かを判断してもよい。   In this embodiment, the case where the discharge pressure is used as the operating state quantity that varies depending on the fluctuation of the refrigerant amount staying in the outdoor heat exchanger 23, which indicates whether or not the outdoor heat exchanger 23 is full. Although described above, the present invention is not limited to this. For example, a plurality of temperature sensors are attached to the outdoor heat exchanger 23, and the liquid level in the outdoor heat exchanger 23 is detected using detection values of the plurality of temperature sensors. It may be determined whether or not the outdoor heat exchanger 23 is full. Moreover, although the case where discharge superheat degree is used as an operation state quantity which fluctuates according to the fluctuation | variation of the refrigerant | coolant amount which retains in the accumulator 26 which shows whether the accumulator 26 is full was demonstrated, it is not restricted to this, For example, Alternatively, it may be determined whether the accumulator 26 is full using the detection value of the discharge temperature sensor 41 or the detection value of the suction temperature sensor 42.

次に本発明による空気調和機1の第2の実施例について説明する。尚、本実施例では、冷媒回収運転による各弁の動作やその効果については、第1の実施例と同じであるため、詳細な説明を省略する。第1の実施例と異なるのは、ガス冷媒遮断弁52を逆止弁53にしたことである。   Next, a second embodiment of the air conditioner 1 according to the present invention will be described. In this embodiment, the operation of each valve and its effect by the refrigerant recovery operation are the same as those in the first embodiment, and thus detailed description thereof is omitted. The difference from the first embodiment is that the gas refrigerant shutoff valve 52 is a check valve 53.

図9は、第2の実施例における空気調和機1の冷媒回路構成である。図9では、図1で説明したガス冷媒遮断弁52を無くし、四方弁22のポートcとアキュムレータ26を接続する冷媒配管におけるポートcと合流部62との間に、四方弁22のポートcからアキュムレータ26へ冷媒が流れる方向に逆止弁53を取り付ける。逆止弁53の働きにより、液冷媒回収運転時に、液冷媒配管101に滞留する冷媒が、第1バイパス管27a、過冷却熱交換器27の冷却側配管27d、第2バイパス管27bから合流部62および四方弁22を介して、室内機3およびガス冷媒配管102に冷媒が流出し、室内に冷媒が漏れることはない。   FIG. 9 shows a refrigerant circuit configuration of the air conditioner 1 according to the second embodiment. In FIG. 9, the gas refrigerant shutoff valve 52 described in FIG. 1 is eliminated, and the port c of the four-way valve 22 is connected between the port c of the refrigerant pipe connecting the port c of the four-way valve 22 and the accumulator 26 and the junction 62. A check valve 53 is attached in the direction in which the refrigerant flows to the accumulator 26. Due to the function of the check valve 53, the refrigerant staying in the liquid refrigerant pipe 101 during the liquid refrigerant recovery operation is joined from the first bypass pipe 27a, the cooling side pipe 27d of the supercooling heat exchanger 27, and the second bypass pipe 27b. The refrigerant does not flow out into the indoor unit 3 and the gas refrigerant pipe 102 through the 62 and the four-way valve 22, and the refrigerant does not leak into the room.

以上説明した実施例では、ガス冷媒遮断弁52を逆止弁53としたことで、より安価な構成で本発明を実施できる。また、室外制御装置29によるガス冷媒遮断弁52の開閉制御が無く、冷媒回収運転に関わる制御をより簡略化できる。   In the embodiment described above, the gas refrigerant shut-off valve 52 is the check valve 53, so that the present invention can be implemented with a cheaper configuration. Further, there is no open / close control of the gas refrigerant shutoff valve 52 by the outdoor control device 29, and the control related to the refrigerant recovery operation can be further simplified.

次に本発明による空気調和機1の第3の実施例について図10を用いて説明する。第3の実施例では、第1の実施例で説明した、余剰冷媒排出運転時に電気ヒータによる冷媒の加熱に代えて、圧縮機21から吐出された高温の冷媒をアキュムレータ26に導く余剰冷媒排出用バイパス回路を設け、高温の冷媒をアキュムレータ26に流入させることによって冷媒の加熱を行う。尚、本実施例では、余剰冷媒排出用バイパス回路の構成や余剰冷媒排出運転時の冷媒回路の動作以外は、第1の実施例と同じであるため、詳細な説明を省略する。   Next, a third embodiment of the air conditioner 1 according to the present invention will be described with reference to FIG. In the third embodiment, instead of heating the refrigerant by the electric heater during the surplus refrigerant discharge operation described in the first embodiment, the high-temperature refrigerant discharged from the compressor 21 is used for discharging the surplus refrigerant to the accumulator 26. A bypass circuit is provided to heat the refrigerant by allowing a high-temperature refrigerant to flow into the accumulator 26. In the present embodiment, the configuration other than the configuration of the surplus refrigerant discharge bypass circuit and the operation of the refrigerant circuit during the surplus refrigerant discharge operation are the same as those in the first embodiment, and thus detailed description thereof is omitted.

