JPH04251158A - Operation control device for refrigerating device - Google Patents

Operation control device for refrigerating device

Info

Publication number
JPH04251158A
JPH04251158A JP2409251A JP40925190A JPH04251158A JP H04251158 A JPH04251158 A JP H04251158A JP 2409251 A JP2409251 A JP 2409251A JP 40925190 A JP40925190 A JP 40925190A JP H04251158 A JPH04251158 A JP H04251158A
Authority
JP
Japan
Prior art keywords
opening degree
expansion valve
refrigerant
temperature
electric expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2409251A
Other languages
Japanese (ja)
Other versions
JP2500522B2 (en
Inventor
Masami Horiuchi
正美 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2409251A priority Critical patent/JP2500522B2/en
Publication of JPH04251158A publication Critical patent/JPH04251158A/en
Application granted granted Critical
Publication of JP2500522B2 publication Critical patent/JP2500522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent thermal off-state produced during the lack of refrigerant circulation amt and frequently repeated restarting by changing an initial opening degree of a valve driven expansion valve. CONSTITUTION:When starting the operation of a freezing device, an initial opening degree of a motor-driven expansion valve 5 is set to a fixed value with an initial opening degree setting means 51. Then, the opening degree of the motor-driven expansion valve 5 is target-controlled with an opening degree control means 53 so that the discharge refrigerant temperature may be converged to a temperature capable of producing an optimum freezing effect. When the discharge refrigerant temperature exceeds a specified temperature, an operation control means 50 halts the operation of a compressor for a specified time and then restarts the operation while an opening degree increase means 52 increases the initial opening degree of the motor-driven valve 5 in restarting mode more than that in the previous starting time. This construction makes it possible to increase the circulation amount of refrigerant and thereby inhibit repeated thermal off-state and restarting.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は冷凍装置の運転制御装置
に係り、特にサ―モオフ,再起動の繰り返しによる圧縮
機の発停回数の低減に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control system for a refrigeration system, and more particularly to a reduction in the number of times a compressor starts and stops due to repeated thermo-off and restart operations.

【0002】0002

【従来の技術】従来より、例えば特開昭60―1850
76号公報に開示される如く、圧縮機、熱源側熱交換器
、電動膨張弁及び利用側熱交換器を順次接続した冷媒回
路を備えた冷凍装置の運転制御装置として、冷媒の過熱
度又は過冷却度を検出し、通常冷房運転時は過熱度を、
通常暖房運転時は過冷却度をそれぞれ所定値に保持する
よう上記電動膨張弁の開度を制御する一方、冷凍装置の
運転開始時には、電動膨張弁の開度を運転モ―ドに応じ
て予め設定された所定開度に制御することにより、目標
開度への速やかな収束を図ろうとするものは公知の技術
である。
[Prior Art] Conventionally, for example, Japanese Patent Application Laid-Open No. 1850-1850
As disclosed in Publication No. 76, as an operation control device for a refrigeration system equipped with a refrigerant circuit in which a compressor, a heat source side heat exchanger, an electric expansion valve, and a user side heat exchanger are sequentially connected, Detects the degree of cooling and detects the degree of superheat during normal cooling operation.
During normal heating operation, the opening degree of the electric expansion valve is controlled to maintain the degree of subcooling at a predetermined value, while when starting operation of the refrigeration system, the opening degree of the electric expansion valve is adjusted in advance according to the operation mode. A known technique attempts to quickly converge to a target opening by controlling the opening to a predetermined opening.

【0003】0003

【発明が解決しようとする課題】ところで、最適の冷凍
効果を与える吐出冷媒の最適温度を制御目標値として電
動膨張弁の開度を制御するようにした冷凍装置の運転制
御装置においては、通常、吐出冷媒温度の過上昇から圧
縮機を保護すべく吐出冷媒温度が所定温度以上に達する
と、圧縮機を所定時間の間停止させるいわゆるサ―モオ
フ状態にするとともに、所定時間が経過するとサ―モオ
ン状態に切換えて圧縮機を再起動させるようになされて
いるが、斯かる冷凍装置の運転制御装置について、上記
従来のもののように電動膨張弁の初期開度を一定に設定
した場合、下記のような問題があった。
[Problems to be Solved by the Invention] By the way, in an operation control device for a refrigeration system in which the opening degree of an electric expansion valve is controlled using the optimum temperature of the discharged refrigerant that provides the optimum refrigeration effect as a control target value, In order to protect the compressor from an excessive rise in the discharge refrigerant temperature, when the discharge refrigerant temperature reaches a predetermined temperature or higher, the compressor is placed in a so-called thermo-off state in which the compressor is stopped for a predetermined period of time, and when a predetermined period of time has elapsed, the thermo-on is turned on. However, if the initial opening degree of the electric expansion valve is set to a constant value as in the conventional system for such a refrigeration system, the following will occur: There was a problem.

