WO2018122943A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2018122943A1
WO2018122943A1 PCT/JP2016/088831 JP2016088831W WO2018122943A1 WO 2018122943 A1 WO2018122943 A1 WO 2018122943A1 JP 2016088831 W JP2016088831 W JP 2016088831W WO 2018122943 A1 WO2018122943 A1 WO 2018122943A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
opening
indoor
heat exchanger
expansion device
Prior art date
Application number
PCT/JP2016/088831
Other languages
French (fr)
Japanese (ja)
Inventor
要平 馬場
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018558549A priority Critical patent/JP6785880B2/en
Priority to PCT/JP2016/088831 priority patent/WO2018122943A1/en
Publication of WO2018122943A1 publication Critical patent/WO2018122943A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the present invention relates to an air conditioner that suppresses sound generated by a check valve.
  • conditioned air is generated by circulating a refrigerant that conveys heat to a pipe provided between an outdoor unit and an indoor unit.
  • a relay unit that distributes the refrigerant to each indoor unit is installed between the outdoor unit and the indoor unit.
  • a check valve is provided in parallel in the repeater, and the flow of the refrigerant during cooling operation and heating operation is controlled by the check valve.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that can suppress sound generated by a check valve.
  • An air conditioner includes a compressor, a flow path switching device, an outdoor unit having an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger and an indoor expansion device, the outdoor unit, and the A relay that is provided between the indoor unit and controls the flow of the refrigerant flowing into the indoor unit according to the operating state of the indoor unit, and each of the indoor units selects a cooling operation or a heating operation.
  • An air conditioner capable of performing simultaneous cooling and heating wherein the relay is connected to the outdoor unit via a first refrigerant pipe and a second refrigerant pipe, and the indoor heat in the indoor unit is A first branch part having an on-off valve for selectively connecting one of the refrigerant inlets and outlets of the exchanger to the second refrigerant pipe via the first refrigerant pipe or a gas-liquid separator;
  • the other refrigerant inlet / outlet of the indoor heat exchanger in the knit is the refrigerant inlet
  • the refrigerant is connected to the gas / liquid separator via the first expansion device, and the other refrigerant inlet / outlet of the indoor heat exchanger in the indoor unit is the refrigerant.
  • a second branch part having a check valve connected to the outlet side of the first throttle device when it becomes an outlet, and an initial time when the pressure difference between the front and the rear of the first throttle device becomes greater than a reference value when the compressor is started And a controller for setting the opening as the opening of the first throttle device.
  • the opening degree of the first throttle device is set to the initial opening degree at which the pressure difference before and after the first throttle device is greater than or equal to the reference value.
  • FIG. 1 is a diagram illustrating a configuration of an air-conditioning apparatus 100 according to an embodiment of the present invention.
  • an air conditioner 100 according to the present embodiment includes an outdoor unit 51, a plurality of indoor units 52a and 52b, a relay unit 53 between the outdoor unit 51 and the indoor units 52a and 52b, Is provided.
  • the outdoor unit 51 and the repeater 53 are connected by a first gas pipe 103 and a first liquid pipe 104 through which the refrigerant flows.
  • the relay 53 and the indoor unit 52a are connected by a second liquid pipe 105a and a second gas pipe 106a, and the relay 53 and the indoor unit 52b are connected by a second liquid pipe 105b and a second gas pipe 106b. Connected by.
  • the first gas pipe 103 is an example of the “first refrigerant pipe” in the present invention
  • the first liquid pipe 104 is an example of the “second refrigerant pipe” in the present invention.
  • the air conditioner 100 is, for example, the air conditioner 100 in which the indoor units 52a and 52b can independently perform a cooling operation or a heating operation.
  • the air conditioner 100 includes a cooling operation in which both of the indoor units 52a and 52b perform a cooling operation, a heating operation in which both of the indoor units 52a and 52b perform a heating operation, and one of the indoor units 52a and 52b. Performs the cooling operation, the other performs the heating operation, and the simultaneous cooling and heating operation in which the cooling operation and the heating operation are mixed can be performed.
  • the outdoor unit 51 includes a compressor 1, a flow path switching device 3, an outdoor heat exchanger 2, an accumulator 4, and a refrigerant flow control unit 54.
  • the compressor 1 draws in refrigerant, compresses it, and discharges it.
  • a first pressure sensor 31 that detects the pressure Pd is provided on the discharge side of the compressor 1, and a second pressure sensor 32 that detects the pressure Ps is provided on the suction side of the compressor 1.
  • the pressures Pd and Ps detected by the first pressure sensor 31 and the second pressure sensor 32 are sent to the outdoor controller 201.
  • the outdoor controller 201 functions as a controller that controls the entire air conditioner 100.
  • the outdoor heat exchanger 2 circulates a refrigerant inside, and performs heat exchange between the refrigerant and outdoor air.
  • the outdoor heat exchanger 2 functions as an evaporator during heating operation, and evaporates and vaporizes the refrigerant. Further, during cooling operation, it functions as a condenser and condenses and liquefies the refrigerant.
  • the flow path switching device 3 switches the flow of refrigerant such as a four-way valve, for example, and the operation content such as cooling operation or heating operation is changed by switching the flow path switching device 3.
  • the accumulator 4 stores the surplus liquid refrigerant.
  • the refrigerant flow control unit 54 allows the refrigerant flow direction in only one direction.
  • the refrigerant flow control unit 54 includes connection pipes 130, 131, 132, 133 that connect the connection portions a, b, c, and d, and check valves 7a, 7b, 7c that allow the refrigerant flow in one direction. 7d.
  • the refrigerant flow control unit 54 is a part of the components of the outdoor unit 51.
  • the connection pipe 130 connects the connection part c and the connection part a
  • the connection pipe 131 connects the connection part d and the connection part b
  • the connection pipe 132 connects the connection part c and the connection part d.
  • the connection pipe 133 connects the connection part a and the connection part b.
  • the first gas pipe 103 connected to the relay 53 and the high-pressure pipe 102 connected to the compressor 1 are connected by the connection pipe 132, and the low-pressure pipe 101 connected to the compressor 1 by the connection pipe 133, and The 1st liquid piping 104 connected with the repeater 53 is connected.
  • the check valve 7a is arranged in the connection pipe 132 and allows the refrigerant flow in the direction from the connection part c to the connection part d.
  • the check valve 7b is arranged in the connection pipe 133 and allows the refrigerant flow in the direction from the connection part a to the connection part b.
  • the check valve 7c is arranged in the connection pipe 131 and allows the refrigerant flow in the direction from the connection part d to the connection part b.
  • the check valve 7d is arranged in the connection pipe 130 and allows the refrigerant flow in the direction from the connection part c to the connection part a.
  • the indoor units 52a and 52b include indoor heat exchangers 5a and 5b and indoor expansion devices 6a and 6b. Each component of the indoor units 52a and 52b is controlled by the indoor controllers 202a and 202b.
  • the indoor heat exchangers 5a and 5b allow the refrigerant that has passed through the relay 53 to flow inside, and exchange heat between the refrigerant and air to be air-conditioned.
  • the indoor heat exchangers 5a and 5b function as a condenser during heating operation, and condense and liquefy the refrigerant.
  • the second liquid pipes 105a and 105b connected to the indoor throttle devices 6a and 6b are respectively connected to the relay trident section 55b via the relay trident section 55a and the relay second liquid pipe 113. Yes.
  • the indoor heat exchangers 5a and 5b function as an evaporator during the cooling operation, and evaporate and evaporate the refrigerant.
  • the indoor expansion devices 6a and 6b function as pressure reducing valves or expansion valves, and expand the refrigerant by reducing the pressure.
  • the indoor expansion devices 6a and 6b only need to be able to adjust the pressure of the refrigerant according to the air conditioning load.
  • flow control means such as an electronic expansion valve can be used.
  • first temperature sensors 33a and 33b and second temperature sensors 34a and 34b are arranged.
  • the first temperature sensors 33a and 33b and the second temperature sensors 34a and 34b detect the temperature of the refrigerant flowing into and out of the indoor heat exchangers 5a and 5b, and send the detected signals to the indoor controllers 202a and 202b. It is.
  • the relay 53 includes the gas-liquid separator 8, the first branching unit 20, the first throttle device 11, the second throttle device 12, the first heat exchanger 13, the second heat exchanger 14, and the second branching unit 21. And controls the flow of the refrigerant flowing into the indoor units 52a and 52b according to the operating state of the indoor units 52a and 52b. And the repeater 53 controls the flow of the refrigerant
  • Each component of the repeater 53 is controlled by the repeater controller 203, and each component includes a bypass pipe 110, a repeater first liquid pipe 111, a repeater gas pipe 112, and a repeater second liquid pipe 113. Connected by.
  • the repeater 53 is connected to the outdoor unit 51 by the first gas pipe 103 and the first liquid pipe 104.
  • the repeater 53 is connected to each of the indoor units 52a and 52b by second liquid pipes 105a and 105b and second gas pipes 106a and 106b.
  • the gas-liquid separator 8 separates the refrigerant into a liquid refrigerant and a gas refrigerant, and is connected to the first liquid pipe 104, the relay first liquid pipe 111, and the relay gas pipe 112.
  • the first liquid pipe 104 connects the outdoor unit 51 and the gas-liquid separator 8
  • the relay first liquid pipe 111 connects the gas-liquid separator 8 and the relay trifurcation 55 b
  • the relay gas pipe 112 connects the gas-liquid separator 8 and each of the first on-off valves 9a and 9b of the first branch portion 20.
  • the first branch section 20 selectively connects one of the refrigerant inlets and outlets of the indoor heat exchangers 5a and 5b in the indoor units 52a and 52b to the first liquid pipe 104 via the first gas pipe 103 or the gas-liquid separator 8.
  • the first on-off valves 9a and 9b and the second on-off valves 10a and 10b are configured.
  • the second branch portion 21 is connected to the gas-liquid separator 8 via the first expansion device 11 when the other refrigerant inlet / outlet of the indoor heat exchangers 5a, 5b in the indoor units 52a, 52b is the refrigerant inlet, First check valves 15a, 15b and second check valves connected to the outlet side of the first expansion device 11 when the other refrigerant inlet / outlet of the indoor heat exchangers 5a, 5b in the indoor units 52a, 52b is the refrigerant outlet. It consists of valves 16a and 16b.
  • Second gas pipes 106a and 106b are branched and connected to the first on-off valves 9a and 9b and the second on-off valves 10a and 10b, respectively.
  • the first on-off valves 9a and 9b are used to shut off or allow the gas refrigerant flowing into the indoor units 52a and 52b from the relay gas pipe 112 to pass or flow out from the relay 53 by opening and closing.
  • the first on-off valves 9a and 9b are opened when the indoor units 52a and 52b connected via the second gas pipes 106a and 106b are performing the heating operation.
  • the second on-off valves 10a and 10b are used to block the gas refrigerant flowing into the relay 53 from the second gas pipes 106a and 106b of the indoor units 52a and 52b or to pass the refrigerant in the direction of flowing into the relay 53. is there.
  • the second on-off valves 10a and 10b are opened when the indoor units 52a and 52b connected via the second gas pipes 106a and 106b are performing the cooling operation.
  • the first check valve 15a allows the refrigerant flow in the direction from the connection part g to the connection part f.
  • the first check valve 15b allows the refrigerant flow in the direction from the connection part g to the connection part h.
  • the second check valve 16a allows the refrigerant flow in the direction from the connection part f to the connection part e.
  • the second check valve 16b allows the refrigerant flow in the direction from the connection portion h to the connection portion e.
  • 1st heat exchanger 13 distribute
  • the first expansion device 11 depressurizes the liquid refrigerant that has passed through the first heat exchanger 13 and flows it into the second heat exchanger 14.
  • the 2nd heat exchanger 14 distribute
  • the first heat exchanger 13, the first expansion device 11, and the second heat exchanger 14 are interposed between the gas-liquid separator 8 and the relay trident portion 55 a and are connected by the relay first liquid pipe 111.
  • the bypass pipe 110 connects the relay trident section 55a and the first gas pipe 103 while passing through the second expansion device 12, the second heat exchanger 14, and the first heat exchanger 13, and the liquid refrigerant. Is recovered and returned to the outdoor unit 51.
  • a flow rate control unit capable of precise control of the flow rate by changing the opening degree, such as an electronic expansion valve, may be used.
  • 3rd pressure sensor 35 is installed between the 1st heat exchanger 13 and the 1st expansion device 11, and detects pressure P35 between them.
  • the 4th pressure sensor 36 is installed between the 1st expansion device 11 and the 2nd heat exchanger 14, and detects the pressure P36 between them.
  • the pressures P35 and P36 detected by the third pressure sensor 35 and the fourth pressure sensor 36 are sent to the repeater controller 203, respectively.
  • the air conditioner 100 can perform a cooling only operation, a heating only operation, and a cooling / heating simultaneous operation.
  • the simultaneous cooling and heating operation can be performed in two operation modes: a heating main operation when the heating load is high, and a cooling main operation when the cooling load is high. Therefore, the air conditioning apparatus 100 can be operated in four different operation modes.
  • FIG. 2 is a diagram showing a refrigerant flow in the refrigerant circuit during the cooling only operation of the air-conditioning apparatus 100 according to the embodiment of the present invention. 2 indicate the direction of the refrigerant, and the same applies to FIGS. 3 to 5 described later.
  • the operation at the time of the cooling operation in which both of the indoor units 52a and 52b perform the cooling operation will be described. During the all-cooling operation, both the indoor units 52a and 52b perform the cooling operation, the first on-off valves 9a and 9b of the relay 53 are closed, and the second on-off valves 10a and 10b are opened.
  • the refrigerant is compressed in the compressor 1, discharged as a high-temperature and high-pressure gas refrigerant, and flows into the outdoor heat exchanger 2 from the flow path switching device 3.
  • the refrigerant that has flowed into the outdoor heat exchanger 2 is condensed and liquefied by heat exchange with outdoor air in the outdoor heat exchanger 2 and flows out from the low-pressure pipe 101 to the refrigerant flow control unit 54.
  • the refrigerant that has flowed into the refrigerant flow control unit 54 passes through the check valve 7b of the connection pipe 133 without flowing into the connection pipe 130 by the check valve 7d in the refrigerant flow control unit 54, and passes through the check valve 7b from the refrigerant flow control unit 54. It flows out and flows into the repeater 53 from the outdoor unit 51.
  • the refrigerant flowing into the relay unit 53 is separated into a liquid refrigerant and a gas refrigerant in the gas-liquid separator 8.
  • all of the refrigerant is liquid refrigerant, and all of the refrigerant flows into the relay first liquid pipe 111 and therefore does not flow into the relay gas pipe 112.
  • the refrigerant flowing into the relay first liquid pipe 111 is increased in supercooling degree in the first heat exchanger 13 while being circulated through the relay first liquid pipe 111, and is reduced to an intermediate pressure in the first expansion device 11.
  • the degree of supercooling is further increased and reaches the relay trifurcation 55a.
  • the refrigerant that has reached the relay trifurcation 55a is diverted at the relay trifurcation 55a, part of it flows into the bypass pipe 110, and the rest passes through the first check valves 15a and 15b and flows out of the relay 53. .
  • the refrigerant flowing into the bypass pipe 110 is depressurized to a low pressure in the second expansion device 12, flows in the order of the second heat exchanger 14 and the first heat exchanger 13, evaporates by heat exchange, and becomes a gas refrigerant. Merges into one gas pipe 103. At this time, the refrigerant in the bypass pipe 110 increases the degree of supercooling of the refrigerant flowing through the relay first liquid pipe 111 by heat exchange.
  • the refrigerant that is diverted at the relay trifurcation 55b and flows out of the relay 53 flows through the second liquid pipes 105a and 105b and flows into the indoor units 52a and 52b, respectively.
  • the refrigerant flowing into each of the indoor units 52a and 52b is decompressed in the indoor expansion devices 6a and 6b of the indoor units 52a and 52b, and then exchanges heat with the air in the air-conditioning target space in the indoor heat exchangers 5a and 5b.
  • the air in the air-conditioned space is cooled and evaporated to gasify. Thereby, cooling of the air-conditioning target space is realized.
  • the gasified refrigerant passes through the indoor heat exchangers 5a and 5b, flows through the second gas pipes 106a and 106b, flows out from the indoor units 52a and 52b, flows into the relay 53 again, and is opened in the second state. It passes through the on-off valves 10a and 10b.
  • the refrigerant that has passed through the second on-off valves 10 a and 10 b merges with the refrigerant that has passed through the bypass pipe 110 in the first gas pipe 103, flows out of the relay unit 53, and flows into the outdoor unit 51.
  • the refrigerant flowing into the outdoor unit 51 passes through the check valve 7 a disposed in the connection pipe 132 of the refrigerant flow control unit 54 in the outdoor unit 51, and is sucked into the compressor 1 through the accumulator 4. Thereby, the refrigerant circuit is circulated by the refrigerant.
  • FIG. 3 is a diagram showing a refrigerant flow in the refrigerant circuit during the heating only operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • movement at the time of all the heating operation which performs heating operation of both indoor unit 52a, 52b is demonstrated.
  • both the indoor units 52a and 52b perform the heating operation, the first on-off valves 9a and 9b of the relay 53 are opened, and the second on-off valves 10a and 10b are closed. As shown in FIG.
  • the refrigerant is compressed in the compressor 1 and discharged as a high-temperature and high-pressure gas refrigerant, flows into the refrigerant flow control unit 54 from the flow path switching device 3, and reaches the connection portion d. .
  • the refrigerant that has reached the connection part d cannot flow through the connection pipe 132 from the connection part d by the check valve 7a, flows into the connection pipe 131, passes through the check valve 7c, and passes through the connection part b. It flows out of 51.
  • the refrigerant that has flowed out of the outdoor unit 51 flows through the first liquid pipe 104 and flows into the repeater 53.
  • the refrigerant flowing into the relay unit 53 is separated into a gas refrigerant and a liquid refrigerant in the gas-liquid separator 8.
  • all the refrigerant is a gas refrigerant, and all of the refrigerant flows into the relay gas pipe 112, and thus does not flow into the relay first liquid pipe 111.
  • the refrigerant that has flowed into the relay gas pipe 112 reaches the first on-off valves 9a and 9b, passes through the opened first on-off valves 9a and 9b, and flows out of the relay 53.