図10は、第3の実施例における空気調和機1の冷媒回路構成である。図10に示す冷媒回路は、図1で説明した冷媒回路構成に、圧縮機21と室外熱交換器23との間とアキュムレータ26とガス冷媒遮断弁52との間をバイパスする余剰冷媒排出管71と、その途中に設けられた余剰冷媒排出用開閉弁72とを加えたものである。余剰冷媒排出管71と余剰冷媒排出用開閉弁72とで、余剰冷媒排出用バイパス回路が構成される。   FIG. 10 shows a refrigerant circuit configuration of the air conditioner 1 according to the third embodiment. The refrigerant circuit shown in FIG. 10 has the refrigerant circuit configuration described in FIG. 1 and an excess refrigerant discharge pipe 71 that bypasses between the compressor 21 and the outdoor heat exchanger 23, and between the accumulator 26 and the gas refrigerant shut-off valve 52. And a surplus refrigerant discharge opening / closing valve 72 provided in the middle thereof. The surplus refrigerant discharge pipe 71 and the surplus refrigerant discharge open / close valve 72 constitute a surplus refrigerant discharge bypass circuit.

室外制御装置29は、アキュムレータ26が満液であると判断すると、冷媒回収運転を中断し、余剰冷媒排出運転を行う。余剰冷媒排出運転を行うとき、室外制御装置29は、液冷媒遮断弁51およびガス冷媒遮断弁52を閉じ、余剰冷媒排出用開閉弁72を開く。そして、室外制御装置29は、余剰冷媒排出運転を開始する。余剰冷媒排出運転が開始されると、圧縮機21から吐出された高温の冷媒の一部が図10に示す一点鎖線矢印のように流れてアキュムレータ26に流入する。高温の冷媒がアキュムレータ26に流入することによって、アキュムレータ26に滞留している液冷媒が加熱されてガス冷媒となり、アキュムレータ26から排出されるので、アキュムレータ26の満液が解消される。室外制御装置29は、アキュムレータ26の満液が解消されたと判断すると、余剰冷媒排出用開閉弁72を閉じ、余剰冷媒排出運転を終了して、冷媒回収運転を再開する。   When the outdoor control device 29 determines that the accumulator 26 is full, the refrigerant recovery operation is interrupted and the surplus refrigerant discharge operation is performed. When the surplus refrigerant discharge operation is performed, the outdoor control device 29 closes the liquid refrigerant shut-off valve 51 and the gas refrigerant shut-off valve 52 and opens the surplus refrigerant discharge on-off valve 72. Then, the outdoor control device 29 starts a surplus refrigerant discharge operation. When the surplus refrigerant discharge operation is started, a part of the high-temperature refrigerant discharged from the compressor 21 flows as shown by a one-dot chain line arrow shown in FIG. 10 and flows into the accumulator 26. When the high-temperature refrigerant flows into the accumulator 26, the liquid refrigerant staying in the accumulator 26 is heated to become a gas refrigerant and is discharged from the accumulator 26, so that the accumulator 26 is completely filled. When the outdoor control device 29 determines that the full liquid in the accumulator 26 has been eliminated, it closes the surplus refrigerant discharge on-off valve 72, ends the surplus refrigerant discharge operation, and restarts the refrigerant recovery operation.

以上説明した実施例では、余剰冷媒排出用バイパス回路によってアキュムレータ26に滞留している液冷媒を加熱するので、アキュムレータ26を電気ヒータで加熱する必要が無くなり、余剰冷媒排出運転時の消費電力を抑えることができる。   In the embodiment described above, since the liquid refrigerant staying in the accumulator 26 is heated by the surplus refrigerant discharge bypass circuit, it is not necessary to heat the accumulator 26 with an electric heater, and the power consumption during the operation of discharging the surplus refrigerant is suppressed. be able to.

次に本発明による空気調和機1の第4の実施例について図11を用いて説明する。第4の実施例は、図1に示す冷媒回路に、室外熱交換器23と室外膨張弁25との間からアキュムレータ26とガス冷媒遮断機構52との間をバイパスする熱交冷媒排出用バイパス回路を加えたものである。尚、本実施例では、熱交冷媒排出用バイパス回路の構成や熱交冷媒排出運転時の冷媒回路の動作以外は、第1の実施例と同じであるため、詳細な説明を省略する。   Next, a fourth embodiment of the air conditioner 1 according to the present invention will be described with reference to FIG. In the fourth embodiment, the refrigerant circuit shown in FIG. 1 is provided with a bypass circuit for discharging a heat exchanger that bypasses between the accumulator 26 and the gas refrigerant shut-off mechanism 52 from between the outdoor heat exchanger 23 and the outdoor expansion valve 25. Is added. In this embodiment, since the configuration of the heat exchanger refrigerant discharge bypass circuit and the operation of the refrigerant circuit during the heat exchanger coolant discharge operation are the same as those in the first embodiment, detailed description thereof will be omitted.