【0004】すなわち、図5に示すように、電動膨張弁
の初期開度を一定値に設定して運転を開始した後、運転
中に冷媒回路中に冷媒が滞溜する等により冷媒循環量が
不足すると、吐出冷媒温度が上昇し、それに応じて電動
膨張弁の開度も目標値制御により増大するが、冷媒循環
量が不足している条件下では吐出冷媒温度の上昇を抑制
できず、吐出冷媒温度が所定温度以上となって圧縮機が
サ―モオフ停止する(図中の時刻x1 )。そして、所
定時間経過後に、電動膨張弁の初期開度を一定値に設定
して再起動する(図中の時刻x1 )と、冷媒の循環量
が不足しているような条件下では、吐出冷媒温度が再び
上昇して所定温度に達し、圧縮機がサ―モオフ停止する
(図中の時刻x2 )。そして、一定時間が経過すると
サ―モオンに切換わり再起動する(図中の時刻x3 )
が、すぐに吐出冷媒温度が上昇してサ―モオフになる(
図中の時刻x4 )という過程が繰り返されることにな
る(図中の時刻x5 以下)。そして、吐出冷媒状態が
定常状態になるまでに、サ―モオン・サ―モオフの切換
わりによる圧縮機の発停がなんども繰り返されることに
より、運転効率と信頼性の低下を招く虞れがあった。
That is, as shown in FIG. 5, after the initial opening degree of the electric expansion valve is set to a constant value and operation is started, the amount of refrigerant circulation decreases due to the accumulation of refrigerant in the refrigerant circuit during operation. If there is a shortage, the discharge refrigerant temperature rises, and the opening degree of the electric expansion valve increases accordingly by target value control, but under conditions where the refrigerant circulation amount is insufficient, the rise in the discharge refrigerant temperature cannot be suppressed, and the discharge When the refrigerant temperature reaches a predetermined temperature or higher, the compressor turns off and stops (time x1 in the figure). Then, after a predetermined period of time has elapsed, when the electric expansion valve is restarted with the initial opening degree set to a constant value (time x1 in the figure), under conditions where the amount of refrigerant circulation is insufficient, the discharge refrigerant The temperature rises again and reaches the predetermined temperature, and the compressor stops thermo-off (time x2 in the figure). Then, after a certain period of time has passed, it switches to thermo-on and restarts (time x 3 in the diagram)
However, the discharge refrigerant temperature rises immediately and the thermostat turns off (
The process (time x4 in the figure) is repeated (below time x5 in the figure). Then, until the discharged refrigerant condition reaches a steady state, the compressor is repeatedly started and stopped due to thermo-on/thermo-off switching, which may lead to a decrease in operating efficiency and reliability. Ta.

【0005】本発明は、上記のような圧縮機の起動時に
おけるサ―モオン・サ―モオフの繰り返しが冷媒回路の
いずれかにおける冷媒の滞溜に起因する点に鑑みなされ
たものであり、このような冷媒の滞溜が生じるような条
件下では、冷媒循環量を確保する手段を講ずることによ
り、圧縮機の発停回数を低減し、もって、運転効率及び
信頼性の向上を図ることにある。
The present invention was made in view of the fact that the above-mentioned repetition of thermo-on and thermo-off at the time of starting the compressor is caused by accumulation of refrigerant in one of the refrigerant circuits. Under conditions where refrigerant stagnation occurs, the objective is to reduce the number of times the compressor starts and stops by taking measures to ensure the amount of refrigerant circulating, thereby improving operational efficiency and reliability. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
、本発明の解決手段は、再起動時における電動膨張弁の
初期開度を前回起動時における初期開度よりも増大させ
ることにある。
[Means for Solving the Problems] In order to achieve the above object, the solution of the present invention is to increase the initial opening degree of the electric expansion valve at the time of restarting compared to the initial opening degree at the time of the previous startup.

【0007】具体的には、請求項1の発明の講じた手段
は、図1に示すように、圧縮機(1)、熱源側熱交換器
(3)、電動膨張弁(5)及び利用側熱交換器(6)を
順次接続してなる冷媒回路(9)を備えた冷凍装置を前
提とする。
Specifically, the means taken by the invention of claim 1, as shown in FIG. A refrigeration system is assumed to be equipped with a refrigerant circuit (9) formed by sequentially connecting heat exchangers (6).

【0008】そして、冷凍装置の運転制御装置として、
冷凍装置の運転開始時における上記電動膨張弁(5)の
初期開度を一定値に設定する初期開度設定手段(51)
と、吐出冷媒温度を検出する吐出温度検出手段(Th2
)と、該吐出温度検出手段(Th2)の出力を受け、最
適な冷凍効果を与える吐出冷媒の最適温度を制御目標値
として上記電動膨張弁(5)の開度を制御する開度制御
手段(53)と、上記吐出温度検出手段(Th2)の出
力を受け、吐出冷媒温度が所定温度以上に達すると、上
記圧縮機(1)を所定時間の間停止させた後再起動させ
る運転制御手段(50)とを設けるものとする。
[0008] As an operation control device for a refrigeration system,
initial opening degree setting means (51) for setting the initial opening degree of the electric expansion valve (5) to a constant value at the time of starting operation of the refrigeration system;
and a discharge temperature detection means (Th2) for detecting the discharge refrigerant temperature.
), and an opening control means (which receives the output of the discharge temperature detection means (Th2) and controls the opening degree of the electric expansion valve (5) using the optimum temperature of the discharged refrigerant that provides the optimum refrigeration effect as a control target value. 53), and an operation control means (Th2) which receives the output of the discharge temperature detection means (Th2) and stops the compressor (1) for a predetermined period of time and then restarts the compressor (1) when the discharge refrigerant temperature reaches a predetermined temperature or higher. 50) shall be provided.

【0009】さらに、上記運転制御手段(50)による
圧縮機(1)の再起動時における電動膨張弁(5)の初
期開度を前回起動時の初期開度よりも所定開度増大させ
るよう変更する開度増大手段(52)を設ける構成とし
たものである。
Furthermore, the initial opening degree of the electric expansion valve (5) when the compressor (1) is restarted by the operation control means (50) is changed to be increased by a predetermined opening degree from the initial opening degree at the previous startup. The structure is such that an opening increasing means (52) is provided to increase the opening degree.