  • the refrigerant flowing out of the relay unit 53 flows into the indoor units 52a and 52b, exchanges heat with the air in the air-conditioning target space in the indoor heat exchangers 5a and 5b, and condenses while radiating heat to the air in the air-conditioning target space. Liquefaction. Thereby, the air-conditioning target space is heated.
  • the liquefied refrigerant passes through the indoor heat exchangers 5a and 5b, is reduced in pressure in the indoor expansion devices 6a and 6b, becomes an intermediate-pressure liquid refrigerant, and flows out of the indoor units 52a and 52b.
  • the refrigerant that has flowed out of the indoor units 52a and 52b flows through the second liquid pipes 105a and 105b and flows into the relay 53, and passes through the second check valves 16a and 16b and the relay trifurcation 55a from the bypass pipe 110. It merges into the 1 gas pipe 103 and flows out from the repeater 53.
  • the refrigerant that has flowed out of the relay 53 passes through the first gas pipe 103 and reaches the connection portion c of the refrigerant flow control unit 54.
  • the refrigerant that has reached the connection portion c cannot flow through the high-pressure connection pipe 132 in the connection portion c, passes through the check valve 7d of the connection pipe 130, and flows through the low-pressure pipe 101.
  • the refrigerant flowing through the low-pressure pipe 101 evaporates by heat exchange with outdoor air while passing through the outdoor heat exchanger 2 from the low-pressure pipe 101 and is sucked into the compressor 1 through the flow path switching device 3 and the accumulator 4. The Thereby, the refrigerant circuit is circulated by the refrigerant.
  • FIG. 4 is a diagram illustrating a refrigerant flow in the refrigerant circuit during the cooling main operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • the simultaneous cooling / heating operation in which the indoor unit 52a performs the heating operation and the indoor unit 52b performs the cooling operation will be described.
  • the first on-off valve 9a and the second on-off valve 10b of the repeater 53 are open, and the first on-off valve 9b and the second on-off valve 10a are closed.
  • the flow of the refrigerant when the cooling main operation is performed in which the cooling load is higher than the heating load will be described.
  • the refrigerant is compressed by the compressor 1, condensed and liquefied by exchanging heat in the outdoor heat exchanger 2, and flows out as a gas-liquid two-phase refrigerant.
  • the amount of refrigerant condensed and liquefied in the outdoor heat exchanger 2, that is, the ratio of gas refrigerant and liquid refrigerant, is determined according to the ratio of cooling load and heating load.
  • the refrigerant that has flowed out of the outdoor heat exchanger 2 flows through the low-pressure pipe 101, passes through the check valve 7 b of the refrigerant flow control unit 54, flows out of the outdoor unit 51, flows through the first liquid pipe 104, and is relayed 53.
  • the refrigerant that has flowed into the relay 53 is separated into liquid refrigerant and gas refrigerant in the gas-liquid separator 8, of which liquid refrigerant flows into the relay first liquid pipe 111, and gas refrigerant flows into the relay gas pipe 112. To do.
  • the liquid refrigerant flowing into the relay first liquid pipe 111 passes through the first heat exchanger 13, the first expansion device 11, and the second heat exchanger 14, so that the degree of supercooling is increased and the relay trident section Reach 55a.
  • a part of the refrigerant that has reached the relay trifurcation 55a flows through the bypass pipe 110, and the rest flows through the first check valves 15a and 15b so as to flow out of the relay 53.
  • the refrigerant flowing into the bypass pipe 110 from the relay trifurcation 55a absorbs heat by heat exchange and evaporates while passing through the second expansion device 12, the second heat exchanger 14, and the first heat exchanger 13. It vaporizes and reaches the first gas pipe 103.
  • the gas refrigerant that has flowed into the relay gas pipe 112 reaches the first on-off valves 9a and 9b, passes through the first on-off valve 9a in the open state, flows out of the relay 53, and flows into the second gas pipe 106a. Flows into the indoor unit 52a.
  • the refrigerant passes through the indoor heat exchanger 5a of the indoor unit 52a and condenses and liquefies while dissipating heat to the air in the air-conditioning target space by heat exchange. Thereby, the air-conditioning target space is heated.
  • the refrigerant that has passed through the indoor heat exchanger 5a is reduced in pressure by the indoor expansion device 6a to become an intermediate-pressure liquid refrigerant, flows out of the indoor unit 52a, passes through the second liquid pipe 105a, and reaches the relay trifurcation 55b. To do.
  • the refrigerant flowing through the second liquid pipe 105a connected to the indoor unit 52a and the refrigerant passing through the first expansion device 11 merge and flow through the second heat exchanger 14.
  • a part of the refrigerant that has circulated through the second heat exchanger 14 circulates through the bypass pipe 110, and the other part of the refrigerant passes through the first check valve 15 b and flows out from the relay 53.
  • the refrigerant that has flowed out of the relay unit 53 is depressurized in the indoor expansion device 6b in the indoor unit 52b from the second liquid pipe 105b, and flows into the indoor heat exchanger 5b.
  • the refrigerant flowing into the indoor heat exchanger 5b evaporates and gasifies by heat exchange with the air in the air-conditioning target space in the indoor heat exchanger 5b, and flows out as a gas refrigerant. Thereby, the air-conditioning target space is cooled.
  • the refrigerant that has passed through the indoor heat exchanger 5b passes through the opened second on-off valve 10b.
  • the refrigerant that has passed through the second on-off valve 10b merges with the refrigerant that has passed through the bypass pipe 110 that also reaches the first gas pipe 103, flows out of the repeater 53 through the first gas pipe 103, and the outdoor unit 51. Flow into.
  • the refrigerant flowing into the outdoor unit 51 passes through the check valve 7a provided in the connection pipe 132 in the refrigerant flow control unit 54 of the outdoor unit 51, and passes from the flow path switching device 3 to the compressor 1 via the accumulator 4. Inhaled. Thereby, the refrigerant circuit is circulated by the refrigerant.
  • FIG. 5 is a diagram showing a refrigerant flow in the refrigerant circuit during the heating main operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • the refrigerant is compressed and discharged by the compressor 1, passes through the flow path switching device 3, and reaches the connection portion d of the refrigerant flow control unit 54.
  • the refrigerant that has reached the connection portion d passes through the check valve 7 c provided in the connection pipe 131, flows out of the outdoor unit 51 through the first liquid pipe 104, and flows into the repeater 53.
  • the refrigerant that has flowed into the relay 53 flows from the gas-liquid separator 8 into the relay gas pipe 112. At this time, since the heating main operation is performed, there is no liquid refrigerant separated in the gas-liquid separator 8, and no refrigerant flows into the relay first liquid pipe 111.
  • the refrigerant that has flowed into the relay gas pipe 112 reaches the first on-off valves 9a and 9b, passes through the opened first on-off valve 9a, flows out of the relay 53, and passes through the second gas pipe 106a. It flows into the unit 52a.
  • the refrigerant flowing into the indoor unit 52a passes through the indoor heat exchanger 5a of the indoor unit 52a, condenses and liquefies while dissipating heat to the air in the air-conditioning target space by heat exchange. Thereby, the air-conditioning target space is heated.
  • the refrigerant that has passed through the indoor heat exchanger 5a is depressurized by the indoor expansion device 6a to be an intermediate-pressure liquid refrigerant, flows into the second liquid pipe 105a from the indoor unit 52a, and flows into the relay 53.
  • the refrigerant flowing into the relay 53 passes through the second check valve 16a, the relay second liquid pipe 113, and the second heat exchanger 14, and reaches the relay trifurcation 55a.
  • a part of the refrigerant that has reached the relay trifurcation 55 a flows through the bypass pipe 110, and the remaining refrigerant flows through the first check valve 15 b and flows out from the relay 53.
  • the refrigerant that has flowed out of the relay unit 53 is depressurized in the indoor expansion device 6b in the indoor unit 52b from the second liquid pipe 105b, and flows into the indoor heat exchanger 5b.
  • the refrigerant flowing into the indoor heat exchanger 5b evaporates and gasifies by heat exchange with the air in the air-conditioning target space in the indoor heat exchanger 5b, and flows out as a gas refrigerant. Thereby, the air-conditioning target space is cooled.
  • the refrigerant that has passed through the indoor heat exchanger 5b passes through the opened second on-off valve 10b.
  • the refrigerant that has passed through the second on-off valve 10b merges with the refrigerant that has passed through the bypass pipe 110 that also reaches the first gas pipe 103, flows out of the repeater 53 through the first gas pipe 103, and the outdoor unit 51. Flow into.
  • the refrigerant flow control unit 54 of the outdoor unit 51 the refrigerant that has flowed into the outdoor unit 51 passes through the check valve 7 d disposed in the connection pipe 130 and flows into the outdoor heat exchanger 2 from the low-pressure pipe 101.
  • the refrigerant flowing into the outdoor heat exchanger 2 is evaporated and gasified by heat exchange in the outdoor heat exchanger 2, and is sucked into the compressor 1 through the flow path switching device 3 and the accumulator 4. Thereby, the refrigerant circuit is circulated by the refrigerant.
  • the first throttle device 11 of the relay 53 is opened in order to improve the rise by flowing hot gas into the relay 53 when the compressor 1 is started. Further, during the simultaneous cooling and heating operation, the first throttle is set so that the pressure difference ⁇ P between the pressure P35 and the pressure P36, which is the pressure difference between the first throttle device 11 in the repeater 53, becomes a preset value. The opening degree LEV11 of the device 11 is adjusted.
  • the pressure difference ⁇ P before and after the first expansion device 11 decreases.
  • the pressures of the connection parts f and h are close to the pressure of the third pressure sensor 35, and the connection parts e and g are close to the pressure of the fourth pressure sensor 36. Therefore, when the opening degree LEV11 of the first expansion device 11 increases, the pressure difference ⁇ Pa before and after the first check valves 15a and 15b and the second check valves 16a and 16b decreases.
  • first check valves 15a and 15b and the second check valves 16a and 16b are lifted when the pressure difference ⁇ Pa between them becomes equal to or greater than the reference value B, and the refrigerant flows, and is less than the reference value B.
  • the valve body is lowered by its own weight.
  • the reference value B a guaranteed value by the manufacturer or a specific value obtained in advance by a test is used.
  • the pressure difference ⁇ Pa approaches the reference value B, the valve body is repeatedly lifted or lowered, and the sound of the valve body colliding with the valve seat is continuously generated. Therefore, in the present embodiment, vibration noise of the first check valves 15a and 15b and the second check valves 16a and 16b is suppressed.
  • FIG. 6 is a functional block diagram of the air conditioning apparatus 100 according to the embodiment of the present invention.
  • the outdoor controller 201 is electrically connected to each of the indoor controllers 202 a and 202 b and the repeater controller 203.
  • the outdoor controller 201 has a function as a main controller that controls the air conditioner 100.
  • the outdoor controller 201 has a timer (not shown) for measuring time.
  • the outdoor controller 201 determines an instruction for each of the indoor controllers 202a and 202b and the repeater controller 203 based on information notified from the indoor controllers 202a and 202b and the repeater controller 203. And notify.
  • the outdoor controller 201 acquires the pressures Pd and Ps detected by the first pressure sensor 31 and the second pressure sensor 32 provided in the outdoor unit 51, and the operating frequency Fa of the compressor 1 and the capacity of the outdoor heat exchanger 2. Control AKa.
  • the indoor controllers 202a and 202b detect the temperatures T33a and T33b and T34a and T34b with the first temperature sensors 33a and 33b and the second temperature sensors 34a and 34b, and notify the outdoor controller 201 of them. Further, based on the temperatures T33a, T33b and T34a, T34b, the respective openings LEV6a, LEV6b of the indoor expansion devices 6a, 6b are calculated and notified to the indoor expansion devices 6a, 6b.
  • the repeater controller 203 In response to an instruction from the outdoor controller 201, the repeater controller 203 notifies the first throttle device 11 and the second throttle device 12 of the openings LEV11 and LEV12, and the first on-off valves 9a, 9b and second The on / off valves 10a and 10b are instructed to open and close. Further, P35 and P36 detected by the third pressure sensor 35 and the fourth pressure sensor 36 are acquired, the opening degree LEV11 and LEV12 are instructed to the first expansion device 11 and the second expansion device 12, and the outdoor controller 201 is obtained. To notify. *
  • FIG. 7 is a first flowchart showing a process for determining the opening degree LEV6a of the indoor expansion device 6a of the indoor unit 52a according to the embodiment of the present invention.
  • FIG. 7 shows processing when the indoor unit 52a is in the cooling operation.
  • the opening degree LEV6a of the indoor expansion device 6a is controlled by a controller that controls the entire air conditioner 100, and is controlled by the outdoor controller 201 in this example.
  • the outdoor controller 201 acquires the opening degree LEV6 when the opening degree LEV6a of the indoor expansion device 6a starts and measures the timer t. Start.
  • step S1A the outdoor controller 201 determines whether or not the reference time tm0 has elapsed. If the outdoor controller 201 determines that the reference time tm0 has elapsed (Yes in step S1A), the outdoor controller 201 proceeds to step S2A and sets the timer t. Reset to zero and move to step S3A.
  • step S3A the outdoor controller 201 acquires the temperature T33a and the temperature T34a detected by the first temperature sensor 33a and the second temperature sensor 34a.
  • the temperature T33a and the temperature T34a represent the refrigerant saturation temperature and the refrigerant temperature, respectively.
  • step S4A the indoor controller 202a calculates a temperature difference SH between the temperature T34a and the temperature T33a.
  • step S5A the outdoor controller 201 calculates a difference ⁇ SH between the temperature difference SH and a preset target value temperature difference SHm.
  • step S6A the indoor controller 202a calculates a correction value ⁇ LEV6a of the opening degree LEV6a of the indoor expansion device 6a.
  • the correction value ⁇ LEV6a may be obtained by, for example, calculating the coefficient k1 in advance by a test or the like and multiplying the coefficient k1 and the temperature difference ⁇ SH.
  • step S7A the outdoor controller 201 sets the opening degree obtained by adding the correction value ⁇ LEV6a to the current opening degree LEV6a of the indoor expansion device 6a as the new opening degree LEV6a of the indoor expansion device 6a.
  • step S8A the outdoor controller 201 determines whether or not the reference time tm1 has elapsed. If it is determined that the reference time tm1 has elapsed (Yes in step S8A), the outdoor controller 201 ends the process. For example, the indoor throttling device 6a may be fully closed.
  • step S8A when the outdoor controller 201 determines that the reference time tm1 has not elapsed (No in step S8A), the process returns to step S1A, and the processing from step S1A to step S8A is repeated for each reference time.
  • FIG. 8 is a second flowchart showing a process for determining the opening degree LEV6a of the indoor expansion device 6a of the indoor unit 52a according to the embodiment of the present invention.
  • FIG. 8 has shown the process at the time of the indoor unit 52a heating operation.
  • the opening degree LEV6a of the indoor expansion device 6a is controlled by a controller that controls the entire air conditioner 100, and is controlled by the outdoor controller 201 in this example.
  • the outdoor controller 201 acquires the opening degree LEV6 at the start of the opening degree LEV6a of the indoor expansion device 6a and measures the timer t. Start.
  • step S1B the outdoor controller 201 determines whether or not the reference time tm0 has elapsed. If it is determined that the reference time tm0 has elapsed (Yes in step S1B), the outdoor controller 201 proceeds to step S2B and sets the timer t. After resetting to zero, the process proceeds to step S3B.
  • step S3B the outdoor controller 201 acquires the temperature T33a and the pressure P31 detected by the first temperature sensor 33a and the first pressure sensor 31 (step S3B1), and calculates the saturation temperature Tc31 from the pressure P31 (step S3B2). ).
  • step S4B the indoor controller 202a calculates a temperature difference SC between the temperature T33a and the saturation temperature Tc31.
  • step S5B the outdoor controller 201 calculates a difference ⁇ SC between the temperature difference SC and a preset target value temperature difference SCm.
  • step S6B the indoor controller 202a calculates a correction value ⁇ LEV6a of the opening degree LEV6a of the indoor expansion device 6a.
  • the correction value ⁇ LEV6a may be obtained by, for example, calculating the coefficient k2 in advance by a test or the like and multiplying the coefficient k2 and the temperature difference ⁇ SC.
  • step S7B the outdoor controller 201 sets the opening degree obtained by adding the correction value ⁇ LEV6a to the current opening degree LEV6a of the indoor expansion device 6a as the new opening degree LEV6a of the indoor expansion device 6a.
  • step S8B the outdoor controller 201 determines whether or not the reference time tm1 has elapsed. If it is determined that the reference time tm1 has elapsed (Yes in step S8B), the outdoor controller 201 ends the process. For example, the indoor throttling device 6a may be fully closed.
  • step S8B determines that the reference time tm1 has not elapsed (No in step S8B)
  • the process returns to step S1B, and the processing from step S1B to step S8B is repeated for each reference time.
  • the processing for determining the opening degree LEV6a of the indoor expansion device 6a of the indoor unit 52a has been described above. However, the determination of the opening degree LEV6b of the indoor expansion device 6b of the indoor unit 52b is performed by the same processing.
  • FIG. 9 is a flowchart of control for suppressing vibration noise of the first check valves 15a and 15b and the second check valves 16a and 16b performed by the outdoor controller 201 and the repeater controller 203 according to the embodiment of the present invention. It is.
  • FIG. 9 shows a process immediately after the compressor 1 is started during the all-heating operation or the simultaneous cooling / heating operation of the air-conditioning apparatus 100.
  • the opening degree LEV6a and LEV6b of the indoor expansion devices 6a and 6b are determined by the above-described processing.
  • the outdoor controller 201 starts measuring the timer t.
  • step S12 the repeater controller 203 sets the opening degree LEV11 of the first throttle device 11 to a preset initial opening degree LEV11ini.
  • the initial opening degree LEV11ini is an opening degree at which the pressure difference ⁇ P between the pressures P35 and P36 is equal to or greater than the reference value A, and is obtained in advance by a test or the like.
  • step S13 the outdoor controller 201 determines whether or not the reference time tm2 has elapsed. If it is determined that the reference time tm2 has elapsed (Yes in step S13), the outdoor controller 201 resets the timer t in step S14, The process proceeds to step S15.