図11は、第4の実施例における空気調和機1の冷媒回路構成である。図11に示す冷媒回路は、図1で説明した冷媒回路構成に、室外熱交換器23と室外膨張弁25との間とアキュムレータ26とガス冷媒遮断弁52との間をバイパスする熱交冷媒排出管73と、その途中に設けられた熱交冷媒排出用開閉弁74と、を加えたものである。熱交冷媒排出管73と熱交冷媒排出用開閉弁74とで、熱交冷媒排出用バイパス回路が構成される。   FIG. 11 shows a refrigerant circuit configuration of the air conditioner 1 according to the fourth embodiment. The refrigerant circuit shown in FIG. 11 is similar to the refrigerant circuit configuration described in FIG. 1 except that the heat exchange refrigerant discharge bypasses between the outdoor heat exchanger 23 and the outdoor expansion valve 25, and between the accumulator 26 and the gas refrigerant shut-off valve 52. A pipe 73 and a heat exchanger discharge opening / closing valve 74 provided in the middle of the pipe 73 are added. The heat exchanger refrigerant discharge pipe 73 and the heat exchanger refrigerant discharge on-off valve 74 constitute a heat exchanger refrigerant discharge bypass circuit.

室外制御装置29は、室外熱交換器23が満液であると判断すると、熱交冷媒排出運転を行う。熱交冷媒排出運転を行うとき、室外制御装置29は、熱交冷媒排出用開閉弁74を開く。そして、室外制御装置29は、熱交冷媒排出運転を開始する。熱交冷媒排出運転が開始されると、室外熱交換器23に滞留する冷媒が図11に示す一点鎖線矢印のように流れてアキュムレータ26に流入し、室外熱交換器23の満液が解消される。室外制御装置29は、室外熱交換器23の満液が解消されたと判断すると、熱交冷媒排出用開閉弁74を閉じ、熱交冷媒排出運転を終了する。   When the outdoor control device 29 determines that the outdoor heat exchanger 23 is full, the heat exchanger discharge operation is performed. When the heat exchange refrigerant discharge operation is performed, the outdoor control device 29 opens the heat exchange refrigerant discharge on-off valve 74. Then, the outdoor control device 29 starts the heat exchange refrigerant discharge operation. When the heat exchange refrigerant discharge operation is started, the refrigerant staying in the outdoor heat exchanger 23 flows as indicated by a one-dot chain line arrow shown in FIG. 11 and flows into the accumulator 26, and the full liquid in the outdoor heat exchanger 23 is eliminated. The If the outdoor control device 29 determines that the full liquid in the outdoor heat exchanger 23 has been eliminated, the outdoor heat exchanger 23 closes the heat exchanger coolant discharge on-off valve 74 and ends the heat exchanger coolant discharge operation.

以上説明した実施例では、熱交冷媒排出用バイパス回路によって室外熱交換器23に滞留している冷媒を流出させるので、実施例1で説明した液冷媒回収運転を行いながら、室外熱交換器23に滞留する液冷媒を排出でき、液冷媒回収運転を中断することなく室外熱交換器23の満液を解消できる。液冷媒回収運転を中断することなく室外熱交換器23の満液を解消できると、液冷媒回収運転を短時間で行え、冷媒漏れ量を削減できる。   In the embodiment described above, since the refrigerant staying in the outdoor heat exchanger 23 is caused to flow out by the heat exchanger refrigerant discharge bypass circuit, the outdoor heat exchanger 23 is operated while performing the liquid refrigerant recovery operation described in the first embodiment. The liquid refrigerant staying in can be discharged, and the full liquid in the outdoor heat exchanger 23 can be eliminated without interrupting the liquid refrigerant recovery operation. If full liquid in the outdoor heat exchanger 23 can be eliminated without interrupting the liquid refrigerant recovery operation, the liquid refrigerant recovery operation can be performed in a short time, and the amount of refrigerant leakage can be reduced.

以上説明した通り、本発明の空気調和機は、室内機を介さずに液冷媒配管に滞留する冷媒を室外機に回収することができるので、室内機で冷媒漏れが発生した場合でも、室内への冷媒漏れを最小限に抑えることができる。また、室外熱交換器に加えアキュムレータにも冷媒を滞留させることで、封入冷媒量が多い空気調和機においても冷媒回収運転が確実に行える。   As described above, since the air conditioner of the present invention can collect the refrigerant staying in the liquid refrigerant pipe without passing through the indoor unit in the outdoor unit, even if a refrigerant leak occurs in the indoor unit, it can be taken indoors. The refrigerant leakage can be minimized. Further, by allowing the refrigerant to stay in the accumulator in addition to the outdoor heat exchanger, the refrigerant recovery operation can be performed reliably even in an air conditioner having a large amount of enclosed refrigerant.