【0010】0010

【作用】以上の構成により、本発明では、冷凍装置の運
転開始時、初期開度設定手段(51)により電動膨張弁
(5)の初期開度が一定値に設定され、その後、開度制
御手段(53)により、吐出冷媒温度が最適温度に収束
するよう電動膨張弁(5)の開度が目標値制御される。 そのとき、冷凍装置の運転中に冷媒回路(9)内で冷媒
の滞溜等により圧縮機(1)への冷媒循環量の不足が生
じると、吐出冷媒温度が上昇し、それに応じて目標値制
御される電動膨張弁(5)の開度は徐々に増大するが、
吐出冷媒温度の上昇は急激なので電動膨張弁(5)の開
度制御では十分追随できずに、吐出冷媒温度が所定温度
を越えることになる。そして、運転制御手段(53)に
より、圧縮機(1)が所定時間の間停止した後再起動す
ると、吐出冷媒温度が再び所定温度以上となって、サ―
モオフ、再起動,サ―モオフ,…が繰り返される虞れが
あるが、本発明では、開度増大手段(52)により、運
転制御手段(53)による再起動時における電動膨張弁
(5)の初期開度が前回起動時における初期開度よりも
所定開度増大するよう変更されるので、冷媒の循環量が
多い状態で起動するので、吐出冷媒温度の上昇に対する
電動膨張弁(5)の開度制御の追随性が次第に良くなり
、その後、吐出冷媒温度の上昇が漸次抑制されて定常状
態に収束することになる。したがって、サ―モオフ,再
起動,…の繰り返しによる圧縮機(1)の頻繁な発停が
防止され、空調効果の悪化が回避されるとともに、信頼
性が向上することになる。
[Operation] With the above configuration, in the present invention, when the refrigeration equipment starts operating, the initial opening degree setting means (51) sets the initial opening degree of the electric expansion valve (5) to a constant value, and then the opening degree is controlled. The means (53) controls the opening degree of the electric expansion valve (5) to a target value so that the temperature of the discharged refrigerant converges to the optimum temperature. At that time, if a shortage of refrigerant circulation to the compressor (1) occurs due to refrigerant accumulation in the refrigerant circuit (9) during operation of the refrigeration system, the discharge refrigerant temperature rises and the target value is increased accordingly. Although the opening degree of the controlled electric expansion valve (5) gradually increases,
Since the temperature of the discharged refrigerant increases rapidly, the opening degree control of the electric expansion valve (5) cannot sufficiently follow the rise, and the temperature of the discharged refrigerant exceeds a predetermined temperature. Then, when the compressor (1) is restarted after being stopped for a predetermined period of time by the operation control means (53), the discharge refrigerant temperature becomes the predetermined temperature or higher again, and the service
There is a risk that the operation of power-off, restart, thermo-off, etc. may be repeated, but in the present invention, the opening degree increasing means (52) allows the operation control means (53) to control the electric expansion valve (5) at the time of restart. Since the initial opening is changed to a predetermined opening greater than the initial opening at the previous startup, the startup starts with a large amount of refrigerant circulating, so the opening of the electric expansion valve (5) is reduced in response to a rise in the discharge refrigerant temperature. The followability of temperature control gradually improves, and thereafter, the rise in discharged refrigerant temperature is gradually suppressed and converges to a steady state. Therefore, frequent starting and stopping of the compressor (1) due to repetition of thermo-off, restart, etc. is prevented, deterioration of the air conditioning effect is avoided, and reliability is improved.

【0011】[0011]

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to FIG. 2 and subsequent drawings.

【0012】図2は本発明を適用した空気調和装置の冷
媒配管系統を示し、(1)は圧縮機、(2)は冷房運転
時には図中実線のごとく、暖房運転時には図中破線のご
とく切換わる四路切換弁、(3)は冷房運転時には凝縮
器として、暖房運転時には蒸発器として機能する熱源側
熱交換器である室外熱交換器、(4)は液冷媒を貯留す
るためのレシ―バ、(5)は冷媒の減圧機能と冷媒流量
の調節機能とを有する電動膨張弁、(6)は室内に設置
され、冷房運転時には蒸発器として、暖房運転時には凝
縮器として機能する利用側熱交換器である室内熱交換器
、(7)は圧縮機(1)の吸入管に介設され、吸入冷媒
中の液冷媒を除去するためのアキュムレ―タである。
FIG. 2 shows the refrigerant piping system of an air conditioner to which the present invention is applied, where (1) is the compressor, and (2) is the pipe that is disconnected as shown by the solid line in the figure during cooling operation and as shown by the broken line in the figure during heating operation. (3) is an outdoor heat exchanger which is a heat source side heat exchanger that functions as a condenser during cooling operation and as an evaporator during heating operation, (4) is a receiver for storing liquid refrigerant. (5) is an electric expansion valve that has a refrigerant pressure reduction function and a refrigerant flow rate adjustment function; (6) is a user-side heat exchanger installed indoors that functions as an evaporator during cooling operation and as a condenser during heating operation. The indoor heat exchanger (7), which is an exchanger, is installed in the suction pipe of the compressor (1) and is an accumulator for removing liquid refrigerant from the suction refrigerant.

【0013】上記各機器(1)〜(7)は冷媒配管(8
)により順次接続され、冷媒の循環により熱移動を生ぜ
しめるようにした冷媒回路(9)が構成されている。な
お、(13)は室外熱交換器(3)の液管側に介設され
た過冷却用キャピラリチュ―ブである。
Each of the above-mentioned devices (1) to (7) has refrigerant piping (8
) are successively connected to form a refrigerant circuit (9) that causes heat transfer by circulating the refrigerant. Note that (13) is a supercooling capillary tube installed on the liquid pipe side of the outdoor heat exchanger (3).

【0014】ここで、上記冷媒回路(9)の圧縮機(1
)吐出側には、吐出冷媒中の油を回収するための油回収
器(10)が介設されていて、該油回収器(10)から
圧縮機(1)−アキュムレ―タ(7)間の吸入管まで、
油回収器(10)の油を圧縮機(1)の吸入側に戻すた
めの油戻し通路(11)が流量調節弁(12)を介して
設けられている。
[0014] Here, the compressor (1) of the refrigerant circuit (9)
) An oil recovery device (10) for recovering oil in the discharged refrigerant is interposed on the discharge side, and the oil recovery device (10) is connected between the compressor (1) and the accumulator (7). up to the suction pipe of
An oil return passage (11) for returning oil from the oil recovery device (10) to the suction side of the compressor (1) is provided via a flow control valve (12).