  • step S15 the repeater controller 203 determines whether or not the pressure difference ⁇ P between the pressure P35 detected by the third pressure sensor 35 and the pressure P36 detected by the fourth pressure sensor 36 is less than the reference value A. to decide.
  • the process proceeds to step S16.
  • the repeater controller 203 determines that the pressure difference ⁇ P is greater than or equal to the reference value A (No in step S15)
  • the process proceeds to step S25.
  • step S ⁇ b> 16 the repeater controller 203 obtains an opening obtained by adding a preset first correction value ⁇ LEV11 to the current opening LEV ⁇ b> 11 of the first expansion device 11, and the new opening of the first expansion device 11. It sets as LEV11 and transfers to step S17.
  • the first correction value ⁇ LEV11 is a negative value, and is a value in the direction in which the first diaphragm device 11 is closed.
  • the pressure difference (DELTA) P before and behind the 1st expansion device 11 increases by reducing the opening degree of the 1st expansion device 11.
  • the first correction value ⁇ LEV11 is determined in advance by a test or the like.
  • step S17 the repeater controller 203 determines whether or not the pressure difference ⁇ P between the pressure P35 detected by the third pressure sensor 35 and the pressure P36 detected by the fourth pressure sensor 36 is less than the reference value A. to decide.
  • the process proceeds to step S18.
  • the repeater controller 203 determines that the pressure difference ⁇ P is greater than or equal to the reference value A (No in step S17)
  • the process proceeds to step S25.
  • step S18 the repeater controller 203 determines whether or not the current opening degree LEV11 of the first throttle device 11 is the minimum opening degree LEV11min. If the repeater controller 203 determines that the current opening degree LEV11 of the first throttle device 11 is the minimum opening degree LEV11min (Yes in step S18), the process proceeds to step S19. On the other hand, if the repeater controller 203 determines that the current opening degree LEV11 of the first throttle device 11 is not the minimum opening degree LEV11min (No in step S18), the process returns to step S16.
  • step S19 the repeater controller 203 sets the opening obtained by adding the preset second correction value ⁇ LEV12 to the current opening LEV12 of the second expansion device 12 as a new opening LEV12 of the second expansion device 12.
  • the second correction value ⁇ LEV12 is a positive value and is a value in the direction in which the second diaphragm device 12 opens. Then, by increasing the opening degree of the second expansion device 12, the pressure P36 of the fourth pressure sensor 36 decreases, and the pressure difference ⁇ P between P35 and P36 increases.
  • the value of the second correction value ⁇ LEV12 is determined in advance by a test or the like.
  • step S20 the repeater controller 203 determines whether or not the pressure difference ⁇ P between the pressure P35 detected by the third pressure sensor 35 and the pressure P36 detected by the fourth pressure sensor 36 is less than the reference value A. to decide.
  • the process proceeds to step S21.
  • the repeater controller 203 determines that the pressure difference ⁇ P is greater than or equal to the reference value A (No in step S20)
  • the process proceeds to step S25.
  • step S21 the repeater controller 203 determines whether or not the current opening degree LEV12 of the second expansion device 12 is the maximum opening degree LEV12max.
  • the process proceeds to step S22.
  • the repeater controller 203 determines that the current opening degree LEV12 of the second expansion device 12 is not the maximum opening degree LEV12max (No in step S21)
  • the process returns to step S19.
  • step S22 the outdoor controller 201 sets an operation frequency obtained by adding a preset third correction value ⁇ Fa to the current operation frequency Fa of the compressor 1 as an operation frequency Fa of the new compressor 1, Control goes to step S23.
  • the operating frequency of the compressor 1 increases, the high-pressure side pressure increases and the low-pressure side pressure decreases. That is, since P35 increases and P36 decreases, the pressure difference ⁇ P increases.
  • the value of the third correction value ⁇ Fa is determined in advance by a test or the like.
  • step S23 the relay controller 203 determines whether or not the pressure difference ⁇ P between the pressure P35 detected by the third pressure sensor 35 and the pressure P36 detected by the fourth pressure sensor 36 is less than the reference value A. to decide.
  • the process proceeds to step S24.
  • the repeater controller 203 determines that the pressure difference ⁇ P is greater than or equal to the reference value A (No in step S23)
  • the process proceeds to step S25.
  • step S24 the outdoor controller 201 determines whether or not the current operation frequency Fa of the compressor 1 is the maximum operation frequency Famax. If the outdoor controller 201 determines that the current operating frequency Fa of the compressor 1 is the maximum operating frequency Famax (Yes in step S24), the process proceeds to step S25. On the other hand, if the outdoor controller 201 determines that the current operating frequency Fa of the compressor 1 is not the maximum operating frequency Famax (No in step S24), the process returns to step S22.
  • step S25 the outdoor controller 201 determines whether or not the reference time tm3 has elapsed. If it is determined that the reference time tm3 has elapsed (Yes in step S25), the outdoor controller 201 ends the process. For example, the operation frequency Fa of the compressor 1, the opening degree LEV11 of the first expansion device 11, and the opening degree LEV12 of the second expansion device 12 may be returned to end the processing. On the other hand, when the outdoor controller 201 determines that the reference time tm3 has not elapsed (No in step S25), the process returns to step S13, and the processes from step S13 to step S25 are repeated at regular intervals. In step S25, the outdoor controller 201 may determine whether or not the pressure difference ⁇ P between the pressures P35 and P36 is less than a preset value.
  • the opening degree LEV11 of the first expansion device 11 of the relay 53 is started at the preset initial opening degree LEV11ini.
  • the first check valves 15a and 15b and the second check valves 16a and 16b can be operated with a pressure difference before and after. For this reason, the valve elements of the first check valves 15a and 15b and the second check valves 16a and 16b vibrate so that the sound that the valve elements collide with the valve seat is continuously generated is started. Therefore, it is possible to drive without making an unpleasant vibration sound.
  • the opening degree LEV11 of the first throttle device 11, the opening degree LEV12 of the second throttle device 12, and the operating frequency Fa of the compressor 1 are maintained such that the pressure difference ⁇ P between P35 and P36 is greater than or equal to the reference value A. Adjust so that it leans. By doing so, the valve elements of the first check valves 15a and 15b and the second check valves 16a and 16b vibrate to suppress the continuous generation of the sound of the valve elements colliding with the valve seat. Therefore, it is possible to drive without making an unpleasant vibration sound.
  • step S ⁇ b> 13 the control is started from step S ⁇ b> 13 to suppress the generation of vibration noise. it can.
  • the overall operation of the air conditioner 100 is controlled by the outdoor controller 201 of the outdoor unit 51.
  • the controller for controlling the operation of the air conditioner 100 includes three types of the outdoor controller 201, the indoor controllers 202a and 202b, and the repeater controller 203. It is not limited and may be less than three types and may be more than three types.
  • the outdoor controller 201 and the repeater controller 203 are examples of the “controller” in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

An air conditioner capable of simultaneous warming and cooling operation, with which it is possible to selectively perform air-cooling operation or air-warming operation with each indoor unit, wherein a relay device is provided with: a first branch unit connected to an outdoor unit via first refrigerant piping and second refrigerant piping, the first branch unit having an opening and closing valve for selectively connecting one refrigerant inlet/outlet of an indoor heat exchanger of the indoor unit to the second refrigerant piping via the first refrigerant piping or a gas/liquid separator; a second branch unit connected to the gas/liquid separator via a first diaphragm device when the other refrigerant inlet/outlet of the indoor heat exchanger of the indoor unit is a refrigerant inlet, the second branch unit having a check valve connected to the outlet side of the first diaphragm device when the other refrigerant inlet/outlet of the indoor heat exchanger of the indoor unit is a refrigerant outlet; and a controller for setting, as the degree of opening of the first diaphragm device, an initial degree of opening at which the pressure difference ahead of and behind the first diaphragm device is at or above a reference value during startup of a compressor.

Description

空気調和装置Air conditioner
 本発明は、逆止弁で発生する音を抑制する空気調和装置に関するものである。 The present invention relates to an air conditioner that suppresses sound generated by a check valve.
 一般的に、空気調和装置では、室外側ユニットと室内側ユニットとの間に設けられた配管に熱を搬送する冷媒が流通することで、調和空気が生成されるようになっている。また、冷房運転及び暖房運転が混在した冷暖同時運転を行うことができる空気調和装置では、室外側ユニットと室内側ユニットとの間に冷媒を各室内側ユニットへ分配する中継ユニットが設置されている(例えば、特許文献1参照)。 Generally, in an air conditioner, conditioned air is generated by circulating a refrigerant that conveys heat to a pipe provided between an outdoor unit and an indoor unit. Further, in the air conditioner that can perform the cooling and heating simultaneous operation in which the cooling operation and the heating operation are mixed, a relay unit that distributes the refrigerant to each indoor unit is installed between the outdoor unit and the indoor unit. (For example, refer to Patent Document 1).
 特許文献1の空気調和装置では、中継器内に逆止弁が並列に設けられており、その逆止弁によって冷房運転時及び暖房運転時の冷媒の流れが制御されている。 In the air conditioner of Patent Document 1, a check valve is provided in parallel in the repeater, and the flow of the refrigerant during cooling operation and heating operation is controlled by the check valve.
特許第4785508号公報Japanese Patent No. 4785508
 特許文献1の空気調和装置では、圧縮機の起動時など逆止弁の前後の圧力差が小さい時に、逆止弁の弁体が振動して、弁体が弁座に衝突する音が連続して発生してしまうという課題があった。 In the air conditioner of Patent Document 1, when the pressure difference before and after the check valve is small, such as when the compressor is started, the valve body of the check valve vibrates and the sound of the valve body colliding with the valve seat continues. There was a problem that it would occur.
 本発明は、以上のような課題を解決するためになされたもので、逆止弁で発生する音を抑制することができる空気調和装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an air conditioner that can suppress sound generated by a check valve.
 本発明に係る空気調和装置は、圧縮機、流路切替装置、及び、室外熱交換器を有する室外ユニットと、室内熱交換器及び室内絞り装置を有する複数の室内ユニットと、前記室外ユニットと前記室内ユニットとの間に設けられ、前記室内ユニットの運転状態に応じて前記室内ユニットに流入させる冷媒の流れを制御する中継器と、を備え、前記室内ユニットのそれぞれが冷房運転又は暖房運転を選択的に行うことができる冷暖同時運転が可能な空気調和装置であって、前記中継器は、前記室外ユニットに第1冷媒配管及び第2冷媒配管を介して接続され、前記室内ユニットにおける前記室内熱交換器の冷媒出入口の一方を前記第1冷媒配管又は気液分離器を介して前記第2冷媒配管に選択的に接続する開閉弁を有する第1分岐部と、前記室内ユニットにおける前記室内熱交換器の冷媒出入口の他方が冷媒入口となるとき第1絞り装置を介して前記気液分離器に接続し、前記室内ユニットにおける前記室内熱交換器の冷媒出入口の他方が冷媒出口となるとき前記第1絞り装置の出口側に接続する逆止弁を有する第2分岐部と、前記圧縮機の起動時に、前記第1絞り装置の前後の圧力差が基準値以上となる初期開度を、前記第1絞り装置の開度として設定する制御器と、を備えたものである。 An air conditioner according to the present invention includes a compressor, a flow path switching device, an outdoor unit having an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger and an indoor expansion device, the outdoor unit, and the A relay that is provided between the indoor unit and controls the flow of the refrigerant flowing into the indoor unit according to the operating state of the indoor unit, and each of the indoor units selects a cooling operation or a heating operation. An air conditioner capable of performing simultaneous cooling and heating, wherein the relay is connected to the outdoor unit via a first refrigerant pipe and a second refrigerant pipe, and the indoor heat in the indoor unit is A first branch part having an on-off valve for selectively connecting one of the refrigerant inlets and outlets of the exchanger to the second refrigerant pipe via the first refrigerant pipe or a gas-liquid separator; When the other refrigerant inlet / outlet of the indoor heat exchanger in the knit is the refrigerant inlet, the refrigerant is connected to the gas / liquid separator via the first expansion device, and the other refrigerant inlet / outlet of the indoor heat exchanger in the indoor unit is the refrigerant. A second branch part having a check valve connected to the outlet side of the first throttle device when it becomes an outlet, and an initial time when the pressure difference between the front and the rear of the first throttle device becomes greater than a reference value when the compressor is started And a controller for setting the opening as the opening of the first throttle device.
 本発明に係る空気調和装置によれば、圧縮機の起動時に、第1絞り装置の開度に、第1絞り装置の前後の圧力差が基準値以上となる初期開度を設定するため、逆止弁の前後の圧力差を確保することで、逆止弁の弁体の振動を抑制でき、逆止弁で発生する音を抑制することができる。 According to the air conditioner of the present invention, when the compressor is started, the opening degree of the first throttle device is set to the initial opening degree at which the pressure difference before and after the first throttle device is greater than or equal to the reference value. By ensuring the pressure difference before and after the stop valve, the vibration of the valve body of the check valve can be suppressed, and the sound generated by the check valve can be suppressed.
本発明の実施の形態に係る空気調和装置の構成を表す図である。It is a figure showing the structure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の全冷房運転時の冷媒回路における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the refrigerant circuit at the time of the cooling only operation of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の全暖房運転時の冷媒回路における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the refrigerant circuit at the time of the heating only operation of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の冷房主体運転時の冷媒回路における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the refrigerant circuit at the time of the cooling main operation | movement of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の暖房主体運転時の冷媒回路における冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the refrigerant circuit at the time of heating main operation | movement of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の機能ブロック図である。It is a functional block diagram of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る室内ユニットの室内絞り装置の開度を決定する処理を示す第1のフローチャートである。It is a 1st flowchart which shows the process which determines the opening degree of the indoor expansion device of the indoor unit which concerns on embodiment of this invention. 本発明の実施の形態に係る室内ユニットの室内絞り装置の開度を決定する処理を示す第2のフローチャートである。It is a 2nd flowchart which shows the process which determines the opening degree of the indoor expansion device of the indoor unit which concerns on embodiment of this invention. 本発明の実施の形態に係る室外制御器及び中継器制御器が行う第1逆止弁及び第2逆止弁の振動音を抑制する制御のフローチャートである。It is a flowchart of control which suppresses the vibration sound of the 1st check valve and the 2nd check valve which the outdoor controller and repeater controller which concern on embodiment of this invention perform.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.
 実施の形態.
 図1は、本発明の実施の形態に係る空気調和装置100の構成を表す図である。
 図1に示すように、本実施の形態に係る空気調和装置100は、室外ユニット51と、複数の室内ユニット52a、52bと、室外ユニット51及び室内ユニット52a、52bの間の中継器53と、を備える。室外ユニット51と中継器53とは、冷媒が流通する第1ガス配管103及び第1液配管104により接続されている。また、中継器53と室内ユニット52aとは、第2液配管105a及び第2ガス配管106aにより接続されており、中継器53と室内ユニット52bとは、第2液配管105b及び第2ガス配管106bにより接続されている。
Embodiment.
FIG. 1 is a diagram illustrating a configuration of an air-conditioning apparatus 100 according to an embodiment of the present invention.
As shown in FIG. 1, an air conditioner 100 according to the present embodiment includes an outdoor unit 51, a plurality of indoor units 52a and 52b, a relay unit 53 between the outdoor unit 51 and the indoor units 52a and 52b, Is provided. The outdoor unit 51 and the repeater 53 are connected by a first gas pipe 103 and a first liquid pipe 104 through which the refrigerant flows. The relay 53 and the indoor unit 52a are connected by a second liquid pipe 105a and a second gas pipe 106a, and the relay 53 and the indoor unit 52b are connected by a second liquid pipe 105b and a second gas pipe 106b. Connected by.
 なお、第1ガス配管103は、本発明の「第1冷媒配管」の一例であり、第1液配管104は、本発明の「第2冷媒配管」の一例である。 The first gas pipe 103 is an example of the “first refrigerant pipe” in the present invention, and the first liquid pipe 104 is an example of the “second refrigerant pipe” in the present invention.
 空気調和装置100は、例えば、それぞれの室内ユニット52a、52bが独立して冷房運転又は暖房運転を行うことが可能な空気調和装置100である。空気調和装置100は、室内ユニット52a、52bのうちどちらも冷房運転を行う全冷房運転、室内ユニット52a、52bのうちどちらも暖房運転を行う全暖房運転、及び、室内ユニット52a、52bのうち一方が冷房運転を行い、もう一方が暖房運転を行い、冷房運転及び暖房運転が混在している冷暖同時運転を行うことが可能である。 The air conditioner 100 is, for example, the air conditioner 100 in which the indoor units 52a and 52b can independently perform a cooling operation or a heating operation. The air conditioner 100 includes a cooling operation in which both of the indoor units 52a and 52b perform a cooling operation, a heating operation in which both of the indoor units 52a and 52b perform a heating operation, and one of the indoor units 52a and 52b. Performs the cooling operation, the other performs the heating operation, and the simultaneous cooling and heating operation in which the cooling operation and the heating operation are mixed can be performed.
 [室外ユニット51]
 室外ユニット51は、圧縮機1、流路切替装置3、室外熱交換器2、アキュムレータ4、及び、冷媒流れ制御ユニット54を備えている。圧縮機1は、冷媒を吸入し、圧縮して吐出するものである。圧縮機1として、例えば、インバータ回路など、容量制御により単位時間あたりに送り出す冷媒の量を変化させることができるものを用いることができる。また、圧縮機1の吐出側には、圧力Pdを検出する第1圧力センサ31が設けられ、圧縮機1の吸入側には、圧力Psを検出する第2圧力センサ32が設けられている。そして、第1圧力センサ31及び第2圧力センサ32により検出された圧力Pd及びPsは、室外制御器201に送られる。室外制御器201は、空気調和装置100全体を統括する制御器として機能する。
[Outdoor unit 51]
The outdoor unit 51 includes a compressor 1, a flow path switching device 3, an outdoor heat exchanger 2, an accumulator 4, and a refrigerant flow control unit 54. The compressor 1 draws in refrigerant, compresses it, and discharges it. As the compressor 1, for example, an inverter circuit or the like that can change the amount of refrigerant sent out per unit time by capacity control can be used. A first pressure sensor 31 that detects the pressure Pd is provided on the discharge side of the compressor 1, and a second pressure sensor 32 that detects the pressure Ps is provided on the suction side of the compressor 1. The pressures Pd and Ps detected by the first pressure sensor 31 and the second pressure sensor 32 are sent to the outdoor controller 201. The outdoor controller 201 functions as a controller that controls the entire air conditioner 100.
 室外熱交換器2は、内部に冷媒を流通させ、冷媒と室外の空気との熱交換を行わせるものである。室外熱交換器2は、暖房運転時には、蒸発器として機能し、冷媒を蒸発させて気化させる。また、冷房運転時には、凝縮器として機能し、冷媒を凝縮して液化させる。流路切替装置3は、例えば四方弁等の冷媒の流れを切り替えるものであり、流路切替装置3が切り替えられることにより、冷房運転又は暖房運転など、運転内容が変更される。アキュムレータ4は、液体の冷媒の余剰分を貯留するものである。冷媒流れ制御ユニット54は、冷媒の流れ方向をそれぞれ一方向のみに許容するものである。 The outdoor heat exchanger 2 circulates a refrigerant inside, and performs heat exchange between the refrigerant and outdoor air. The outdoor heat exchanger 2 functions as an evaporator during heating operation, and evaporates and vaporizes the refrigerant. Further, during cooling operation, it functions as a condenser and condenses and liquefies the refrigerant. The flow path switching device 3 switches the flow of refrigerant such as a four-way valve, for example, and the operation content such as cooling operation or heating operation is changed by switching the flow path switching device 3. The accumulator 4 stores the surplus liquid refrigerant. The refrigerant flow control unit 54 allows the refrigerant flow direction in only one direction.
 [冷媒流れ制御ユニット54]
 冷媒流れ制御ユニット54は、接続部a、b、c、d同士を接続する接続配管130、131、132、133、及び、冷媒の流れを一方向に許容する逆止弁7a、7b、7c、7dにより構成されている。冷媒流れ制御ユニット54は、室外ユニット51の構成要素の一部である。接続配管130は、接続部cと接続部aとを接続し、接続配管131は、接続部dと接続部bとを接続し、接続配管132は、接続部cと接続部dとを接続し、接続配管133は、接続部aと接続部bとを接続している。接続配管132により、中継器53と接続する第1ガス配管103、及び、圧縮機1と接続する高圧配管102が接続されており、接続配管133により、圧縮機1と接続する低圧配管101、及び、中継器53と接続する第1液配管104が接続されている。
[Refrigerant flow control unit 54]
The refrigerant flow control unit 54 includes connection pipes 130, 131, 132, 133 that connect the connection portions a, b, c, and d, and check valves 7a, 7b, 7c that allow the refrigerant flow in one direction. 7d. The refrigerant flow control unit 54 is a part of the components of the outdoor unit 51. The connection pipe 130 connects the connection part c and the connection part a, the connection pipe 131 connects the connection part d and the connection part b, and the connection pipe 132 connects the connection part c and the connection part d. The connection pipe 133 connects the connection part a and the connection part b. The first gas pipe 103 connected to the relay 53 and the high-pressure pipe 102 connected to the compressor 1 are connected by the connection pipe 132, and the low-pressure pipe 101 connected to the compressor 1 by the connection pipe 133, and The 1st liquid piping 104 connected with the repeater 53 is connected.
 逆止弁7aは、接続配管132に配置され、冷媒の流れを接続部cから接続部dの方向に許容するものである。逆止弁7bは、接続配管133に配置され、冷媒の流れを接続部aから接続部bの方向に許容するものである。逆止弁7cは、接続配管131に配置され、冷媒の流れを接続部dから接続部bの方向に許容するものである。逆止弁7dは、接続配管130に配置され、冷媒の流れを接続部cから接続部aの方向に許容するものである。 The check valve 7a is arranged in the connection pipe 132 and allows the refrigerant flow in the direction from the connection part c to the connection part d. The check valve 7b is arranged in the connection pipe 133 and allows the refrigerant flow in the direction from the connection part a to the connection part b. The check valve 7c is arranged in the connection pipe 131 and allows the refrigerant flow in the direction from the connection part d to the connection part b. The check valve 7d is arranged in the connection pipe 130 and allows the refrigerant flow in the direction from the connection part c to the connection part a.
 [室内ユニット52a、52b]
 室内ユニット52a、52bは、室内熱交換器5a、5bと、室内絞り装置6a、6bと、を備えている。室内ユニット52a、52bの各構成要素は、室内制御器202a、202bにより制御される。室内熱交換器5a、5bは、中継器53を通過した冷媒を内部に流通させ、冷媒と空調対象となる空気とに熱交換を行わせるものである。室内熱交換器5a、5bは、暖房運転時には凝縮器として機能し、冷媒を凝縮して液化させる。室内絞り装置6a、6bのそれぞれに接続されている第2液配管105a、105bは、中継器三叉部55a、及び、中継器第2液配管113を介して中継器三叉部55bにそれぞれ接続されている。また、室内熱交換器5a、5bは、冷房運転時には蒸発器として機能し、冷媒を蒸発させ、気化させる。
[ Indoor units 52a, 52b]
The indoor units 52a and 52b include indoor heat exchangers 5a and 5b and indoor expansion devices 6a and 6b. Each component of the indoor units 52a and 52b is controlled by the indoor controllers 202a and 202b. The indoor heat exchangers 5a and 5b allow the refrigerant that has passed through the relay 53 to flow inside, and exchange heat between the refrigerant and air to be air-conditioned. The indoor heat exchangers 5a and 5b function as a condenser during heating operation, and condense and liquefy the refrigerant. The second liquid pipes 105a and 105b connected to the indoor throttle devices 6a and 6b are respectively connected to the relay trident section 55b via the relay trident section 55a and the relay second liquid pipe 113. Yes. The indoor heat exchangers 5a and 5b function as an evaporator during the cooling operation, and evaporate and evaporate the refrigerant.
 室内絞り装置6a、6bは、減圧弁又は膨張弁として機能し、冷媒を減圧して膨張させるものである。室内絞り装置6a、6bは、空調負荷に応じて冷媒の圧力調整が可能であればよく、例えば、電子式膨張弁などの流量制御手段を用いることができる。室内ユニット52a、52bには、第1温度センサ33a、33b、及び、第2温度センサ34a、34bが配置されている。第1温度センサ33a、33b、及び、第2温度センサ34a、34bは、室内熱交換器5a、5bに流出入する冷媒の温度を検出し、検出した信号を室内制御器202a、202bに送るものである。 The indoor expansion devices 6a and 6b function as pressure reducing valves or expansion valves, and expand the refrigerant by reducing the pressure. The indoor expansion devices 6a and 6b only need to be able to adjust the pressure of the refrigerant according to the air conditioning load. For example, flow control means such as an electronic expansion valve can be used. In the indoor units 52a and 52b, first temperature sensors 33a and 33b and second temperature sensors 34a and 34b are arranged. The first temperature sensors 33a and 33b and the second temperature sensors 34a and 34b detect the temperature of the refrigerant flowing into and out of the indoor heat exchangers 5a and 5b, and send the detected signals to the indoor controllers 202a and 202b. It is.
 [中継器53]
 中継器53は、気液分離器8、第1分岐部20、第1絞り装置11、第2絞り装置12、第1熱交換器13、第2熱交換器14、及び、第2分岐部21により構成されており、おり、室内ユニット52a、52bの運転状態に応じて室内ユニット52a、52bに流入させる冷媒の流れを制御するものである。そして、中継器53が室外ユニット51と各室内ユニット52a、52bとの間の冷媒の流れを制御することで、室内ユニット52a、52bが冷暖同時運転を行うことが可能となる。
[Repeater 53]
The relay 53 includes the gas-liquid separator 8, the first branching unit 20, the first throttle device 11, the second throttle device 12, the first heat exchanger 13, the second heat exchanger 14, and the second branching unit 21. And controls the flow of the refrigerant flowing into the indoor units 52a and 52b according to the operating state of the indoor units 52a and 52b. And the repeater 53 controls the flow of the refrigerant | coolant between the outdoor unit 51 and each indoor unit 52a, 52b, and it becomes possible for the indoor units 52a, 52b to perform a heating / cooling simultaneous operation.
 中継器53の各構成要素は、中継器制御器203により制御され、各構成要素は、バイパス配管110、中継器第1液配管111、中継器ガス配管112、及び、中継器第2液配管113により接続されている。中継器53は、第1ガス配管103及び第1液配管104により、室外ユニット51に接続されている。また、中継器53は、第2液配管105a、105b及び第2ガス配管106a、106bにより、室内ユニット52a、52bのそれぞれに接続されている。 Each component of the repeater 53 is controlled by the repeater controller 203, and each component includes a bypass pipe 110, a repeater first liquid pipe 111, a repeater gas pipe 112, and a repeater second liquid pipe 113. Connected by. The repeater 53 is connected to the outdoor unit 51 by the first gas pipe 103 and the first liquid pipe 104. The repeater 53 is connected to each of the indoor units 52a and 52b by second liquid pipes 105a and 105b and second gas pipes 106a and 106b.
 気液分離器8は、冷媒を液冷媒及とガス冷媒とに分離するものであり、第1液配管104、中継器第1液配管111、及び、中継器ガス配管112に接続されている。第1液配管104は、室外ユニット51と気液分離器8とを接続し、中継器第1液配管111は、気液分離器8と中継器三叉部55bとを接続し、中継器ガス配管112は、気液分離器8と第1分岐部20の第1開閉弁9a、9bのそれぞれとを接続する。 The gas-liquid separator 8 separates the refrigerant into a liquid refrigerant and a gas refrigerant, and is connected to the first liquid pipe 104, the relay first liquid pipe 111, and the relay gas pipe 112. The first liquid pipe 104 connects the outdoor unit 51 and the gas-liquid separator 8, and the relay first liquid pipe 111 connects the gas-liquid separator 8 and the relay trifurcation 55 b, and the relay gas pipe 112 connects the gas-liquid separator 8 and each of the first on-off valves 9a and 9b of the first branch portion 20.
 第1分岐部20は、室内ユニット52a、52bにおける室内熱交換器5a、5bの冷媒出入口の一方を第1ガス配管103又は気液分離器8を介して第1液配管104に選択的に接続する第1開閉弁9a、9b、及び、第2開閉弁10a、10bにより構成されている。また、第2分岐部21は、室内ユニット52a、52bにおける室内熱交換器5a、5bの冷媒出入口の他方が冷媒入口となるとき第1絞り装置11を介して気液分離器8に接続し、室内ユニット52a、52bにおける室内熱交換器5a、5bの冷媒出入口の他方が冷媒出口となるとき第1絞り装置11の出口側に接続する第1逆止弁15a、15b、及び、第2逆止弁16a、16bにより構成されている。 The first branch section 20 selectively connects one of the refrigerant inlets and outlets of the indoor heat exchangers 5a and 5b in the indoor units 52a and 52b to the first liquid pipe 104 via the first gas pipe 103 or the gas-liquid separator 8. The first on-off valves 9a and 9b and the second on-off valves 10a and 10b are configured. Further, the second branch portion 21 is connected to the gas-liquid separator 8 via the first expansion device 11 when the other refrigerant inlet / outlet of the indoor heat exchangers 5a, 5b in the indoor units 52a, 52b is the refrigerant inlet, First check valves 15a, 15b and second check valves connected to the outlet side of the first expansion device 11 when the other refrigerant inlet / outlet of the indoor heat exchangers 5a, 5b in the indoor units 52a, 52b is the refrigerant outlet. It consists of valves 16a and 16b.
 第1開閉弁9a、9b、及び、第2開閉弁10a、10bのそれぞれには、第2ガス配管106a、106bが分岐して接続されている。第1開閉弁9a、9bは、開閉により中継器ガス配管112から室内ユニット52a、52bへ流入するガス冷媒を遮断、又は、中継器53から流出する方向に通過させるものである。この第1開閉弁9a、9bは、第2ガス配管106a、106bを介して接続された室内ユニット52a、52bが暖房運転を行っていると、開状態となる。また、第2開閉弁10a、10bは、室内ユニット52a、52bの第2ガス配管106a、106bから中継器53に流入するガス冷媒を遮断、又は、中継器53に流入させる方向に通過させるものである。この第2開閉弁10a、10bは、第2ガス配管106a、106bを介して接続された室内ユニット52a、52bが冷房運転を行っていると、開状態となる。 Second gas pipes 106a and 106b are branched and connected to the first on-off valves 9a and 9b and the second on-off valves 10a and 10b, respectively. The first on-off valves 9a and 9b are used to shut off or allow the gas refrigerant flowing into the indoor units 52a and 52b from the relay gas pipe 112 to pass or flow out from the relay 53 by opening and closing. The first on-off valves 9a and 9b are opened when the indoor units 52a and 52b connected via the second gas pipes 106a and 106b are performing the heating operation. The second on-off valves 10a and 10b are used to block the gas refrigerant flowing into the relay 53 from the second gas pipes 106a and 106b of the indoor units 52a and 52b or to pass the refrigerant in the direction of flowing into the relay 53. is there. The second on-off valves 10a and 10b are opened when the indoor units 52a and 52b connected via the second gas pipes 106a and 106b are performing the cooling operation.
 第1逆止弁15aは、冷媒の流れを接続部gから接続部fの方向に許容するものである。第1逆止弁15bは、冷媒の流れを接続部gから接続部hの方向に許容するものである。
 第2逆止弁16aは、冷媒の流れを接続部fから接続部eの方向に許容するものである。第2逆止弁16bは、冷媒の流れを接続部hから接続部eの方向に許容するものである。
The first check valve 15a allows the refrigerant flow in the direction from the connection part g to the connection part f. The first check valve 15b allows the refrigerant flow in the direction from the connection part g to the connection part h.
The second check valve 16a allows the refrigerant flow in the direction from the connection part f to the connection part e. The second check valve 16b allows the refrigerant flow in the direction from the connection portion h to the connection portion e.
 第1熱交換器13は、気液分離器8において分離された液冷媒と、第2熱交換器14を流通した液冷媒とを流通させ、熱交換させるものである。第1絞り装置11は、第1熱交換器13を通過した液冷媒を減圧し、第2熱交換器14に流入させるものである。第2熱交換器14は、第1絞り装置11において減圧された冷媒と、第2絞り装置12において減圧された液冷媒とを流通させ、熱交換を行わせるものである。 1st heat exchanger 13 distribute | circulates the liquid refrigerant isolate | separated in the gas-liquid separator 8, and the liquid refrigerant which distribute | circulated the 2nd heat exchanger 14, and makes it heat-exchange. The first expansion device 11 depressurizes the liquid refrigerant that has passed through the first heat exchanger 13 and flows it into the second heat exchanger 14. The 2nd heat exchanger 14 distribute | circulates the refrigerant | coolant decompressed in the 1st expansion device 11, and the liquid refrigerant decompressed in the 2nd expansion device 12, and performs heat exchange.
 第1熱交換器13、第1絞り装置11、及び、第2熱交換器14は、気液分離器8と中継器三叉部55aとの間に介在し、中継器第1液配管111により接続されている。バイパス配管110は、中継器三叉部55aと、第1ガス配管103とを、第2絞り装置12、第2熱交換器14、及び、第1熱交換器13を経由しながら接続し、液冷媒を回収して室外ユニット51に戻すものである。なお、第1絞り装置11、及び、第2絞り装置12として、例えば、電子式膨張弁など、開度を変化させることで流量の緻密な制御が可能な流量制御手段を用いればよい。 The first heat exchanger 13, the first expansion device 11, and the second heat exchanger 14 are interposed between the gas-liquid separator 8 and the relay trident portion 55 a and are connected by the relay first liquid pipe 111. Has been. The bypass pipe 110 connects the relay trident section 55a and the first gas pipe 103 while passing through the second expansion device 12, the second heat exchanger 14, and the first heat exchanger 13, and the liquid refrigerant. Is recovered and returned to the outdoor unit 51. As the first throttle device 11 and the second throttle device 12, for example, a flow rate control unit capable of precise control of the flow rate by changing the opening degree, such as an electronic expansion valve, may be used.
 第3圧力センサ35は、第1熱交換器13と第1絞り装置11との間に設置され、それらの間の圧力P35を検出するものである。第4圧力センサ36は、第1絞り装置11と第2熱交換器14との間に設置され、それらの間の圧力P36を検出するものである。第3圧力センサ35及び第4圧力センサ36により検出された圧力P35及びP36は、それぞれ中継器制御器203に送られる。 3rd pressure sensor 35 is installed between the 1st heat exchanger 13 and the 1st expansion device 11, and detects pressure P35 between them. The 4th pressure sensor 36 is installed between the 1st expansion device 11 and the 2nd heat exchanger 14, and detects the pressure P36 between them. The pressures P35 and P36 detected by the third pressure sensor 35 and the fourth pressure sensor 36 are sent to the repeater controller 203, respectively.
 次に、本実施の形態に係る空気調和装置100の動作について説明する。空気調和装置100は、全冷房運転、全暖房運転、及び、冷暖同時運転を行うことが可能である。そのうち、冷暖同時運転は、暖房負荷が高い場合の暖房主体運転、及び、冷房負荷が高い場合の冷房主体運転の2つの運転形態での運転が可能である。したがって、空気調和装置100は、4つの異なる運転形態での運転が可能である。 Next, the operation of the air conditioner 100 according to the present embodiment will be described. The air conditioner 100 can perform a cooling only operation, a heating only operation, and a cooling / heating simultaneous operation. Among them, the simultaneous cooling and heating operation can be performed in two operation modes: a heating main operation when the heating load is high, and a cooling main operation when the cooling load is high. Therefore, the air conditioning apparatus 100 can be operated in four different operation modes.
 図2は、本発明の実施の形態に係る空気調和装置100の全冷房運転時の冷媒回路における冷媒の流れを示す図である。なお、図2の矢印は、冷媒の方向を示しており、後述する図3~図5についても同様である。
 始めに、室内ユニット52a、52bのうちどちらも冷房運転を行う全冷房運転時の動作について説明する。全冷房運転時においては、室内ユニット52a、52bが共に冷房運転を行い、中継器53の第1開閉弁9a、9bが閉状態となり、第2開閉弁10a、10bが開状態となる。
FIG. 2 is a diagram showing a refrigerant flow in the refrigerant circuit during the cooling only operation of the air-conditioning apparatus 100 according to the embodiment of the present invention. 2 indicate the direction of the refrigerant, and the same applies to FIGS. 3 to 5 described later.