尚、以上説明した実施例では、ガス冷媒回収運転を行ってから液冷媒回収運転を行う順番で説明したが、本発明は、これに限るものではなく、液冷媒配管から冷媒漏れが発生した場合は、液冷媒回収運転を行ってからガス冷媒回収運転を行ってもよい。冷媒漏れ部に応じてガス冷媒回収運転と液冷媒回収運転とを行う順番決定すれば、より室内への冷媒漏れ量を削減できる。また、ガス冷媒回収運転と液冷媒回収運転のどちらかだけを行うだけでも室内への冷媒漏れ量を削減できる。また、四方弁を備えた冷暖房切換型の空気調和機だけではなく、冷房専用の空気調和機で実施しても同様の効果が得られる。また、過冷却熱交換器を介して液冷媒配管の冷媒を回収したが、本発明は、これに限るものではなく、過冷却熱交換器を備えない空気調和機においては、室外膨張弁と液冷媒遮断弁の間とガス冷媒遮断弁とアキュムレータの間とをバイパスする、過冷却熱交換器の冷却側配管、第1バイパス管および第2バイパス管と同様の冷媒回収用開閉弁を有するバイパス回路を備えた構成でもよい。また、室外機に、バイパス回路、液冷媒遮断弁、ガス冷媒遮断弁を備える必要はなく、各接続配管の途中、または、室外機と各接続配管の間にこれらの構成を備えてもよい。   In the embodiment described above, the description has been given in the order in which the liquid refrigerant recovery operation is performed after the gas refrigerant recovery operation is performed. However, the present invention is not limited to this, and when the refrigerant leaks from the liquid refrigerant pipe The gas refrigerant recovery operation may be performed after the liquid refrigerant recovery operation. If the order in which the gas refrigerant recovery operation and the liquid refrigerant recovery operation are performed in accordance with the refrigerant leakage portion is determined, the amount of refrigerant leakage into the room can be further reduced. Moreover, the amount of refrigerant leaking into the room can be reduced only by performing either the gas refrigerant recovery operation or the liquid refrigerant recovery operation. Further, the same effect can be obtained when the present invention is implemented not only with a cooling / heating switching type air conditioner including a four-way valve but also with an air conditioner dedicated to cooling. Further, the refrigerant in the liquid refrigerant pipe is recovered via the supercooling heat exchanger, but the present invention is not limited to this, and in an air conditioner that does not include the supercooling heat exchanger, the outdoor expansion valve and the liquid A bypass circuit having a refrigerant recovery on-off valve similar to the cooling side piping, the first bypass pipe, and the second bypass pipe of the supercooling heat exchanger that bypasses between the refrigerant cutoff valves and between the gas refrigerant cutoff valve and the accumulator. The structure provided with may be sufficient. Moreover, it is not necessary to provide a bypass circuit, a liquid refrigerant | coolant cutoff valve, and a gas refrigerant cutoff valve in an outdoor unit, You may provide these structures in the middle of each connection piping, or between an outdoor unit and each connection piping.

尚、以上説明した実施例では、余剰冷媒排出運転時にアキュムレータに取り付けた電気ヒータを用いて冷媒を蒸発させる場合と圧縮機から吐出された高温の冷媒をアキュムレータに流入させることでアキュムレータに滞留する冷媒を蒸発させる場合とを説明したが、電気ヒータで加熱しつつ高温の冷媒を流入させてもよい。消費電力は増加するが、余剰冷媒排出運転を短時間で終了する分、冷媒回収運転を短時間で終了でき、冷媒漏れ量を削減できる。   In the embodiment described above, when the refrigerant is evaporated using an electric heater attached to the accumulator during the surplus refrigerant discharge operation, and when the high-temperature refrigerant discharged from the compressor flows into the accumulator, the refrigerant stays in the accumulator. However, a high-temperature refrigerant may be allowed to flow in while being heated by an electric heater. Although the power consumption is increased, the refrigerant recovery operation can be completed in a short time and the amount of refrigerant leakage can be reduced as much as the excess refrigerant discharge operation is completed in a short time.