【0015】また、冷媒回路(9)の液管において、上
記レシ―バ(4)と電動膨張弁(5)とは、電動膨張弁
(5)がレシ―バ(4)の下部つまり液部に連通するよ
う共通路(8a)に直列に配置されており、共通路(8
a)のレシ―バ(4)上部側の端部である点(P)と室
外熱交換器(3)との間は、室外熱交換器(3)からレ
シ―バ(4)への冷媒の流通のみを許容する第1逆止弁
(D1)を介して第1流入路(8b)により、上記共通
路(8a)の点(P)と室内熱交換器(6)との間は室
内熱交換器(6)からレシ―バ(4)への冷媒の流通の
みを許容する第2逆止弁(D2)を介して第2流入路(
8c)によりそれぞれ接続されている一方、共通路(8
a)の上記電動膨張弁(5)他端側の端部である点(Q
)と上記第1逆止弁(D1)−室外熱交換器(3)間の
点(S)との間は電動膨張弁(5)から室外熱交換器(
3)への冷媒の流通のみを許容する第3逆止弁(D3)
を介して第1流出路(8d)により、共通路(8a)の
上記点(Q)と上記第2逆止弁(D2)−室内熱交換器
(6)間の点(R)との間は電動膨張弁(5)から室内
熱交換器(6)への冷媒の流通のみを許容する第4逆止
弁(D4)を介して第2流出路(8e)によりそれぞれ
接続されている。また、上記共通路(8a)のレシ―バ
上流側の1点(W)と第2流出路(8e)の第4逆止弁
(D4)上流側の点(U)との間には、キャピラリチュ
―ブ(C)を介設してなる液封防止バイパス路(8f)
が設けられており、圧縮機(1)の停止時における液封
を防止するようになされている。
Furthermore, in the liquid pipe of the refrigerant circuit (9), the receiver (4) and the electric expansion valve (5) are arranged such that the electric expansion valve (5) is connected to the lower part of the receiver (4), that is, the liquid part. The common path (8a) is arranged in series so as to communicate with the common path (8a).
Between the point (P), which is the upper end of the receiver (4) in a), and the outdoor heat exchanger (3), the refrigerant flows from the outdoor heat exchanger (3) to the receiver (4). The indoor heat exchanger (6) is connected between the point (P) of the common path (8a) and the indoor heat exchanger (6) by the first inflow path (8b) via the first check valve (D1) that allows only the flow of A second inflow path (
8c), while the common path (8c)
The point (Q) which is the other end of the electric expansion valve (5) in a)
) and the point (S) between the first check valve (D1) and the outdoor heat exchanger (3).
3) A third check valve (D3) that allows only the flow of refrigerant to
between the point (Q) of the common path (8a) and the point (R) between the second check valve (D2) and the indoor heat exchanger (6) via the first outflow path (8d). are connected to each other by a second outflow path (8e) via a fourth check valve (D4) that allows only the flow of refrigerant from the electric expansion valve (5) to the indoor heat exchanger (6). Further, between a point (W) on the upstream side of the receiver in the common path (8a) and a point (U) on the upstream side of the fourth check valve (D4) in the second outflow path (8e), Liquid seal prevention bypass path (8f) with capillary tube (C) interposed
is provided to prevent liquid sealing when the compressor (1) is stopped.

【0016】また、空気調和装置には、センサ類が配置
されていて、(Th2)は圧縮機(1)の吐出管に配置
され、吐出管温度を検出する吐出管センサ、(Thc)
は室外熱交換器(3)の液管に配置され、冷房運転時に
は冷媒の凝縮温度、暖房運転時には冷媒の蒸発温度を検
出する外熱交センサ、(Tha)は室外熱交換器(3)
の空気吸込口に配置され、外気温度を検出する外気温セ
ンサ、(The)は室内熱交換器(6)の液管に配置さ
れ、冷房運転時には蒸発温度、暖房運転時には凝縮温度
を検出する内熱交センサ、(Thr)は室内熱交換器(
6)の空気吸込口に配置され、吸込空気温度を検出する
室温センサ、(HPS)は高圧側圧力が上限に達すると
作動して異常停止させる高圧作動圧力スイッチ、(LP
S)は低圧側圧力が下限に達すると作動して異常停止さ
せる低圧作動圧力スイッチであって、上記各センサ類は
、空気調和装置の運転を制御するためのコントロ―ラ(
図示せず)に信号の入力可能に接続されており、該コン
トロ―ラにより、センサの信号に応じて各機器の運転を
制御するようになされている。
[0016] In addition, the air conditioner is provided with sensors such as (Th2), a discharge pipe sensor (Thc) which is arranged in the discharge pipe of the compressor (1), and which detects the temperature of the discharge pipe.
is an external heat exchange sensor that is placed in the liquid pipe of the outdoor heat exchanger (3) and detects the condensation temperature of the refrigerant during cooling operation and the evaporation temperature of the refrigerant during heating operation; (Tha) is the outdoor heat exchanger (3)
The outside temperature sensor (The) is placed at the air inlet of the indoor heat exchanger (6) to detect the outside air temperature, and is placed in the liquid pipe of the indoor heat exchanger (6) to detect the evaporation temperature during cooling operation and the condensation temperature during heating operation. Heat exchange sensor, (Thr) is indoor heat exchanger (
6) A room temperature sensor located at the air intake port to detect the intake air temperature, (HPS) is a high pressure operating pressure switch that activates and stops abnormally when the high pressure side pressure reaches the upper limit, (LP
S) is a low-pressure operating pressure switch that activates and abnormally stops when the low-pressure side pressure reaches the lower limit, and each of the above sensors is connected to a controller (S) for controlling the operation of the air conditioner.
(not shown) so that signals can be input, and the controller controls the operation of each device according to the signals from the sensor.