First, the operation at the time of the cooling operation in which both of the indoor units 52a and 52b perform the cooling operation will be described. During the all-cooling operation, both the indoor units 52a and 52b perform the cooling operation, the first on-off valves 9a and 9b of the relay 53 are closed, and the second on-off valves 10a and 10b are opened.
 図2に示すように、冷媒は、圧縮機1において圧縮され、高温、高圧のガス冷媒となって吐出され、流路切替装置3から室外熱交換器2に流入する。室外熱交換器2に流入した冷媒は、室外熱交換器2内において、室外の空気と熱交換により凝縮して液化して流出し、低圧配管101から冷媒流れ制御ユニット54に流入する。冷媒流れ制御ユニット54に流入した冷媒は、冷媒流れ制御ユニット54において、逆止弁7dにより接続配管130に流入することなく、接続配管133の逆止弁7bを通過して冷媒流れ制御ユニット54から流出し、室外ユニット51から中継器53に流入する。 As shown in FIG. 2, the refrigerant is compressed in the compressor 1, discharged as a high-temperature and high-pressure gas refrigerant, and flows into the outdoor heat exchanger 2 from the flow path switching device 3. The refrigerant that has flowed into the outdoor heat exchanger 2 is condensed and liquefied by heat exchange with outdoor air in the outdoor heat exchanger 2 and flows out from the low-pressure pipe 101 to the refrigerant flow control unit 54. The refrigerant that has flowed into the refrigerant flow control unit 54 passes through the check valve 7b of the connection pipe 133 without flowing into the connection pipe 130 by the check valve 7d in the refrigerant flow control unit 54, and passes through the check valve 7b from the refrigerant flow control unit 54. It flows out and flows into the repeater 53 from the outdoor unit 51.
 中継器53に流入した冷媒は、気液分離器8において液冷媒とガス冷媒とに分離される。全冷房運転時においては、冷媒の全てが液冷媒であり、冷媒の全てが中継器第1液配管111に流入するため、中継器ガス配管112には流入しない。中継器第1液配管111に流入した冷媒は、中継器第1液配管111を流通しながら、第1熱交換器13において過冷却度が増加され、第1絞り装置11において中間圧に減圧され、第2熱交換器14において、更に過冷却度が増加されて中継器三叉部55aに到達する。 The refrigerant flowing into the relay unit 53 is separated into a liquid refrigerant and a gas refrigerant in the gas-liquid separator 8. During the cooling only operation, all of the refrigerant is liquid refrigerant, and all of the refrigerant flows into the relay first liquid pipe 111 and therefore does not flow into the relay gas pipe 112. The refrigerant flowing into the relay first liquid pipe 111 is increased in supercooling degree in the first heat exchanger 13 while being circulated through the relay first liquid pipe 111, and is reduced to an intermediate pressure in the first expansion device 11. In the second heat exchanger 14, the degree of supercooling is further increased and reaches the relay trifurcation 55a.
 中継器三叉部55aに到達した冷媒は、中継器三叉部55aにおいて分流し、一部はバイパス配管110に流入し、残りは第1逆止弁15a、15bを通過して中継器53から流出する。バイパス配管110に流入した冷媒は、第2絞り装置12において低圧に減圧され、第2熱交換器14、第1熱交換器13の順に流通し、熱交換により蒸発してガス冷媒となって第1ガス配管103に合流する。このとき、バイパス配管110の冷媒は、熱交換により中継器第1液配管111を流通する冷媒の過冷却度を増加させる。 The refrigerant that has reached the relay trifurcation 55a is diverted at the relay trifurcation 55a, part of it flows into the bypass pipe 110, and the rest passes through the first check valves 15a and 15b and flows out of the relay 53. . The refrigerant flowing into the bypass pipe 110 is depressurized to a low pressure in the second expansion device 12, flows in the order of the second heat exchanger 14 and the first heat exchanger 13, evaporates by heat exchange, and becomes a gas refrigerant. Merges into one gas pipe 103. At this time, the refrigerant in the bypass pipe 110 increases the degree of supercooling of the refrigerant flowing through the relay first liquid pipe 111 by heat exchange.
 中継器三叉部55bにおいて分流し、中継器53から流出した冷媒は、第2液配管105a、105bを流通し、室内ユニット52a、52bのそれぞれに流入する。室内ユニット52a、52bのそれぞれに流入した冷媒は、室内ユニット52a、52bの室内絞り装置6a、6bにおいて減圧された後、室内熱交換器5a、5bにおいて、空調対象空間の空気と熱交換を行い、空調対象空間の空気を冷却すると共に、蒸発してガス化する。これにより、空調対象空間の冷房が実現される。 The refrigerant that is diverted at the relay trifurcation 55b and flows out of the relay 53 flows through the second liquid pipes 105a and 105b and flows into the indoor units 52a and 52b, respectively. The refrigerant flowing into each of the indoor units 52a and 52b is decompressed in the indoor expansion devices 6a and 6b of the indoor units 52a and 52b, and then exchanges heat with the air in the air-conditioning target space in the indoor heat exchangers 5a and 5b. The air in the air-conditioned space is cooled and evaporated to gasify. Thereby, cooling of the air-conditioning target space is realized.
 ガス化した冷媒は、室内熱交換器5a、5bを通過し、第2ガス配管106a、106bを流通して室内ユニット52a、52bから流出し、再び中継器53に流入し、開状態の第2開閉弁10a、10bを通過する。第2開閉弁10a、10bを通過した冷媒は、第1ガス配管103においてバイパス配管110を流通した冷媒と合流して中継器53から流出し、室外ユニット51に流入する。 The gasified refrigerant passes through the indoor heat exchangers 5a and 5b, flows through the second gas pipes 106a and 106b, flows out from the indoor units 52a and 52b, flows into the relay 53 again, and is opened in the second state. It passes through the on-off valves 10a and 10b. The refrigerant that has passed through the second on-off valves 10 a and 10 b merges with the refrigerant that has passed through the bypass pipe 110 in the first gas pipe 103, flows out of the relay unit 53, and flows into the outdoor unit 51.
 室外ユニット51に流入した冷媒は、室外ユニット51において、冷媒流れ制御ユニット54の接続配管132に配置された逆止弁7aを通過し、アキュムレータ4を介して圧縮機1に吸入される。これにより、冷媒による冷媒回路の循環が行われる。 The refrigerant flowing into the outdoor unit 51 passes through the check valve 7 a disposed in the connection pipe 132 of the refrigerant flow control unit 54 in the outdoor unit 51, and is sucked into the compressor 1 through the accumulator 4. Thereby, the refrigerant circuit is circulated by the refrigerant.
 図3は、本発明の実施の形態に係る空気調和装置100の全暖房運転時の冷媒回路における冷媒の流れを示す図である。
 次に、室内ユニット52a、52bのうちどちらも暖房運転を行う全暖房運転時の動作について説明する。全暖房運転時においては、室内ユニット52a、52bが共に暖房運転を行い、中継器53の第1開閉弁9a、9bが開状態となり、第2開閉弁10a、10bが閉状態となる。図3に示すように、冷媒は、圧縮機1において圧縮され、高温、高圧のガス冷媒となって吐出され、流路切替装置3から冷媒流れ制御ユニット54に流入し、接続部dに到達する。接続部dに到達した冷媒は、逆止弁7aにより接続部dから接続配管132を流通できず、接続配管131に流入して逆止弁7cを通過し、接続部bを通過しながら室外ユニット51から流出する。
FIG. 3 is a diagram showing a refrigerant flow in the refrigerant circuit during the heating only operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
Next, the operation | movement at the time of all the heating operation which performs heating operation of both indoor unit 52a, 52b is demonstrated. During the all-heating operation, both the indoor units 52a and 52b perform the heating operation, the first on-off valves 9a and 9b of the relay 53 are opened, and the second on-off valves 10a and 10b are closed. As shown in FIG. 3, the refrigerant is compressed in the compressor 1 and discharged as a high-temperature and high-pressure gas refrigerant, flows into the refrigerant flow control unit 54 from the flow path switching device 3, and reaches the connection portion d. . The refrigerant that has reached the connection part d cannot flow through the connection pipe 132 from the connection part d by the check valve 7a, flows into the connection pipe 131, passes through the check valve 7c, and passes through the connection part b. It flows out of 51.
 室外ユニット51から流出した冷媒は、第1液配管104を流通して中継器53に流入する。中継器53に流入した冷媒は、気液分離器8においてガス冷媒と液冷媒とに分離される。全暖房運転時においては、冷媒が全てガス冷媒であり、冷媒の全てが中継器ガス配管112に流入するため、中継器第1液配管111には流入しない。中継器ガス配管112に流入した冷媒は、第1開閉弁9a、9bに到達し、共に開状態の第1開閉弁9a、9bを通過して中継器53から流出する。 The refrigerant that has flowed out of the outdoor unit 51 flows through the first liquid pipe 104 and flows into the repeater 53. The refrigerant flowing into the relay unit 53 is separated into a gas refrigerant and a liquid refrigerant in the gas-liquid separator 8. During the all-heating operation, all the refrigerant is a gas refrigerant, and all of the refrigerant flows into the relay gas pipe 112, and thus does not flow into the relay first liquid pipe 111. The refrigerant that has flowed into the relay gas pipe 112 reaches the first on-off valves 9a and 9b, passes through the opened first on-off valves 9a and 9b, and flows out of the relay 53.
 中継器53から流出した冷媒は、室内ユニット52a、52bに流入し、室内熱交換器5a、5bにおいて、空調対象空間の空気と熱交換を行い、空調対象空間の空気に放熱しながら凝縮して液化する。これにより、空調対象空間の暖房が行われる。液化した冷媒は、室内熱交換器5a、5bを通過し、室内絞り装置6a、6bにおいて減圧されて中間圧の液冷媒となり、室内ユニット52a、52bから流出する。 The refrigerant flowing out of the relay unit 53 flows into the indoor units 52a and 52b, exchanges heat with the air in the air-conditioning target space in the indoor heat exchangers 5a and 5b, and condenses while radiating heat to the air in the air-conditioning target space. Liquefaction. Thereby, the air-conditioning target space is heated. The liquefied refrigerant passes through the indoor heat exchangers 5a and 5b, is reduced in pressure in the indoor expansion devices 6a and 6b, becomes an intermediate-pressure liquid refrigerant, and flows out of the indoor units 52a and 52b.
 室内ユニット52a、52bから流出した冷媒は、第2液配管105a、105bを流通して中継器53に流入し、第2逆止弁16a、16b、中継器三叉部55aを経てバイパス配管110から第1ガス配管103に合流し、中継器53から流出する。中継器53から流出した冷媒は、第1ガス配管103を流通して、冷媒流れ制御ユニット54の接続部cに到達する。接続部cに到達した冷媒は、接続部cにおいて、高圧である接続配管132を流通することはできず、接続配管130の逆止弁7dを通過し、低圧配管101を流通する。低圧配管101を流通した冷媒は、低圧配管101から室外熱交換器2を通過しながら室外の空気との熱交換により蒸発し、流路切替装置3、アキュムレータ4を介して圧縮機1に吸入される。これにより、冷媒による冷媒回路の循環が行われる。 The refrigerant that has flowed out of the indoor units 52a and 52b flows through the second liquid pipes 105a and 105b and flows into the relay 53, and passes through the second check valves 16a and 16b and the relay trifurcation 55a from the bypass pipe 110. It merges into the 1 gas pipe 103 and flows out from the repeater 53. The refrigerant that has flowed out of the relay 53 passes through the first gas pipe 103 and reaches the connection portion c of the refrigerant flow control unit 54. The refrigerant that has reached the connection portion c cannot flow through the high-pressure connection pipe 132 in the connection portion c, passes through the check valve 7d of the connection pipe 130, and flows through the low-pressure pipe 101. The refrigerant flowing through the low-pressure pipe 101 evaporates by heat exchange with outdoor air while passing through the outdoor heat exchanger 2 from the low-pressure pipe 101 and is sucked into the compressor 1 through the flow path switching device 3 and the accumulator 4. The Thereby, the refrigerant circuit is circulated by the refrigerant.
 図4は、本発明の実施の形態に係る空気調和装置100の冷房主体運転時の冷媒回路における冷媒の流れを示す図である。
 次に、室内ユニット52aが暖房運転を行い、室内ユニット52bが冷房運転を行う冷暖同時運転について説明する。冷暖同時運転時は、中継器53の第1開閉弁9a、及び、第2開閉弁10bが開状態であり、第1開閉弁9b、及び、第2開閉弁10aが閉状態である。
FIG. 4 is a diagram illustrating a refrigerant flow in the refrigerant circuit during the cooling main operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
Next, the simultaneous cooling / heating operation in which the indoor unit 52a performs the heating operation and the indoor unit 52b performs the cooling operation will be described. During the simultaneous cooling and heating operation, the first on-off valve 9a and the second on-off valve 10b of the repeater 53 are open, and the first on-off valve 9b and the second on-off valve 10a are closed.
 始めに、冷房負荷が暖房負荷よりも高い冷房主体運転を行う場合の冷媒の流れについて説明する。図4に示すように、冷媒は、圧縮機1により圧縮され、室外熱交換器2において熱交換することで凝縮、及び、液化し、気液二相冷媒となって流出する。室外熱交換器2において凝縮、及び、液化する冷媒の量、すなわち、ガス冷媒、及び、液冷媒の割合は、冷房負荷、及び、暖房負荷の割合に応じて定まる。室外熱交換器2から流出した冷媒は、低圧配管101を流通し、冷媒流れ制御ユニット54の逆止弁7bを通過して室外ユニット51から流出し、第1液配管104を流通して中継器53に流入する。 First, the flow of the refrigerant when the cooling main operation is performed in which the cooling load is higher than the heating load will be described. As shown in FIG. 4, the refrigerant is compressed by the compressor 1, condensed and liquefied by exchanging heat in the outdoor heat exchanger 2, and flows out as a gas-liquid two-phase refrigerant. The amount of refrigerant condensed and liquefied in the outdoor heat exchanger 2, that is, the ratio of gas refrigerant and liquid refrigerant, is determined according to the ratio of cooling load and heating load. The refrigerant that has flowed out of the outdoor heat exchanger 2 flows through the low-pressure pipe 101, passes through the check valve 7 b of the refrigerant flow control unit 54, flows out of the outdoor unit 51, flows through the first liquid pipe 104, and is relayed 53.
 中継器53に流入した冷媒は、気液分離器8において液冷媒とガス冷媒とに分離され、そのうち液冷媒が中継器第1液配管111に流入し、ガス冷媒が中継器ガス配管112に流入する。 The refrigerant that has flowed into the relay 53 is separated into liquid refrigerant and gas refrigerant in the gas-liquid separator 8, of which liquid refrigerant flows into the relay first liquid pipe 111, and gas refrigerant flows into the relay gas pipe 112. To do.
 中継器第1液配管111に流入した液冷媒は、第1熱交換器13、第1絞り装置11、及び、第2熱交換器14を通過しながら過冷却度が増加されて中継器三叉部55aに到達する。中継器三叉部55aに到達した冷媒は、一部はバイパス配管110を流通し、残りは第1逆止弁15a、15bを通過して中継器53から流出するように分流する。中継器三叉部55aからバイパス配管110に流入した冷媒は、第2絞り装置12、第2熱交換器14、及び、第1熱交換器13を通過しながら、熱交換により吸熱し、蒸発して気化して第1ガス配管103に到達する。 The liquid refrigerant flowing into the relay first liquid pipe 111 passes through the first heat exchanger 13, the first expansion device 11, and the second heat exchanger 14, so that the degree of supercooling is increased and the relay trident section Reach 55a. A part of the refrigerant that has reached the relay trifurcation 55a flows through the bypass pipe 110, and the rest flows through the first check valves 15a and 15b so as to flow out of the relay 53. The refrigerant flowing into the bypass pipe 110 from the relay trifurcation 55a absorbs heat by heat exchange and evaporates while passing through the second expansion device 12, the second heat exchanger 14, and the first heat exchanger 13. It vaporizes and reaches the first gas pipe 103.
 一方、中継器ガス配管112に流入したガス冷媒は、第1開閉弁9a、9bに到達し、開状態である第1開閉弁9aを通過して中継器53から流出し、第2ガス配管106aを介して室内ユニット52aに流入する。冷媒は、室内ユニット52aの室内熱交換器5aを通過し、熱交換により空調対象空間の空気に放熱しながら凝縮して液化する。これにより、空調対象空間の暖房が行われる。室内熱交換器5aを通過した冷媒は、室内絞り装置6aで減圧されて中間圧の液冷媒となり、室内ユニット52aから流出して、第2液配管105aを通過し、中継器三叉部55bに到達する。 On the other hand, the gas refrigerant that has flowed into the relay gas pipe 112 reaches the first on-off valves 9a and 9b, passes through the first on-off valve 9a in the open state, flows out of the relay 53, and flows into the second gas pipe 106a. Flows into the indoor unit 52a. The refrigerant passes through the indoor heat exchanger 5a of the indoor unit 52a and condenses and liquefies while dissipating heat to the air in the air-conditioning target space by heat exchange. Thereby, the air-conditioning target space is heated. The refrigerant that has passed through the indoor heat exchanger 5a is reduced in pressure by the indoor expansion device 6a to become an intermediate-pressure liquid refrigerant, flows out of the indoor unit 52a, passes through the second liquid pipe 105a, and reaches the relay trifurcation 55b. To do.
 中継器三叉部55bでは、室内ユニット52aに接続する第2液配管105aを流通する冷媒と、第1絞り装置11を通過した冷媒とが合流し、第2熱交換器14を流通する。第2熱交換器14を流通した冷媒は、一部はバイパス配管110を流通し、残りは第1逆止弁15bを通過して中継器53から流出するように分流する。中継器53から流出した冷媒は、第2液配管105bから室内ユニット52b内の室内絞り装置6bにおいて減圧され、室内熱交換器5bに流入する。室内熱交換器5bに流入した冷媒は、室内熱交換器5bにおいて、空調対象空間の空気との熱交換により蒸発してガス化し、ガス冷媒となって流出する。これにより、空調対象空間の冷房が行われる。室内熱交換器5bを通過した冷媒は、開状態である第2開閉弁10bを通過する。 In the relay trifurcation 55b, the refrigerant flowing through the second liquid pipe 105a connected to the indoor unit 52a and the refrigerant passing through the first expansion device 11 merge and flow through the second heat exchanger 14. A part of the refrigerant that has circulated through the second heat exchanger 14 circulates through the bypass pipe 110, and the other part of the refrigerant passes through the first check valve 15 b and flows out from the relay 53. The refrigerant that has flowed out of the relay unit 53 is depressurized in the indoor expansion device 6b in the indoor unit 52b from the second liquid pipe 105b, and flows into the indoor heat exchanger 5b. The refrigerant flowing into the indoor heat exchanger 5b evaporates and gasifies by heat exchange with the air in the air-conditioning target space in the indoor heat exchanger 5b, and flows out as a gas refrigerant. Thereby, the air-conditioning target space is cooled. The refrigerant that has passed through the indoor heat exchanger 5b passes through the opened second on-off valve 10b.
 第2開閉弁10bを通過した冷媒は、同じく第1ガス配管103に到達するバイパス配管110を流通した冷媒と合流し、第1ガス配管103を流通して中継器53から流出し、室外ユニット51に流入する。室外ユニット51に流入した冷媒は、室外ユニット51の冷媒流れ制御ユニット54において、接続配管132に設けられた逆止弁7aを通過し、流路切替装置3からアキュムレータ4を介して圧縮機1に吸入される。これにより、冷媒による冷媒回路の循環が行われる。 The refrigerant that has passed through the second on-off valve 10b merges with the refrigerant that has passed through the bypass pipe 110 that also reaches the first gas pipe 103, flows out of the repeater 53 through the first gas pipe 103, and the outdoor unit 51. Flow into. The refrigerant flowing into the outdoor unit 51 passes through the check valve 7a provided in the connection pipe 132 in the refrigerant flow control unit 54 of the outdoor unit 51, and passes from the flow path switching device 3 to the compressor 1 via the accumulator 4. Inhaled. Thereby, the refrigerant circuit is circulated by the refrigerant.
 図5は、本発明の実施の形態に係る空気調和装置100の暖房主体運転時の冷媒回路における冷媒の流れを示す図である。
 次に、暖房負荷が冷房負荷よりも高い暖房主体運転を行う場合の冷媒の流れについて説明する。図5に示すように、冷媒は、圧縮機1により圧縮されて吐出され、流路切替装置3を通過して冷媒流れ制御ユニット54の接続部dに到達する。接続部dに到達した冷媒は、接続配管131に設けられた逆止弁7cを通過し、第1液配管104により室外ユニット51から流出し、中継器53に流入する。
FIG. 5 is a diagram showing a refrigerant flow in the refrigerant circuit during the heating main operation of the air-conditioning apparatus 100 according to the embodiment of the present invention.
Next, the flow of the refrigerant when the heating main operation is performed where the heating load is higher than the cooling load will be described. As shown in FIG. 5, the refrigerant is compressed and discharged by the compressor 1, passes through the flow path switching device 3, and reaches the connection portion d of the refrigerant flow control unit 54. The refrigerant that has reached the connection portion d passes through the check valve 7 c provided in the connection pipe 131, flows out of the outdoor unit 51 through the first liquid pipe 104, and flows into the repeater 53.
 中継器53に流入した冷媒は、気液分離器8から中継器ガス配管112に流入する。このとき、暖房主体運転が行われているため、気液分離器8において分離される液冷媒は存在せず、中継器第1液配管111に冷媒が流れない。中継器ガス配管112に流入した冷媒は、第1開閉弁9a、9bに到達し、開状態の第1開閉弁9aを通過して中継器53から流出し、第2ガス配管106aを介して室内ユニット52aに流入する。室内ユニット52aに流入した冷媒は、室内ユニット52aの室内熱交換器5aを通過し、熱交換により空調対象空間の空気に放熱しながら凝縮して液化する。これにより、空調対象空間の暖房が行われる。室内熱交換器5aを通過した冷媒は、室内絞り装置6aで減圧されて中間圧の液冷媒となり、室内ユニット52aから第2液配管105aに流入し、中継器53へ流入する。 The refrigerant that has flowed into the relay 53 flows from the gas-liquid separator 8 into the relay gas pipe 112. At this time, since the heating main operation is performed, there is no liquid refrigerant separated in the gas-liquid separator 8, and no refrigerant flows into the relay first liquid pipe 111. The refrigerant that has flowed into the relay gas pipe 112 reaches the first on-off valves 9a and 9b, passes through the opened first on-off valve 9a, flows out of the relay 53, and passes through the second gas pipe 106a. It flows into the unit 52a. The refrigerant flowing into the indoor unit 52a passes through the indoor heat exchanger 5a of the indoor unit 52a, condenses and liquefies while dissipating heat to the air in the air-conditioning target space by heat exchange. Thereby, the air-conditioning target space is heated. The refrigerant that has passed through the indoor heat exchanger 5a is depressurized by the indoor expansion device 6a to be an intermediate-pressure liquid refrigerant, flows into the second liquid pipe 105a from the indoor unit 52a, and flows into the relay 53.
 中継器53へ流入した冷媒は、第2逆止弁16a、中継器第2液配管113、及び、第2熱交換器14を流通し、中継器三叉部55aに到達する。中継器三叉部55aに到達した冷媒は、一部はバイパス配管110を流通し、残りは第1逆止弁15bを通過して中継器53から流出するように分流する。中継器53から流出した冷媒は、第2液配管105bから室内ユニット52b内の室内絞り装置6bにおいて減圧され、室内熱交換器5bに流入する。室内熱交換器5bに流入した冷媒は、室内熱交換器5bにおいて、空調対象空間の空気との熱交換により蒸発してガス化し、ガス冷媒となって流出する。これにより、空調対象空間の冷房が行われる。室内熱交換器5bを通過した冷媒は、開状態である第2開閉弁10bを通過する。 The refrigerant flowing into the relay 53 passes through the second check valve 16a, the relay second liquid pipe 113, and the second heat exchanger 14, and reaches the relay trifurcation 55a. A part of the refrigerant that has reached the relay trifurcation 55 a flows through the bypass pipe 110, and the remaining refrigerant flows through the first check valve 15 b and flows out from the relay 53. The refrigerant that has flowed out of the relay unit 53 is depressurized in the indoor expansion device 6b in the indoor unit 52b from the second liquid pipe 105b, and flows into the indoor heat exchanger 5b. The refrigerant flowing into the indoor heat exchanger 5b evaporates and gasifies by heat exchange with the air in the air-conditioning target space in the indoor heat exchanger 5b, and flows out as a gas refrigerant. Thereby, the air-conditioning target space is cooled. The refrigerant that has passed through the indoor heat exchanger 5b passes through the opened second on-off valve 10b.
 第2開閉弁10bを通過した冷媒は、同じく第1ガス配管103に到達するバイパス配管110を流通した冷媒と合流し、第1ガス配管103を流通して中継器53から流出し、室外ユニット51に流入する。室外ユニット51に流入した冷媒は、室外ユニット51の冷媒流れ制御ユニット54において、接続配管130に配置された逆止弁7dを通過して低圧配管101から室外熱交換器2に流入する。室外熱交換器2に流入した冷媒は、室外熱交換器2において熱交換により蒸発しガス化し、流路切替装置3、アキュムレータ4を介して圧縮機1に吸入される。これにより、冷媒による冷媒回路の循環が行われる。 The refrigerant that has passed through the second on-off valve 10b merges with the refrigerant that has passed through the bypass pipe 110 that also reaches the first gas pipe 103, flows out of the repeater 53 through the first gas pipe 103, and the outdoor unit 51. Flow into. In the refrigerant flow control unit 54 of the outdoor unit 51, the refrigerant that has flowed into the outdoor unit 51 passes through the check valve 7 d disposed in the connection pipe 130 and flows into the outdoor heat exchanger 2 from the low-pressure pipe 101. The refrigerant flowing into the outdoor heat exchanger 2 is evaporated and gasified by heat exchange in the outdoor heat exchanger 2, and is sucked into the compressor 1 through the flow path switching device 3 and the accumulator 4. Thereby, the refrigerant circuit is circulated by the refrigerant.
 なお、全暖房運転時、圧縮機1の起動の際にホットガスを中継器53内に流して立ち上がりを改善するため、中継器53の第1絞り装置11が開かれる。また、冷暖同時運転時は、中継器53内の第1絞り装置11前後の圧力差である、圧力P35と圧力P36との圧力差ΔPが、あらかじめ設定された値となるように、第1絞り装置11の開度LEV11が調整される。 During the heating operation, the first throttle device 11 of the relay 53 is opened in order to improve the rise by flowing hot gas into the relay 53 when the compressor 1 is started. Further, during the simultaneous cooling and heating operation, the first throttle is set so that the pressure difference ΔP between the pressure P35 and the pressure P36, which is the pressure difference between the first throttle device 11 in the repeater 53, becomes a preset value. The opening degree LEV11 of the device 11 is adjusted.
 しかし、第1絞り装置11の開度LEV11が大きくなると、第1絞り装置11前後の圧力差ΔPは小さくなる。接続部f、hの圧力は第3圧力センサ35の圧力に近く、接続部e、gは第4圧力センサ36の圧力に近い。そのため、第1絞り装置11の開度LEV11が大きくなると、第1逆止弁15a、15b、及び、第2逆止弁16a、16bの前後の圧力差ΔPaは小さくなる。 However, when the opening degree LEV11 of the first expansion device 11 increases, the pressure difference ΔP before and after the first expansion device 11 decreases. The pressures of the connection parts f and h are close to the pressure of the third pressure sensor 35, and the connection parts e and g are close to the pressure of the fourth pressure sensor 36. Therefore, when the opening degree LEV11 of the first expansion device 11 increases, the pressure difference ΔPa before and after the first check valves 15a and 15b and the second check valves 16a and 16b decreases.
 また、第1逆止弁15a、15b、及び、第2逆止弁16a、16bは、それら前後の圧力差ΔPaが基準値B以上になると弁体が持ち上げられ、冷媒が流れ、基準値B未満の場合は自重で弁体が下がる仕組みになっている。なお、基準値Bの値には、メーカーによる保証値、又は、試験であらかじめ求められた特定の値が使用される。圧力差ΔPaが基準値Bに近づくと、弁体が持ち上げられたり、下がったりを繰り返し、弁体が弁座に衝突する音が連続して発生してしまう。そこで、本実施の形態では、第1逆止弁15a、15b、及び、第2逆止弁16a、16bの振動音を抑制する。 In addition, the first check valves 15a and 15b and the second check valves 16a and 16b are lifted when the pressure difference ΔPa between them becomes equal to or greater than the reference value B, and the refrigerant flows, and is less than the reference value B. In the case of, the valve body is lowered by its own weight. As the reference value B, a guaranteed value by the manufacturer or a specific value obtained in advance by a test is used. When the pressure difference ΔPa approaches the reference value B, the valve body is repeatedly lifted or lowered, and the sound of the valve body colliding with the valve seat is continuously generated. Therefore, in the present embodiment, vibration noise of the first check valves 15a and 15b and the second check valves 16a and 16b is suppressed.
 図6は、本発明の実施の形態に係る空気調和装置100の機能ブロック図である。
 図6に示すように、室外制御器201は、室内制御器202a、202b、及び、中継器制御器203のそれぞれと電気的に接続されている。室外制御器201は、空気調和装置100の制御を統括する主制御器としての機能を備えたものである。また、室外制御器201は、時間の計測を行うためのタイマ(図示せず)を有する。
FIG. 6 is a functional block diagram of the air conditioning apparatus 100 according to the embodiment of the present invention.
As shown in FIG. 6, the outdoor controller 201 is electrically connected to each of the indoor controllers 202 a and 202 b and the repeater controller 203. The outdoor controller 201 has a function as a main controller that controls the air conditioner 100. The outdoor controller 201 has a timer (not shown) for measuring time.
 室外制御器201は、室内制御器202a、202b、及び、中継器制御器203から通知される情報に基づき、室内制御器202a、202b、及び、中継器制御器203のそれぞれに対して指示を決定し、通知する。室外制御器201は、室外ユニット51に設けられた第1圧力センサ31及び第2圧力センサ32が検出した圧力Pd及びPsを取得し、圧縮機1の運転周波数Fa及び室外熱交換器2の容量AKaを制御する。 The outdoor controller 201 determines an instruction for each of the indoor controllers 202a and 202b and the repeater controller 203 based on information notified from the indoor controllers 202a and 202b and the repeater controller 203. And notify. The outdoor controller 201 acquires the pressures Pd and Ps detected by the first pressure sensor 31 and the second pressure sensor 32 provided in the outdoor unit 51, and the operating frequency Fa of the compressor 1 and the capacity of the outdoor heat exchanger 2. Control AKa.
 室内制御器202a、202bは、第1温度センサ33a、33b及び第2温度センサ34a、34bにより温度T33a、T33b及びT34a、T34bを検出し、室外制御器201に通知する。更に、温度T33a、T33b及びT34a、T34bに基づき、室内絞り装置6a、6bのそれぞれの開度LEV6a、LEV6bを算出し、室内絞り装置6a、6bに対して通知する。 The indoor controllers 202a and 202b detect the temperatures T33a and T33b and T34a and T34b with the first temperature sensors 33a and 33b and the second temperature sensors 34a and 34b, and notify the outdoor controller 201 of them. Further, based on the temperatures T33a, T33b and T34a, T34b, the respective openings LEV6a, LEV6b of the indoor expansion devices 6a, 6b are calculated and notified to the indoor expansion devices 6a, 6b.
 中継器制御器203は、室外制御器201の指示に応じて、第1絞り装置11及び第2絞り装置12に対して開度LEV11、LEV12を通知し、第1開閉弁9a、9b及び第2開閉弁10a、10bに対して開閉の指示をする。また、第3圧力センサ35及び第4圧力センサ36が検出したP35及びP36を取得し、第1絞り装置11及び第2絞り装置12に対して開度LEV11、LEV12を指示し、室外制御器201へ通知する。  In response to an instruction from the outdoor controller 201, the repeater controller 203 notifies the first throttle device 11 and the second throttle device 12 of the openings LEV11 and LEV12, and the first on-off valves 9a, 9b and second The on / off valves 10a and 10b are instructed to open and close. Further, P35 and P36 detected by the third pressure sensor 35 and the fourth pressure sensor 36 are acquired, the opening degree LEV11 and LEV12 are instructed to the first expansion device 11 and the second expansion device 12, and the outdoor controller 201 is obtained. To notify. *
 図7は、本発明の実施の形態に係る室内ユニット52aの室内絞り装置6aの開度LEV6aを決定する処理を示す第1のフローチャートである。なお、図7は、室内ユニット52aが冷房運転時の処理を示している。
 室内絞り装置6aの開度LEV6aは、空気調和装置100全体を統括する制御器により制御されるものであり、この例においては、室外制御器201により制御される。図7に示すように、室内ユニット52aの運転が開始されると、室外制御器201は、室内絞り装置6aの開度LEV6aの運転開始時の開度LEV6を取得すると共に、タイマtの計測を開始する。
FIG. 7 is a first flowchart showing a process for determining the opening degree LEV6a of the indoor expansion device 6a of the indoor unit 52a according to the embodiment of the present invention. FIG. 7 shows processing when the indoor unit 52a is in the cooling operation.
The opening degree LEV6a of the indoor expansion device 6a is controlled by a controller that controls the entire air conditioner 100, and is controlled by the outdoor controller 201 in this example. As shown in FIG. 7, when the operation of the indoor unit 52a is started, the outdoor controller 201 acquires the opening degree LEV6 when the opening degree LEV6a of the indoor expansion device 6a starts and measures the timer t. Start.
 ステップS1Aにおいて、室外制御器201は、基準時間tm0が経過したか否かを判断し、基準時間tm0を経過していると判断したら(ステップS1AのYes)、ステップS2Aに移行し、タイマtをゼロにリセットしてステップS3Aに移行する。 In step S1A, the outdoor controller 201 determines whether or not the reference time tm0 has elapsed. If the outdoor controller 201 determines that the reference time tm0 has elapsed (Yes in step S1A), the outdoor controller 201 proceeds to step S2A and sets the timer t. Reset to zero and move to step S3A.
 ステップS3Aにおいて、室外制御器201は、第1温度センサ33a及び第2温度センサ34aにより検出された温度T33a及び温度T34aを取得する。なお、温度T33a及び温度T34aは、冷媒の飽和温度及び冷媒の温度をそれぞれ表している。
 ステップS4Aにおいて、室内制御器202aは、温度T34aと温度T33aとの温度差SHを算出する。
In step S3A, the outdoor controller 201 acquires the temperature T33a and the temperature T34a detected by the first temperature sensor 33a and the second temperature sensor 34a. The temperature T33a and the temperature T34a represent the refrigerant saturation temperature and the refrigerant temperature, respectively.
In step S4A, the indoor controller 202a calculates a temperature difference SH between the temperature T34a and the temperature T33a.
 ステップS5Aにおいて、室外制御器201は、温度差SHとあらかじめ設定された目標値温度差SHmとの差ΔSHを算出する。
 ステップS6Aにおいて、室内制御器202aは、室内絞り装置6aの開度LEV6aの補正値ΔLEV6aを算出する。補正値ΔLEV6aは、例えば、あらかじめ試験などにより係数k1を算出しておき、係数k1と温度差ΔSHとを乗算して求めればよい。
In step S5A, the outdoor controller 201 calculates a difference ΔSH between the temperature difference SH and a preset target value temperature difference SHm.
In step S6A, the indoor controller 202a calculates a correction value ΔLEV6a of the opening degree LEV6a of the indoor expansion device 6a. The correction value ΔLEV6a may be obtained by, for example, calculating the coefficient k1 in advance by a test or the like and multiplying the coefficient k1 and the temperature difference ΔSH.
 ステップS7Aにおいて、室外制御器201は、現在の室内絞り装置6aの開度LEV6aに補正値ΔLEV6aを加えた開度を、新たな室内絞り装置6aの開度LEV6aとして設定する。
 ステップS8Aにおいて、室外制御器201は、基準時間tm1が経過したか否かを判断し、基準時間tm1を経過していると判断したら(ステップS8AのYes)、処理を終了する。処理の終了は、例えば、室内絞り装置6aを全閉などにすればよい。一方、室外制御器201が、基準時間tm1を経過していないと判断したら(ステップS8AのNo)ステップS1Aに戻り、基準時間毎にステップS1A~ステップS8Aまでの処理を繰り返す。
In step S7A, the outdoor controller 201 sets the opening degree obtained by adding the correction value ΔLEV6a to the current opening degree LEV6a of the indoor expansion device 6a as the new opening degree LEV6a of the indoor expansion device 6a.
In step S8A, the outdoor controller 201 determines whether or not the reference time tm1 has elapsed. If it is determined that the reference time tm1 has elapsed (Yes in step S8A), the outdoor controller 201 ends the process. For example, the indoor throttling device 6a may be fully closed. On the other hand, when the outdoor controller 201 determines that the reference time tm1 has not elapsed (No in step S8A), the process returns to step S1A, and the processing from step S1A to step S8A is repeated for each reference time.
 図8は、本発明の実施の形態に係る室内ユニット52aの室内絞り装置6aの開度LEV6aを決定する処理を示す第2のフローチャートである。なお、図8は、室内ユニット52aが暖房運転時の処理を示している。
 室内絞り装置6aの開度LEV6aは、空気調和装置100全体を統括する制御器により制御されるものであり、この例においては、室外制御器201により制御される。図8に示すように、室内ユニット52aの運転が開始されると、室外制御器201は、室内絞り装置6aの開度LEV6aの運転開始時の開度LEV6を取得すると共に、タイマtの計測を開始する。
FIG. 8 is a second flowchart showing a process for determining the opening degree LEV6a of the indoor expansion device 6a of the indoor unit 52a according to the embodiment of the present invention. In addition, FIG. 8 has shown the process at the time of the indoor unit 52a heating operation.
The opening degree LEV6a of the indoor expansion device 6a is controlled by a controller that controls the entire air conditioner 100, and is controlled by the outdoor controller 201 in this example. As shown in FIG. 8, when the operation of the indoor unit 52a is started, the outdoor controller 201 acquires the opening degree LEV6 at the start of the opening degree LEV6a of the indoor expansion device 6a and measures the timer t. Start.
 ステップS1Bにおいて、室外制御器201は、基準時間tm0が経過したか否かを判断し、基準時間tm0を経過していると判断したら(ステップS1BのYes)、ステップS2Bに移行し、タイマtをゼロにリセットしてステップS3Bに移行する。 In step S1B, the outdoor controller 201 determines whether or not the reference time tm0 has elapsed. If it is determined that the reference time tm0 has elapsed (Yes in step S1B), the outdoor controller 201 proceeds to step S2B and sets the timer t. After resetting to zero, the process proceeds to step S3B.
 ステップS3Bにおいて、室外制御器201は、第1温度センサ33a及び第1圧力センサ31により検出された温度T33a及び圧力P31を取得し(ステップS3B1)、圧力P31から飽和温度Tc31を算出する(ステップS3B2)。
 ステップS4Bにおいて、室内制御器202aは、温度T33aと飽和温度Tc31との温度差SCを算出する。
In step S3B, the outdoor controller 201 acquires the temperature T33a and the pressure P31 detected by the first temperature sensor 33a and the first pressure sensor 31 (step S3B1), and calculates the saturation temperature Tc31 from the pressure P31 (step S3B2). ).
In step S4B, the indoor controller 202a calculates a temperature difference SC between the temperature T33a and the saturation temperature Tc31.
 ステップS5Bにおいて、室外制御器201は、温度差SCとあらかじめ設定された目標値温度差SCmとの差ΔSCを算出する。
 ステップS6Bにおいて、室内制御器202aは、室内絞り装置6aの開度LEV6aの補正値ΔLEV6aを算出する。補正値ΔLEV6aは、例えば、あらかじめ試験などにより係数k2を算出しておき、係数k2と温度差ΔSCとを乗算して求めればよい。
In step S5B, the outdoor controller 201 calculates a difference ΔSC between the temperature difference SC and a preset target value temperature difference SCm.
In step S6B, the indoor controller 202a calculates a correction value ΔLEV6a of the opening degree LEV6a of the indoor expansion device 6a. The correction value ΔLEV6a may be obtained by, for example, calculating the coefficient k2 in advance by a test or the like and multiplying the coefficient k2 and the temperature difference ΔSC.
 ステップS7Bにおいて、室外制御器201は、現在の室内絞り装置6aの開度LEV6aに補正値ΔLEV6aを加えた開度を、新たな室内絞り装置6aの開度LEV6aとして設定する。
 ステップS8Bにおいて、室外制御器201は、基準時間tm1が経過したか否かを判断し、基準時間tm1を経過していると判断したら(ステップS8BのYes)、処理を終了する。処理の終了は、例えば、室内絞り装置6aを全閉などにすればよい。一方、室外制御器201が、基準時間tm1を経過していないと判断したら(ステップS8BのNo)ステップS1Bに戻り、基準時間毎にステップS1B~ステップS8Bまでの処理を繰り返す。
In step S7B, the outdoor controller 201 sets the opening degree obtained by adding the correction value ΔLEV6a to the current opening degree LEV6a of the indoor expansion device 6a as the new opening degree LEV6a of the indoor expansion device 6a.
In step S8B, the outdoor controller 201 determines whether or not the reference time tm1 has elapsed. If it is determined that the reference time tm1 has elapsed (Yes in step S8B), the outdoor controller 201 ends the process. For example, the indoor throttling device 6a may be fully closed. On the other hand, if the outdoor controller 201 determines that the reference time tm1 has not elapsed (No in step S8B), the process returns to step S1B, and the processing from step S1B to step S8B is repeated for each reference time.
 以上、室内ユニット52aの室内絞り装置6aの開度LEV6aを決定する処理について説明したが、室内ユニット52bの室内絞り装置6bの開度LEV6bの決定についても、同様の処理によって行われる。 The processing for determining the opening degree LEV6a of the indoor expansion device 6a of the indoor unit 52a has been described above. However, the determination of the opening degree LEV6b of the indoor expansion device 6b of the indoor unit 52b is performed by the same processing.
 図9は、本発明の実施の形態に係る室外制御器201及び中継器制御器203が行う第1逆止弁15a、15b及び第2逆止弁16a、16bの振動音を抑制する制御のフローチャートである。なお、図9は、空気調和装置100の全暖房運転時又は冷暖同時運転時の圧縮機1の起動直後の処理を示している。また、室内絞り装置6a、6bの開度LEV6a、LEV6bは、上述した処理によって決定される。
 図9に示すように、ステップS11において、室外ユニット51の圧縮機1の運転が開始されると、室外制御器201は、タイマtの計測を開始する。
FIG. 9 is a flowchart of control for suppressing vibration noise of the first check valves 15a and 15b and the second check valves 16a and 16b performed by the outdoor controller 201 and the repeater controller 203 according to the embodiment of the present invention. It is. FIG. 9 shows a process immediately after the compressor 1 is started during the all-heating operation or the simultaneous cooling / heating operation of the air-conditioning apparatus 100. Moreover, the opening degree LEV6a and LEV6b of the indoor expansion devices 6a and 6b are determined by the above-described processing.
As shown in FIG. 9, when the operation of the compressor 1 of the outdoor unit 51 is started in step S11, the outdoor controller 201 starts measuring the timer t.
 ステップS12において、中継器制御器203は、第1絞り装置11の開度LEV11をあらかじめ設定された初期開度LEV11iniに設定する。なお、初期開度LEV11iniは、圧力P35とP36との圧力差ΔPが基準値A以上となるような開度であり、あらかじめ試験等で求めておく。 In step S12, the repeater controller 203 sets the opening degree LEV11 of the first throttle device 11 to a preset initial opening degree LEV11ini. The initial opening degree LEV11ini is an opening degree at which the pressure difference ΔP between the pressures P35 and P36 is equal to or greater than the reference value A, and is obtained in advance by a test or the like.
 ステップS13において、室外制御器201は、基準時間tm2が経過したか否かを判断し、基準時間tm2を経過していると判断したら(ステップS13のYes)、ステップS14においてタイマtをリセットし、ステップS15に移行する。 In step S13, the outdoor controller 201 determines whether or not the reference time tm2 has elapsed. If it is determined that the reference time tm2 has elapsed (Yes in step S13), the outdoor controller 201 resets the timer t in step S14, The process proceeds to step S15.
 ステップS15において、中継器制御器203は、第3圧力センサ35により検出された圧力P35と、第4圧力センサ36により検出された圧力P36との圧力差ΔPが、基準値A未満か否かを判断する。中継器制御器203が、圧力差ΔPが基準値A未満であると判断したら(ステップS15のYes)、ステップS16に移行する。一方、中継器制御器203が、圧力差ΔPが基準値A以上であると判断したら(ステップS15のNo)、ステップS25に移行する。 In step S15, the repeater controller 203 determines whether or not the pressure difference ΔP between the pressure P35 detected by the third pressure sensor 35 and the pressure P36 detected by the fourth pressure sensor 36 is less than the reference value A. to decide. When the repeater controller 203 determines that the pressure difference ΔP is less than the reference value A (Yes in step S15), the process proceeds to step S16. On the other hand, if the repeater controller 203 determines that the pressure difference ΔP is greater than or equal to the reference value A (No in step S15), the process proceeds to step S25.
 ステップS16において、中継器制御器203は、現在の第1絞り装置11の開度LEV11に、あらかじめ設定された第1補正値ΔLEV11を加えた開度を、新たな第1絞り装置11の開度LEV11として設定し、ステップS17に移行する。なお、第1補正値ΔLEV11は負の値であり、第1絞り装置11が閉じる方向の値である。そして、第1絞り装置11の開度を下げることで、第1絞り装置11前後の圧力差ΔPが増加する。また、第1補正値ΔLEV11は、あらかじめ試験等で決めておく。 In step S <b> 16, the repeater controller 203 obtains an opening obtained by adding a preset first correction value ΔLEV11 to the current opening LEV <b> 11 of the first expansion device 11, and the new opening of the first expansion device 11. It sets as LEV11 and transfers to step S17. The first correction value ΔLEV11 is a negative value, and is a value in the direction in which the first diaphragm device 11 is closed. And the pressure difference (DELTA) P before and behind the 1st expansion device 11 increases by reducing the opening degree of the 1st expansion device 11. FIG. The first correction value ΔLEV11 is determined in advance by a test or the like.
 ステップS17において、中継器制御器203は、第3圧力センサ35により検出された圧力P35と、第4圧力センサ36により検出された圧力P36との圧力差ΔPが、基準値A未満か否かを判断する。中継器制御器203が、圧力差ΔPが基準値A未満であると判断したら(ステップS17のYes)、ステップS18に移行する。一方、中継器制御器203が、圧力差ΔPが基準値A以上であると判断したら(ステップS17のNo)、ステップS25に移行する。 In step S17, the repeater controller 203 determines whether or not the pressure difference ΔP between the pressure P35 detected by the third pressure sensor 35 and the pressure P36 detected by the fourth pressure sensor 36 is less than the reference value A. to decide. When the repeater controller 203 determines that the pressure difference ΔP is less than the reference value A (Yes in step S17), the process proceeds to step S18. On the other hand, if the repeater controller 203 determines that the pressure difference ΔP is greater than or equal to the reference value A (No in step S17), the process proceeds to step S25.
 ステップS18において、中継器制御器203は、現在の第1絞り装置11の開度LEV11が最小開度LEV11minか否かを判断する。中継器制御器203が、現在の第1絞り装置11の開度LEV11が最小開度LEV11minであると判断したら(ステップS18のYes)、ステップS19に移行する。一方、中継器制御器203が、現在の第1絞り装置11の開度LEV11が最小開度LEV11minでないと判断したら(ステップS18のNo)、ステップS16に戻る。 In step S18, the repeater controller 203 determines whether or not the current opening degree LEV11 of the first throttle device 11 is the minimum opening degree LEV11min. If the repeater controller 203 determines that the current opening degree LEV11 of the first throttle device 11 is the minimum opening degree LEV11min (Yes in step S18), the process proceeds to step S19. On the other hand, if the repeater controller 203 determines that the current opening degree LEV11 of the first throttle device 11 is not the minimum opening degree LEV11min (No in step S18), the process returns to step S16.
 ステップS19において、中継器制御器203は、現在の第2絞り装置12の開度LEV12にあらかじめ設定された第2補正値ΔLEV12を加えた開度を、新たな第2絞り装置12の開度LEV12として設定し、ステップS20に移行する。なお、第2補正値ΔLEV12は正の値であり、第2絞り装置12が開く方向の値である。そして、第2絞り装置12の開度を上げることで、第4圧力センサ36の圧力P36が下がり、P35とP36との圧力差ΔPが大きくなる。また、第2補正値ΔLEV12の値は、試験等であらかじめ決めておく。 In step S19, the repeater controller 203 sets the opening obtained by adding the preset second correction value ΔLEV12 to the current opening LEV12 of the second expansion device 12 as a new opening LEV12 of the second expansion device 12. And the process proceeds to step S20. The second correction value ΔLEV12 is a positive value and is a value in the direction in which the second diaphragm device 12 opens. Then, by increasing the opening degree of the second expansion device 12, the pressure P36 of the fourth pressure sensor 36 decreases, and the pressure difference ΔP between P35 and P36 increases. The value of the second correction value ΔLEV12 is determined in advance by a test or the like.
 ステップS20において、中継器制御器203は、第3圧力センサ35により検出された圧力P35と、第4圧力センサ36により検出された圧力P36との圧力差ΔPが、基準値A未満か否かを判断する。中継器制御器203が、圧力差ΔPが基準値A未満であると判断したら(ステップS20のYes)、ステップS21に移行する。一方、中継器制御器203が、圧力差ΔPが基準値A以上であると判断したら(ステップS20のNo)、ステップS25に移行する。 In step S20, the repeater controller 203 determines whether or not the pressure difference ΔP between the pressure P35 detected by the third pressure sensor 35 and the pressure P36 detected by the fourth pressure sensor 36 is less than the reference value A. to decide. When the repeater controller 203 determines that the pressure difference ΔP is less than the reference value A (Yes in step S20), the process proceeds to step S21. On the other hand, if the repeater controller 203 determines that the pressure difference ΔP is greater than or equal to the reference value A (No in step S20), the process proceeds to step S25.
 ステップS21において、中継器制御器203は、現在の第2絞り装置12の開度LEV12が最大開度LEV12maxか否かを判断する。中継器制御器203が、現在の第2絞り装置12の開度LEV12が最大開度LEV12maxであると判断したら(ステップS21のYes)、ステップS22に移行する。一方、中継器制御器203が、現在の第2絞り装置12の開度LEV12が最大開度LEV12maxでないと判断したら(ステップS21のNo)、ステップS19に戻る。 In step S21, the repeater controller 203 determines whether or not the current opening degree LEV12 of the second expansion device 12 is the maximum opening degree LEV12max. When the repeater controller 203 determines that the current opening degree LEV12 of the second expansion device 12 is the maximum opening degree LEV12max (Yes in step S21), the process proceeds to step S22. On the other hand, if the repeater controller 203 determines that the current opening degree LEV12 of the second expansion device 12 is not the maximum opening degree LEV12max (No in step S21), the process returns to step S19.
 ステップS22において、室外制御器201は、現在の圧縮機1の運転周波数Faに、あらかじめ設定された第3補正値ΔFaを加えた運転周波数を、新たな圧縮機1の運転周波数Faとして設定し、ステップS23に移行する。圧縮機1の運転周波数が増加することで、高圧側圧力が増加し、低圧側圧力が低下する。すなわち、P35は増加し、P36が低下するため、圧力差ΔPが増加する。なお、第3補正値ΔFaの値は、試験等であらかじめ決めておく。 In step S22, the outdoor controller 201 sets an operation frequency obtained by adding a preset third correction value ΔFa to the current operation frequency Fa of the compressor 1 as an operation frequency Fa of the new compressor 1, Control goes to step S23. As the operating frequency of the compressor 1 increases, the high-pressure side pressure increases and the low-pressure side pressure decreases. That is, since P35 increases and P36 decreases, the pressure difference ΔP increases. Note that the value of the third correction value ΔFa is determined in advance by a test or the like.
 ステップS23において、中継器制御器203は、第3圧力センサ35により検出された圧力P35と、第4圧力センサ36により検出された圧力P36との圧力差ΔPが、基準値A未満か否かを判断する。中継器制御器203が、圧力差ΔPが基準値A未満であると判断したら(ステップS23のYes)、ステップS24に移行する。一方、中継器制御器203が、圧力差ΔPが基準値A以上であると判断したら(ステップS23のNo)、ステップS25に移行する。 In step S23, the relay controller 203 determines whether or not the pressure difference ΔP between the pressure P35 detected by the third pressure sensor 35 and the pressure P36 detected by the fourth pressure sensor 36 is less than the reference value A. to decide. When the repeater controller 203 determines that the pressure difference ΔP is less than the reference value A (Yes in step S23), the process proceeds to step S24. On the other hand, when the repeater controller 203 determines that the pressure difference ΔP is greater than or equal to the reference value A (No in step S23), the process proceeds to step S25.
 ステップS24において、室外制御器201は、現在の圧縮機1の運転周波数Faが最大運転周波数Famaxか否かを判断する。室外制御器201が、現在の圧縮機1の運転周波数Faが最大運転周波数Famaxであると判断したら(ステップS24のYes)、ステップS25に移行する。一方、室外制御器201が、現在の圧縮機1の運転周波数Faが最大運転周波数Famaxでないと判断したら(ステップS24のNo)、ステップS22に戻る。 In step S24, the outdoor controller 201 determines whether or not the current operation frequency Fa of the compressor 1 is the maximum operation frequency Famax. If the outdoor controller 201 determines that the current operating frequency Fa of the compressor 1 is the maximum operating frequency Famax (Yes in step S24), the process proceeds to step S25. On the other hand, if the outdoor controller 201 determines that the current operating frequency Fa of the compressor 1 is not the maximum operating frequency Famax (No in step S24), the process returns to step S22.
 ステップS25において、室外制御器201は、基準時間tm3が経過したか否かを判断し、基準時間tm3を経過していると判断したら(ステップS25のYes)、処理を終了する。処理の終了は、例えば、圧縮機1の運転周波数Fa、第1絞り装置11の開度LEV11、及び、第2絞り装置12の開度LEV12を戻せばよい。一方、室外制御器201が、基準時間tm3を経過してないと判断したら(ステップS25のNo)、ステップS13に戻り、一定時間毎にステップS13~ステップS25までの処理を繰り返す。なお、ステップS25において、室外制御器201は、圧力P35とP36との圧力差ΔPがあらかじめ設定された値未満か否かで判断するようにしてもよい。 In step S25, the outdoor controller 201 determines whether or not the reference time tm3 has elapsed. If it is determined that the reference time tm3 has elapsed (Yes in step S25), the outdoor controller 201 ends the process. For example, the operation frequency Fa of the compressor 1, the opening degree LEV11 of the first expansion device 11, and the opening degree LEV12 of the second expansion device 12 may be returned to end the processing. On the other hand, when the outdoor controller 201 determines that the reference time tm3 has not elapsed (No in step S25), the process returns to step S13, and the processes from step S13 to step S25 are repeated at regular intervals. In step S25, the outdoor controller 201 may determine whether or not the pressure difference ΔP between the pressures P35 and P36 is less than a preset value.
 このように、本実施の形態に係る空気調和装置100では、圧縮機1の起動時に中継器53の第1絞り装置11の開度LEV11をあらかじめ設定された初期開度LEV11iniで運転開始することで、第1逆止弁15a、15b、及び、第2逆止弁16a、16b前後の圧力差をつけて運転することができる。そのため、第1逆止弁15a、15b、及び、第2逆止弁16a、16bの弁体が振動して弁体が弁座に衝突する音が連続して発生するのを抑えて起動することができるため、不快な振動音を出さずに運転することができる。 As described above, in the air conditioner 100 according to the present embodiment, when the compressor 1 is started, the opening degree LEV11 of the first expansion device 11 of the relay 53 is started at the preset initial opening degree LEV11ini. The first check valves 15a and 15b and the second check valves 16a and 16b can be operated with a pressure difference before and after. For this reason, the valve elements of the first check valves 15a and 15b and the second check valves 16a and 16b vibrate so that the sound that the valve elements collide with the valve seat is continuously generated is started. Therefore, it is possible to drive without making an unpleasant vibration sound.
 また、運転中に第1絞り装置11の開度LEV11、第2絞り装置12の開度LEV12、及び、圧縮機1の運転周波数Faを、P35、P36の圧力差ΔPが基準値A以上に保たれるように調整する。そうすることで、第1逆止弁15a、15b、及び、第2逆止弁16a、16bの弁体が振動して弁体が弁座に衝突する音が連続して発生するのを抑えることができるため、不快な振動音を出さずに運転することができる。 Further, during operation, the opening degree LEV11 of the first throttle device 11, the opening degree LEV12 of the second throttle device 12, and the operating frequency Fa of the compressor 1 are maintained such that the pressure difference ΔP between P35 and P36 is greater than or equal to the reference value A. Adjust so that it leans. By doing so, the valve elements of the first check valves 15a and 15b and the second check valves 16a and 16b vibrate to suppress the continuous generation of the sound of the valve elements colliding with the valve seat. Therefore, it is possible to drive without making an unpleasant vibration sound.
 図9では、制御の開始が圧縮機1の起動時として示したが、一度制御が終了した後の空調機が運転中でも、ステップS13から制御を開始することで、振動音の発生を抑えることができる。 In FIG. 9, the start of the control is shown as when the compressor 1 is started. However, even if the air conditioner after the control is once ended, the control is started from step S <b> 13 to suppress the generation of vibration noise. it can.
 本実施の形態に係る空気調和装置によれば、室外ユニット51の室外制御器201により、空気調和装置100の動作全体が統括される。
 なお、本実施の形態では、空気調和装置100の動作を制御する制御器として、室外制御器201、室内制御器202a、202b、及び、中継器制御器203の3種類を備えているが、それに限定されず、3種類より少なくてもよいし、3種類より多くてもよい。また、室外制御器201及び中継器制御器203は、本発明の「制御器」の一例である。
According to the air conditioner according to the present embodiment, the overall operation of the air conditioner 100 is controlled by the outdoor controller 201 of the outdoor unit 51.
In the present embodiment, the controller for controlling the operation of the air conditioner 100 includes three types of the outdoor controller 201, the indoor controllers 202a and 202b, and the repeater controller 203. It is not limited and may be less than three types and may be more than three types. The outdoor controller 201 and the repeater controller 203 are examples of the “controller” in the present invention.
 1 圧縮機、2 室外熱交換器、3 流路切替装置、4 アキュムレータ、5a 室内熱交換器、5b 室内熱交換器、6a 室内絞り装置、6b 室内絞り装置、7a 逆止弁、7b 逆止弁、7c 逆止弁、7d 逆止弁、8 気液分離器、9a 第1開閉弁、9b 第1開閉弁、10a 第2開閉弁、10b 第2開閉弁、11 第1絞り装置、12 第2絞り装置、13 第1熱交換器、14 第2熱交換器、15a 第1逆止弁、15b 第1逆止弁、16a 第2逆止弁、16b 第2逆止弁、20 第1分岐部、21 第2分岐部、31 第1圧力センサ、32 第2圧力センサ、33a 第1温度センサ、33b 第1温度センサ、34a 第2温度センサ、34b 第2温度センサ、35 第3圧力センサ、36 第4圧力センサ、51 室外ユニット、52a 室内ユニット、52b 室内ユニット、53 中継器、54 制御ユニット、55a 中継器三叉部、55b 中継器三叉部、100 空気調和装置、101 低圧配管、102 高圧配管、103 第1ガス配管、104 第1液配管、105a 第2液配管、105b 第2液配管、106a 第2ガス配管、106b 第2ガス配管、110 バイパス配管、111 中継器第1液配管、112 中継器ガス配管、113 中継器第2液配管、130 接続配管、131 接続配管、132 接続配管、133 接続配管、201 室外制御器、202a 室内制御器、202b 室内制御器、203 中継器制御器。 1 compressor, 2 outdoor heat exchanger, 3 flow switching device, 4 accumulator, 5a indoor heat exchanger, 5b indoor heat exchanger, 6a indoor expansion device, 6b indoor expansion device, 7a check valve, 7b check valve 7c check valve, 7d check valve, 8 gas-liquid separator, 9a first on-off valve, 9b first on-off valve, 10a second on-off valve, 10b second on-off valve, 11 first throttling device, 12 second Throttle device, 13 1st heat exchanger, 14 2nd heat exchanger, 15a 1st check valve, 15b 1st check valve, 16a 2nd check valve, 16b 2nd check valve, 20 1st branch , 21 2nd branch part, 31 1st pressure sensor, 32 2nd pressure sensor, 33a 1st temperature sensor, 33b 1st temperature sensor, 34a 2nd temperature sensor, 34b 2nd temperature sensor, 35 3rd pressure sensor, 36 4th Force sensor, 51 outdoor unit, 52a indoor unit, 52b indoor unit, 53 repeater, 54 control unit, 55a repeater trident, 55b repeater trident, 100 air conditioner, 101 low pressure piping, 102 high pressure piping, 103rd 1 gas piping, 104 first liquid piping, 105a second liquid piping, 105b second liquid piping, 106a second gas piping, 106b second gas piping, 110 bypass piping, 111 repeater first liquid piping, 112 relay gas Pipe, 113 relay second liquid pipe, 130 connection pipe, 131 connection pipe, 132 connection pipe, 133 connection pipe, 201 outdoor controller, 202a indoor controller, 202b indoor controller, 203 relay controller.

Claims (5)

  1.  圧縮機、流路切替装置、及び、室外熱交換器を有する室外ユニットと、
     室内熱交換器及び室内絞り装置を有する複数の室内ユニットと、
     前記室外ユニットと前記室内ユニットとの間に設けられ、前記室内ユニットの運転状態に応じて前記室内ユニットに流入させる冷媒の流れを制御する中継器と、を備え、
     前記室内ユニットのそれぞれが冷房運転又は暖房運転を選択的に行うことができる冷暖同時運転が可能な空気調和装置であって、
     前記中継器は、
     前記室外ユニットに第1冷媒配管及び第2冷媒配管を介して接続され、
     前記室内ユニットにおける前記室内熱交換器の冷媒出入口の一方を前記第1冷媒配管又は気液分離器を介して前記第2冷媒配管に選択的に接続する開閉弁を有する第1分岐部と、
     前記室内ユニットにおける前記室内熱交換器の冷媒出入口の他方が冷媒入口となるとき第1絞り装置を介して前記気液分離器に接続し、前記室内ユニットにおける前記室内熱交換器の冷媒出入口の他方が冷媒出口となるとき前記第1絞り装置の出口側に接続する逆止弁を有する第2分岐部と、
     前記圧縮機の起動時に、前記第1絞り装置の前後の圧力差が基準値以上となる初期開度を、前記第1絞り装置の開度として設定する制御器と、を備えた
     空気調和装置。
    An outdoor unit having a compressor, a flow path switching device, and an outdoor heat exchanger;
    A plurality of indoor units having an indoor heat exchanger and an indoor expansion device;
    A relay that is provided between the outdoor unit and the indoor unit, and that controls a flow of refrigerant that flows into the indoor unit according to an operating state of the indoor unit;
    Each of the indoor units is an air conditioner capable of simultaneous cooling and heating capable of selectively performing cooling operation or heating operation,
    The repeater is
    Connected to the outdoor unit via a first refrigerant pipe and a second refrigerant pipe;
    A first branch part having an on-off valve that selectively connects one of the refrigerant inlets and outlets of the indoor heat exchanger in the indoor unit to the second refrigerant pipe via the first refrigerant pipe or a gas-liquid separator;
    When the other refrigerant inlet / outlet of the indoor heat exchanger in the indoor unit is a refrigerant inlet, the refrigerant is connected to the gas / liquid separator via a first expansion device, and the other refrigerant inlet / outlet of the indoor heat exchanger in the indoor unit is connected. A second branch portion having a check valve connected to the outlet side of the first throttling device when the refrigerant outlet becomes,
    An air conditioner comprising: a controller that sets, as the opening of the first throttling device, an initial opening at which a pressure difference before and after the first throttling device is greater than or equal to a reference value when the compressor is started.
  2.  前記中継器は、
     前記第1絞り装置の前後の圧力差を検出する圧力センサを備え、
     前記制御器は、
     前記初期開度を、前記第1絞り装置の開度として設定した後、
     前記圧力センサが検出した圧力差が前記基準値未満である場合は、現在の前記第1絞り装置の開度に、閉じる方向の値である予め設定された第1補正値を加えた開度を、新たな前記第1絞り装置の開度として設定する
     請求項1に記載の空気調和装置。
    The repeater is
    A pressure sensor for detecting a pressure difference before and after the first throttle device;
    The controller is
    After setting the initial opening as the opening of the first throttle device,
    When the pressure difference detected by the pressure sensor is less than the reference value, an opening obtained by adding a preset first correction value, which is a value in the closing direction, to the current opening of the first throttle device. The air conditioner according to claim 1, wherein the air conditioner is set as a new opening degree of the first throttle device.
  3.  前記中継器は、
     一端が前記第2分岐部の入口側に接続され、他端が第2絞り装置を介して前記第1冷媒配管に接続されたバイパス配管を備え、
     前記制御器は、
     現在の前記第1絞り装置の開度に、前記第1補正値を加えた開度を、新たな前記第1絞り装置の開度として設定した後、
     前記圧力センサが検出した圧力差が前記基準値未満であり、かつ、現在の前記第1絞り装置の開度が最小開度である場合は、現在の前記第2絞り装置の開度に、開く方向の値である予め設定された第2補正値を加えた開度を、新たな前記第2絞り装置の開度として設定し、
     前記圧力センサが検出した圧力差が前記基準値未満であり、かつ、現在の前記第1絞り装置の開度が最小開度でない場合は、現在の前記第1絞り装置の開度に、前記第1補正値を加えた開度を、新たな前記第1絞り装置の開度として設定する
     請求項2に記載の空気調和装置。
    The repeater is
    One end is connected to the inlet side of the second branch portion, and the other end includes a bypass pipe connected to the first refrigerant pipe via a second expansion device,
    The controller is
    After setting the opening obtained by adding the first correction value to the current opening of the first throttle device as the new opening of the first throttle device,
    When the pressure difference detected by the pressure sensor is less than the reference value and the current opening of the first expansion device is the minimum opening, the current opening of the second expansion device is opened. An opening degree obtained by adding a preset second correction value that is a value of a direction is set as an opening degree of the new second expansion device,
    If the pressure difference detected by the pressure sensor is less than the reference value and the current opening of the first expansion device is not the minimum opening, the current opening of the first expansion device is The air conditioning apparatus according to claim 2, wherein an opening degree to which one correction value is added is set as a new opening degree of the first throttle device.
  4.  前記制御器は、
     現在の前記第2絞り装置の開度に、前記第2補正値を加えた開度を、新たな前記第2絞り装置の開度として設定した後、
     前記圧力センサが検出した圧力差が前記基準値未満であり、かつ、現在の前記第2絞り装置の開度が最大開度である場合は、現在の前記圧縮機の運転周波数に、予め設定された第3補正値を加えた運転周波数を、新たな前記圧縮機の運転周波数として設定し、
     前記圧力センサが検出した圧力差が前記基準値未満であり、かつ、現在の前記第2絞り装置の開度が最大開度でない場合は、現在の前記第2絞り装置の開度に、前記第2補正値を加えた開度を、新たな前記第2絞り装置の開度として設定する
     請求項3に記載の空気調和装置。
    The controller is
    After setting the opening obtained by adding the second correction value to the current opening of the second throttle device as a new opening of the second throttle device,
    When the pressure difference detected by the pressure sensor is less than the reference value and the current opening of the second expansion device is the maximum opening, the current operating frequency of the compressor is set in advance. The operation frequency to which the third correction value is added is set as the operation frequency of the new compressor,
    If the pressure difference detected by the pressure sensor is less than the reference value and the current opening of the second expansion device is not the maximum opening, the current opening of the second expansion device is The air conditioning apparatus according to claim 3, wherein an opening degree to which two correction values are added is set as a new opening degree of the second throttle device.
  5.  前記制御器は、
     現在の前記圧縮機の運転周波数に、前記第3補正値を加えた運転周波数を、新たな前記圧縮機の運転周波数として設定した後、
     前記圧力センサが検出した圧力差が前記基準値未満であり、かつ、現在の前記圧縮機の運転周波数が最大運転周波数でない場合は、現在の前記圧縮機の運転周波数に、前記第3補正値を加えた運転周波数を、新たな前記圧縮機の運転周波数として設定する
     請求項4に記載の空気調和装置。
    The controller is
    After setting the operating frequency obtained by adding the third correction value to the current operating frequency of the compressor as a new operating frequency of the compressor,
    When the pressure difference detected by the pressure sensor is less than the reference value and the current operating frequency of the compressor is not the maximum operating frequency, the third correction value is set to the current operating frequency of the compressor. The air conditioning apparatus according to claim 4, wherein the added operation frequency is set as a new operation frequency of the compressor.
PCT/JP2016/088831 2016-12-27 2016-12-27 Air conditioner WO2018122943A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018558549A JP6785880B2 (en) 2016-12-27 2016-12-27 Air conditioner
PCT/JP2016/088831 WO2018122943A1 (en) 2016-12-27 2016-12-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/088831 WO2018122943A1 (en) 2016-12-27 2016-12-27 Air conditioner

Publications (1)

Publication Number Publication Date
WO2018122943A1 true WO2018122943A1 (en) 2018-07-05

Family

ID=62707096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088831 WO2018122943A1 (en) 2016-12-27 2016-12-27 Air conditioner

Country Status (2)

Country Link
JP (1) JP6785880B2 (en)
WO (1) WO2018122943A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228407A1 (en) * 2022-05-27 2023-11-30 三菱電機株式会社 Air conditioning device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075864U (en) * 1983-10-27 1985-05-28 株式会社東芝 air conditioner
JPH04251158A (en) * 1990-12-28 1992-09-07 Daikin Ind Ltd Operation control device for refrigerating device
WO2014106901A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Air conditioner device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175866A (en) * 1981-04-22 1982-10-28 Hitachi Ltd Cooler for automobile
JPH0210059A (en) * 1988-06-28 1990-01-12 Toshiba Corp Manufacture of refrigerating cycle
JP5826722B2 (en) * 2012-07-23 2015-12-02 日立アプライアンス株式会社 Dual refrigeration equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075864U (en) * 1983-10-27 1985-05-28 株式会社東芝 air conditioner
JPH04251158A (en) * 1990-12-28 1992-09-07 Daikin Ind Ltd Operation control device for refrigerating device
WO2014106901A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Air conditioner device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228407A1 (en) * 2022-05-27 2023-11-30 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
JP6785880B2 (en) 2020-11-18
JPWO2018122943A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
US9068766B2 (en) Air-conditioning and hot water supply combination system
WO2017203606A1 (en) Air conditioner
EP2889554A1 (en) Air conditioning system and method of controlling the same
WO2005019742A1 (en) Freezing apparatus
WO2008032645A1 (en) Refrigeration device
WO2008032568A1 (en) Refrigeration device
WO2017208342A1 (en) Air conditioning device
JP6880204B2 (en) Air conditioner
US11874039B2 (en) Refrigeration cycle apparatus
JP2008157557A (en) Air-conditioning system
GB2524184B (en) Air conditioning apparatus
WO2008032581A1 (en) Refrigeration device
WO2018122943A1 (en) Air conditioner
JP5537906B2 (en) Air conditioner
WO2017119105A1 (en) Air-conditioning device
GB2567332A (en) Air conditioning device
JP2718308B2 (en) Air conditioner
JP2008209021A (en) Multi-air conditioner
JP2001248919A (en) Air conditioner
JP6638446B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JPH05187739A (en) Air conditioner
JP2525927B2 (en) Air conditioner
JP5877632B2 (en) Air conditioner
JPH04347466A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925237

Country of ref document: EP

Kind code of ref document: A1