1 空気調和機
2 室外機
3 室内機
21 圧縮機
22 四方弁
23 室外熱交換器
24 室外ファン
25 室外膨張弁
26 アキュムレータ
27 過冷却熱交換器
27a 第1バイパス管
27b 第2バイパス管
27c 被冷却側配管
27d 冷却側配管
28 過冷却膨張弁
31 吐出圧力センサ
32 吸入圧力センサ
41 吐出温度センサ
42 吸入温度センサ
51 液冷媒遮断弁
52 ガス冷媒遮断弁
53 逆止弁
71 余剰冷媒排出管
72 余剰冷媒排出用開閉弁
73 熱交冷媒排出管
74 熱交冷媒排出用開閉弁
81 室内膨張弁
101 液冷媒配管
102 ガス冷媒配管
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 Indoor unit 21 Compressor 22 Four-way valve 23 Outdoor heat exchanger 24 Outdoor fan 25 Outdoor expansion valve 26 Accumulator 27 Supercooling heat exchanger 27a First bypass pipe 27b Second bypass pipe 27c Cooled side Pipe 27d Cooling side pipe 28 Supercooling expansion valve 31 Discharge pressure sensor 32 Suction pressure sensor 41 Discharge temperature sensor 42 Suction temperature sensor 51 Liquid refrigerant shutoff valve 52 Gas refrigerant shutoff valve 53 Check valve 71 Surplus refrigerant discharge pipe 72 For surplus refrigerant discharge On-off valve 73 Heat exchange refrigerant discharge pipe 74 Heat exchange refrigerant discharge on-off valve 81 Indoor expansion valve 101 Liquid refrigerant piping 102 Gas refrigerant piping

Claims (4)

複数の冷媒回収部を有する室外機と、室内機と、制御手段とを有する空気調和機であって、
前記制御手段は、前記空気調和機の冷媒を複数の前記冷媒回収部に回収する冷媒回収運転を実行しているとき、少なくとも一つの前記冷媒回収部に回収された冷媒回収量が当該冷媒回収部に回収できる許容冷媒回収量以上であると判断したときは、前記冷媒回収運転を中断し、少なくとも一つの前記冷媒回収部に滞留している冷媒を当該冷媒回収部から排出した後、前記冷媒回収運転を再開する、ことを特徴とする空気調和機。
An air conditioner having an outdoor unit having a plurality of refrigerant recovery units, an indoor unit, and a control means,
When the control means is performing a refrigerant recovery operation for recovering the refrigerant of the air conditioner into a plurality of the refrigerant recovery units, the refrigerant recovery amount recovered by at least one of the refrigerant recovery units is the refrigerant recovery unit. The refrigerant recovery operation is interrupted, the refrigerant staying in at least one of the refrigerant recovery units is discharged from the refrigerant recovery unit, and then the refrigerant recovery is performed. An air conditioner characterized by restarting operation.
圧縮機と室外熱交換器とアキュムレータとを有する室外機と、室内機とが、液冷媒配管とガス冷媒配管により接続される空気調和機であって、
前記空気調和機は、前記液冷媒配管の冷媒の流れを遮断可能な液冷媒遮断機構と、前記ガス冷媒配管の冷媒の流れを遮断可能なガス冷媒遮断機構と、前記室外側開閉弁と前記液冷媒遮断機構の間と前記ガス冷媒遮断機構と前記アキュムレータの間とをバイパスする冷媒回収用開閉弁を有する冷媒回収用バイパス回路と、前記各冷媒遮断機構や前記全ての開閉弁の開閉制御を行う制御手段と、を有し、
前記制御手段は、前記空気調和機の冷媒を前記室外機に回収する冷媒回収運転を行っているとき、前記室外熱交換器に滞留する冷媒量の変動に応じて変動する運転状態量が第1の所定閾値以上となれば、前記室外熱交換器に滞留する冷媒量が同室外熱交換器に回収できる冷媒量である室外熱交換器許容冷媒回収量以上であると判断し、前記ガス冷媒遮断機構と前記液冷媒遮断機構とを閉じて前記冷媒回収運転を中断して前記室外熱交換器に滞留する液冷媒を排出する熱交冷媒排出運転を実行し、前記運転状態量が第1の所定閾値よりも小さい第2の所定閾値以下となれば前記室外熱交換器に滞留する冷媒量が前記室外熱交換器許容冷媒回収量以下であると判断し、前記ガス冷媒遮断機構または前記液冷媒遮断機構を開いて、前記冷媒回収運転を再開し、
前記制御手段は、前記冷媒回収運転を行っているとき、前記アキュムレータに滞留する冷媒量の変動に応じて変動する運転状態量が第3の所定閾値以下となれば、前記アキュムレータに滞留する冷媒量が同アキュムレータに回収できる冷媒量であるアキュムレータ許容冷媒回収量以上であると判断し、前記ガス冷媒遮断機構と前記液冷媒遮断機構とを閉じて前記冷媒回収運転を中断し、前記圧縮機を介して前記アキュムレータに滞留する液冷媒を排出する余剰冷媒排出運転を実行し、前記運転状態量が第3の所定閾値よりも小さい第4の所定閾値以上となれば前記アキュムレータに滞留する冷媒量が前記アキュムレータ許容冷媒回収量以下であると判断し、前記ガス冷媒遮断機構または前記液冷媒遮断機構を開いて、前記冷媒回収運転を再開する、
ことを特徴とする空気調和機。
An outdoor unit having a compressor, an outdoor heat exchanger, and an accumulator, and the indoor unit are air conditioners connected by a liquid refrigerant pipe and a gas refrigerant pipe,
The air conditioner includes a liquid refrigerant blocking mechanism that can block a refrigerant flow in the liquid refrigerant pipe, a gas refrigerant blocking mechanism that can block a refrigerant flow in the gas refrigerant pipe, the outdoor on-off valve, and the liquid A refrigerant recovery bypass circuit having a refrigerant recovery on-off valve that bypasses between the refrigerant cutoff mechanism and between the gas refrigerant cutoff mechanism and the accumulator, and performs opening / closing control of each of the refrigerant cutoff mechanisms and all of the on-off valves. Control means, and
When the control means is performing a refrigerant recovery operation in which the refrigerant of the air conditioner is recovered in the outdoor unit, the operating state quantity that fluctuates in accordance with the fluctuation of the refrigerant amount staying in the outdoor heat exchanger is the first. The refrigerant amount staying in the outdoor heat exchanger is determined to be greater than or equal to the outdoor heat exchanger allowable refrigerant recovery amount that is the amount of refrigerant that can be recovered in the outdoor heat exchanger, and the gas refrigerant shut-off And closes the mechanism and the liquid refrigerant shut-off mechanism, interrupts the refrigerant recovery operation and executes a heat exchanger discharge operation for discharging the liquid refrigerant staying in the outdoor heat exchanger, and the operating state quantity is a first predetermined amount If it becomes equal to or less than a second predetermined threshold value that is smaller than the threshold value, it is determined that the refrigerant amount staying in the outdoor heat exchanger is equal to or less than the outdoor heat exchanger allowable refrigerant recovery amount, and the gas refrigerant cutoff mechanism or the liquid refrigerant cutoff is determined. Open the mechanism, the refrigerant recovery operation To resume,
The control means, when performing the refrigerant recovery operation, if the operating state variable that fluctuates according to the fluctuation of the refrigerant amount staying in the accumulator is equal to or less than a third predetermined threshold, the amount of refrigerant staying in the accumulator Is equal to or greater than the accumulator allowable refrigerant recovery amount that is the amount of refrigerant that can be recovered by the accumulator, the gas refrigerant shut-off mechanism and the liquid refrigerant shut-off mechanism are closed, and the refrigerant recovery operation is interrupted. The surplus refrigerant discharge operation for discharging the liquid refrigerant staying in the accumulator is executed, and if the operating state quantity is equal to or greater than a fourth predetermined threshold value smaller than a third predetermined threshold value, the refrigerant quantity staying in the accumulator is It is determined that the amount is less than the accumulator allowable refrigerant recovery amount, the gas refrigerant cutoff mechanism or the liquid refrigerant cutoff mechanism is opened, and the refrigerant recovery operation is resumed. That,
An air conditioner characterized by that.
前記室外機は、前記アキュムレータに滞留する液冷媒を加熱する冷媒加熱手段を有し、
前記制御手段は、前記余剰冷媒排出運転を実行する際、前記冷媒加熱手段で前記アキュムレータに滞留する液冷媒を加熱する
ことを特徴とする請求項2に記載の空気調和機。
The outdoor unit has a refrigerant heating means for heating the liquid refrigerant staying in the accumulator,
The air conditioner according to claim 2, wherein the control means heats the liquid refrigerant staying in the accumulator by the refrigerant heating means when performing the surplus refrigerant discharge operation.
前記室外機は、前記室外熱交換器における冷媒流量を調整する室外側開閉弁と、前記室外熱交換器と前記室外側開閉弁の間と前記ガス冷媒遮断機構と前記アキュムレータの間とをバイパスする熱交冷媒排出管と、同熱交冷媒排出管に設けられ同熱交冷媒排出管を通過/遮断する熱交冷媒排出用開閉弁とを有する熱交冷媒排出用バイパス回路をさらに有し、
前記制御手段は、前記熱交冷媒排出運転を実行する際、前記室外側開閉弁は開かずに前記熱交冷媒排出用開閉弁を開く、
ことを特徴とする請求項2に記載の空気調和機。
The outdoor unit bypasses an outdoor on-off valve that adjusts a refrigerant flow rate in the outdoor heat exchanger, between the outdoor heat exchanger and the outdoor on-off valve, and between the gas refrigerant shut-off mechanism and the accumulator. A heat exchange refrigerant discharge bypass circuit having a heat exchange refrigerant discharge pipe and a heat exchange refrigerant discharge opening / closing valve provided in the heat exchange refrigerant discharge pipe and passing / blocking the heat exchange refrigerant discharge pipe;
The control means, when performing the heat exchanger discharge operation, opens the heat exchanger discharge on-off valve without opening the outdoor on-off valve,
The air conditioner according to claim 2.
JP2013227259A 2013-10-31 2013-10-31 Air conditioner Active JP6291794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013227259A JP6291794B2 (en) 2013-10-31 2013-10-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013227259A JP6291794B2 (en) 2013-10-31 2013-10-31 Air conditioner

Publications (2)

Publication Number Publication Date
JP2015087071A true JP2015087071A (en) 2015-05-07
JP6291794B2 JP6291794B2 (en) 2018-03-14

Family

ID=53050038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013227259A Active JP6291794B2 (en) 2013-10-31 2013-10-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP6291794B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002214A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Refrigeration cycle system
WO2017061010A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Refrigeration cycle device
WO2018029763A1 (en) * 2016-08-08 2018-02-15 三菱電機株式会社 Air conditioner
WO2018092299A1 (en) * 2016-11-21 2018-05-24 三菱電機株式会社 Air conditioner
JP6377299B1 (en) * 2017-10-05 2018-08-22 三菱電機株式会社 Air conditioner
WO2018167811A1 (en) * 2017-03-13 2018-09-20 三菱電機株式会社 Refrigeration cycle device
WO2018167820A1 (en) * 2017-03-13 2018-09-20 三菱電機株式会社 Refrigeration cycle device
JP2018200136A (en) * 2017-05-26 2018-12-20 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2019007666A (en) * 2017-06-23 2019-01-17 福島工業株式会社 Refrigeration device
WO2019069423A1 (en) 2017-10-05 2019-04-11 三菱電機株式会社 Air conditioner
JP2019143877A (en) * 2018-02-21 2019-08-29 株式会社富士通ゼネラル Air conditioning system
CN110411082A (en) * 2019-07-23 2019-11-05 珠海格力电器股份有限公司 Refrigerant recovery system and its control method, device, controller and air-conditioning system
JPWO2019038797A1 (en) * 2017-08-21 2020-03-26 三菱電機株式会社 Air conditioner and expansion valve unit
JP2021173480A (en) * 2020-04-27 2021-11-01 ダイキン工業株式会社 Air conditioning management system and refrigerant recovery management device
WO2024077989A1 (en) * 2022-10-12 2024-04-18 青岛海信日立空调系统有限公司 Air conditioner and control method therefor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118720A (en) * 1991-10-30 1993-05-14 Hitachi Ltd Control of refrigerator
JPH0953871A (en) * 1995-08-11 1997-02-25 Sanyo Electric Co Ltd Freezer
JPH09178217A (en) * 1995-10-24 1997-07-11 Daikin Ind Ltd Heat transfer apparatus
JP2001082816A (en) * 1999-09-16 2001-03-30 Sanyo Electric Co Ltd Refrigerating device
JP2002228281A (en) * 2001-01-31 2002-08-14 Sanyo Electric Co Ltd Air conditioner
JP2005249297A (en) * 2004-03-04 2005-09-15 Daikin Ind Ltd Refrigerant collecting device, refrigerant collection connecting device and refrigerant collecting method
JP2006118783A (en) * 2004-10-21 2006-05-11 Denso Corp Refrigerating cycle device
JP2007218558A (en) * 2006-02-20 2007-08-30 Daikin Ind Ltd Air conditioner and heat source unit
JP2011144941A (en) * 2010-01-12 2011-07-28 Hitachi Appliances Inc Air conditioning device
JP2013122364A (en) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp Refrigeration and air conditioning device and refrigeration and air conditioning system
JP2013124791A (en) * 2011-12-13 2013-06-24 Daikin Industries Ltd Refrigerating device
JP2014070784A (en) * 2012-09-28 2014-04-21 Panasonic Corp Refrigerator
JP2015075272A (en) * 2013-10-09 2015-04-20 株式会社富士通ゼネラル Air conditioner

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118720A (en) * 1991-10-30 1993-05-14 Hitachi Ltd Control of refrigerator
JPH0953871A (en) * 1995-08-11 1997-02-25 Sanyo Electric Co Ltd Freezer
JPH09178217A (en) * 1995-10-24 1997-07-11 Daikin Ind Ltd Heat transfer apparatus
JP2001082816A (en) * 1999-09-16 2001-03-30 Sanyo Electric Co Ltd Refrigerating device
JP2002228281A (en) * 2001-01-31 2002-08-14 Sanyo Electric Co Ltd Air conditioner
JP2005249297A (en) * 2004-03-04 2005-09-15 Daikin Ind Ltd Refrigerant collecting device, refrigerant collection connecting device and refrigerant collecting method
JP2006118783A (en) * 2004-10-21 2006-05-11 Denso Corp Refrigerating cycle device
JP2007218558A (en) * 2006-02-20 2007-08-30 Daikin Ind Ltd Air conditioner and heat source unit
JP2011144941A (en) * 2010-01-12 2011-07-28 Hitachi Appliances Inc Air conditioning device
JP2013122364A (en) * 2011-11-07 2013-06-20 Mitsubishi Electric Corp Refrigeration and air conditioning device and refrigeration and air conditioning system
JP2013124791A (en) * 2011-12-13 2013-06-24 Daikin Industries Ltd Refrigerating device
JP2014070784A (en) * 2012-09-28 2014-04-21 Panasonic Corp Refrigerator
JP2015075272A (en) * 2013-10-09 2015-04-20 株式会社富士通ゼネラル Air conditioner

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002214A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Refrigeration cycle system
WO2017061010A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Refrigeration cycle device
US10724777B2 (en) 2015-10-08 2020-07-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus capable of performing refrigerant recovery operation and controlling blower
EP3361185A4 (en) * 2015-10-08 2019-01-23 Mitsubishi Electric Corporation Refrigeration cycle device
WO2018029763A1 (en) * 2016-08-08 2018-02-15 三菱電機株式会社 Air conditioner
JPWO2018029763A1 (en) * 2016-08-08 2019-03-14 三菱電機株式会社 Air conditioner
US10739050B2 (en) 2016-08-08 2020-08-11 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2018092299A1 (en) * 2016-11-21 2018-05-24 三菱電機株式会社 Air conditioner
EP3543624A4 (en) * 2016-11-21 2019-12-04 Mitsubishi Electric Corporation Air conditioner
JPWO2018092299A1 (en) * 2016-11-21 2019-06-24 三菱電機株式会社 Air conditioner
WO2018167820A1 (en) * 2017-03-13 2018-09-20 三菱電機株式会社 Refrigeration cycle device
WO2018167811A1 (en) * 2017-03-13 2018-09-20 三菱電機株式会社 Refrigeration cycle device
US11609031B2 (en) 2017-03-13 2023-03-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2018167811A1 (en) * 2017-03-13 2020-01-16 三菱電機株式会社 Refrigeration cycle device
JPWO2018167820A1 (en) * 2017-03-13 2020-01-09 三菱電機株式会社 Refrigeration cycle device
JP2018200136A (en) * 2017-05-26 2018-12-20 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP7005172B2 (en) 2017-05-26 2022-01-21 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2019007666A (en) * 2017-06-23 2019-01-17 福島工業株式会社 Refrigeration device
JPWO2019038797A1 (en) * 2017-08-21 2020-03-26 三菱電機株式会社 Air conditioner and expansion valve unit
US11274864B2 (en) 2017-10-05 2022-03-15 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2019069423A1 (en) * 2017-10-05 2020-04-02 三菱電機株式会社 Air conditioner
WO2019069422A1 (en) 2017-10-05 2019-04-11 三菱電機株式会社 Air conditioning device
US11231199B2 (en) 2017-10-05 2022-01-25 Mitsubishi Electric Corporation Air-conditioning apparatus with leak detection control
WO2019069423A1 (en) 2017-10-05 2019-04-11 三菱電機株式会社 Air conditioner
JP6377299B1 (en) * 2017-10-05 2018-08-22 三菱電機株式会社 Air conditioner
JP2019143877A (en) * 2018-02-21 2019-08-29 株式会社富士通ゼネラル Air conditioning system
CN110411082A (en) * 2019-07-23 2019-11-05 珠海格力电器股份有限公司 Refrigerant recovery system and its control method, device, controller and air-conditioning system
JP2021173480A (en) * 2020-04-27 2021-11-01 ダイキン工業株式会社 Air conditioning management system and refrigerant recovery management device
WO2021220651A1 (en) 2020-04-27 2021-11-04 ダイキン工業株式会社 Air-conditioning management system and refrigerant-recovery management device
JP7457244B2 (en) 2020-04-27 2024-03-28 ダイキン工業株式会社 Air conditioning management system and refrigerant recovery management device
WO2024077989A1 (en) * 2022-10-12 2024-04-18 青岛海信日立空调系统有限公司 Air conditioner and control method therefor

Also Published As

Publication number Publication date
JP6291794B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6291794B2 (en) Air conditioner
JP6075264B2 (en) Air conditioner
JP6935720B2 (en) Refrigeration equipment
JP6402661B2 (en) Refrigeration equipment
JP2017142039A (en) Air conditioner
US10753645B2 (en) Refrigeration cycle apparatus
EP2347196A1 (en) Heat pump system and method of operating
CN110709650B (en) Heat pump utilization equipment
JP2008096033A (en) Refrigerating device
JP4883201B2 (en) Heat source unit
JP2019143877A (en) Air conditioning system
JP7135493B2 (en) heat pump water heater
WO2017175299A1 (en) Refrigeration cycle device
JP2023509017A (en) air conditioner
JP5515568B2 (en) Heat pump cycle equipment
JP6458666B2 (en) Air conditioner
JP2019143876A (en) Air conditioning system
JP2012127518A (en) Air conditioner
JP4269476B2 (en) Refrigeration equipment
JPH04251158A (en) Operation control device for refrigerating device
JP2012197959A (en) Air conditioning apparatus
JP6105270B2 (en) Air conditioner
KR20190121561A (en) Air conditioner
WO2018037466A1 (en) Refrigeration cycle device
JP6249282B2 (en) Water heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180129

R151 Written notification of patent or utility model registration

Ref document number: 6291794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151