【0017】上記冷媒回路(9)において、冷房運転時
には、室外熱交換器(3)で凝縮液化された液冷媒が第
1流通路(8b)から共通路(8a)に流れてレシ―バ
(4)に貯溜され、電動膨張弁(5)で減圧された後、
第2流出路(8e)を経て室内熱交換器(6)で蒸発し
て圧縮機(1)に戻る循環となる。また、暖房運転時に
は、室内熱交換器(6)で凝縮液化された液冷媒が第2
流通路(8c)から共通路(8a)に流れてレシ―バ(
4)に貯溜され、電動膨張弁(5)で減圧された後、第
1流出路(8d)を経て室外熱交換器(3)で蒸発して
圧縮機(1)に戻る循環となる。
In the refrigerant circuit (9), during cooling operation, the liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) flows from the first flow path (8b) to the common path (8a) and passes through the receiver ( 4) and after being depressurized by the electric expansion valve (5),
It is circulated through the second outlet path (8e), evaporated in the indoor heat exchanger (6), and returned to the compressor (1). Also, during heating operation, the liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) is transferred to the second
It flows from the flow path (8c) to the common path (8a) and flows into the receiver (
4), and after being depressurized by the electric expansion valve (5), it passes through the first outflow path (8d), evaporates in the outdoor heat exchanger (3), and returns to the compressor (1), resulting in circulation.

【0018】ここで、上記コントロ―ラによる冷房運転
時の制御内容について、図3のフロ―チャ―トに基づき
説明する。空気調和装置の運転を開始すると、まず、ス
テップST1で、サ―モオフ回数Up を初期値「0」
に設定し、ステップST2で、電動膨張弁(5)(50
0パルスで全開となる)の初期開度Po を式  Po
 =250+Up ×50(パルス)に基づき設定する
。つまり、空気調和装置の運転開始直後は、Po =2
50(パルス)になる。次に、ステップST3,ST4
,ST5で、室外ファン(図示せず)、四路切換弁(2
)及び圧縮機(1)を順次オンにして、ステップST6
で、上記吐出管センサ(Th2)で検出された吐出冷媒
温度T2 を入力し、ステップST7で電動膨張弁(5
)の開度Pを目標値制御する。すなわち、上記内熱交セ
ンサ(The)で検出された冷媒の蒸発温度Te と、
上記外熱交センサ(Thc)で検出された冷媒の凝縮温
度Tc とから、式  Tk =4−1.13Te +
1.72Tc に基づき、装置の最適な冷凍効果を与え
る最適温度Tk を演算し、吐出冷媒温度T2 がこの
最適温度Tk に収束するように電動膨張弁(5)の開
度Pを制御する。
[0018] Here, the control contents during cooling operation by the above controller will be explained based on the flowchart of FIG. When the air conditioner starts operating, first, in step ST1, the thermo-off number Up is set to the initial value "0".
In step ST2, the electric expansion valve (5) (50
The initial opening degree Po (fully opened at 0 pulses) is expressed by the formula Po
Set based on =250+Up x50 (pulse). In other words, immediately after the air conditioner starts operating, Po = 2
It becomes 50 (pulse). Next, steps ST3 and ST4
, ST5, an outdoor fan (not shown), a four-way switching valve (2
) and compressor (1) are turned on sequentially, and step ST6
Then, the discharge refrigerant temperature T2 detected by the discharge pipe sensor (Th2) is input, and the electric expansion valve (5) is input in step ST7.
) is controlled to a target value. That is, the evaporation temperature Te of the refrigerant detected by the internal heat exchange sensor (The),
From the refrigerant condensation temperature Tc detected by the external heat exchanger sensor (Thc), the formula Tk = 4-1.13Te +
1.72Tc, the optimum temperature Tk that provides the optimum refrigerating effect of the device is calculated, and the opening degree P of the electric expansion valve (5) is controlled so that the discharge refrigerant temperature T2 converges to this optimum temperature Tk.

【0019】そして、この電動膨張弁(5)開度Pの目
標値制御を行っている間に吐出冷媒温度T2 が上昇し
て、ステップST8の判別で、吐出冷媒温度T2 がサ
―モオフ設定値135℃を越える状態が100秒間継続
すると、圧縮機(1)保護等のために、ステップST9
に進み、空気調和装置の運転開始後のサ―モオフ回数U
p を1だけ積算して、ステップST10で、圧縮機(
1)をサ―モオフ停止させた後、ステップST11で、
サ―モオフ後3分間待ってから、上記ステップST2に
制御に戻る。
Then, while the electric expansion valve (5) opening degree P is being controlled to the target value, the discharge refrigerant temperature T2 rises, and it is determined in step ST8 that the discharge refrigerant temperature T2 has reached the thermo-off setting value. If the temperature exceeds 135°C for 100 seconds, step ST9 is performed to protect the compressor (1).
Proceed to step 1 and calculate the number of thermo-off cycles U after the air conditioner starts operating.
p is integrated by 1, and in step ST10, the compressor (
After stopping the thermo-off of 1), in step ST11,
After waiting for 3 minutes after the thermostat is turned off, the control returns to step ST2.

【0020】上記フロ―において、ステップST10,
ST11からステップST3,ST4,ST5の制御に
より本発明の運転制御手段(50)が構成され、ステッ
プST1及びST2の制御により初期開度設定手段(5
1)が構成されている。また、ステップST9及びST
2の制御により開度増大手段(52)が構成され、ステ
ップST7の制御により開度制御手段(53)が構成さ
れている。
[0020] In the above flow, steps ST10,
The operation control means (50) of the present invention is configured by controlling steps ST11 to ST3, ST4, and ST5, and the initial opening degree setting means (50) is configured by controlling steps ST1 and ST2.
1) is configured. Also, steps ST9 and ST
The control in step ST7 constitutes the opening degree increasing means (52), and the control in step ST7 constitutes the opening degree control means (53).

【0021】したがって、上記実施例では、空気調和装
置の運転開始時、初期開度設定手段(51)により電動
膨張弁(5)の初期開度Po が一定値(205パルス
)に設定され、その後、開度制御手段(53)により、
吐出冷媒温度T2 が最適温度Tk に収束するよう電
動膨張弁(5)の開度Pが目標値制御される。そのとき
、図4に示すように、空気調和装置の運転中に冷媒回路
(9)内で冷媒の滞溜等により圧縮機(1)への冷媒循
環量の不足が生じると、吐出冷媒温度T2 が上昇し、
それに応じて目標値制御される電動膨張弁(5)の開度
Pは徐々に増大するが、吐出冷媒温度T2 の上昇は急
激なので、電動膨張弁(5)の開度Pの制御では間に合
わないことがある。その後、電動膨張弁(5)の開度P
が許容最大値(例えば480パルス程度の開度)に達す
ると、吐出冷媒温度T2 の上昇を抑制することができ
ず、所定温度(サ―モオフ設定値135℃)を越えるこ
とになる(図中の時刻to )。そして、運転制御手段
(53)により、圧縮機(1)を所定時間(3分間)の
間停止させるいわゆるサ―モオフ状態に維持した後、圧
縮機(1)を再起動させるよう制御される。しかし、冷
媒の循環量が不足しているような状況下では、圧縮機(
1)の再起動後、電動膨張弁(5)の初期開度Po を
一定値に設定して運転を継続しても、吐出冷媒温度T2
 が再びサ―モオフの設定値(135℃)を越えて再度
サ―モオフ、再起動,サ―モオフ,…が繰り返されるこ
とになり、空調効果を損ねるだけでなく、圧縮機(1)
の頻繁な発停により信頼性を損ねる虞れがある。特に、
上記実施例のように、定容量形の圧縮機(1)を使用し
、吐出冷媒温度T2 を制御指標として電動膨張弁(5
)の開度を調節するものでは、簡素な構成により高い空
調効果が得られる利点があるが、反面、圧縮機(1)の
容量が固定されるために吐出冷媒温度T2 の過上昇を
抑制できない虞れがある。
Therefore, in the above embodiment, when the air conditioner starts operating, the initial opening degree setting means (51) sets the initial opening degree Po of the electric expansion valve (5) to a constant value (205 pulses), and then , by the opening control means (53),
The opening degree P of the electric expansion valve (5) is controlled to a target value so that the discharge refrigerant temperature T2 converges to the optimum temperature Tk. At that time, as shown in FIG. 4, if a shortage of refrigerant circulation to the compressor (1) occurs due to refrigerant accumulation in the refrigerant circuit (9) during operation of the air conditioner, the discharge refrigerant temperature T2 rises,
The opening degree P of the electric expansion valve (5), which is controlled by the target value, gradually increases accordingly, but since the discharge refrigerant temperature T2 rises rapidly, controlling the opening degree P of the electric expansion valve (5) is not enough. Sometimes. After that, the opening degree P of the electric expansion valve (5)
When the temperature reaches the maximum allowable value (for example, the opening degree of about 480 pulses), the rise in the discharge refrigerant temperature T2 cannot be suppressed, and the temperature exceeds the predetermined temperature (thermo-off set value 135°C) (in the figure). time to ). Then, the operation control means (53) maintains the compressor (1) in a so-called thermo-off state in which it is stopped for a predetermined period of time (3 minutes), and then is controlled to restart the compressor (1). However, under conditions where the amount of refrigerant circulating is insufficient, the compressor (
After the restart in step 1), even if the initial opening degree Po of the electric expansion valve (5) is set to a constant value and operation is continued, the discharge refrigerant temperature T2
exceeds the thermo-off set value (135°C) again, and the thermo-off, restart, thermo-off, etc. are repeated, which not only impairs the air conditioning effect, but also damages the compressor (1).
There is a risk that reliability may be impaired due to frequent starting and stopping. especially,
As in the above embodiment, a constant displacement compressor (1) is used, and the electric expansion valve (5) is used with the discharge refrigerant temperature T2 as a control index.
) has the advantage of providing a high air conditioning effect due to its simple configuration, but on the other hand, the capacity of the compressor (1) is fixed, making it impossible to suppress an excessive rise in the discharge refrigerant temperature T2. There is a risk.

【0022】ここで、上記実施例では、開度増大手段(
52)により、運転制御手段(53)による再起動時に
おける電動膨張弁(5)の初期開度Po が前回起動時
における初期開度よりも所定開度(50パルス)増大す
るよう変更される。すなわち、図4に示すように、時刻
t1 で初期開度Po を300パルスに増大させて再
起動した後、吐出冷媒温度T2 が再び上昇してサ―モ
オフ設定値(135℃)を越え(図中の時刻t2 )、
サ−モオフになったとき、次の再起動時(図中の時刻t
3 )には、電動膨張弁(5)の初期開度Po が35
0パルスに設定される。したがって、このような電動膨
張弁(5)の初期開度Po の増大変更により、冷媒の
循環量ある程度確保された状態から運転が開始されるの
で、開度制御手段(53)による電動膨張弁(5)の開
度制御の追随性が再起動の都度良くなり、その後、吐出
冷媒温度T2 の上昇が漸次抑制されて定常状態に収束
することになる。したがって、サ―モオフ,再起動,…
の繰り返しによる圧縮機(1)の頻繁な発停が防止され
、空調効果の悪化を回避しうるとともに、信頼性の向上
を図ることができることになる。
Here, in the above embodiment, the opening degree increasing means (
52), the initial opening degree Po of the electric expansion valve (5) at the time of restart by the operation control means (53) is changed to be larger than the initial opening degree at the previous startup by a predetermined opening degree (50 pulses). That is, as shown in Fig. 4, after restarting by increasing the initial opening degree Po to 300 pulses at time t1, the discharge refrigerant temperature T2 rises again and exceeds the thermo-off set value (135°C) (Fig. time t2),
When the thermostat is turned off, at the next restart (time t in the diagram)
3), the initial opening degree Po of the electric expansion valve (5) is 35
Set to 0 pulse. Therefore, by increasing the initial opening Po of the electric expansion valve (5), the operation is started with a certain amount of refrigerant circulation secured, so that the electric expansion valve ( The followability of the opening degree control in 5) improves each time the engine is restarted, and thereafter, the rise in the discharge refrigerant temperature T2 is gradually suppressed and converges to a steady state. Therefore, thermo off, restart,...
Frequent starting and stopping of the compressor (1) due to repetition of the above can be prevented, and deterioration of the air conditioning effect can be avoided, and reliability can be improved.

【0023】なお、上記実施例では、冷房運転について
説明したが、本発明は冷房運転だけでなく暖房運転につ
いても適用しうることはいうまでもない。
[0023] In the above embodiment, the cooling operation was explained, but it goes without saying that the present invention can be applied not only to the cooling operation but also to the heating operation.

【0024】[0024]

【発明の効果】以上説明したように、本発明の冷凍装置
の運転制御装置によれば、冷凍装置の運転開始時に電動
膨張弁の初期開度を一定値に設定した後、吐出冷媒温度
を最適温度に収束させるよう電動膨張弁の開度を目標値
制御して、冷凍装置の運転中に吐出冷媒温度が所定温度
以上になると圧縮機を所定時間の間サ―モオフ停止させ
た後再起動させるとともに、再起動時における電動膨張
弁の初期開度を前回起動時における初期開度よりも所定
開度増大させるようにしたので、冷媒循環量の不足によ
り吐出冷媒温度が上昇して圧縮機がサ―モオフ停止して
も、その後再起動,サ―モオフの過程が何回も繰り返さ
れるのを防止することができ、圧縮機の発停回数の低減
により、空調効果及び信頼性の向上を図ることができる
As explained above, according to the operation control device for a refrigeration system of the present invention, the initial opening degree of the electric expansion valve is set to a constant value at the start of operation of the refrigeration system, and then the discharge refrigerant temperature is optimized. The opening degree of the electric expansion valve is controlled to a target value so that the temperature converges, and when the discharge refrigerant temperature exceeds a predetermined temperature while the refrigeration equipment is operating, the compressor is thermo-off stopped for a predetermined time and then restarted. At the same time, the initial opening degree of the electric expansion valve upon restart is increased by a predetermined degree from the initial opening degree at the previous startup, so that the discharge refrigerant temperature rises due to insufficient refrigerant circulation and the compressor is unable to reach full support. -Even if the thermo-off is stopped, the process of restarting and thermo-off can be prevented from being repeated many times, and by reducing the number of times the compressor starts and stops, the air conditioning effectiveness and reliability can be improved. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】発明の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the invention.

【図2】実施例に係る空気調和装置の冷媒配管系統図で
ある。
FIG. 2 is a refrigerant piping system diagram of the air conditioner according to the embodiment.

【図3】コントロ―ラの制御内容を示すフロ―チャ―ト
図である。
FIG. 3 is a flowchart showing the control contents of the controller.

【図4】実施例における吐出冷媒温度及び電動膨張弁開
度の時間変化図である。
FIG. 4 is a diagram of changes in discharge refrigerant temperature and electric expansion valve opening degree over time in the example.

【図5】従来例における吐出冷媒温度及び電動膨張弁開
度の時間変化図である。
FIG. 5 is a diagram of changes in discharge refrigerant temperature and electric expansion valve opening degree over time in a conventional example.

【符号の説明】[Explanation of symbols]

1    圧縮機 3    室外熱交換器(熱源側熱交換器)5    
電動膨張弁 6    室内熱交換器(利用側熱交換器)9    
冷媒回路 50  運転制御手段 51  初期開度設定手段 52  開度増大手段 53  開度制御手段
1 Compressor 3 Outdoor heat exchanger (heat source side heat exchanger) 5
Electric expansion valve 6 Indoor heat exchanger (user side heat exchanger) 9
Refrigerant circuit 50 Operation control means 51 Initial opening setting means 52 Opening increasing means 53 Opening controlling means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機(1)、熱源側熱交換器(3)
、電動膨張弁(5)及び利用側熱交換器(6)を順次接
続してなる冷媒回路(9)を備えた冷凍装置において、
冷凍装置の運転開始時における上記電動膨張弁(5)の
初期開度を一定値に設定する初期開度設定手段(51)
と、吐出冷媒温度を検出する吐出温度検出手段(Th2
)と、該吐出温度検出手段(Th2)の出力を受け、最
適な冷凍効果を与える吐出冷媒の最適温度を制御目標値
として上記電動膨張弁(5)の開度を制御する開度制御
手段(53)と、上記吐出温度検出手段(Th2)の出
力を受け、吐出冷媒温度が所定温度以上に達すると、上
記圧縮機(1)を所定時間の間サ―モオフ停止させた後
再起動させるよう制御する運転制御手段(50)とを備
えるとともに、上記運転制御手段(50)による圧縮機
(1)の再起動時における電動膨張弁(5)の初期開度
を前回起動時の初期開度よりも所定開度増大させるよう
変更する開度増大手段(52)を備えたことを特徴とす
る冷凍装置の運転制御装置。
[Claim 1] Compressor (1), heat source side heat exchanger (3)
, a refrigeration system equipped with a refrigerant circuit (9) formed by sequentially connecting an electric expansion valve (5) and a user-side heat exchanger (6),
initial opening degree setting means (51) for setting the initial opening degree of the electric expansion valve (5) to a constant value at the time of starting operation of the refrigeration system;
and a discharge temperature detection means (Th2) for detecting the discharge refrigerant temperature.
), and an opening control means (which receives the output of the discharge temperature detection means (Th2) and controls the opening degree of the electric expansion valve (5) using the optimum temperature of the discharged refrigerant that provides the optimum refrigeration effect as a control target value. 53), and upon receiving the output of the discharge temperature detection means (Th2), when the discharge refrigerant temperature reaches a predetermined temperature or higher, the compressor (1) is stopped with thermo-off for a predetermined time and then restarted. and an operation control means (50) for controlling the initial opening degree of the electric expansion valve (5) when the compressor (1) is restarted by the operation control means (50) from the initial opening degree at the previous startup. 1. An operation control device for a refrigeration system, comprising an opening increasing means (52) for increasing the opening by a predetermined amount.
JP2409251A 1990-12-28 1990-12-28 Refrigeration system operation controller Expired - Fee Related JP2500522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2409251A JP2500522B2 (en) 1990-12-28 1990-12-28 Refrigeration system operation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2409251A JP2500522B2 (en) 1990-12-28 1990-12-28 Refrigeration system operation controller

Publications (2)

Publication Number Publication Date
JPH04251158A true JPH04251158A (en) 1992-09-07
JP2500522B2 JP2500522B2 (en) 1996-05-29

Family

ID=18518599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2409251A Expired - Fee Related JP2500522B2 (en) 1990-12-28 1990-12-28 Refrigeration system operation controller

Country Status (1)

Country Link
JP (1) JP2500522B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100944A (en) * 1994-09-30 1996-04-16 Daikin Ind Ltd Operation controller for air conditioner
US5533351A (en) * 1992-11-20 1996-07-09 Daikin Industries, Ltd. Air conditioner
JPH1030835A (en) * 1996-07-17 1998-02-03 N T T Facilities:Kk Controller for air conditioner
JPH11325635A (en) * 1998-05-20 1999-11-26 Toshiba Corp Air conditioner
JP2002031419A (en) * 2000-07-14 2002-01-31 Daikin Ind Ltd Refrigerating apparatus
JP2008224156A (en) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp Heat pump type water heater
JP2008286464A (en) * 2007-05-17 2008-11-27 Fuji Koki Corp Valve control device
JP2012002426A (en) * 2010-06-16 2012-01-05 Denso Corp Heat pump cycle
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner
WO2018122943A1 (en) * 2016-12-27 2018-07-05 三菱電機株式会社 Air conditioner
CN110966709A (en) * 2018-09-29 2020-04-07 青岛海尔空调器有限总公司 Method and device for determining initial opening degree of electronic expansion valve
WO2022234860A1 (en) * 2021-05-07 2022-11-10 ダイキン工業株式会社 Air-conditioning device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533351A (en) * 1992-11-20 1996-07-09 Daikin Industries, Ltd. Air conditioner
JPH08100944A (en) * 1994-09-30 1996-04-16 Daikin Ind Ltd Operation controller for air conditioner
JPH1030835A (en) * 1996-07-17 1998-02-03 N T T Facilities:Kk Controller for air conditioner
JPH11325635A (en) * 1998-05-20 1999-11-26 Toshiba Corp Air conditioner
JP2002031419A (en) * 2000-07-14 2002-01-31 Daikin Ind Ltd Refrigerating apparatus
JP2008224156A (en) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp Heat pump type water heater
JP2008286464A (en) * 2007-05-17 2008-11-27 Fuji Koki Corp Valve control device
JP2012002426A (en) * 2010-06-16 2012-01-05 Denso Corp Heat pump cycle
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner
WO2018122943A1 (en) * 2016-12-27 2018-07-05 三菱電機株式会社 Air conditioner
JPWO2018122943A1 (en) * 2016-12-27 2019-07-11 三菱電機株式会社 Air conditioner
CN110966709A (en) * 2018-09-29 2020-04-07 青岛海尔空调器有限总公司 Method and device for determining initial opening degree of electronic expansion valve
WO2022234860A1 (en) * 2021-05-07 2022-11-10 ダイキン工業株式会社 Air-conditioning device
JP2022172976A (en) * 2021-05-07 2022-11-17 ダイキン工業株式会社 Air-conditioner

Also Published As

Publication number Publication date
JP2500522B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
EP1826513B1 (en) Refrigerating air conditioner
RU2672995C1 (en) System and method of autonomous and uninterrupted defrosting
JPH07120121A (en) Drive controller for air conditioner
JPH04251158A (en) Operation control device for refrigerating device
JP2500519B2 (en) Operation control device for air conditioner
JP3785893B2 (en) Air conditioner
JP4269476B2 (en) Refrigeration equipment
JP3993540B2 (en) Refrigeration equipment
JP3290251B2 (en) Air conditioner
JP2551238B2 (en) Operation control device for air conditioner
JP2001272144A (en) Air conditioner
JP2555779B2 (en) Operation control device for air conditioner
JP3341486B2 (en) Operation control device for air conditioner
JP2522116B2 (en) Operation control device for air conditioner
JPH0634224A (en) Room heater/cooler
JPH0490453A (en) Freezer operation control device
JP2927230B2 (en) Binary refrigeration equipment
JP3063746B2 (en) Refrigeration equipment
JPH10132406A (en) Refrigerating system
JPH0526543A (en) Refrigerating plant
JP2001280716A (en) Air conditioner
JP2503784B2 (en) Operation control device for air conditioner
JP2687727B2 (en) Compressor protection device for refrigeration equipment
JP2503743B2 (en) Refrigeration system operation controller
JP2503785B2 (en) Operation control device for air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees