WO2023228407A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2023228407A1
WO2023228407A1 PCT/JP2022/021747 JP2022021747W WO2023228407A1 WO 2023228407 A1 WO2023228407 A1 WO 2023228407A1 JP 2022021747 W JP2022021747 W JP 2022021747W WO 2023228407 A1 WO2023228407 A1 WO 2023228407A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormal noise
refrigerant
control
compressor
air conditioner
Prior art date
Application number
PCT/JP2022/021747
Other languages
French (fr)
Japanese (ja)
Inventor
真貴 杉山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/021747 priority Critical patent/WO2023228407A1/en
Publication of WO2023228407A1 publication Critical patent/WO2023228407A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/40Noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present disclosure relates to an air conditioner that avoids the generation of abnormal noise.
  • Air conditioning equipment varies depending on the property in which it is installed, such as the piping length and the height difference between the indoor unit and the outdoor unit, so even if the same model is operated in the same way, intermittent problems that may not occur in a certain property may occur.
  • Strange noises may occur in other properties. These noises are caused by pressure differences or sudden pressure increases within the pipes, but the cause of the noise and the size of the noise vary depending on the property. Additionally, the effectiveness of air conditioning and heating may vary depending on the property.
  • Patent Document 1 discloses an air conditioning system that is equipped with an acoustic sensor or a vibration sensor and, when the occurrence of abnormal noise is detected, eliminates the generated abnormal noise.
  • Patent Document 1 merely eliminates the abnormal noise after the fact every time the occurrence of the abnormal noise is detected. In other words, Patent Document 1 does not suppress the generation of abnormal noise itself.
  • the present disclosure is intended to solve the above problems, and aims to provide an air conditioner in which the generation of abnormal noise is suppressed.
  • An air conditioner includes a compressor that compresses a refrigerant, a condenser that performs heat exchange between the refrigerant and air and condenses the refrigerant, and a condenser that has a changeable opening degree and that depressurizes the refrigerant.
  • a set of control patterns that generate noise of a magnitude equal to or greater than a threshold value at the time of transition is avoided as an avoidance target.
  • the air conditioner of the present disclosure avoids a control pattern that generates abnormal noise of a magnitude greater than a threshold value. Therefore, the air conditioner can suppress the generation of abnormal noise.
  • FIG. 1 is a circuit diagram showing an air conditioner according to Embodiment 1.
  • FIG. 1 is a functional block diagram of an air conditioner according to Embodiment 1.
  • FIG. 1 is a hardware configuration diagram showing an example of a configuration of a control device according to a first embodiment;
  • FIG. 1 is a hardware configuration diagram showing an example of a configuration of a control device according to a first embodiment;
  • FIG. 3 is a diagram illustrating an example of a normal pattern and an avoidance target pattern according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of an avoidance target transition pair according to the first embodiment.
  • 3 is a flowchart showing the operation of the control device according to the first embodiment.
  • 3 is a flowchart showing the operation of the control device according to the first embodiment.
  • FIG. 7 is a diagram showing an example of a normal pattern and an avoidance target pattern according to the second embodiment.
  • FIG. 7 is a diagram showing an example of a normal pattern and an avoidance target pattern according to the second embodiment.
  • FIG. 7 is a diagram showing a correspondence relationship between causes of abnormal noise and control patterns according to Embodiment 3; 7 is a flowchart showing the operation of the control device according to Embodiment 3.
  • FIG. 7 is a circuit diagram showing an air conditioner according to a fourth embodiment.
  • FIG. 3 is a functional block diagram of an air conditioner according to a fourth embodiment. 7 is a flowchart showing the operation of the control device according to the fourth embodiment.
  • FIG. 7 is a functional block diagram of an air conditioner according to Embodiment 5.
  • FIG. 12 is a flowchart showing the operation of the control device according to the fifth embodiment. 12 is a flowchart showing the operation of the control device according to Embodiment 6.
  • FIG. 3 is a circuit diagram showing an air conditioner according to
  • FIG. 1 is a circuit diagram of an air conditioner 100 according to the first embodiment.
  • the air conditioner 100 of Embodiment 1 performs air conditioning of a plurality of spaces to be air-conditioned, such as an indoor room in a building such as a building.
  • the air conditioner 100 includes an outdoor unit 1 and a plurality of indoor units 2a to 2c. Note that the number of indoor units 2 may be two or less or four or more.
  • the outdoor unit 1 is installed outside the air-conditioned space, for example.
  • the indoor units 2a to 2c of the air conditioner 100 supply hot or cold heat to an air-conditioned space using a refrigerant supplied from the outdoor unit 1.
  • the indoor units 2a to 2c are installed, for example, in an air-conditioned space and perform cooling or heating.
  • the indoor units 2a to 2c are connected to the outdoor unit 1 by refrigerant pipes 3 and 4 through which refrigerant flows.
  • the refrigerant pipes 3 and 4 are branched to each of the indoor units 2a to 2c. Therefore, each of the indoor units 2a to 2c is connected to the outdoor unit 1 in parallel.
  • the outdoor unit 1 includes a compressor 11, a flow path switching valve 12, an outdoor heat exchanger 13, an accumulator 14, a fan 15, an outdoor pipe 16, and a control device 19.
  • the compressor 11 takes in a low-temperature, low-pressure gas refrigerant, compresses it, and discharges a high-temperature, high-pressure gas refrigerant.
  • the compressor 11 is, for example, an inverter type compressor whose capacity can be controlled by adjusting the operating frequency.
  • the flow path switching valve 12 is, for example, a four-way valve.
  • the flow path switching valve 12 switches the flow path of the refrigerant discharged from the compressor 11 according to the operation of the indoor units 2a to 2c.
  • the flow path switching valve 12 switches the flow path to connect the discharge side of the compressor 11 and the outdoor heat exchanger 13 during cooling operation, and connects the suction side of the compressor 11 and the outdoor heat exchanger 13 during heating operation. Switch to the flow path connected via the accumulator 14.
  • the flow path switching valve 12 may be a combination of a three-way valve or a two-way valve.
  • the outdoor heat exchanger 13 is, for example, a fin-tube heat exchanger.
  • the outdoor heat exchanger 13 exchanges heat between air supplied by the fan 15 and a refrigerant.
  • the outdoor heat exchanger 13 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant.
  • the outdoor heat exchanger 13 functions as an evaporator during heating operation, and evaporates and gasifies the refrigerant.
  • the accumulator 14 is provided on the suction side of the compressor 11 and has a function of separating liquid refrigerant and gas refrigerant and a function of storing surplus refrigerant.
  • the fan 15 is, for example, a propeller fan.
  • the fan 15 supplies air around the outdoor unit 1 to the outdoor heat exchanger 13.
  • the rotation speed of the fan 15 is controlled by, for example, an inverter.
  • the outdoor pipe 16 is a pipe inside the casing (not shown) of the outdoor unit 1.
  • the outdoor piping 16 connects the compressor 11 , the flow path switching valve 12 , the outdoor heat exchanger 13 , and the accumulator 14 .
  • An end of the outdoor pipe 16 on the flow path switching valve 12 side is connected to the refrigerant pipe 3.
  • the end of the outdoor pipe 16 on the outdoor heat exchanger 13 side is connected to the refrigerant pipe 4.
  • the control device 19 is stored inside the outdoor unit 1, for example.
  • the control device 19 controls the operation of each device of the air conditioner 100.
  • the specific configuration of the control device 19 and the details of the control will be described later.
  • the indoor units 2a to 2c supply heat generated by the outdoor unit 1 to the cooling load or heating load of the space to be air-conditioned.
  • the indoor unit 2 includes an indoor heat exchanger 21a, a pressure reducing valve 22a, and indoor piping 23a.
  • the indoor heat exchanger 21a is, for example, a fin-tube heat exchanger.
  • the indoor heat exchanger 21a exchanges heat between the air in the air-conditioned space and the refrigerant.
  • the indoor heat exchanger 21a functions as a condenser during heating operation, and condenses and liquefies the refrigerant.
  • the indoor heat exchanger 21a functions as an evaporator during cooling operation, and evaporates and gasifies the refrigerant.
  • the pressure reducing valve 22a is, for example, an electronic expansion valve whose opening degree is variably controlled.
  • the pressure reducing valve 22a is connected in series with the indoor heat exchanger 21a, and depressurizes and expands the refrigerant flowing out from the indoor heat exchanger 21a or the refrigerant flowing into the indoor heat exchanger 21.
  • the indoor pipe 23a is a pipe inside the casing (not shown) of the indoor unit 2.
  • Indoor piping 23a connects indoor heat exchanger 21a and pressure reducing valve 22a.
  • An end of the indoor pipe 23 a on the indoor heat exchanger 21 a side is connected to the refrigerant pipe 3 .
  • the end of the indoor pipe 23a on the pressure reducing valve 22a side is connected to the refrigerant pipe 4.
  • Each configuration of the indoor units 2 and 2c is the same as that of the indoor unit 2. That is, the indoor unit 2 includes an indoor heat exchanger 21b, a pressure reducing valve 22b, and indoor piping 23b. Similarly, the indoor unit 2 includes an indoor heat exchanger 21c, a pressure reducing valve 22c, and indoor piping 23c.
  • the configurations of the indoor units 2 and 2c are also similar to the configurations of the indoor unit 2, so description thereof will be omitted. Note that in the following description, the subscripts "a”, “b”, and “c” may be omitted when the indoor units 2a to 2c and the respective configurations of the indoor units 2a to 2c are not distinguished.
  • Compressor 11, flow path switching valve 12, outdoor heat exchanger 13, and accumulator 14 are connected to indoor heat exchangers 21a to 21c and pressure reducing valves 22a to 22c by outdoor piping 16 and indoor piping 23a to 24c.
  • the refrigerant circuit 5 is configured by this.
  • An abnormal noise detection device 61 is attached to the refrigerant pipe 3.
  • the abnormal noise detection device 61 detects abnormal noise generated in the refrigerant pipe 3.
  • Abnormal noises are broadly classified into the following types: The first is the sound generated by the gas-liquid two-phase refrigerant in the pipes. The second is the sound caused by the piping vibrating due to resonance. Thirdly, there is a sound caused by a sudden change in the opening degree of the pressure reducing valve 22. Each of these noises has its own characteristics. For example, the first abnormal noise caused by the gas-liquid two-phase refrigerant in the pipe sounds like a gurgling sound. Further, the third abnormal noise caused by a sudden change in the opening degree of the pressure reducing valve 22 sounds like a thud.
  • the specific configuration of the abnormal noise detection device 61 and the method of detecting abnormal noise are not particularly limited.
  • the abnormal noise detection device 61 includes, for example, either or both of an acoustic sensor that detects sounds generated in the refrigerant pipe 3 and a vibration sensor that detects vibrations generated in the refrigerant pipe 3.
  • the abnormal noise detection device 61 detects, as abnormal noises, sounds having a specific frequency or having a specific waveform among the sounds generated by the refrigerant pipe 3 .
  • the abnormal sound detection device 61 may detect all sounds of a predetermined loudness or higher as abnormal sounds.
  • the abnormal noise detection device 61 transmits to the control device 19 a detection result including information indicating the magnitude and time of detection of the detected abnormal noise.
  • a temperature sensor 62 and a pressure sensor 63 are attached to the refrigerant pipe 3.
  • the temperature sensor 62 measures the temperature of the refrigerant pipe 3 , that is, the temperature of the refrigerant flowing through the refrigerant pipe 3 .
  • Temperature sensor 62 transmits information indicating the detected refrigerant temperature to control device 19 .
  • the pressure sensor 63 and the temperature sensor 62 measure the pressure of the refrigerant flowing through the refrigerant pipe 3 .
  • Pressure sensor 63 transmits information indicating the detected refrigerant pressure to control device 19 .
  • FIG. 2 is a functional block diagram of the air conditioner 100 according to the first embodiment.
  • the control device 19 controls the compressor 11, fan 15, and controls the operation of the pressure reducing valve 22. Specifically, the control device 19 controls the operating frequency of the compressor 11, the frequency of the fan 15, and the opening degree of the pressure reducing valve 22.
  • the control device 19 includes an acquisition section 71, a determination section 72, and a control section 73 as functional sections.
  • the control device 19 also includes a storage section 81 .
  • the storage unit 81 is a nonvolatile memory included in the control device 19.
  • FIG. 3 is a hardware configuration diagram showing an example of the configuration of the control device 19 according to the first embodiment.
  • the control device 19 is configured with a processing circuit 91, as shown in FIG.
  • the functions of the acquisition section 71, determination section 72, and control section 73 shown in FIG. 2 are realized by the processing circuit 91.
  • the processing circuit 91 When each function is executed by hardware, the processing circuit 91 is, for example, a single circuit, a composite circuit, a programmed processor 92, a parallel programmed processor 92, an ASIC (Application Specific Integrated Circuit), an FPGA (Field- Programmable Gate Array) or a combination of these.
  • Each of the functions of the acquisition section 71, the determination section 72, and the control section 73 may be implemented by the processing circuit 91. Further, the functions of the acquisition section 71, the determination section 72, and the control section 73 may be realized by one processing circuit 91.
  • FIG. 4 is a hardware configuration diagram showing an example of the configuration of the control device 19 according to the first embodiment.
  • the control device 19 is configured with a processor 92 such as a CPU and a memory 93, as shown in FIG.
  • the functions of the acquisition section 71, the determination section 72, and the control section 73 are realized by the processor 92 and the memory 93.
  • FIG. 4 shows that processor 92 and memory 93 are communicatively connected to each other via bus 94.
  • the memory 93 may store the information stored in the storage section 81.
  • the functions of the acquisition unit 71, determination unit 72, and control unit 73 are realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory 93.
  • the processor 92 realizes the functions of each means by reading and executing programs stored in the memory 93.
  • Examples of the memory 93 include ROM (Read Only Memory), flash memory, EPROM (Erasable and Programmable ROM), and EEPROM (Electrically Erasable and Programmable ROM).
  • a nonvolatile semiconductor memory such as a programmable ROM (ROM) is used.
  • ROM programmable ROM
  • RAM Random Access Memory
  • a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versatile Disc) may be used. Note that some of the functions of the control device 19 may be realized by dedicated hardware, and some of them may be realized by software or firmware.
  • the control device 19 includes the acquisition section 71, the determination section 72, and the control section 73 as functional sections.
  • the acquisition unit 71 acquires the detection result of the abnormal noise detection device 61, the refrigerant temperature measured by the temperature sensor 62, and the refrigerant pressure measured by the pressure sensor 63.
  • the acquisition unit 71 transmits the acquired detection results of the abnormal noise detection device 61, refrigerant temperature, and refrigerant pressure to the determination unit 72.
  • the state of the air conditioner 100 determined by the combination of refrigerant temperature, refrigerant pressure, operating frequency of the compressor 11, and opening degree of the pressure reducing valve 22 is referred to as a control pattern of the control device 19.
  • the determination unit 72 acquires the operating frequency of the compressor 11 and the opening degree of the pressure reducing valve 22 at the time when the refrigerant temperature and refrigerant pressure are measured.
  • the determination unit 72 determines a control pattern determined by a combination of the refrigerant temperature and refrigerant pressure acquired by the acquisition unit 71, the operating frequency of the compressor 11 at the time when the refrigerant temperature and refrigerant pressure are measured, and the opening degree of the pressure reducing valve 22. In this step, it is determined whether the abnormal noise detected by the abnormal noise detection device 61 has a magnitude greater than or equal to a first threshold value.
  • the determination unit 72 determines whether or not the abnormal noise has continued for a time equal to or greater than the second threshold.
  • the first threshold is a predetermined value indicating the volume.
  • the second threshold is a predetermined value indicating time, and is, for example, one minute.
  • the determining unit 72 sets a control pattern that does not generate abnormal noise or generates an abnormal noise with a magnitude less than the first threshold value as a normal pattern, and stores it in the storage unit 81.
  • the determination unit 72 sets a control pattern that causes the generation of abnormal noise having a magnitude equal to or greater than a first threshold value to continue for a time equal to or greater than a second threshold value as an avoidance target pattern, and stores it in the storage unit 81 . Furthermore, if an abnormal noise having a magnitude greater than or equal to the first threshold is generated, but the duration of the abnormal noise is less than the second threshold, the determination unit 72 determines the combination of the previous control pattern and the current control pattern.
  • the determination unit 72 determines whether the control pattern at the time of control corresponds to an avoidance target based on the detection result of the abnormal noise detection device 61. That is, the determination unit 72 determines the avoidance target based on the detection results of the abnormal noise detection device 61 for each control pattern.
  • the control unit 73 avoids the avoidance target stored in the storage unit 81. Specifically, when the control unit 73 receives a command to change the control pattern and changes the control pattern, such as when changing the set temperature of the air-conditioned space using a remote control (not shown) or the like, A control pattern assumed after the transition is determined based on the command value. Then, the control unit 73 determines whether the control pattern assumed after the transition corresponds to the avoidance target. If the control pattern assumed after the transition corresponds to the avoidance target, the control unit 73 changes any value of the control pattern after the transition.
  • the control unit 73 avoids the avoidance target.
  • the control unit 73 may avoid the object to be avoided by changing the opening degree of the pressure reducing valve 22.
  • the control unit 73 controls the operation of devices such as the fan 15 that are driven by actuators other than the compressor 11 and the pressure reducing valve 22 to change the refrigerant temperature and pressure to avoid the avoidance target. You may also do so.
  • control pattern assumed after the transition falls under the avoidance target means that the operating frequency or opening degree of each device in the control pattern assumed after the transition is relative to the operating frequency or opening degree of each device to be avoided. means that the value falls within the range obtained by adding or subtracting a predetermined value.
  • FIG. 5 is a diagram illustrating an example of a normal pattern and an avoidance target pattern according to the first embodiment.
  • the storage unit 81 of the control device 19 stores normal patterns and avoidance target patterns.
  • control A, control C, and control D correspond to a normal pattern in which no abnormal noise exceeding the first threshold value occurs
  • control B corresponds to an avoidance target pattern in which abnormal noise exceeding the first threshold value occurs. . Therefore, the control unit 73 of the control device 19 avoids the control pattern corresponding to control B.
  • FIG. 6 is a diagram illustrating an example of avoidance target transition pairs according to the first embodiment.
  • the storage unit 81 of the control device 19 stores transition pairs to be avoided.
  • control A and control D correspond to the avoided transition pair.
  • the control unit 73 of the control device 19 avoids transition to control D when the control pattern is control A.
  • FIG. 7 is a flowchart showing the operation of the control device 19 according to the first embodiment.
  • the acquisition unit 71 acquires the abnormal noise detection result, the refrigerant temperature measured by the temperature sensor 62, and the refrigerant pressure measured by the pressure sensor 63.
  • the determination unit 72 acquires the operating frequency of the compressor 11 and the opening degree of the pressure reducing valve 22 at the time when the refrigerant temperature and refrigerant pressure are measured (step S1).
  • the determination unit 72 determines whether or not the magnitude of the abnormal noise detected by the abnormal noise detection device 61 is greater than or equal to the first threshold value in the control pattern at the time when the refrigerant temperature and refrigerant pressure are measured.
  • step S2 Determination is made (step S2). If the magnitude of the abnormal noise is not less than the first threshold (step S2: NO), the determination unit 72 stores the current control pattern as a normal pattern (step S3). Further, when the magnitude of the abnormal noise is equal to or greater than the first threshold (step S2: YES), it is determined whether the abnormal noise continues for a time equal to or greater than the second threshold (step S4). If the abnormal noise continues for a time equal to or longer than the second threshold (step S4: YES), the current control pattern is stored as an avoidance target pattern (step S5). If the duration of the abnormal noise is less than the second threshold (step S4: NO), the control unit 73 stores the previous control pattern and the current control pattern as an avoidable transition pair (step S6). The processes of steps S1 to S6 are repeatedly executed at a predetermined period.
  • FIG. 8 is a flowchart showing the operation of the control device 19 according to the first embodiment.
  • the control unit 73 receives a command to change the control pattern, such as when changing the set temperature of the air-conditioned space using a remote control (not shown), the control pattern assumed after the transition becomes the avoidance target. It is determined whether this applies (step S11). If the control pattern assumed after the transition corresponds to the avoidance target (step S11: YES), the control unit 73 changes any value of the control pattern assumed after the transition to avoid execution of the control pattern. (Step S12). If the control pattern assumed after the transition does not correspond to the avoidance target (step S11: NO), the control unit 73 executes the control pattern assumed after the transition without changing it.
  • the air conditioner 100 can suppress the generation of abnormal noise.
  • the air conditioner 100 is actually installed in each property. For this reason, after installing an air conditioner, it is sometimes necessary to create software that changes control parameters depending on the property, or to enter setting values on-site.
  • the occurrence of abnormal noises when the air conditioner 100 is actually installed in a property is stored, and control is performed based on the stored occurrences of abnormal noises. Therefore, generation of abnormal noise can be suppressed depending on the property to which the air conditioner 100 is installed, without changing software parameters for each property and without requiring on-site work.
  • Embodiment 2 differs from Embodiment 1 in the method of avoiding the avoidance target.
  • Embodiment 2 the same parts as Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
  • the determination unit 72 determines each control pattern based on the detection results of the abnormal noise detection device 61, and stores the normal pattern and the avoidance target pattern in the storage unit 81.
  • the control unit 73 of the control device 19 controls the compressor 11 in stages based on the abnormal noise generation rate.
  • the abnormal noise occurrence rate is calculated by dividing the number of control patterns determined to be avoided by the number of all control patterns stored at the time of control. For example, when the abnormal noise generation rate is more than 0% and less than 25%, the control unit 73 lowers the operating frequency of the compressor 11 by 2.5% across all control patterns. Further, if the abnormal noise generation rate is more than 25% and less than 50%, the operating frequency of the compressor 11 is lowered by 5% across all control patterns. In this way, the control unit 73 increases or decreases the rate at which the operating frequency of the compressor 11 is lowered in accordance with the level of the abnormal noise generation rate.
  • control that is different from the control pattern stored as the avoidance target pattern is performed, so that the avoidance target pattern can be avoided.
  • control that is different from the post-transition control pattern stored in the avoidable transition pair is performed, so that the avoidable transition pair can be avoided.
  • the operating frequency of the compressor 11 is adjusted in stages by a switch (not shown) provided in the control device 19 or the like. Thereby, the control amount of the operating frequency can be adjusted at the site where the air conditioner 100 is installed.
  • FIG. 9 is a diagram illustrating an example of a normal pattern and an avoidance target pattern according to the second embodiment.
  • the control unit 73 lowers the operating frequency of the compressor 11 by 5% in all control patterns.
  • FIG. 10 is a diagram illustrating an example of a normal pattern and an avoidance target pattern according to the second embodiment.
  • control unit 73 may control the pressure reducing valve 22 in stages based not only on the operating frequency of the compressor 11 but also on the abnormal noise generation rate. For example, when the abnormal noise generation rate is more than 0% and less than 25%, the control unit 73 uniformly lowers the opening degree of the pressure reducing valve 22 by 2.5% in all control patterns. Furthermore, if the abnormal noise generation rate is more than 25% and less than 50%, the opening degree of the pressure reducing valve 22 is lowered by 5% in all control patterns. In this manner, the control unit 73 increases or decreases the rate at which the opening degree of the pressure reducing valve 22 is increased in accordance with the level of the abnormal noise generation rate. However, the opening degree of the pressure reducing valve 22 is not controlled in units of %, but may be controlled in units of pulses.
  • the second embodiment uses a method different from the first embodiment to avoid control states that generate abnormal noise of a magnitude greater than a threshold value. Therefore, the air conditioner 100 can suppress the generation of abnormal noise.
  • Embodiment 3 differs from Embodiment 1 in the method of avoiding the avoidance target. Specifically, in Embodiment 3, the cause of abnormal noise is estimated based on the stored normal pattern and avoidance target pattern, and the correspondence between the cause of abnormal noise and the control pattern, and control is performed based on the estimation result. . In Embodiment 3, the same parts as Embodiment 1 are given the same reference numerals, explanations are omitted, and differences from Embodiment 1 will be mainly explained.
  • the determination unit 72 determines each control pattern based on the detection results of the abnormal noise detection device 61, and stores the normal pattern and the avoidance target pattern in the storage unit 81.
  • FIG. 11 is a diagram showing the correspondence between causes of abnormal noise and control patterns according to the third embodiment.
  • the storage unit 81 stores, for each cause of abnormal noise, a control pattern that is expected to cause abnormal noise equal to or higher than the first threshold value to be associated with each other. For example, if the cause of the abnormal noise is "cause a", it is predicted that the control pattern of control B and the control unit 73 will cause abnormal noise that is equal to or higher than the first threshold value. On the other hand, if the abnormal noise of the first threshold value or more is generated under the control pattern of control B and the control unit 73, it can be estimated that the cause of the abnormal noise is "cause a".
  • the cause of the abnormal noise is, for example, that the compressor 11 has a specific operating frequency or that the pressure reducing valve 22 has a specific opening degree.
  • the control unit 73 estimates the cause of the abnormal noise based on the stored normal pattern and avoidance target pattern, and the correspondence between the cause of the abnormal noise and the control pattern. Then, the control unit 73 increases the level corresponding to the cause of the abnormal noise estimated from the recorded avoidance target pattern by one. When the level corresponding to the cause of the occurrence increases by one, the control unit 73 controls the level of the equipment causing the abnormal noise when executing the avoidance target pattern that generates the abnormal noise of a magnitude equal to or greater than the first threshold value. Change the operating frequency or opening degree by a predetermined amount. As a result, control that is different from the control pattern stored as the avoidance target pattern is performed, so that the avoidance target pattern can be avoided.
  • control that is different from the post-transition control pattern stored in the avoidable transition pair is performed, so that the avoidable transition pair can be avoided.
  • the level is further increased by one. .
  • the control unit 73 controls the operating frequency or the opening degree of the device that is the cause of the abnormal noise in a stepwise manner depending on the level corresponding to the cause of the abnormal noise.
  • the operating frequency of the compressor 11 is controlled.
  • the control unit 73 lowers the operating frequency of the compressor 11 by 5% in the avoidance target pattern in which abnormal noise of a magnitude equal to or greater than the first threshold value occurs each time the level corresponding to "cause a" increases by one.
  • the opening degree of the pressure reducing valve 22 is controlled.
  • the control unit 73 lowers the opening degree of the pressure reducing valve 22 by 5% in the avoidance target pattern in which abnormal noise of a magnitude equal to or greater than the first threshold value occurs each time the level corresponding to "cause b" increases by one.
  • the opening degree of the pressure reducing valve 22 is not controlled in units of %, but may be controlled in units of pulses. Furthermore, if the cause of the abnormal noise is "cause c", the frequency of the fan 15 is controlled. The control unit 73 lowers the frequency of the fan 15 by 5% in the avoidance target pattern in which abnormal noise of a magnitude equal to or greater than the first threshold value occurs each time the level corresponding to "cause c" increases by one.
  • FIG. 12 is a flowchart showing the operation of the control device 19 according to the third embodiment.
  • a level is determined for each cause of abnormal noise.
  • the level corresponding to the cause of abnormal noise is determined as follows.
  • the control unit 73 determines, based on the stored normal pattern and avoidance target pattern, as well as the correspondence between the cause of the abnormal noise and the control pattern, whether or not an abnormal noise has occurred whose generation cause is estimated to be "cause a". It is determined whether or not (step S21). If an abnormal noise is generated whose cause is estimated to be "cause a" (step S21: YES), the level corresponding to "cause a" is increased by 1 (step S22). Further, if no abnormal noise is generated which is presumed to be caused by "cause a" (step S21: NO), the control unit 73 does not adjust the level corresponding to "cause a".
  • the control unit 73 controls the control unit 73 to generate an abnormal noise that is estimated to be caused by "cause b". It is determined whether or not (step S23). If an abnormal noise is generated whose cause is estimated to be "cause b" (step S23: YES), the control unit 73 increases the level corresponding to "cause b" by 1 (step S24). Further, if no abnormal noise is generated which is presumed to be caused by "cause b" (step S23: NO), the control unit 73 does not adjust the level corresponding to "cause b".
  • the control unit 73 determines whether an abnormal noise has occurred whose generation cause is estimated to be "cause c", based on the stored normal pattern and avoidance target pattern, and the correspondence between the cause of the abnormal noise and the control pattern. It is determined whether or not (step S25). If an abnormal noise is generated whose cause is estimated to be "cause c" (step S25: YES), the control unit 73 increases the level corresponding to "cause c" by 1 (step S26), and ends the process. . Further, if the abnormal noise that is estimated to be caused by "cause c" is not occurring (step S25: NO), the control unit 73 does not adjust the level corresponding to "cause c" and ends the process. .
  • step S12 of the flowchart of FIG. 8 the control unit 73 controls the equipment related to the cause of the abnormal noise according to the determined level in the control pattern assumed after the transition. to avoid execution of the control pattern.
  • the abnormal noise generated in a certain control pattern is subdivided by the frequency component of the abnormal noise, the cause is estimated for each frequency component of the abnormal noise, and depending on the estimation results, the equipment to be controlled may be changed or the control amount may be changed. You may also change the . Differences in the frequency components of abnormal noises appear in the way they sound, such as hissing, gurgling, or thumping. In other words, for example, if a hissing noise occurs in a certain control pattern, the operating frequency of the compressor 11 is adjusted, and if a gurgling noise occurs in a certain control pattern, the pressure reducing valve 22 is adjusted. The opening degree may be adjusted. Further, the cause of abnormal noise estimated by a certain control pattern may be adjusted to be avoided by using another control pattern.
  • Embodiment 3 As described above, in Embodiment 3 as well, a control state that generates abnormal noise of a magnitude greater than a threshold value is avoided by using a method different from Embodiment 1. Therefore, the air conditioner 100 can suppress the generation of abnormal noise.
  • the control unit 73 estimates the cause of the abnormal noise according to the level corresponding to the cause of the abnormal noise, and adjusts the operating frequency or opening degree of the equipment according to the estimation result. control in stages. Therefore, it is possible to set the operating frequency or opening degree of the equipment that is necessary and sufficient to suppress the generation of abnormal noise. Therefore, the air conditioner 100 of Embodiment 3 can both suppress the generation of abnormal noise and improve the operating efficiency of the air conditioner 100.
  • Embodiment 4 differs from Embodiment 1 in that whether or not to avoid an object to be avoided is determined based on the detection result of human detection sensor 24.
  • the same parts as in Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
  • FIG. 13 is a circuit diagram showing an air conditioner 100 according to Embodiment 4.
  • the indoor unit 2 is provided with a human detection sensor 24.
  • the indoor unit 2 and the indoor unit 2 are provided with a human detection sensor 24 and a human detection sensor 24 .
  • the human detection sensors 24a to 24c will be collectively referred to as the human detection sensor 24.
  • the human detection sensor 24 detects the presence or absence of a person in the room.
  • the person detection sensor 24 is, for example, an image sensor that analyzes people from indoor images, or an infrared sensor that analyzes people from indoor infrared information.
  • FIG. 14 is a functional block diagram of air conditioner 100 according to Embodiment 4. As shown in FIG. 14, the acquisition unit 71 acquires the detection result of the human detection sensor 24, and transmits the detection result of the human detection sensor 24 to the control unit 73.
  • the control unit 73 controls the opening degree of the pressure reducing valve 22 in order to avoid the object to be avoided, similarly to the first embodiment.
  • the avoidance target is not avoided.
  • FIG. 15 is a flowchart showing the operation of the control device 19 according to the fourth embodiment.
  • the control unit 73 determines whether the control pattern expected after the change corresponds to an avoidance target (step S31). If the control pattern assumed after the transition corresponds to the avoidance target (step S31: YES), the control unit 73 determines whether there is a person in the room based on the detection result of the person detection sensor 24 (step S31: YES). S32). If a person is detected in the room (step S32: YES), the control unit 73 changes any value of the control pattern assumed after the transition to avoid execution of the control pattern (step S33). If the control pattern assumed after the transition does not correspond to the avoidance target (step S31: NO) and if no person is detected in the room (step S32: NO), the control unit 73 uses the control pattern assumed after the transition. Run without modification.
  • Embodiment 4 As in Embodiment 4, as in Embodiment 1, a control state that generates abnormal noise of a magnitude equal to or greater than a threshold value is avoided as an avoidance target. Therefore, the air conditioner 100 can suppress the generation of abnormal noise.
  • the air conditioner 100 of the fourth embodiment determines whether or not to avoid an object to be avoided based on the detection result of the human detection sensor 24. Thereby, the air conditioner 100 can be operated with emphasis on efficiency and heating and cooling effects when no one is present, and with emphasis on quietness when there are people.
  • Embodiment 5 differs from Embodiment 1 in that the occurrence of abnormal noise is determined based on a trained model.
  • Embodiment 5 the same parts as in Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
  • a GPU Graphics Processing Unit
  • the GPU executes a process of estimating the size of the abnormal noise based on the learned model.
  • FIG. 16 is a functional block diagram of air conditioner 100 according to Embodiment 5.
  • the control device 19 includes a setting section 74 .
  • the setting unit 74 acquires the height difference and piping length of the air conditioner 100.
  • the height difference and piping length of the air conditioner 100 are set by a contractor or the like when the air conditioner 100 is installed on a property.
  • the height difference of the air conditioner 100 is the difference in height between the outdoor unit 1 and the indoor unit 2.
  • the difference in height between the outdoor unit 1 and the indoor unit 2 is the height from the reference ground, etc. to the bottom of the outdoor unit 1, and the height from the reference ground, etc. to the bottom of the indoor unit 2. It is determined by the difference between
  • the determination unit 72 uses the learned model to output the magnitude of the abnormal noise based on the height difference, pipe length, operating frequency of the compressor 11, and opening degree of the pressure reducing valve 22.
  • the learned model is a model for inferring the height difference, pipe length, operating frequency of the compressor 11, and opening degree of the pressure reducing valve 22 as input data, and the magnitude of abnormal noise as output data.
  • the learned model is, for example, one learned during product development, and is stored in the storage unit 81.
  • the trained model is, for example, a neural network configured by combining multiple perceptrons, and each perceptron has a bias value and a weighting coefficient set.
  • the bias value and weighting coefficient are parameters that are adjusted through learning. During learning, multiple pieces of training data are given to the neural network, and the bias values and weighting coefficients of each perceptron are adjusted so that the output of the neural network approaches the correct label.
  • control unit 73 When the control unit 73 receives a command to change the control pattern, such as when changing the set temperature of the air-conditioned space using a remote control, etc., and when changing the control pattern, the control unit 73 determines what is assumed after the transition based on the command value. Determine control pattern. Then, at the time of transition of the control pattern, the control section 73 transmits to the determination section 72 the operating frequency of the compressor 11 and the opening degree of the pressure reducing valve 22 that are assumed after the transition. Then, when the magnitude of the abnormal noise estimated by the determination unit 72 using the learned model is greater than or equal to the first threshold, the control unit 73 avoids the control pattern assumed after the transition. Specifically, as in the first embodiment, any value of the control pattern is changed.
  • control device 19 includes an evaluation update section 75.
  • the evaluation update unit 75 evaluates the learned model based on the output result of the learned model and the detection result of the abnormal noise detection device 61, and updates the learned model based on the evaluation result. An example of a method for evaluating and updating a trained model will be described below.
  • the evaluation update unit 75 determines the reward based on the output result of the learned model. Specifically, the evaluation update unit 75 determines whether the error between the magnitude of the abnormal noise estimated by the determination unit 72 and the detection result of the abnormal noise detection device 61 is within a specified value. When the evaluation updating unit 75 determines that the error between the magnitude of the abnormal noise estimated by the determining unit 72 and the detection result of the abnormal noise detection device 61 is within a predetermined value, the evaluation updating unit 75 increases a preset amount of change ⁇ 1 as a reward.
  • the evaluation updating unit 75 determines that the error between the magnitude of the abnormal noise estimated by the determining unit 72 and the detection result of the abnormal noise detection device 61 exceeds a predetermined value, the evaluation updating unit 75 reduces the preset amount of change ⁇ 1.
  • the evaluation update unit 75 adjusts the weighting coefficient and bias value so that the amount of change ⁇ 1 is maximized. As a result, the learned model is updated so that the error between the magnitude of the abnormal noise estimated by the determination unit 72 and the detection result of the abnormal noise detection device 61 is reduced.
  • FIG. 17 is a flowchart showing the operation of the control device 19 according to the fifth embodiment.
  • the evaluation update unit 75 updates the height difference of the air conditioner 100, the pipe length, the operating frequency of the compressor 11 assumed after the transition, and the pressure reducing valve. Based on the opening degree of 22, the magnitude of the abnormal noise is output (step S41).
  • the control unit 73 determines whether the magnitude of the abnormal noise estimated by the determination unit 72 using the learned model is greater than or equal to the first threshold (step S42).
  • step S42 If the magnitude of the abnormal noise estimated by the determination unit 72 using the trained model is greater than or equal to the first threshold (step S42: YES), the control unit 73 selects any value of the control pattern assumed after the transition. The control pattern is changed to avoid execution of the control pattern (step S43). If the magnitude of the abnormal noise estimated by the determination unit 72 using the learned model is less than the first threshold (step S42: NO), the control unit 73 executes the control pattern assumed after the transition without changing it. do.
  • control states that generate abnormal noise of a magnitude greater than a threshold value are avoided. Therefore, the air conditioner 100 can suppress the generation of abnormal noise.
  • the magnitude of the abnormal noise is estimated based on a learned model that is stored in advance, so it is possible to avoid generating the abnormal noise for the first time.
  • Embodiment 6 differs from Embodiment 1 in that, in addition to the control in Embodiment 1, control is performed based on the effectiveness of heating and cooling.
  • Embodiment 6 the same parts as Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
  • the determination unit 72 determines the effectiveness of heating and cooling in the property where the air conditioner 100 is installed, based on the refrigerant temperature measured by the temperature sensor 62, the refrigerant pressure measured by the pressure sensor 63, and the control pattern.
  • the effectiveness of heating and cooling is evaluated numerically, and the more effective the heating and cooling, the higher the value.
  • the method of calculating the effectiveness of air conditioning is not particularly limited, it is evaluated based on, for example, the control pattern being executed at the time of control, and the temperature transfer coefficient and pressure transfer coefficient in the control pattern.
  • the temperature transfer coefficient is calculated by dividing the time required for the refrigerant temperature to reach the specified value from the start of the control pattern by the difference between the refrigerant temperature at the start of the control cycle and the specified value.
  • the pressure transfer coefficient is calculated by dividing the time required from the start of the control pattern until the refrigerant pressure reaches the specified value by the difference between the refrigerant pressure at the time of processing and the specified value. Furthermore, the easier it is for the operating frequency of the compressor 11 or the opening degree of the pressure reducing valve 22 indicated by the control pattern to work toward shortening the time it takes for the refrigerant temperature and refrigerant pressure to reach the specified values, the better the condition of the property will be. Correct the effectiveness of heating and cooling as a characteristic to a smaller value.
  • the control unit 73 controls the operating frequency of the compressor 11 based on the effectiveness of heating and cooling.
  • the control unit 73 increases the operating frequency of the compressor 11 when the heating and cooling is not effective, specifically when the effectiveness of the heating and cooling is below the third threshold. In addition, if heating and cooling is not effective, it may be due to large height differences or long pipe lengths. Therefore, when the effectiveness of heating and cooling is less than or equal to the third threshold, the control unit 73 performs control for the height difference.
  • control for the height difference for example, the operating frequency of the compressor 11 is increased, and conditions such as pressure and time for detecting an abnormality are changed. Further, the opening degree of the pressure reducing valve 22 may be changed.
  • FIG. 18 is a flowchart showing the operation of the control device 19 according to the sixth embodiment.
  • control based on the effectiveness of heating and cooling will be explained.
  • the acquisition unit 71 acquires the refrigerant temperature measured by the temperature sensor 62 and the refrigerant pressure measured by the pressure sensor 63 (step S51).
  • the acquisition unit 71 continuously measures changes in refrigerant temperature and refrigerant pressure in the control pattern at the time of processing.
  • the determination unit 72 determines the effectiveness of heating and cooling in the property where the air conditioner 100 is installed based on the refrigerant temperature measured by the temperature sensor 62, the refrigerant pressure measured by the pressure sensor 63, and the control pattern. (Step S52).
  • the control unit 73 determines whether the effectiveness of heating and cooling is less than or equal to the third threshold (step S53). When the effectiveness of heating and cooling is less than or equal to the third threshold (step S53: YES), the control unit 73 controls the elevation difference or increases the operating frequency of the compressor 11 (step S54). When the effectiveness of heating and cooling exceeds the third threshold (step S53: NO), the control unit 73 executes a normal control pattern.
  • Embodiment 6 As in Embodiment 6, as in Embodiment 1, a control state that generates abnormal noise of a magnitude greater than a threshold value is avoided. Therefore, the air conditioner 100 can suppress the generation of abnormal noise.
  • control is performed based on the effectiveness of heating and cooling. Therefore, the air conditioner 100 can shorten the time it takes for heating and cooling to become effective, and can improve user comfort.
  • Embodiment 2 3, 5, or 6, the human detection sensor 24 described in Embodiment 4 is added, and based on the detection result of the human detection sensor 24, the control pattern to be avoided is You may try to avoid this.
  • the operating frequency of the compressor 11 may be controlled based on the effectiveness of heating and cooling.
  • the effectiveness of heating and cooling is determined based on the refrigerant temperature and pressure, but the indoor temperature may be used as a factor for determining the effectiveness of heating and cooling. Specifically, the effectiveness of heating and cooling is calculated based on the value obtained by dividing the time from the start of the control pattern until the indoor temperature reaches the set temperature by the difference between the indoor temperature at the start of the control and the set temperature. judge.
  • the mounting positions of the abnormal noise detection device 61, the temperature sensor 62, and the pressure sensor 63 are adjusted as appropriate depending on the property.
  • the abnormal noise detection device 61, the temperature sensor 62, and the pressure sensor 63 may be attached to the refrigerant pipe 4 instead of the refrigerant pipe 3.
  • the abnormal noise detection device 61 may be attached to each of the indoor pipes 23a to 23c.
  • the locations where abnormal noises are generated are not limited to piping. In this case, considering that users who use buildings such as buildings are concerned about this, the abnormal noise detection device 61 is installed on the outdoor unit 1 on the roof of a building, etc., where abnormal noises are not bothersome even if they occur. It is preferable to install it near the indoor unit 2, on the ceiling of the building, or under the floor, rather than nearby.
  • control pattern the state of the air conditioner 100 determined by the combination of refrigerant temperature, refrigerant pressure, operating frequency of the compressor 11, and opening degree of the pressure reducing valve 22 has been described as being referred to as a control pattern.
  • control pattern may be determined only by the operating frequency of the compressor 11 and the opening degree of the pressure reducing valve 22.
  • states of other devices included in the air conditioner 100 or physical quantities measured in the air conditioner 100 may be used as elements for determining the control pattern.
  • the air conditioner 100 that performs so-called direct expansion air conditioning in which refrigerant is supplied to the indoor unit 2 has been described.
  • the content of the present disclosure may be applied to an air conditioner that performs so-called expansion air conditioning, in which a refrigerant and a heat medium such as water or brine exchange heat, and the heat medium is supplied to the indoor unit 2.
  • the abnormal noise detection device 61 may be provided, for example, in a pipe that connects the indoor unit and a heat exchanger that exchanges heat between a refrigerant and a heat medium.
  • the air conditioner 100 is installed in the piping of the outdoor unit 1 or the branch controller, and when the operation mode is changed, the refrigerant flows in only one direction, and the refrigerant flows in the opposite direction. It may have a check valve that shuts off the flow of refrigerant.
  • FIG. 19 is a circuit diagram showing an air conditioner according to a modification of the first embodiment. As shown in FIG. 19, the air conditioner 100 includes a first connection pipe 17a, a second connection pipe 17b, a check valve 18a, a check valve 18b, a check valve 18c, and a check valve 18d.
  • the first connection pipe 4a connects the outdoor pipe 16 on the downstream side of the check valve 18d and the outdoor pipe 16 on the downstream side of the check valve 18a in the outdoor unit 1.
  • the second connection pipe 4b connects the outdoor pipe 16 upstream of the check valve 18d and the outdoor pipe 16 upstream of the check valve 18a in the outdoor unit 1.
  • the check valve 18a is provided in the refrigerant pipe 4 between the outdoor heat exchanger 13 and the indoor unit 2, and allows the heat source side refrigerant to flow only in a predetermined direction (from the outdoor unit 1 to the indoor unit 2). It is something to do.
  • the check valve 18b is provided in the first connection pipe 4a and allows the heat source side refrigerant to flow only in the direction from the downstream side of the check valve 18d to the downstream side of the check valve 18a.
  • the check valve 18c is provided in the second connection pipe 4b and allows the heat source side refrigerant to flow only in the direction from the upstream side of the check valve 18d to the upstream side of the check valve 18a.
  • the check valve 18d is provided in the refrigerant pipe 4 between the indoor unit 2 and the flow path switching valve 12, and allows the heat source side refrigerant to flow only in a predetermined direction (from the indoor unit 2 to the outdoor unit 1). It is something to do.
  • the check valves 18a to 18d are members (not shown) provided in a container (not shown) that move back and forth depending on the flow of refrigerant, and when they move in one direction, they close and block the flow of refrigerant. , the structure allows the refrigerant to flow when it moves to the other side.
  • the control device 19 may change the operation of the device to be controlled when it estimates that the abnormal noise is caused by the operation of the check valves 18a to 18d based on the way the abnormal noise is generated.
  • Embodiments 1 to 6 when there are multiple indoor units 2 in the same air-conditioned space, the indoor unit 2 controlled by another indoor unit 2 different from the controlled indoor unit 2 The motion may be supplemented. For example, if the outlet temperature of the indoor unit 2a decreases during heating by changing the opening degree of the pressure reducing valve 22a to avoid an object to be avoided, the pressure reducing valve 22b of the indoor unit 2b installed in the same room may be changed. The blowing temperature of the indoor unit 2b may be increased by changing the opening degree. Thereby, even when avoiding an object to be avoided, user comfort can be maintained.
  • the model number of the compressor 11 and the refrigerant type may be used as input data.
  • the amount of refrigerant extruded varies depending on the type of compressor 11. Further, depending on the type of refrigerant, the state of gas and liquid flowing in the refrigerant pipe 3 and, by extension, the situation in which refrigerant noise is generated changes. Furthermore, since the refrigerant pressure differs depending on the type of refrigerant, the diameter of the refrigerant pipe 3 installed also changes. Since the model number of the compressor 11 and the type of refrigerant are related to the magnitude of the abnormal noise, by using these as input data, it is possible to improve the accuracy of estimating the magnitude of the abnormal noise.

Abstract

This air conditioning device comprises: a compressor that compresses a refrigerant; a condenser that performs heat exchange between a refrigerant and air and condenses the refrigerant; and a pressure reduction valve that reduces the pressure of the refrigerant and an opening degree of which can be changed; an evaporator that performs heat exchange between the refrigerant and air and causes the refrigerant to evaporate; and refrigerant piping that connects the compressor, condenser, pressure reduction valve, and evaporator; and a control device that controls the operating frequency of the compressor and the opening degree of the pressure reduction valve, wherein the control device avoids, as avoidance targets, among a plurality of control patterns determined by combinations of the operating frequency of the compressor and the opening degree of the pressure reduction valve, a set of control patterns that generate abnormal noises of a magnitude at or above a threshold value, or control patterns that generate abnormal noises of a magnitude at or above the threshold value during transition.

Description

空気調和装置air conditioner
 本開示は、異音の発生を回避する空気調和装置に関する。 The present disclosure relates to an air conditioner that avoids the generation of abnormal noise.
 空気調和装置は、設置された物件によって配管長および室内機と室外機との高低差が異なることから、同じ機種で同じ運転を行う場合であっても、ある物件では発生しなかった断続的な異音が別の物件では発生することがある。これらの異音は、配管内の圧力差または急激な圧力上昇等で生じるが、物件ごとに発生原因または異音の大きさなどが異なる。また、物件によって、冷暖房の効きやすさにも違いが生じることがある。特許文献1には、音響センサまたは振動センサを備え、異音の発生が検知されると、発生した異音を解消する空調調和装置が開示されている。 Air conditioning equipment varies depending on the property in which it is installed, such as the piping length and the height difference between the indoor unit and the outdoor unit, so even if the same model is operated in the same way, intermittent problems that may not occur in a certain property may occur. Strange noises may occur in other properties. These noises are caused by pressure differences or sudden pressure increases within the pipes, but the cause of the noise and the size of the noise vary depending on the property. Additionally, the effectiveness of air conditioning and heating may vary depending on the property. Patent Document 1 discloses an air conditioning system that is equipped with an acoustic sensor or a vibration sensor and, when the occurrence of abnormal noise is detected, eliminates the generated abnormal noise.
特開2003-74945号公報Japanese Patent Application Publication No. 2003-74945
 しかしながら、特許文献1の空気調和装置は、異音の発生が検知されるたびに、毎回事後的に異音を解消しているに過ぎない。つまり、特許文献1は、異音の発生そのものを抑制するものではない。 However, the air conditioner of Patent Document 1 merely eliminates the abnormal noise after the fact every time the occurrence of the abnormal noise is detected. In other words, Patent Document 1 does not suppress the generation of abnormal noise itself.
 本開示は、上記課題を解決するためのものであり、異音の発生が抑制された空気調和装置を提供することを目的とする。 The present disclosure is intended to solve the above problems, and aims to provide an air conditioner in which the generation of abnormal noise is suppressed.
 本開示に係る空気調和装置は、冷媒を圧縮する圧縮機と、冷媒と空気との間で熱交換を行い、冷媒を凝縮させる凝縮器と、開度が変更可能であって、冷媒を減圧する減圧弁と、冷媒と空気との間で熱交換を行い、冷媒を蒸発させる蒸発器と、圧縮機、凝縮器、減圧弁、および蒸発器を接続する冷媒配管と、圧縮機の運転周波数、および減圧弁の開度を制御する制御装置と、を備え、制御装置は、圧縮機の運転周波数および減圧弁の開度の組み合わせによって定められる複数の制御パターンのうち、閾値以上の大きさの異音を発生させる制御パターン、または遷移時に閾値以上の大きさの異音を発生させる制御パターンの組を回避対象として回避する。 An air conditioner according to the present disclosure includes a compressor that compresses a refrigerant, a condenser that performs heat exchange between the refrigerant and air and condenses the refrigerant, and a condenser that has a changeable opening degree and that depressurizes the refrigerant. The pressure reducing valve, the evaporator that exchanges heat between the refrigerant and air and evaporates the refrigerant, the compressor, the condenser, the pressure reducing valve, and the refrigerant piping that connects the evaporator, the operating frequency of the compressor, and a control device that controls the opening degree of the pressure reducing valve; A set of control patterns that generate noise of a magnitude equal to or greater than a threshold value at the time of transition is avoided as an avoidance target.
 本開示の空気調和装置は、閾値以上の大きさの異音を発生させる制御パターンを回避対象として回避する。このため、空気調和装置は、異音が発生することを抑制することができる。 The air conditioner of the present disclosure avoids a control pattern that generates abnormal noise of a magnitude greater than a threshold value. Therefore, the air conditioner can suppress the generation of abnormal noise.
実施の形態1に係る空気調和装置を示す回路図である。1 is a circuit diagram showing an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る空気調和装置の機能ブロック図である。1 is a functional block diagram of an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る制御装置の一構成例を示すハードウェア構成図である。1 is a hardware configuration diagram showing an example of a configuration of a control device according to a first embodiment; FIG. 実施の形態1に係る制御装置の一構成例を示すハードウェア構成図である。1 is a hardware configuration diagram showing an example of a configuration of a control device according to a first embodiment; FIG. 実施の形態1に係る通常パターンおよび回避対象パターンの一例を示す図である。FIG. 3 is a diagram illustrating an example of a normal pattern and an avoidance target pattern according to the first embodiment. 実施の形態1に係る回避対象遷移ペアの一例を示す図である。FIG. 3 is a diagram illustrating an example of an avoidance target transition pair according to the first embodiment. 実施の形態1に係る制御装置の動作を示すフローチャートである。3 is a flowchart showing the operation of the control device according to the first embodiment. 実施の形態1に係る制御装置の動作を示すフローチャートである。3 is a flowchart showing the operation of the control device according to the first embodiment. 実施の形態2に係る通常パターンおよび回避対象パターンの一例を示す図である。FIG. 7 is a diagram showing an example of a normal pattern and an avoidance target pattern according to the second embodiment. 実施の形態2に係る通常パターンおよび回避対象パターンの一例を示す図である。FIG. 7 is a diagram showing an example of a normal pattern and an avoidance target pattern according to the second embodiment. 実施の形態3に係る異音の発生原因と制御パターンとの対応関係を示す図である。FIG. 7 is a diagram showing a correspondence relationship between causes of abnormal noise and control patterns according to Embodiment 3; 実施の形態3に係る制御装置の動作を示すフローチャートである。7 is a flowchart showing the operation of the control device according to Embodiment 3. 実施の形態4に係る空気調和装置を示す回路図である。FIG. 7 is a circuit diagram showing an air conditioner according to a fourth embodiment. 実施の形態4に係る空気調和装置の機能ブロック図である。FIG. 3 is a functional block diagram of an air conditioner according to a fourth embodiment. 実施の形態4に係る制御装置の動作を示すフローチャートである。7 is a flowchart showing the operation of the control device according to the fourth embodiment. 実施の形態5に係る空気調和装置の機能ブロック図である。FIG. 7 is a functional block diagram of an air conditioner according to Embodiment 5. FIG. 実施の形態5に係る制御装置の動作を示すフローチャートである。12 is a flowchart showing the operation of the control device according to the fifth embodiment. 実施の形態6に係る制御装置の動作を示すフローチャートである。12 is a flowchart showing the operation of the control device according to Embodiment 6. 実施の形態1の変形例に係る空気調和装置を示す回路図である。FIG. 3 is a circuit diagram showing an air conditioner according to a modification of the first embodiment.
 以下、図面に基づいて実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。また、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。更に、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments will be described based on the drawings. In each figure, the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Moreover, the forms of the constituent elements shown in the entire specification are merely examples, and the present invention is not limited to these descriptions. Furthermore, in the following drawings, the size relationship of each component may differ from the actual one.
 実施の形態1.
 図1は、実施の形態1に係る空気調和装置100の回路図である。実施の形態1の空気調和装置100は、例えばビル等の建物内の室内等、複数の空調対象空間の空調を行うものである。図1に示すように、空気調和装置100は、室外機1、および複数の室内機2a~2cを備えている。なお、室内機2は、2台以下または4台以上であってもよい。
Embodiment 1.
FIG. 1 is a circuit diagram of an air conditioner 100 according to the first embodiment. The air conditioner 100 of Embodiment 1 performs air conditioning of a plurality of spaces to be air-conditioned, such as an indoor room in a building such as a building. As shown in FIG. 1, the air conditioner 100 includes an outdoor unit 1 and a plurality of indoor units 2a to 2c. Note that the number of indoor units 2 may be two or less or four or more.
 室外機1は、例えば、空調対象空間の外に設置されている。空気調和装置100の室内機2a~2cは、室外機1から供給される冷媒により空調対象空間に温熱または冷熱を供給する。室内機2a~2cは、例えば、空調対象空間に設置され、冷房または暖房を行う。室内機2a~2cは、冷媒が流れる冷媒配管3および4によって、室外機1と接続されている。冷媒配管3および4は、室内機2a~2cのそれぞれに対して分岐している。このため、各室内機2a~2cは、室外機1に対して並列に接続されている。 The outdoor unit 1 is installed outside the air-conditioned space, for example. The indoor units 2a to 2c of the air conditioner 100 supply hot or cold heat to an air-conditioned space using a refrigerant supplied from the outdoor unit 1. The indoor units 2a to 2c are installed, for example, in an air-conditioned space and perform cooling or heating. The indoor units 2a to 2c are connected to the outdoor unit 1 by refrigerant pipes 3 and 4 through which refrigerant flows. The refrigerant pipes 3 and 4 are branched to each of the indoor units 2a to 2c. Therefore, each of the indoor units 2a to 2c is connected to the outdoor unit 1 in parallel.
 室外機1は、圧縮機11、流路切替弁12、室外熱交換器13、アキュムレータ14、ファン15、室外配管16、および制御装置19を備える。圧縮機11は、低温且つ低圧のガス冷媒を吸入し、圧縮して高温且つ高圧のガス冷媒を吐出する。圧縮機11は、例えば、運転周波数を調整することで、容量が制御可能なインバータタイプの圧縮機である。 The outdoor unit 1 includes a compressor 11, a flow path switching valve 12, an outdoor heat exchanger 13, an accumulator 14, a fan 15, an outdoor pipe 16, and a control device 19. The compressor 11 takes in a low-temperature, low-pressure gas refrigerant, compresses it, and discharges a high-temperature, high-pressure gas refrigerant. The compressor 11 is, for example, an inverter type compressor whose capacity can be controlled by adjusting the operating frequency.
 流路切替弁12は、例えば四方弁である。流路切替弁12は、室内機2a~2cの運転に応じて圧縮機11から吐出された冷媒の流路を切替える。流路切替弁12は、冷房運転時は圧縮機11の吐出側と室外熱交換器13とを接続する流路に切り替え、暖房運転時は圧縮機11の吸入側と室外熱交換器13とをアキュムレータ14を介して接続する流路に切り替える。なお、流路切替弁12は、三方弁または二方弁を組み合わせたものでもよい。 The flow path switching valve 12 is, for example, a four-way valve. The flow path switching valve 12 switches the flow path of the refrigerant discharged from the compressor 11 according to the operation of the indoor units 2a to 2c. The flow path switching valve 12 switches the flow path to connect the discharge side of the compressor 11 and the outdoor heat exchanger 13 during cooling operation, and connects the suction side of the compressor 11 and the outdoor heat exchanger 13 during heating operation. Switch to the flow path connected via the accumulator 14. Note that the flow path switching valve 12 may be a combination of a three-way valve or a two-way valve.
 室外熱交換器13は、例えばフィンチューブ式の熱交換器である。室外熱交換器13は、ファン15によって供給される空気と冷媒との間で熱交換を行う。室外熱交換器13は、冷房運転時には凝縮器として機能し、冷媒を凝縮して液化させる。また、室外熱交換器13は、暖房運転時には蒸発器として機能し、冷媒を蒸発してガス化させる。 The outdoor heat exchanger 13 is, for example, a fin-tube heat exchanger. The outdoor heat exchanger 13 exchanges heat between air supplied by the fan 15 and a refrigerant. The outdoor heat exchanger 13 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant. Moreover, the outdoor heat exchanger 13 functions as an evaporator during heating operation, and evaporates and gasifies the refrigerant.
 アキュムレータ14は、圧縮機11の吸入側に設けられ、液冷媒とガス冷媒とを分離する機能と、余剰冷媒を貯留する機能とを有している。ファン15は、例えばプロペラファンである。ファン15は、室外機1の周辺の空気を室外熱交換器13に供給する。ファン15の回転数が制御装置19によって制御されることで、室外熱交換器13の凝縮能力または蒸発能力が制御される。ファン15の回転数は、例えばインバータによって制御される。 The accumulator 14 is provided on the suction side of the compressor 11 and has a function of separating liquid refrigerant and gas refrigerant and a function of storing surplus refrigerant. The fan 15 is, for example, a propeller fan. The fan 15 supplies air around the outdoor unit 1 to the outdoor heat exchanger 13. By controlling the rotation speed of the fan 15 by the control device 19, the condensing capacity or evaporating capacity of the outdoor heat exchanger 13 is controlled. The rotation speed of the fan 15 is controlled by, for example, an inverter.
 室外配管16は、空気調和装置100の配管のうち、室外機1の筐体(不図示)内部の配管である。室外配管16は、圧縮機11と、流路切替弁12と、室外熱交換器13と、アキュムレータ14とを接続する。室外配管16の流路切替弁12側の端部は、冷媒配管3に接続されている。同様に、室外配管16の室外熱交換器13側の端部は、冷媒配管4に接続されている。 Among the pipes of the air conditioner 100, the outdoor pipe 16 is a pipe inside the casing (not shown) of the outdoor unit 1. The outdoor piping 16 connects the compressor 11 , the flow path switching valve 12 , the outdoor heat exchanger 13 , and the accumulator 14 . An end of the outdoor pipe 16 on the flow path switching valve 12 side is connected to the refrigerant pipe 3. Similarly, the end of the outdoor pipe 16 on the outdoor heat exchanger 13 side is connected to the refrigerant pipe 4.
 制御装置19は、例えば、室外機1の内部に格納されている。制御装置19は、空気調和装置100の各機器の動作を制御する。制御装置19の具体的な構成、および制御内容の説明は後述する。 The control device 19 is stored inside the outdoor unit 1, for example. The control device 19 controls the operation of each device of the air conditioner 100. The specific configuration of the control device 19 and the details of the control will be described later.
 室内機2a~2cは、空調対象空間の冷房負荷または暖房負荷に対し、室外機1によって生成された熱を供給する。室内機2は、室内熱交換器21a、減圧弁22a、および室内配管23aを備えている。室内熱交換器21aは、例えばフィンチューブ式の熱交換器である。室内熱交換器21aは、空調対象空間の空気と冷媒との間で熱交換を行う。室内熱交換器21aは、暖房運転時には凝縮器として機能し、冷媒を凝縮して液化させる。また、室内熱交換器21aは、冷房運転時には蒸発器として機能し、冷媒を蒸発してガス化させる。 The indoor units 2a to 2c supply heat generated by the outdoor unit 1 to the cooling load or heating load of the space to be air-conditioned. The indoor unit 2 includes an indoor heat exchanger 21a, a pressure reducing valve 22a, and indoor piping 23a. The indoor heat exchanger 21a is, for example, a fin-tube heat exchanger. The indoor heat exchanger 21a exchanges heat between the air in the air-conditioned space and the refrigerant. The indoor heat exchanger 21a functions as a condenser during heating operation, and condenses and liquefies the refrigerant. Moreover, the indoor heat exchanger 21a functions as an evaporator during cooling operation, and evaporates and gasifies the refrigerant.
 減圧弁22aは、例えば、開度が可変に制御される電子式膨張弁である。減圧弁22aは、室内熱交換器21aと直列に接続され、室内熱交換器21aから流出する冷媒または室内熱交換器21に流入する冷媒を減圧して膨張させる。 The pressure reducing valve 22a is, for example, an electronic expansion valve whose opening degree is variably controlled. The pressure reducing valve 22a is connected in series with the indoor heat exchanger 21a, and depressurizes and expands the refrigerant flowing out from the indoor heat exchanger 21a or the refrigerant flowing into the indoor heat exchanger 21.
 室内配管23aは、空気調和装置100の配管のうち、室内機2の筐体(不図示)内部の配管である。室内配管23aは、室内熱交換器21aと、減圧弁22aとを接続する。室内配管23aの室内熱交換器21a側の端部は、冷媒配管3に接続されている。同様に、室内配管23aの減圧弁22a側の端部は、冷媒配管4に接続されている。 Among the pipes of the air conditioner 100, the indoor pipe 23a is a pipe inside the casing (not shown) of the indoor unit 2. Indoor piping 23a connects indoor heat exchanger 21a and pressure reducing valve 22a. An end of the indoor pipe 23 a on the indoor heat exchanger 21 a side is connected to the refrigerant pipe 3 . Similarly, the end of the indoor pipe 23a on the pressure reducing valve 22a side is connected to the refrigerant pipe 4.
 室内機2および2cが有する各構成は、室内機2と同様である。すなわち、室内機2は、室内熱交換器21b、減圧弁22b、および室内配管23bを備えている。同様に、室内機2は、室内熱交換器21c、減圧弁22c、および室内配管23cを備えている。室内機2および2cが有する各構成についても、室内機2の各構成と同様であるため、説明は省略する。なお、以下では室内機2a~2c、および室内機2a~2cが有する各構成を区別しない場合、添え字「a」「b」および「c」を省略して説明する場合がある。 Each configuration of the indoor units 2 and 2c is the same as that of the indoor unit 2. That is, the indoor unit 2 includes an indoor heat exchanger 21b, a pressure reducing valve 22b, and indoor piping 23b. Similarly, the indoor unit 2 includes an indoor heat exchanger 21c, a pressure reducing valve 22c, and indoor piping 23c. The configurations of the indoor units 2 and 2c are also similar to the configurations of the indoor unit 2, so description thereof will be omitted. Note that in the following description, the subscripts "a", "b", and "c" may be omitted when the indoor units 2a to 2c and the respective configurations of the indoor units 2a to 2c are not distinguished.
 圧縮機11、流路切替弁12、室外熱交換器13、およびアキュムレータ14と、室内熱交換器21a~21cおよび減圧弁22a~22cと、が室外配管16、および室内配管23a~24cによって接続されることで冷媒回路5が構成されている。 Compressor 11, flow path switching valve 12, outdoor heat exchanger 13, and accumulator 14 are connected to indoor heat exchangers 21a to 21c and pressure reducing valves 22a to 22c by outdoor piping 16 and indoor piping 23a to 24c. The refrigerant circuit 5 is configured by this.
 冷媒配管3には、異音検出装置61が取り付けられている。異音検出装置61は、冷媒配管3で鳴る異音を検出する。異音は、次のような種類に大別される。第1に、配管内の気液二相状態の冷媒によって生じる音である。第2に、配管が共振によって振動する音である。第3に、減圧弁22の急激な開度変更によって生じる音である。これらの異音にはそれぞれ鳴り方に特徴がある。例えば、第1の、配管内の気液二相状態の冷媒によって生じる異音は、ゴボゴボという音に聞こえる。また、第3の、減圧弁22の急激な開度変更によって生じる異音は、ドンという音に聞こえる。 An abnormal noise detection device 61 is attached to the refrigerant pipe 3. The abnormal noise detection device 61 detects abnormal noise generated in the refrigerant pipe 3. Abnormal noises are broadly classified into the following types: The first is the sound generated by the gas-liquid two-phase refrigerant in the pipes. The second is the sound caused by the piping vibrating due to resonance. Thirdly, there is a sound caused by a sudden change in the opening degree of the pressure reducing valve 22. Each of these noises has its own characteristics. For example, the first abnormal noise caused by the gas-liquid two-phase refrigerant in the pipe sounds like a gurgling sound. Further, the third abnormal noise caused by a sudden change in the opening degree of the pressure reducing valve 22 sounds like a thud.
 異音検出装置61の具体的な構成、異音の検出方法は、特に限定されない。異音検出装置61は、例えば、冷媒配管3で鳴る音を検知する音響センサ、および冷媒配管3で生じる振動を検知する振動センサの何れか、または両方からなる。なお、異音検出装置61は、冷媒配管3で鳴る音のうち、特定の周波数を有するもの、または特定の波形からなるものを異音として検出する。また、異音検出装置61は、所定の大きさ以上の音をすべて異音として検出するようにしてもよい。異音検出装置61は、検出した異音について、その大きさと検出された時間を示す情報を含む検出結果を制御装置19に送信する。 The specific configuration of the abnormal noise detection device 61 and the method of detecting abnormal noise are not particularly limited. The abnormal noise detection device 61 includes, for example, either or both of an acoustic sensor that detects sounds generated in the refrigerant pipe 3 and a vibration sensor that detects vibrations generated in the refrigerant pipe 3. Note that the abnormal noise detection device 61 detects, as abnormal noises, sounds having a specific frequency or having a specific waveform among the sounds generated by the refrigerant pipe 3 . Further, the abnormal sound detection device 61 may detect all sounds of a predetermined loudness or higher as abnormal sounds. The abnormal noise detection device 61 transmits to the control device 19 a detection result including information indicating the magnitude and time of detection of the detected abnormal noise.
 冷媒配管3には、温度センサ62、および圧力センサ63が取り付けられている。温度センサ62は、冷媒配管3の温度、つまり冷媒配管3を流れる冷媒の温度を測定する。温度センサ62は、検出した冷媒温度を示す情報を制御装置19に送信する。圧力センサ63は、温度センサ62は、冷媒配管3を流れる冷媒の圧力を測定する。圧力センサ63は、検出した冷媒圧力を示す情報を制御装置19に送信する。 A temperature sensor 62 and a pressure sensor 63 are attached to the refrigerant pipe 3. The temperature sensor 62 measures the temperature of the refrigerant pipe 3 , that is, the temperature of the refrigerant flowing through the refrigerant pipe 3 . Temperature sensor 62 transmits information indicating the detected refrigerant temperature to control device 19 . The pressure sensor 63 and the temperature sensor 62 measure the pressure of the refrigerant flowing through the refrigerant pipe 3 . Pressure sensor 63 transmits information indicating the detected refrigerant pressure to control device 19 .
 図2は、実施の形態1に係る空気調和装置100の機能ブロック図である。図2に示すように、制御装置19は、異音検出装置61の検出結果、温度センサ62が測定した冷媒温度、および圧力センサ63が測定した冷媒圧力に基づいて、圧縮機11、ファン15、および減圧弁22の動作を制御する。具体的に、制御装置19は、圧縮機11の運転周波数、ファン15の周波数、減圧弁22の開度を制御する。制御装置19は、機能部として、取得部71、判定部72、および制御部73を有する。また、制御装置19は、記憶部81を有する。記憶部81は、制御装置19が有する不揮発性メモリである。 FIG. 2 is a functional block diagram of the air conditioner 100 according to the first embodiment. As shown in FIG. 2, the control device 19 controls the compressor 11, fan 15, and controls the operation of the pressure reducing valve 22. Specifically, the control device 19 controls the operating frequency of the compressor 11, the frequency of the fan 15, and the opening degree of the pressure reducing valve 22. The control device 19 includes an acquisition section 71, a determination section 72, and a control section 73 as functional sections. The control device 19 also includes a storage section 81 . The storage unit 81 is a nonvolatile memory included in the control device 19.
 ここで、制御装置19のハードウェアの一例を説明する。図3は、実施の形態1に係る制御装置19の一構成例を示すハードウェア構成図である。制御装置19の各種機能がハードウェアで実行される場合、制御装置19は、図3に示すように、処理回路91で構成される。図2に示した取得部71、判定部72、および制御部73の各機能は、処理回路91により実現される。 Here, an example of the hardware of the control device 19 will be explained. FIG. 3 is a hardware configuration diagram showing an example of the configuration of the control device 19 according to the first embodiment. When the various functions of the control device 19 are executed by hardware, the control device 19 is configured with a processing circuit 91, as shown in FIG. The functions of the acquisition section 71, determination section 72, and control section 73 shown in FIG. 2 are realized by the processing circuit 91.
 各機能がハードウェアで実行される場合、処理回路91は、例えば、単一回路、複合回路、プログラム化したプロセッサ92、並列プログラム化したプロセッサ92、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものに該当する。取得部71、判定部72、および制御部73の機能のそれぞれを処理回路91で実現してもよい。また、取得部71、判定部72、および制御部73の機能を1つの処理回路91で実現してもよい。 When each function is executed by hardware, the processing circuit 91 is, for example, a single circuit, a composite circuit, a programmed processor 92, a parallel programmed processor 92, an ASIC (Application Specific Integrated Circuit), an FPGA (Field- Programmable Gate Array) or a combination of these. Each of the functions of the acquisition section 71, the determination section 72, and the control section 73 may be implemented by the processing circuit 91. Further, the functions of the acquisition section 71, the determination section 72, and the control section 73 may be realized by one processing circuit 91.
 また、制御装置19の別のハードウェアの一例を説明する。図4は、実施の形態1に係る制御装置19の一構成例を示すハードウェア構成図である。制御装置19の各種機能がソフトウェアで実行される場合、制御装置19は、図4に示すように、CPU等のプロセッサ92およびメモリ93で構成される。取得部71、判定部72、および制御部73の各機能は、プロセッサ92およびメモリ93により実現される。図4は、プロセッサ92およびメモリ93が互いにバス94を介して通信可能に接続されることを示している。この場合、メモリ93は、記憶部81が記憶する情報を記憶してもよい。 Also, another example of hardware of the control device 19 will be explained. FIG. 4 is a hardware configuration diagram showing an example of the configuration of the control device 19 according to the first embodiment. When the various functions of the control device 19 are executed by software, the control device 19 is configured with a processor 92 such as a CPU and a memory 93, as shown in FIG. The functions of the acquisition section 71, the determination section 72, and the control section 73 are realized by the processor 92 and the memory 93. FIG. 4 shows that processor 92 and memory 93 are communicatively connected to each other via bus 94. In this case, the memory 93 may store the information stored in the storage section 81.
 各機能がソフトウェアで実行される場合、取得部71、判定部72、および制御部73の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ93に格納される。プロセッサ92は、メモリ93に記憶されたプログラムを読み出して実行することにより、各手段の機能を実現する。 When each function is executed by software, the functions of the acquisition unit 71, determination unit 72, and control unit 73 are realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory 93. The processor 92 realizes the functions of each means by reading and executing programs stored in the memory 93.
 メモリ93として、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性の半導体メモリが用いられる。また、メモリ93として、RAM(Random Access Memory)の揮発性の半導体メモリが用いられてもよい。更に、メモリ93として、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。なお、制御装置19の機能の一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 Examples of the memory 93 include ROM (Read Only Memory), flash memory, EPROM (Erasable and Programmable ROM), and EEPROM (Electrically Erasable and Programmable ROM). A nonvolatile semiconductor memory such as a programmable ROM (ROM) is used. Further, as the memory 93, a volatile semiconductor memory such as RAM (Random Access Memory) may be used. Further, as the memory 93, a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versatile Disc) may be used. Note that some of the functions of the control device 19 may be realized by dedicated hardware, and some of them may be realized by software or firmware.
 制御装置19の具体的な制御内容について、制御装置19の有する各機能部および記憶部81の説明と共に説明する。先述したように、制御装置19は、機能部として、取得部71、判定部72、および制御部73を有する。取得部71は、異音検出装置61の検出結果、温度センサ62が測定した冷媒温度、および圧力センサ63が測定した冷媒圧力を取得する。取得部71は、取得した異音検出装置61の検出結果、冷媒温度、および冷媒圧力を判定部72に送信する。ここで、冷媒温度、冷媒圧力、圧縮機11の運転周波数、および減圧弁22の開度の組み合わせによって定まる空気調和装置100の状態を、制御装置19の制御パターンと称する。 The specific control contents of the control device 19 will be explained together with descriptions of each functional section and the storage section 81 that the control device 19 has. As described above, the control device 19 includes the acquisition section 71, the determination section 72, and the control section 73 as functional sections. The acquisition unit 71 acquires the detection result of the abnormal noise detection device 61, the refrigerant temperature measured by the temperature sensor 62, and the refrigerant pressure measured by the pressure sensor 63. The acquisition unit 71 transmits the acquired detection results of the abnormal noise detection device 61, refrigerant temperature, and refrigerant pressure to the determination unit 72. Here, the state of the air conditioner 100 determined by the combination of refrigerant temperature, refrigerant pressure, operating frequency of the compressor 11, and opening degree of the pressure reducing valve 22 is referred to as a control pattern of the control device 19.
 判定部72は、冷媒温度、および冷媒圧力が測定された時点での圧縮機11の運転周波数、および減圧弁22の開度を取得する。判定部72は、取得部71が取得した冷媒温度および冷媒圧力、ならびに冷媒温度および冷媒圧力が測定された時点での圧縮機11の運転周波数、および減圧弁22の開度の組み合わせによって定まる制御パターンにおいて、異音検出装置61が検出した異音が第1閾値以上の大きさであるか否かを判定する。また、判定部72は、異音の大きさが第1閾値以上であれば、その異音が第2閾値以上の時間継続したか否かを判定する。第1閾値は、音量を示す所定の値である。第2閾値は、時間を示す所定の値であって、例えば1分である。 The determination unit 72 acquires the operating frequency of the compressor 11 and the opening degree of the pressure reducing valve 22 at the time when the refrigerant temperature and refrigerant pressure are measured. The determination unit 72 determines a control pattern determined by a combination of the refrigerant temperature and refrigerant pressure acquired by the acquisition unit 71, the operating frequency of the compressor 11 at the time when the refrigerant temperature and refrigerant pressure are measured, and the opening degree of the pressure reducing valve 22. In this step, it is determined whether the abnormal noise detected by the abnormal noise detection device 61 has a magnitude greater than or equal to a first threshold value. Furthermore, if the magnitude of the abnormal noise is greater than or equal to the first threshold, the determination unit 72 determines whether or not the abnormal noise has continued for a time equal to or greater than the second threshold. The first threshold is a predetermined value indicating the volume. The second threshold is a predetermined value indicating time, and is, for example, one minute.
 判定部72は、複数の制御パターンのうち、異音を発生させない、あるいは第1閾値未満の大きさの異音を発生させる制御パターンを通常パターンとして設定し、記憶部81に記憶する。判定部72は、第1閾値以上の大きさの異音の発生を第2閾値以上の時間継続させる制御パターンを回避対象パターンとして設定し、記憶部81に記憶する。また、判定部72は、第1閾値以上の大きさの異音を発生させたものの、それが継続した時間が第2閾値未満であった場合、前回の制御パターンと今回の制御パターンの組を回避対象遷移ペアとして設定し、記憶部81に記憶する。第1閾値以上の大きさの異音を発生させたものの、それが継続した時間が第2閾値未満であった場合とは、異音が制御パターンの切り替え(遷移)に伴う瞬間的なものであったことを意味する。なお、以下では回避対象パターンおよび回避対象遷移ペアをまとめて回避対象と称する。判定部72は、例えば、制御パターンが変更されるごとに、異音検出装置61の検出結果に基づいて制御時点の制御パターンが回避対象に該当するか否かを判定する。つまり、判定部72は、制御パターンごとの異音検出装置61の検出結果に基づいて回避対象を判定する。 Among the plurality of control patterns, the determining unit 72 sets a control pattern that does not generate abnormal noise or generates an abnormal noise with a magnitude less than the first threshold value as a normal pattern, and stores it in the storage unit 81. The determination unit 72 sets a control pattern that causes the generation of abnormal noise having a magnitude equal to or greater than a first threshold value to continue for a time equal to or greater than a second threshold value as an avoidance target pattern, and stores it in the storage unit 81 . Furthermore, if an abnormal noise having a magnitude greater than or equal to the first threshold is generated, but the duration of the abnormal noise is less than the second threshold, the determination unit 72 determines the combination of the previous control pattern and the current control pattern. It is set as an avoidance target transition pair and stored in the storage unit 81. If an abnormal noise is generated that is louder than the first threshold, but the duration of the noise is less than the second threshold, this means that the abnormal noise is instantaneous due to a change (transition) of the control pattern. It means that there was. Note that in the following, the avoidance target pattern and the avoidance target transition pair are collectively referred to as an avoidance target. For example, each time the control pattern is changed, the determination unit 72 determines whether the control pattern at the time of control corresponds to an avoidance target based on the detection result of the abnormal noise detection device 61. That is, the determination unit 72 determines the avoidance target based on the detection results of the abnormal noise detection device 61 for each control pattern.
 制御部73は、記憶部81に記憶された回避対象を回避する。具体的には、制御部73は、リモコン(図示せず)などによって空調対象空間の設定温度を変更する場合など、制御パターンを遷移するように指令を受けて、制御パターンを遷移する際に、指令値に基づいて遷移後に想定される制御パターンを決定する。そして、制御部73は、遷移後に想定される制御パターンが回避対象に該当するか否かを判定する。遷移後に想定される制御パターンが回避対象に該当する場合、制御部73は、遷移後の制御パターンの何れかの値を変更する。例えば、圧縮機11の運転周波数を上げることで、遷移後に想定される制御パターンが回避対象に該当する場合は、遷移後の制御パターンの運転周波数を、回避対象の制御パターンが示す運転周波数よりも大きく運転周波数を上げる。これにより、制御部73は、回避対象を回避している。もっとも、制御部73は、減圧弁22の開度を変更することで、回避対象を回避するようにしてもよい。また、制御部73は、ファン15などの圧縮機11および減圧弁22以外のアクチュエータによって駆動する機器の動作を制御して、冷媒温度、および冷媒圧力を変更することで、回避対象を回避するようにしてもよい。 The control unit 73 avoids the avoidance target stored in the storage unit 81. Specifically, when the control unit 73 receives a command to change the control pattern and changes the control pattern, such as when changing the set temperature of the air-conditioned space using a remote control (not shown) or the like, A control pattern assumed after the transition is determined based on the command value. Then, the control unit 73 determines whether the control pattern assumed after the transition corresponds to the avoidance target. If the control pattern assumed after the transition corresponds to the avoidance target, the control unit 73 changes any value of the control pattern after the transition. For example, by increasing the operating frequency of the compressor 11, if the control pattern assumed after the transition falls under the avoidance target, the operating frequency of the control pattern after the transition is set to be lower than the operating frequency indicated by the control pattern to be avoided. Increase the operating frequency significantly. Thereby, the control unit 73 avoids the avoidance target. However, the control unit 73 may avoid the object to be avoided by changing the opening degree of the pressure reducing valve 22. In addition, the control unit 73 controls the operation of devices such as the fan 15 that are driven by actuators other than the compressor 11 and the pressure reducing valve 22 to change the refrigerant temperature and pressure to avoid the avoidance target. You may also do so.
 なお、遷移後に想定される制御パターンが回避対象に該当することとは、遷移後に想定される制御パターンの各機器の運転周波数または開度が、回避対象の各機器の運転周波数または開度に対して所定の値を加算または減算した範囲内の値に収まることを意味する。 Furthermore, the fact that the control pattern assumed after the transition falls under the avoidance target means that the operating frequency or opening degree of each device in the control pattern assumed after the transition is relative to the operating frequency or opening degree of each device to be avoided. means that the value falls within the range obtained by adding or subtracting a predetermined value.
 ここで、上記制御について具体例を挙げて説明する。図5は、実施の形態1に係る通常パターンおよび回避対象パターンの一例を示す図である。図5に示すように、制御装置19の記憶部81には、通常パターンおよび回避対象パターンが記憶されている。図5では、制御A、制御Cおよび制御Dが第1閾値以上の異音が発生しなかった通常パターンに相当し、制御Bが第1閾値以上の異音が発生した回避対象パターンに相当する。したがって、制御装置19の制御部73は、制御Bに該当する制御パターンを回避する。 Here, the above control will be explained using a specific example. FIG. 5 is a diagram illustrating an example of a normal pattern and an avoidance target pattern according to the first embodiment. As shown in FIG. 5, the storage unit 81 of the control device 19 stores normal patterns and avoidance target patterns. In FIG. 5, control A, control C, and control D correspond to a normal pattern in which no abnormal noise exceeding the first threshold value occurs, and control B corresponds to an avoidance target pattern in which abnormal noise exceeding the first threshold value occurs. . Therefore, the control unit 73 of the control device 19 avoids the control pattern corresponding to control B.
 図6は、実施の形態1に係る回避対象遷移ペアの一例を示す図である。図6に示すように、制御装置19の記憶部81には、回避対象遷移ペアが記憶されている。図6では、制御Aおよび制御Dが回避対象遷移ペアに相当する。制御装置19の制御部73は、制御パターンが制御Aであった際に、制御Dへの遷移を回避する。 FIG. 6 is a diagram illustrating an example of avoidance target transition pairs according to the first embodiment. As shown in FIG. 6, the storage unit 81 of the control device 19 stores transition pairs to be avoided. In FIG. 6, control A and control D correspond to the avoided transition pair. The control unit 73 of the control device 19 avoids transition to control D when the control pattern is control A.
 図7は、実施の形態1に係る制御装置19の動作を示すフローチャートである。まず、回避対象の記憶手順について説明する。まず、取得部71は、異音の検出結果、温度センサ62が測定した冷媒温度、および圧力センサ63が測定した冷媒圧力を取得する。また、判定部72は、冷媒温度、および冷媒圧力が測定された時点での圧縮機11の運転周波数、および減圧弁22の開度を取得する(ステップS1)。次に、判定部72は、冷媒温度および冷媒圧力が測定された時点の制御パターンにおいて、異音検出装置61が検出した異音の大きさが第1閾値以上の大きさであるか否かを判定する(ステップS2)。異音の大きさが第1閾値未満でない場合(ステップS2:NO)、判定部72は、今回の制御パターンを通常パターンとして記憶する(ステップS3)。また、異音の大きさが第1閾値以上である場合(ステップS2:YES)、その異音が第2閾値以上の時間継続したか否かを判定する(ステップS4)。異音が第2閾値以上の時間継続した場合(ステップS4:YES)、今回の制御パターンを回避対象パターンとして記憶する(ステップS5)。また、異音の継続時間が第2閾値未満であった場合(ステップS4:NO)、制御部73は、前回の制御パターンおよび今回の制御パターンを回避対象遷移ペアとして記憶する(ステップS6)。ステップS1~S6の処理は、所定の周期で繰り返し実行される。 FIG. 7 is a flowchart showing the operation of the control device 19 according to the first embodiment. First, the procedure for storing avoidance targets will be explained. First, the acquisition unit 71 acquires the abnormal noise detection result, the refrigerant temperature measured by the temperature sensor 62, and the refrigerant pressure measured by the pressure sensor 63. Further, the determination unit 72 acquires the operating frequency of the compressor 11 and the opening degree of the pressure reducing valve 22 at the time when the refrigerant temperature and refrigerant pressure are measured (step S1). Next, the determination unit 72 determines whether or not the magnitude of the abnormal noise detected by the abnormal noise detection device 61 is greater than or equal to the first threshold value in the control pattern at the time when the refrigerant temperature and refrigerant pressure are measured. Determination is made (step S2). If the magnitude of the abnormal noise is not less than the first threshold (step S2: NO), the determination unit 72 stores the current control pattern as a normal pattern (step S3). Further, when the magnitude of the abnormal noise is equal to or greater than the first threshold (step S2: YES), it is determined whether the abnormal noise continues for a time equal to or greater than the second threshold (step S4). If the abnormal noise continues for a time equal to or longer than the second threshold (step S4: YES), the current control pattern is stored as an avoidance target pattern (step S5). If the duration of the abnormal noise is less than the second threshold (step S4: NO), the control unit 73 stores the previous control pattern and the current control pattern as an avoidable transition pair (step S6). The processes of steps S1 to S6 are repeatedly executed at a predetermined period.
 図8は、実施の形態1に係る制御装置19の動作を示すフローチャートである。ここでは、回避対象の回避の手順について説明する。まず、制御部73は、リモコン(図示せず)などによって空調対象空間の設定温度を変更する場合など、制御パターンを遷移するように指令を受けると、遷移後に想定される制御パターンが回避対象に該当するか否かを判定する(ステップS11)。遷移後に想定される制御パターンが回避対象に該当する場合(ステップS11:YES)は、制御部73は、遷移後に想定される制御パターンの何れかの値を変更して、制御パターンの実行を回避する(ステップS12)。遷移後に想定される制御パターンが回避対象に該当しない場合(ステップS11:NO)は、制御部73は、遷移後に想定される制御パターンを変更せずに実行する。 FIG. 8 is a flowchart showing the operation of the control device 19 according to the first embodiment. Here, the procedure for avoiding the avoidance target will be explained. First, when the control unit 73 receives a command to change the control pattern, such as when changing the set temperature of the air-conditioned space using a remote control (not shown), the control pattern assumed after the transition becomes the avoidance target. It is determined whether this applies (step S11). If the control pattern assumed after the transition corresponds to the avoidance target (step S11: YES), the control unit 73 changes any value of the control pattern assumed after the transition to avoid execution of the control pattern. (Step S12). If the control pattern assumed after the transition does not correspond to the avoidance target (step S11: NO), the control unit 73 executes the control pattern assumed after the transition without changing it.
 以上のように、実施の形態1では、閾値以上の大きさの異音を発生させる制御状態を回避対象として回避する。このため、空気調和装置100は、異音の発生を抑制することができる。 As described above, in the first embodiment, a control state that generates abnormal noise of a magnitude greater than a threshold value is avoided. Therefore, the air conditioner 100 can suppress the generation of abnormal noise.
 また、このような異音の発生の有無等の物件に応じた特性は、実際に空気調和装置を各物件に設置してみないと判明し難い。このため、空気調和装置の設置後に物件に応じて制御パラメータを変更したソフトウェアを作成したり、現地で設定値を入力したりすることがあった。実施の形態1によれば、実際に物件に空気調和装置100を設置した際の異音の発生状況を記憶し、記憶された異音の発生状況に基づいて制御を行う。したがって、物件ごとのソフトウェアのパラメータの変更、および現地作業を要さずに、空気調和装置100が設定される物件に応じて異音の発生を抑制することができる。 Furthermore, it is difficult to determine the characteristics depending on the property, such as the presence or absence of abnormal noise, unless the air conditioner is actually installed in each property. For this reason, after installing an air conditioner, it is sometimes necessary to create software that changes control parameters depending on the property, or to enter setting values on-site. According to the first embodiment, the occurrence of abnormal noises when the air conditioner 100 is actually installed in a property is stored, and control is performed based on the stored occurrences of abnormal noises. Therefore, generation of abnormal noise can be suppressed depending on the property to which the air conditioner 100 is installed, without changing software parameters for each property and without requiring on-site work.
 実施の形態2.
 実施の形態2は、回避対象を回避する方法が実施の形態1と相違する。実施の形態2では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
Embodiment 2 differs from Embodiment 1 in the method of avoiding the avoidance target. In Embodiment 2, the same parts as Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
 判定部72が異音検出装置61の検出結果に基づいて、各制御パターンの判定を行い、通常パターンおよび回避対象パターンを記憶部81に記憶させる点は実施の形態1と同様である。 Similar to the first embodiment, the determination unit 72 determines each control pattern based on the detection results of the abnormal noise detection device 61, and stores the normal pattern and the avoidance target pattern in the storage unit 81.
 実施の形態2では、制御装置19の制御部73は、異音発生率に基づいて、圧縮機11を段階的に制御する。異音発生率は、回避対象として判定された制御パターンの数を、制御時点で記憶されている全ての制御パターンの数で除したものである。制御部73は、例えば、異音発生率が0%超かつ25%以下の場合は、圧縮機11の運転周波数を全ての制御パターンで一律2.5%下げる。また、異音発生率が25%超かつ50%以下の場合は、圧縮機11の運転周波数を全ての制御パターンで一律5%下げる。このように、制御部73は、異音発生率の高低に対応させて、圧縮機11の運転周波数を下げる割合を増減させる。これにより、回避対象パターンとして記憶されていた制御パターンと異なった制御が行われるため、回避対象パターンを回避することができる。同様に、制御パターンの遷移時にも、回避対象遷移ペアに記憶された遷移後の制御パターンと異なる制御が行われるため、回避対象遷移ペアを回避することができる。なお、制御装置19に設けられたスイッチ(図示せず)等によって、圧縮機11の運転周波数が段階的に調整される。これによって、空気調和装置100が設けられた現地で、運転周波数の制御量を調整することができる。 In the second embodiment, the control unit 73 of the control device 19 controls the compressor 11 in stages based on the abnormal noise generation rate. The abnormal noise occurrence rate is calculated by dividing the number of control patterns determined to be avoided by the number of all control patterns stored at the time of control. For example, when the abnormal noise generation rate is more than 0% and less than 25%, the control unit 73 lowers the operating frequency of the compressor 11 by 2.5% across all control patterns. Further, if the abnormal noise generation rate is more than 25% and less than 50%, the operating frequency of the compressor 11 is lowered by 5% across all control patterns. In this way, the control unit 73 increases or decreases the rate at which the operating frequency of the compressor 11 is lowered in accordance with the level of the abnormal noise generation rate. As a result, control that is different from the control pattern stored as the avoidance target pattern is performed, so that the avoidance target pattern can be avoided. Similarly, at the time of control pattern transition, control that is different from the post-transition control pattern stored in the avoidable transition pair is performed, so that the avoidable transition pair can be avoided. Note that the operating frequency of the compressor 11 is adjusted in stages by a switch (not shown) provided in the control device 19 or the like. Thereby, the control amount of the operating frequency can be adjusted at the site where the air conditioner 100 is installed.
 ここで、上記制御について具体例を挙げて説明する。図9は、実施の形態2に係る通常パターンおよび回避対象パターンの一例を示す図である。図9に示した例では、制御時点で記憶されている制御パターンは全部で4つあり、回避対象パターンは2つある。よって、この例での異音発生率は50%であるため、制御部73は、圧縮機11の運転周波数を全ての制御パターンで一律5%下げる。 Here, the above control will be explained using a specific example. FIG. 9 is a diagram illustrating an example of a normal pattern and an avoidance target pattern according to the second embodiment. In the example shown in FIG. 9, there are a total of four control patterns stored at the time of control, and two avoidance target patterns. Therefore, since the abnormal noise generation rate in this example is 50%, the control unit 73 lowers the operating frequency of the compressor 11 by 5% in all control patterns.
 図10は、実施の形態2に係る通常パターンおよび回避対象パターンの一例を示す図である。図10に示した例では、制御時点で記憶されている制御パターンは全部で4つあり、回避対象パターンは1つである。よって、この例での異音発生率は25%であるため、制御部73は、圧縮機11の運転周波数を全ての制御パターンで一律2.5%下げる。 FIG. 10 is a diagram illustrating an example of a normal pattern and an avoidance target pattern according to the second embodiment. In the example shown in FIG. 10, there are a total of four control patterns stored at the time of control, and one pattern to be avoided. Therefore, since the abnormal noise generation rate in this example is 25%, the control unit 73 uniformly lowers the operating frequency of the compressor 11 by 2.5% in all control patterns.
 なお、制御部73は、圧縮機11の運転周波数だけでなく、異音発生率に基づいて、減圧弁22を段階的に制御するようにしてもよい。制御部73は、例えば、異音発生率が0%超かつ25%以下の場合は、減圧弁22の開度を全ての制御パターンで一律2.5%下げる。また、異音発生率が25%超かつ50%以下の場合は、減圧弁22の開度を全ての制御パターンで一律5%下げる。このように、制御部73は、異音発生率の高低に対応させて、減圧弁22の開度を上げる割合を増減させる。もっとも、減圧弁22の開度は%単位で制御されるものではなく、パルス単位で制御されてもよい。 Note that the control unit 73 may control the pressure reducing valve 22 in stages based not only on the operating frequency of the compressor 11 but also on the abnormal noise generation rate. For example, when the abnormal noise generation rate is more than 0% and less than 25%, the control unit 73 uniformly lowers the opening degree of the pressure reducing valve 22 by 2.5% in all control patterns. Furthermore, if the abnormal noise generation rate is more than 25% and less than 50%, the opening degree of the pressure reducing valve 22 is lowered by 5% in all control patterns. In this manner, the control unit 73 increases or decreases the rate at which the opening degree of the pressure reducing valve 22 is increased in accordance with the level of the abnormal noise generation rate. However, the opening degree of the pressure reducing valve 22 is not controlled in units of %, but may be controlled in units of pulses.
 以上のように、実施の形態2によっても、実施の形態1と異なる方法によって、閾値以上の大きさの異音を発生させる制御状態を回避対象として回避する。このため、空気調和装置100は、異音の発生を抑制することができる。 As described above, the second embodiment uses a method different from the first embodiment to avoid control states that generate abnormal noise of a magnitude greater than a threshold value. Therefore, the air conditioner 100 can suppress the generation of abnormal noise.
 実施の形態3.
 実施の形態3は、回避対象を回避する方法が実施の形態1と相違する。具体的に、実施の形態3は、記憶された通常パターンおよび回避対象パターン、ならびに異音の発生原因と制御パターンとの対応関係によって異音の発生原因を推定し、推定結果に基づく制御を行う。実施の形態3では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 3.
Embodiment 3 differs from Embodiment 1 in the method of avoiding the avoidance target. Specifically, in Embodiment 3, the cause of abnormal noise is estimated based on the stored normal pattern and avoidance target pattern, and the correspondence between the cause of abnormal noise and the control pattern, and control is performed based on the estimation result. . In Embodiment 3, the same parts as Embodiment 1 are given the same reference numerals, explanations are omitted, and differences from Embodiment 1 will be mainly explained.
 判定部72が異音検出装置61の検出結果に基づいて、各制御パターンの判定を行い、通常パターンおよび回避対象パターンを記憶部81に記憶させる点は実施の形態1と同様である。 Similar to the first embodiment, the determination unit 72 determines each control pattern based on the detection results of the abnormal noise detection device 61, and stores the normal pattern and the avoidance target pattern in the storage unit 81.
 図11は、実施の形態3に係る異音の発生原因と制御パターンとの対応関係を示す図である。記憶部81には、図11に示すように、異音の発生原因ごとに、第1閾値以上の異音の発生が予想される制御パターンが対応付けて記憶されている。例えば、異音の発生原因が「原因a」なのであれば、制御Bおよび制御部73の制御パターンで第1閾値以上の異音が発生することが予想されている。翻って、制御Bおよび制御部73の制御パターンで第1閾値以上の異音が発生しているのであれば、異音の発生原因が「原因a」であることを推定することができる。なお、異音の発生原因とは、例えば、圧縮機11が特定の運転周波数をとったり、減圧弁22が特定の開度をとったりすることである。 FIG. 11 is a diagram showing the correspondence between causes of abnormal noise and control patterns according to the third embodiment. As shown in FIG. 11, the storage unit 81 stores, for each cause of abnormal noise, a control pattern that is expected to cause abnormal noise equal to or higher than the first threshold value to be associated with each other. For example, if the cause of the abnormal noise is "cause a", it is predicted that the control pattern of control B and the control unit 73 will cause abnormal noise that is equal to or higher than the first threshold value. On the other hand, if the abnormal noise of the first threshold value or more is generated under the control pattern of control B and the control unit 73, it can be estimated that the cause of the abnormal noise is "cause a". Note that the cause of the abnormal noise is, for example, that the compressor 11 has a specific operating frequency or that the pressure reducing valve 22 has a specific opening degree.
 制御部73は、記憶された通常パターンおよび回避対象パターン、ならびに異音の発生原因と制御パターンとの対応関係によって異音の発生原因を推定する。そして、制御部73は、記録されている回避対象パターンから推定された異音の発生原因に対応するレベルを1つ上げる。発生原因に対応するレベルが1つ上がると、制御部73は、第1閾値以上の大きさの異音を発生させる回避対象パターンを実行する際に、異音の発生原因となっている機器の運転周波数または開度などを所定量変更する。これにより、回避対象パターンとして記憶されていた制御パターンと異なった制御が行われるため、回避対象パターンを回避することができる。同様に、制御パターンの遷移時にも、回避対象遷移ペアに記憶された遷移後の制御パターンと異なる制御が行われるため、回避対象遷移ペアを回避することができる。なお、レベルを上げた場合であっても、第1閾値以上の大きさの異音を発生させる回避対象パターンを実行する際に、異音の発生が継続する場合は、レベルを更に1つ上げる。このように、制御部73は、異音の発生原因に対応するレベルに応じて、異音の発生原因となっている機器の運転周波数または開度などを段階的に制御する。 The control unit 73 estimates the cause of the abnormal noise based on the stored normal pattern and avoidance target pattern, and the correspondence between the cause of the abnormal noise and the control pattern. Then, the control unit 73 increases the level corresponding to the cause of the abnormal noise estimated from the recorded avoidance target pattern by one. When the level corresponding to the cause of the occurrence increases by one, the control unit 73 controls the level of the equipment causing the abnormal noise when executing the avoidance target pattern that generates the abnormal noise of a magnitude equal to or greater than the first threshold value. Change the operating frequency or opening degree by a predetermined amount. As a result, control that is different from the control pattern stored as the avoidance target pattern is performed, so that the avoidance target pattern can be avoided. Similarly, at the time of control pattern transition, control that is different from the post-transition control pattern stored in the avoidable transition pair is performed, so that the avoidable transition pair can be avoided. In addition, even if the level is increased, if the abnormal noise continues to be generated when executing the avoidance target pattern that generates abnormal noise louder than the first threshold, the level is further increased by one. . In this way, the control unit 73 controls the operating frequency or the opening degree of the device that is the cause of the abnormal noise in a stepwise manner depending on the level corresponding to the cause of the abnormal noise.
 例えば、異音の発生原因が「原因a」である場合は、圧縮機11の運転周波数を制御する。制御部73は、「原因a」に対応するレベルが1つ上がるごとに、第1閾値以上の大きさの異音が発生した回避対象パターンにおいて、圧縮機11の運転周波数を5%下げる。また、異音の発生原因が「原因b」である場合は、減圧弁22の開度を制御する。制御部73は、「原因b」に対応するレベルが1つ上がるごとに、第1閾値以上の大きさの異音が発生した回避対象パターンにおいて、減圧弁22の開度を5%下げる。もっとも、減圧弁22の開度は%単位で制御されるものではなく、パルス単位で制御されてもよい。また、異音の発生原因が「原因c」である場合は、ファン15の周波数を制御する。制御部73は、「原因c」に対応するレベルが1つ上がるごとに、第1閾値以上の大きさの異音が発生した回避対象パターンにおいて、ファン15の周波数を5%下げる。 For example, if the cause of the abnormal noise is "cause a", the operating frequency of the compressor 11 is controlled. The control unit 73 lowers the operating frequency of the compressor 11 by 5% in the avoidance target pattern in which abnormal noise of a magnitude equal to or greater than the first threshold value occurs each time the level corresponding to "cause a" increases by one. Furthermore, if the cause of the abnormal noise is "cause b", the opening degree of the pressure reducing valve 22 is controlled. The control unit 73 lowers the opening degree of the pressure reducing valve 22 by 5% in the avoidance target pattern in which abnormal noise of a magnitude equal to or greater than the first threshold value occurs each time the level corresponding to "cause b" increases by one. However, the opening degree of the pressure reducing valve 22 is not controlled in units of %, but may be controlled in units of pulses. Furthermore, if the cause of the abnormal noise is "cause c", the frequency of the fan 15 is controlled. The control unit 73 lowers the frequency of the fan 15 by 5% in the avoidance target pattern in which abnormal noise of a magnitude equal to or greater than the first threshold value occurs each time the level corresponding to "cause c" increases by one.
 ここで、上記制御について具体例を挙げて説明する。例えば、実施の形態2で説明した図9の場合、制御Cおよび制御Dにて第1閾値以上の異音が発生している。このため、図11の異音の発生原因と制御パターンとの対応関係を参照すると、制御Cで生じている異音の発生原因は、「原因b」と推定され、制御Dで生じている異音の発生原因は、「原因c」と推定される。なお、制御Dで異音が発生しているものの、「原因a」は異音の発生原因にはならない。これは、異音の発生原因が「原因a」なのであれば、制御Bおよび制御Dの両方で異音が発生するはずであるのに対して、制御Bでは異音が発生していないため、「原因a」は真の異音の発生原因ではないと推定されるためである。 Here, the above control will be explained using a specific example. For example, in the case of FIG. 9 described in Embodiment 2, abnormal noises greater than the first threshold are generated in control C and control D. Therefore, referring to the correspondence between the causes of abnormal noise and control patterns in FIG. 11, the cause of abnormal noise occurring in control C is estimated to be "cause b", and the The cause of the sound generation is estimated to be "cause c". Although abnormal noise is generated in control D, "cause a" is not the cause of the abnormal noise. This is because if the cause of the abnormal noise is "Cause a", abnormal noise should be generated in both control B and control D, but since no abnormal noise is generated in control B, This is because "Cause a" is presumed not to be the true cause of the abnormal noise.
 図12は、実施の形態3に係る制御装置19の動作を示すフローチャートである。実施の形態3では、実施の形態1で説明した回避対象の記憶手順に続いて、異音の発生原因ごとにレベルを決定する。異音の発生原因に対応するレベルの決定は、次のようにして行われる。なお、ここでは、異音の発生原因が「原因a」「原因b」および「原因c」の3つである場合について説明するが、原因は1つ、2つ、または4つ以上であってもよい。 FIG. 12 is a flowchart showing the operation of the control device 19 according to the third embodiment. In the third embodiment, following the procedure for storing avoidance targets described in the first embodiment, a level is determined for each cause of abnormal noise. The level corresponding to the cause of abnormal noise is determined as follows. In addition, here, we will explain the case where there are three causes of abnormal noise, "Cause a", "Cause b", and "Cause c", but there may be one, two, or four or more causes. Good too.
 まず、制御部73は、記憶された通常パターンおよび回避対象パターン、ならびに異音の発生原因と制御パターンとの対応関係に基づいて、発生原因が「原因a」と推定される異音が生じたか否かを判定する(ステップS21)。発生原因が「原因a」と推定される異音が生じていた場合(ステップS21:YES)、「原因a」に対応するレベルを1上げる(ステップS22)。また、発生原因が「原因a」と推定される異音が生じていない場合(ステップS21:NO)、制御部73は、「原因a」に対応するレベルの調整を行わない。 First, the control unit 73 determines, based on the stored normal pattern and avoidance target pattern, as well as the correspondence between the cause of the abnormal noise and the control pattern, whether or not an abnormal noise has occurred whose generation cause is estimated to be "cause a". It is determined whether or not (step S21). If an abnormal noise is generated whose cause is estimated to be "cause a" (step S21: YES), the level corresponding to "cause a" is increased by 1 (step S22). Further, if no abnormal noise is generated which is presumed to be caused by "cause a" (step S21: NO), the control unit 73 does not adjust the level corresponding to "cause a".
 次に、制御部73は、記憶された通常パターンおよび回避対象パターン、ならびに異音の発生原因と制御パターンとの対応関係に基づいて、発生原因が「原因b」と推定される異音が生じたか否かを判定する(ステップS23)。発生原因が「原因b」と推定される異音が生じていた場合(ステップS23:YES)、制御部73は、「原因b」に対応するレベルを1上げる(ステップS24)。また、発生原因が「原因b」と推定される異音が生じていない場合(ステップS23:NO)、制御部73は、「原因b」に対応するレベルの調整を行わない。 Next, based on the stored normal pattern and avoidance target pattern, as well as the correspondence between the cause of the abnormal noise and the control pattern, the control unit 73 controls the control unit 73 to generate an abnormal noise that is estimated to be caused by "cause b". It is determined whether or not (step S23). If an abnormal noise is generated whose cause is estimated to be "cause b" (step S23: YES), the control unit 73 increases the level corresponding to "cause b" by 1 (step S24). Further, if no abnormal noise is generated which is presumed to be caused by "cause b" (step S23: NO), the control unit 73 does not adjust the level corresponding to "cause b".
 そして、制御部73は、記憶された通常パターンおよび回避対象パターン、ならびに異音の発生原因と制御パターンとの対応関係に基づいて、発生原因が「原因c」と推定される異音が生じたか否かを判定する(ステップS25)。発生原因が「原因c」と推定される異音が生じていた場合(ステップS25:YES)、制御部73は、「原因c」に対応するレベルを1上げ(ステップS26)、処理を終了する。また、発生原因が「原因c」と推定される異音が生じていない場合(ステップS25:NO)、制御部73は、「原因c」に対応するレベルの調整を行わず、処理を終了する。 Then, the control unit 73 determines whether an abnormal noise has occurred whose generation cause is estimated to be "cause c", based on the stored normal pattern and avoidance target pattern, and the correspondence between the cause of the abnormal noise and the control pattern. It is determined whether or not (step S25). If an abnormal noise is generated whose cause is estimated to be "cause c" (step S25: YES), the control unit 73 increases the level corresponding to "cause c" by 1 (step S26), and ends the process. . Further, if the abnormal noise that is estimated to be caused by "cause c" is not occurring (step S25: NO), the control unit 73 does not adjust the level corresponding to "cause c" and ends the process. .
 次に、回避対象の回避の手順について説明する。なお、実施の形態1と同様であるため、フローチャートは省略する。実施の形態3では、図8のフローチャートのステップS12において、制御部73は、遷移後に想定される制御パターンにおいて、異音の発生原因に関係する機器を決定されているレベルに応じて制御することで、制御パターンの実行を回避する。 Next, the procedure for avoiding the avoidance target will be explained. Note that since this is the same as in Embodiment 1, the flowchart will be omitted. In the third embodiment, in step S12 of the flowchart of FIG. 8, the control unit 73 controls the equipment related to the cause of the abnormal noise according to the determined level in the control pattern assumed after the transition. to avoid execution of the control pattern.
 なお、ある制御パターンで発生する異音を、異音の周波数成分によって細分化し、異音の周波数成分ごとに原因を推定し、推定結果に応じて、制御対象の機器を変更したり、制御量を変更したりするようにしても良い。異音の周波数成分の違いは、シュー、ゴボゴボ、またはドン等の音の鳴り方に現れる。つまり、例えば、ある制御パターンでシューと鳴る異音が発生した場合は、圧縮機11の運転周波数を調整するようにし、ある制御パターンでゴボゴボと鳴る異音が発生した場合は、減圧弁22の開度を調整するようにしてもよい。また、ある制御パターンで推定された異音の発生原因を、他の制御パターンでも回避するよう調整してもよい。 In addition, the abnormal noise generated in a certain control pattern is subdivided by the frequency component of the abnormal noise, the cause is estimated for each frequency component of the abnormal noise, and depending on the estimation results, the equipment to be controlled may be changed or the control amount may be changed. You may also change the . Differences in the frequency components of abnormal noises appear in the way they sound, such as hissing, gurgling, or thumping. In other words, for example, if a hissing noise occurs in a certain control pattern, the operating frequency of the compressor 11 is adjusted, and if a gurgling noise occurs in a certain control pattern, the pressure reducing valve 22 is adjusted. The opening degree may be adjusted. Further, the cause of abnormal noise estimated by a certain control pattern may be adjusted to be avoided by using another control pattern.
 以上のように、実施の形態3によっても、実施の形態1と異なる方法によって、閾値以上の大きさの異音を発生させる制御状態を回避対象として回避する。このため、空気調和装置100は、異音の発生を抑制することができる。 As described above, in Embodiment 3 as well, a control state that generates abnormal noise of a magnitude greater than a threshold value is avoided by using a method different from Embodiment 1. Therefore, the air conditioner 100 can suppress the generation of abnormal noise.
 また、実施の形態3によれば、制御部73は、異音の発生原因に対応するレベルに応じて、異音の発生原因を推定し、推定結果に応じて機器の運転周波数または開度などを段階的に制御する。このため、異音の発生の抑制に必要十分な機器の運転周波数または開度などを設定することができる。したがって、実施の形態3の空気調和装置100は、異音の発生の抑制と空気調和装置100の運転効率とを両立することができる。 Further, according to the third embodiment, the control unit 73 estimates the cause of the abnormal noise according to the level corresponding to the cause of the abnormal noise, and adjusts the operating frequency or opening degree of the equipment according to the estimation result. control in stages. Therefore, it is possible to set the operating frequency or opening degree of the equipment that is necessary and sufficient to suppress the generation of abnormal noise. Therefore, the air conditioner 100 of Embodiment 3 can both suppress the generation of abnormal noise and improve the operating efficiency of the air conditioner 100.
 実施の形態4.
 実施の形態4は、回避対象の回避を行うか否かを、人検知センサ24の検知結果に基づいて判定する点で実施の形態1と相違する。実施の形態4では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 4.
Embodiment 4 differs from Embodiment 1 in that whether or not to avoid an object to be avoided is determined based on the detection result of human detection sensor 24. In Embodiment 4, the same parts as in Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
 図13は、実施の形態4に係る空気調和装置100を示す回路図である。図13に示すように、室内機2には、人検知センサ24が設けられている。同様に、室内機2および室内機2には、人検知センサ24および人検知センサ24が設けられている。以下では、人検知センサ24a~24cを人検知センサ24として総称して説明する。人検知センサ24は、室内にいる人の有無を検知する。人検知センサ24は、例えば、室内の画像から人を解析する画像センサ、または室内の赤外線情報から人を解析する赤外線センサである。 FIG. 13 is a circuit diagram showing an air conditioner 100 according to Embodiment 4. As shown in FIG. 13, the indoor unit 2 is provided with a human detection sensor 24. Similarly, the indoor unit 2 and the indoor unit 2 are provided with a human detection sensor 24 and a human detection sensor 24 . In the following, the human detection sensors 24a to 24c will be collectively referred to as the human detection sensor 24. The human detection sensor 24 detects the presence or absence of a person in the room. The person detection sensor 24 is, for example, an image sensor that analyzes people from indoor images, or an infrared sensor that analyzes people from indoor infrared information.
 図14は、実施の形態4に係る空気調和装置100の機能ブロック図である。図14に示すように、取得部71は、人検知センサ24の検知結果を取得し、人検知センサ24の検知結果を制御部73に送信する。 FIG. 14 is a functional block diagram of air conditioner 100 according to Embodiment 4. As shown in FIG. 14, the acquisition unit 71 acquires the detection result of the human detection sensor 24, and transmits the detection result of the human detection sensor 24 to the control unit 73.
 制御部73は、人検知センサ24の検知結果が室内に人が存在することを示す場合に、実施の形態1と同様に、回避対象の回避を行うため、減圧弁22の開度を制御する。一方、人検知センサ24の検知結果が室内に人が存在しないことを示す場合に、回避対象の回避を行なわない。 When the detection result of the human detection sensor 24 indicates that a person is present in the room, the control unit 73 controls the opening degree of the pressure reducing valve 22 in order to avoid the object to be avoided, similarly to the first embodiment. . On the other hand, when the detection result of the person detection sensor 24 indicates that there is no person in the room, the avoidance target is not avoided.
 図15は、実施の形態4に係る制御装置19の動作を示すフローチャートである。ここでは、回避対象の回避の手順について説明する。まず、制御部73は、制御パターンを遷移するように指令を受けると、遷移後に想定される制御パターンが回避対象に該当するか否かを判定する(ステップS31)。遷移後に想定される制御パターンが回避対象に該当する場合(ステップS31:YES)は、制御部73は、人検知センサ24の検知結果に基づいて、室内に人がいるか否かを判定する(ステップS32)。室内に人が検知された場合(ステップS32:YES)、制御部73は、遷移後に想定される制御パターンの何れかの値を変更して、制御パターンの実行を回避する(ステップS33)。遷移後に想定される制御パターンが回避対象に該当しない場合(ステップS31:NO)および室内に人が検知されていない場合(ステップS32:NO)、制御部73は、遷移後に想定される制御パターンを変更せずに実行する。 FIG. 15 is a flowchart showing the operation of the control device 19 according to the fourth embodiment. Here, the procedure for avoiding the avoidance target will be explained. First, upon receiving a command to change the control pattern, the control unit 73 determines whether the control pattern expected after the change corresponds to an avoidance target (step S31). If the control pattern assumed after the transition corresponds to the avoidance target (step S31: YES), the control unit 73 determines whether there is a person in the room based on the detection result of the person detection sensor 24 (step S31: YES). S32). If a person is detected in the room (step S32: YES), the control unit 73 changes any value of the control pattern assumed after the transition to avoid execution of the control pattern (step S33). If the control pattern assumed after the transition does not correspond to the avoidance target (step S31: NO) and if no person is detected in the room (step S32: NO), the control unit 73 uses the control pattern assumed after the transition. Run without modification.
 以上のように、実施の形態4によっても、実施の形態1と同様に、閾値以上の大きさの異音を発生させる制御状態を回避対象として回避する。このため、空気調和装置100は、異音の発生を抑制することができる。 As described above, in Embodiment 4, as in Embodiment 1, a control state that generates abnormal noise of a magnitude equal to or greater than a threshold value is avoided as an avoidance target. Therefore, the air conditioner 100 can suppress the generation of abnormal noise.
 実施の形態4の空気調和装置100は、回避対象の回避を行うか否かを、人検知センサ24の検知結果に基づいて判定している。これにより、空気調和装置100は、人がいない場合は効率および冷暖房効果を重視し、人がいる場合は静音性を重視した運転を行うことができる。 The air conditioner 100 of the fourth embodiment determines whether or not to avoid an object to be avoided based on the detection result of the human detection sensor 24. Thereby, the air conditioner 100 can be operated with emphasis on efficiency and heating and cooling effects when no one is present, and with emphasis on quietness when there are people.
 実施の形態5.
 実施の形態5は、学習済みモデルに基づいて、異音の発生を判定する点で実施の形態1と相違する。実施の形態5では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 5.
Embodiment 5 differs from Embodiment 1 in that the occurrence of abnormal noise is determined based on a trained model. In Embodiment 5, the same parts as in Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
 実施の形態5に係る空気調和装置100のハードウェア構成には、実施の形態1で説明したものに加えて、GPU(Graphics Processing Unit)を追加するようにしてもよい。この場合、GPUは、学習済みモデルに基づく異音の大きさを推定する処理を実行する。 In addition to what was explained in the first embodiment, a GPU (Graphics Processing Unit) may be added to the hardware configuration of the air conditioner 100 according to the fifth embodiment. In this case, the GPU executes a process of estimating the size of the abnormal noise based on the learned model.
 図16は、実施の形態5に係る空気調和装置100の機能ブロック図である。制御装置19は、設定部74を有している。設定部74は、空気調和装置100の高低差および配管長を取得する。空気調和装置100の高低差および配管長は、空気調和装置100が物件に設置された際に、施工業者などによって設定されるものである。なお、空気調和装置100の高低差とは、室外機1と室内機2との高さの差である。具体的に、室外機1と室内機2との高さの差は、基準となる地面等から室外機1の底面までの高さと、基準となる地面等から室内機2の底面までの高さとの差によって定まる。 FIG. 16 is a functional block diagram of air conditioner 100 according to Embodiment 5. The control device 19 includes a setting section 74 . The setting unit 74 acquires the height difference and piping length of the air conditioner 100. The height difference and piping length of the air conditioner 100 are set by a contractor or the like when the air conditioner 100 is installed on a property. Note that the height difference of the air conditioner 100 is the difference in height between the outdoor unit 1 and the indoor unit 2. Specifically, the difference in height between the outdoor unit 1 and the indoor unit 2 is the height from the reference ground, etc. to the bottom of the outdoor unit 1, and the height from the reference ground, etc. to the bottom of the indoor unit 2. It is determined by the difference between
 判定部72は、学習済みモデルを用いて、高低差、配管長、圧縮機11の運転周波数、および減圧弁22の開度から異音の大きさを出力する。学習済みモデルは、高低差、配管長、圧縮機11の運転周波数、および減圧弁22の開度を入力データとし、異音の大きさを出力データとして推論するためのモデルである。学習済みモデルは、例えば、製品開発時に学習されたものであり、記憶部81に記憶されている。 The determination unit 72 uses the learned model to output the magnitude of the abnormal noise based on the height difference, pipe length, operating frequency of the compressor 11, and opening degree of the pressure reducing valve 22. The learned model is a model for inferring the height difference, pipe length, operating frequency of the compressor 11, and opening degree of the pressure reducing valve 22 as input data, and the magnitude of abnormal noise as output data. The learned model is, for example, one learned during product development, and is stored in the storage unit 81.
 学習済みモデルは、例えば、複数のパーセプトロンを組み合わせて構成したニューラルネットワークからなり、各パーセプトロンには、バイアス値および重み付け係数が設定されている。バイアス値および重み付け係数は、学習によって調整されるパラメータである。学習では、ニューラルネットワークに複数の教師データを与え、ニューラルネットワークの出力が正解ラベルに近づくように、各パーセプトロンのバイアス値および重み付け係数を調整する。 The trained model is, for example, a neural network configured by combining multiple perceptrons, and each perceptron has a bias value and a weighting coefficient set. The bias value and weighting coefficient are parameters that are adjusted through learning. During learning, multiple pieces of training data are given to the neural network, and the bias values and weighting coefficients of each perceptron are adjusted so that the output of the neural network approaches the correct label.
 制御部73は、リモコンなどによって空調対象空間の設定温度を変更する場合など、制御パターンを遷移するように指令を受けて、制御パターンを遷移する際に、指令値に基づいて遷移後に想定される制御パターンを決定する。そして、制御部73は、制御パターンの遷移時に、遷移後に想定される圧縮機11の運転周波数、および減圧弁22の開度を判定部72に送信する。そして、判定部72が学習済みモデルを用いて推定した異音の大きさが第1閾値以上である場合に、制御部73は、遷移後に想定される制御パターンを回避する。具体的には、実施の形態1と同様に、制御パターンの何れかの値を変更する。 When the control unit 73 receives a command to change the control pattern, such as when changing the set temperature of the air-conditioned space using a remote control, etc., and when changing the control pattern, the control unit 73 determines what is assumed after the transition based on the command value. Determine control pattern. Then, at the time of transition of the control pattern, the control section 73 transmits to the determination section 72 the operating frequency of the compressor 11 and the opening degree of the pressure reducing valve 22 that are assumed after the transition. Then, when the magnitude of the abnormal noise estimated by the determination unit 72 using the learned model is greater than or equal to the first threshold, the control unit 73 avoids the control pattern assumed after the transition. Specifically, as in the first embodiment, any value of the control pattern is changed.
 また、制御装置19は、評価更新部75を有している。評価更新部75は、学習済みモデルの出力結果と、異音検出装置61の検出結果とに基づいて、学習済みモデルを評価し、評価結果に基づいて学習済みモデルを更新する。以下では、学習済みモデルの評価および更新方法の一例について説明する。 Additionally, the control device 19 includes an evaluation update section 75. The evaluation update unit 75 evaluates the learned model based on the output result of the learned model and the detection result of the abnormal noise detection device 61, and updates the learned model based on the evaluation result. An example of a method for evaluating and updating a trained model will be described below.
 評価更新部75は、学習済みモデルの出力結果に基づいて、報酬を決定する。具体的に、評価更新部75は、判定部72で推定した異音の大きさと異音検出装置61の検出結果との誤差が規定値以内かどうかを判定する。評価更新部75は、判定部72で推定した異音の大きさと異音検出装置61の検出結果との誤差が既定値以内であると判定した場合、報酬として予め設定した変化量Δ1を増やす。一方、評価更新部75は、判定部72で推定した異音の大きさと異音検出装置61の検出結果との誤差が既定値を超えると判定した場合、予め設定した変化量Δ1を減らす。 The evaluation update unit 75 determines the reward based on the output result of the learned model. Specifically, the evaluation update unit 75 determines whether the error between the magnitude of the abnormal noise estimated by the determination unit 72 and the detection result of the abnormal noise detection device 61 is within a specified value. When the evaluation updating unit 75 determines that the error between the magnitude of the abnormal noise estimated by the determining unit 72 and the detection result of the abnormal noise detection device 61 is within a predetermined value, the evaluation updating unit 75 increases a preset amount of change Δ1 as a reward. On the other hand, when the evaluation updating unit 75 determines that the error between the magnitude of the abnormal noise estimated by the determining unit 72 and the detection result of the abnormal noise detection device 61 exceeds a predetermined value, the evaluation updating unit 75 reduces the preset amount of change Δ1.
 評価更新部75は、変化量Δ1が最大化するように重み付け係数およびバイアス値を調整する。これにより、判定部72で推定した異音の大きさと異音検出装置61の検出結果との誤差が小さくなるように学習済みモデルが更新される。 The evaluation update unit 75 adjusts the weighting coefficient and bias value so that the amount of change Δ1 is maximized. As a result, the learned model is updated so that the error between the magnitude of the abnormal noise estimated by the determination unit 72 and the detection result of the abnormal noise detection device 61 is reduced.
 図17は、実施の形態5に係る制御装置19の動作を示すフローチャートである。ここでは、回避対象の回避の手順について説明する。まず、制御部73が制御パターンを遷移するように指令を受けると、評価更新部75は、空気調和装置100の高低差、配管長、遷移後に想定される圧縮機11の運転周波数、および減圧弁22の開度に基づいて、異音の大きさを出力する(ステップS41)。次に、制御部73は、判定部72が学習済みモデルを用いて推定した異音の大きさが第1閾値以上であるか否かを判定する(ステップS42)。判定部72が学習済みモデルを用いて推定した異音の大きさが第1閾値以上である場合(ステップS42:YES)、制御部73は、遷移後に想定される制御パターンの何れかの値を変更して、制御パターンの実行を回避する(ステップS43)。判定部72が学習済みモデルを用いて推定した異音の大きさが第1閾値未満である場合(ステップS42:NO)、制御部73は、遷移後に想定される制御パターンを変更せずに実行する。 FIG. 17 is a flowchart showing the operation of the control device 19 according to the fifth embodiment. Here, the procedure for avoiding the avoidance target will be explained. First, when the control unit 73 receives a command to change the control pattern, the evaluation update unit 75 updates the height difference of the air conditioner 100, the pipe length, the operating frequency of the compressor 11 assumed after the transition, and the pressure reducing valve. Based on the opening degree of 22, the magnitude of the abnormal noise is output (step S41). Next, the control unit 73 determines whether the magnitude of the abnormal noise estimated by the determination unit 72 using the learned model is greater than or equal to the first threshold (step S42). If the magnitude of the abnormal noise estimated by the determination unit 72 using the trained model is greater than or equal to the first threshold (step S42: YES), the control unit 73 selects any value of the control pattern assumed after the transition. The control pattern is changed to avoid execution of the control pattern (step S43). If the magnitude of the abnormal noise estimated by the determination unit 72 using the learned model is less than the first threshold (step S42: NO), the control unit 73 executes the control pattern assumed after the transition without changing it. do.
 以上のように、実施の形態5によっても、閾値以上の大きさの異音を発生させる制御状態を回避対象として回避する。このため、空気調和装置100は、異音の発生を抑制することができる。特に、実施の形態5によれば、あらかじめ記憶されている学習済みモデルに基づいて、異音の大きさを推定するため、1度目に異音が発生することも回避することができる。 As described above, according to the fifth embodiment as well, control states that generate abnormal noise of a magnitude greater than a threshold value are avoided. Therefore, the air conditioner 100 can suppress the generation of abnormal noise. In particular, according to Embodiment 5, the magnitude of the abnormal noise is estimated based on a learned model that is stored in advance, so it is possible to avoid generating the abnormal noise for the first time.
 実施の形態6.
 実施の形態6は、実施の形態1での制御に加えて、冷暖房の効きやすさに基づいて、制御を行う点で実施の形態1と相違する。実施の形態6では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 6.
Embodiment 6 differs from Embodiment 1 in that, in addition to the control in Embodiment 1, control is performed based on the effectiveness of heating and cooling. In Embodiment 6, the same parts as Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
 判定部72は、温度センサ62が測定した冷媒温度、圧力センサ63が測定した冷媒圧力、制御パターンに基づいて、空気調和装置100の設置された物件における冷暖房の効きやすさを判定する。冷暖房の効きやすさは、数値で評価され、冷暖房が効きやすいほど高い値となる。冷暖房の効きやすさの算出方法は、特に限定されないが、例えば、制御時点で実行されている制御パターンと、当該制御パターンにおける温度伝達係数および圧力伝達係数から評価される。温度伝達係数は、制御パターンの開始時から冷媒温度が規定値に到達するまでに要した時間を、制御回開始時点の冷媒温度と規定値との差で除した値によって算出される。同様に、圧力伝達係数は、制御パターンの開始時から冷媒圧力が規定値に到達するまでに要した時間を、処理時点の冷媒圧力と規定値との差で除した値によって算出される。また、制御パターンが示す圧縮機11の運転周波数、または減圧弁22の開度が、冷媒温度および冷媒圧力が規定値に到達するまでの時間を短くする方向に働きやすいものであるほど、物件の特性としての冷暖房の効きやすさを小さい値に補正する。 The determination unit 72 determines the effectiveness of heating and cooling in the property where the air conditioner 100 is installed, based on the refrigerant temperature measured by the temperature sensor 62, the refrigerant pressure measured by the pressure sensor 63, and the control pattern. The effectiveness of heating and cooling is evaluated numerically, and the more effective the heating and cooling, the higher the value. Although the method of calculating the effectiveness of air conditioning is not particularly limited, it is evaluated based on, for example, the control pattern being executed at the time of control, and the temperature transfer coefficient and pressure transfer coefficient in the control pattern. The temperature transfer coefficient is calculated by dividing the time required for the refrigerant temperature to reach the specified value from the start of the control pattern by the difference between the refrigerant temperature at the start of the control cycle and the specified value. Similarly, the pressure transfer coefficient is calculated by dividing the time required from the start of the control pattern until the refrigerant pressure reaches the specified value by the difference between the refrigerant pressure at the time of processing and the specified value. Furthermore, the easier it is for the operating frequency of the compressor 11 or the opening degree of the pressure reducing valve 22 indicated by the control pattern to work toward shortening the time it takes for the refrigerant temperature and refrigerant pressure to reach the specified values, the better the condition of the property will be. Correct the effectiveness of heating and cooling as a characteristic to a smaller value.
 制御部73は、冷暖房の効きやすさに基づいて圧縮機11の運転周波数を制御する。制御部73は、冷暖房が効きにくい場合、具体的に冷暖房の効きやすさが第3閾値以下である場合、圧縮機11の運転周波数を上げる。また、冷暖房が効きにくい場合としては、高低差が大きいこと、または配管長が長いことなどが原因であることがある。このため、冷暖房の効きやすさが第3閾値以下である場合、制御部73は、高高低差用の制御を行う。高高低差用の制御としては、例えば、圧縮機11の運転周波数を上げ、異常を検知するための圧力および時間などの条件を変更する。また、減圧弁22の開度を変更するようにしてもよい。 The control unit 73 controls the operating frequency of the compressor 11 based on the effectiveness of heating and cooling. The control unit 73 increases the operating frequency of the compressor 11 when the heating and cooling is not effective, specifically when the effectiveness of the heating and cooling is below the third threshold. In addition, if heating and cooling is not effective, it may be due to large height differences or long pipe lengths. Therefore, when the effectiveness of heating and cooling is less than or equal to the third threshold, the control unit 73 performs control for the height difference. As control for the height difference, for example, the operating frequency of the compressor 11 is increased, and conditions such as pressure and time for detecting an abnormality are changed. Further, the opening degree of the pressure reducing valve 22 may be changed.
 図18は、実施の形態6に係る制御装置19の動作を示すフローチャートである。ここでは、冷暖房の効きやすさに基づく制御について説明する。まず、取得部71は、温度センサ62が測定した冷媒温度、および圧力センサ63が測定した冷媒圧力を取得する(ステップS51)。ここで、取得部71は、処理時点の制御パターンにおける、冷媒温度および冷媒圧力の推移を継続的に測定する。次に、判定部72は、温度センサ62が測定した冷媒温度、および圧力センサ63が測定した冷媒圧力、制御パターンに基づいて、空気調和装置100の設置された物件における冷暖房の効きやすさを判定する(ステップS52)。 FIG. 18 is a flowchart showing the operation of the control device 19 according to the sixth embodiment. Here, control based on the effectiveness of heating and cooling will be explained. First, the acquisition unit 71 acquires the refrigerant temperature measured by the temperature sensor 62 and the refrigerant pressure measured by the pressure sensor 63 (step S51). Here, the acquisition unit 71 continuously measures changes in refrigerant temperature and refrigerant pressure in the control pattern at the time of processing. Next, the determination unit 72 determines the effectiveness of heating and cooling in the property where the air conditioner 100 is installed based on the refrigerant temperature measured by the temperature sensor 62, the refrigerant pressure measured by the pressure sensor 63, and the control pattern. (Step S52).
 制御部73は、冷暖房が効きやすさが第3閾値以下であるか否かを判定する(ステップS53)。冷暖房が効きやすさが第3閾値以下である場合(ステップS53:YES)、制御部73は、高高低差制御または圧縮機11の運転周波数を上げる(ステップS54)。冷暖房が効きやすさが第3閾値超である場合(ステップS53:NO)、制御部73は、通常の制御パターンを実行する。 The control unit 73 determines whether the effectiveness of heating and cooling is less than or equal to the third threshold (step S53). When the effectiveness of heating and cooling is less than or equal to the third threshold (step S53: YES), the control unit 73 controls the elevation difference or increases the operating frequency of the compressor 11 (step S54). When the effectiveness of heating and cooling exceeds the third threshold (step S53: NO), the control unit 73 executes a normal control pattern.
 以上のように、実施の形態6によっても、実施の形態1と同様に、閾値以上の大きさの異音を発生させる制御状態を回避対象として回避する。このため、空気調和装置100は、異音の発生を抑制することができる。 As described above, in Embodiment 6, as in Embodiment 1, a control state that generates abnormal noise of a magnitude greater than a threshold value is avoided. Therefore, the air conditioner 100 can suppress the generation of abnormal noise.
 また、実施の形態6によれば、冷暖房の効きやすさに基づいて、制御を行う。このため、空気調和装置100は、冷暖房が効くまでの時間を短くし、利用者の快適性を向上させることができる。 Furthermore, according to the sixth embodiment, control is performed based on the effectiveness of heating and cooling. Therefore, the air conditioner 100 can shorten the time it takes for heating and cooling to become effective, and can improve user comfort.
 以上が本開示の実施の形態の説明であるが、本開示は、上記の実施の形態の構成に限定されるものではなく、その技術的思想の範囲内で様々な変形または組み合わせが可能である。例えば、実施の形態2、3、5または6においても、実施の形態4で説明した人検知センサ24を追加して、人検知センサ24の検知結果に基づいて、回避対象とされている制御パターンを回避するようにしてもよい。また、実施の形態2~5においても実施の形態6で説明したように、冷暖房の効きやすさに基づいて圧縮機11の運転周波数を制御するようにしてもよい。 The above is a description of the embodiment of the present disclosure, but the present disclosure is not limited to the configuration of the embodiment described above, and various modifications or combinations are possible within the scope of the technical idea. . For example, in Embodiment 2, 3, 5, or 6, the human detection sensor 24 described in Embodiment 4 is added, and based on the detection result of the human detection sensor 24, the control pattern to be avoided is You may try to avoid this. Furthermore, in the second to fifth embodiments, as described in the sixth embodiment, the operating frequency of the compressor 11 may be controlled based on the effectiveness of heating and cooling.
 また、実施の形態6では、冷媒温度および冷媒圧力に基づいて冷暖房の効きやすさを判定することとしていたが、室内温度を、冷暖房の効きやすさを判定するための要素にしてもよい。具体的には、制御パターンの開始時から室内温度が設定温度に到達するまでの時間を、制御開始時点の室内温度と設定温度との差で除した値に基づいて、冷暖房の効きやすさを判定する。 Furthermore, in the sixth embodiment, the effectiveness of heating and cooling is determined based on the refrigerant temperature and pressure, but the indoor temperature may be used as a factor for determining the effectiveness of heating and cooling. Specifically, the effectiveness of heating and cooling is calculated based on the value obtained by dividing the time from the start of the control pattern until the indoor temperature reaches the set temperature by the difference between the indoor temperature at the start of the control and the set temperature. judge.
 また、異音検出装置61、温度センサ62、および圧力センサ63の取り付け位置は、物件に応じて適宜調整される。例えば、異音検出装置61、温度センサ62、および圧力センサ63の取り付け位置は、冷媒配管3ではなく、冷媒配管4であってもよい。また、異音検出装置61は室内配管23a~23cのそれぞれに取り付けられてもよい。更に、異音が発生する箇所は配管に限られない。この場合、ビル等の建物を利用するユーザが気にするものであることを考慮すると、異音検出装置61は、異音が発生しても気にならないような建物の屋上等の室外機1付近よりも、室内機2付近、建物の天井、または床下などに設置することが望ましい。 Furthermore, the mounting positions of the abnormal noise detection device 61, the temperature sensor 62, and the pressure sensor 63 are adjusted as appropriate depending on the property. For example, the abnormal noise detection device 61, the temperature sensor 62, and the pressure sensor 63 may be attached to the refrigerant pipe 4 instead of the refrigerant pipe 3. Furthermore, the abnormal noise detection device 61 may be attached to each of the indoor pipes 23a to 23c. Furthermore, the locations where abnormal noises are generated are not limited to piping. In this case, considering that users who use buildings such as buildings are concerned about this, the abnormal noise detection device 61 is installed on the outdoor unit 1 on the roof of a building, etc., where abnormal noises are not bothersome even if they occur. It is preferable to install it near the indoor unit 2, on the ceiling of the building, or under the floor, rather than nearby.
 また、冷媒温度、冷媒圧力、圧縮機11の運転周波数、および減圧弁22の開度の組み合わせによって定まる空気調和装置100の状態を制御パターンと称するものとして説明した。しかし、制御パターンは、圧縮機11の運転周波数、および減圧弁22の開度のみによって定められるものであってもよい。また、空気調和装置100が有するその他の機器の状態、または空気調和装置100において測定される物理量を、制御パターンを定める要素としてもよい。 Furthermore, the state of the air conditioner 100 determined by the combination of refrigerant temperature, refrigerant pressure, operating frequency of the compressor 11, and opening degree of the pressure reducing valve 22 has been described as being referred to as a control pattern. However, the control pattern may be determined only by the operating frequency of the compressor 11 and the opening degree of the pressure reducing valve 22. Further, the states of other devices included in the air conditioner 100 or physical quantities measured in the air conditioner 100 may be used as elements for determining the control pattern.
 また、実施の形態1~6では、冷媒が室内機2に供給される、所謂直膨空調を行う空気調和装置100について説明した。しかしながら、本開示の内容は、冷媒と、水またはブラインなどの熱媒体とで熱交換させ、熱媒体が室内機2に供給される、所謂間膨空調を行う空気調和装置に適用されてもよい。この場合、異音検出装置61は、例えば、冷媒と熱媒体とで熱交換を行わせる熱交換器と、室内機との間を接続する配管に設けられてもよい。 Furthermore, in Embodiments 1 to 6, the air conditioner 100 that performs so-called direct expansion air conditioning in which refrigerant is supplied to the indoor unit 2 has been described. However, the content of the present disclosure may be applied to an air conditioner that performs so-called expansion air conditioning, in which a refrigerant and a heat medium such as water or brine exchange heat, and the heat medium is supplied to the indoor unit 2. . In this case, the abnormal noise detection device 61 may be provided, for example, in a pipe that connects the indoor unit and a heat exchanger that exchanges heat between a refrigerant and a heat medium.
 また、実施の形態1~6において、空気調和装置100は、室外機1または分流コントローラの配管に設けられ、運転モードなどを変更した際に、冷媒を一方向のみに流通させ、逆方向への冷媒の流通を遮断する逆止弁を有していてもよい。図19は、実施の形態1の変形例に係る空気調和装置を示す回路図である。図19に示すように、空気調和装置100は、第1接続配管17a、第2接続配管17b、逆止弁18a、逆止弁18b、逆止弁18cおよび逆止弁18dを有している。第1接続配管4aは、室外機1内において、逆止弁18dの下流側における室外配管16と逆止弁18aの下流側における室外配管16とを接続するものである。第2接続配管4bは、室外機1内において、逆止弁18dの上流側における室外配管16と逆止弁18aの上流側における室外配管16とを接続するものである。逆止弁18aは、室外熱交換器13と室内機2との間における冷媒配管4に設けられ、所定の方向(室外機1から室内機2への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁18bは、第1接続配管4aに設けられ、逆止弁18dの下流側から逆止弁18aの下流側の方向のみに熱源側冷媒の流通を許容するものである。逆止弁18cは、第2接続配管4bに設けられ、逆止弁18dの上流側から逆止弁18aの上流側の方向のみに熱源側冷媒の流通を許容するものである。逆止弁18dは、室内機2と流路切替弁12との間における冷媒配管4に設けられ、所定の方向(室内機2から室外機1への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁18a~18dは、容器(図示せず)内に設けた部材(図示せず)が冷媒の流れによって往復移動することで、一方に移動したときは閉塞して冷媒の流通を遮断し、他方に移動したときは冷媒の流通を許可する構造である。容器内の部材が、容器内に急激に流入した冷媒によって移動し、容器に勢いよく衝突した際に異音が発生する。制御装置19は、異音の鳴り方によって、逆止弁18a~18dの動作によって異音が生じていると推定した場合に、制御対象の機器の動作を変更するものであってもよい。 Further, in Embodiments 1 to 6, the air conditioner 100 is installed in the piping of the outdoor unit 1 or the branch controller, and when the operation mode is changed, the refrigerant flows in only one direction, and the refrigerant flows in the opposite direction. It may have a check valve that shuts off the flow of refrigerant. FIG. 19 is a circuit diagram showing an air conditioner according to a modification of the first embodiment. As shown in FIG. 19, the air conditioner 100 includes a first connection pipe 17a, a second connection pipe 17b, a check valve 18a, a check valve 18b, a check valve 18c, and a check valve 18d. The first connection pipe 4a connects the outdoor pipe 16 on the downstream side of the check valve 18d and the outdoor pipe 16 on the downstream side of the check valve 18a in the outdoor unit 1. The second connection pipe 4b connects the outdoor pipe 16 upstream of the check valve 18d and the outdoor pipe 16 upstream of the check valve 18a in the outdoor unit 1. The check valve 18a is provided in the refrigerant pipe 4 between the outdoor heat exchanger 13 and the indoor unit 2, and allows the heat source side refrigerant to flow only in a predetermined direction (from the outdoor unit 1 to the indoor unit 2). It is something to do. The check valve 18b is provided in the first connection pipe 4a and allows the heat source side refrigerant to flow only in the direction from the downstream side of the check valve 18d to the downstream side of the check valve 18a. The check valve 18c is provided in the second connection pipe 4b and allows the heat source side refrigerant to flow only in the direction from the upstream side of the check valve 18d to the upstream side of the check valve 18a. The check valve 18d is provided in the refrigerant pipe 4 between the indoor unit 2 and the flow path switching valve 12, and allows the heat source side refrigerant to flow only in a predetermined direction (from the indoor unit 2 to the outdoor unit 1). It is something to do. The check valves 18a to 18d are members (not shown) provided in a container (not shown) that move back and forth depending on the flow of refrigerant, and when they move in one direction, they close and block the flow of refrigerant. , the structure allows the refrigerant to flow when it moves to the other side. When the members inside the container are moved by the refrigerant that has suddenly flowed into the container and collide with the container with force, an abnormal noise is generated. The control device 19 may change the operation of the device to be controlled when it estimates that the abnormal noise is caused by the operation of the check valves 18a to 18d based on the way the abnormal noise is generated.
 また、回避対象の回避を行う場合、異音は回避できる反面、空気調和という観点では最適ではない制御になり、制御が行われた室内機2を利用するユーザの快適性が下がる場合がある。そこで、実施の形態1~6において、同一の空調対象空間に室内機2が複数ある場合、制御が行われた室内機2と異なる他の室内機2によって、制御が行われた室内機2の動作を補うようにしてもよい。例えば、回避対象の回避を行うために減圧弁22aの開度を変更することで、暖房時に室内機2aの吹出温度が低下した場合は、同室内に設けられた室内機2bの減圧弁22bの開度を変更して、室内機2bの吹出温度を上げるようにしてもよい。これにより、回避対象の回避を行う場合でも、ユーザの快適性を維持することができる。 Furthermore, when avoiding an object to be avoided, although abnormal noise can be avoided, the control may not be optimal from the viewpoint of air conditioning, and the comfort of the user who uses the controlled indoor unit 2 may decrease. Therefore, in Embodiments 1 to 6, when there are multiple indoor units 2 in the same air-conditioned space, the indoor unit 2 controlled by another indoor unit 2 different from the controlled indoor unit 2 The motion may be supplemented. For example, if the outlet temperature of the indoor unit 2a decreases during heating by changing the opening degree of the pressure reducing valve 22a to avoid an object to be avoided, the pressure reducing valve 22b of the indoor unit 2b installed in the same room may be changed. The blowing temperature of the indoor unit 2b may be increased by changing the opening degree. Thereby, even when avoiding an object to be avoided, user comfort can be maintained.
 また、実施の形態5において、入力データに、圧縮機11の型番、および冷媒種類を用いてもよい。圧縮機11の種類によって、冷媒の押出量が変わる。また、冷媒の種類によって、冷媒配管3内に流れる気液の状態、ひいては冷媒音の発生状況が変わる。更に、冷媒の種類によって、冷媒圧力が異なることから設置される冷媒配管3の直径も変わる。圧縮機11の型番および冷媒の種類が異音の大きさに関連することから、これらを入力データに用いることで、異音の大きさを推定する精度を高めることができる。 Furthermore, in the fifth embodiment, the model number of the compressor 11 and the refrigerant type may be used as input data. The amount of refrigerant extruded varies depending on the type of compressor 11. Further, depending on the type of refrigerant, the state of gas and liquid flowing in the refrigerant pipe 3 and, by extension, the situation in which refrigerant noise is generated changes. Furthermore, since the refrigerant pressure differs depending on the type of refrigerant, the diameter of the refrigerant pipe 3 installed also changes. Since the model number of the compressor 11 and the type of refrigerant are related to the magnitude of the abnormal noise, by using these as input data, it is possible to improve the accuracy of estimating the magnitude of the abnormal noise.
 1 室外機、2、2a、2b、2c 室内機、3、4 冷媒配管、5 冷媒回路、11 圧縮機、12 流路切替弁、13 室外熱交換器、14 アキュムレータ、15 ファン、16 室外配管、17a 第1接続配管、17b 第2接続配管、18a、18b、18c、18d 逆止弁、19 制御装置、21a、21b、21c 室内熱交換器、22、22a、22b、22c 減圧弁、23a、23b、23c 室内配管、24、24a、24b、24c 人検知センサ、61 異音検出装置、62 温度センサ、63 圧力センサ、71 取得部、72 判定部、73 制御部、74 設定部、75 評価更新部、81 記憶部、91 処理回路、92 プロセッサ、93 メモリ、94 バス、100 空気調和装置。 1 outdoor unit, 2, 2a, 2b, 2c indoor unit, 3, 4 refrigerant piping, 5 refrigerant circuit, 11 compressor, 12 flow path switching valve, 13 outdoor heat exchanger, 14 accumulator, 15 fan, 16 outdoor piping, 17a First connection pipe, 17b Second connection pipe, 18a, 18b, 18c, 18d Check valve, 19 Control device, 21a, 21b, 21c Indoor heat exchanger, 22, 22a, 22b, 22c Pressure reducing valve, 23a, 23b , 23c indoor piping, 24, 24a, 24b, 24c human detection sensor, 61 abnormal noise detection device, 62 temperature sensor, 63 pressure sensor, 71 acquisition section, 72 judgment section, 73 control section, 74 setting section, 75 evaluation update section , 81 storage unit, 91 processing circuit, 92 processor, 93 memory, 94 bus, 100 air conditioner.

Claims (10)

  1.  冷媒を圧縮する圧縮機と、
     冷媒と空気との間で熱交換を行い、冷媒を凝縮させる凝縮器と、
     開度が変更可能であって、冷媒を減圧する減圧弁と、
     冷媒と空気との間で熱交換を行い、冷媒を蒸発させる蒸発器と、
     前記圧縮機、前記凝縮器、前記減圧弁、および前記蒸発器を接続する冷媒配管と、
     前記圧縮機の運転周波数、および前記減圧弁の前記開度を制御する制御装置と、を備え、
     前記制御装置は、前記圧縮機の前記運転周波数および前記減圧弁の前記開度の組み合わせによって定められる複数の制御パターンのうち、閾値以上の大きさの異音を発生させる制御パターン、または遷移時に前記閾値以上の大きさの異音を発生させる前記制御パターンの組を回避対象として回避する
     空気調和装置。
    a compressor that compresses refrigerant;
    a condenser that exchanges heat between the refrigerant and air and condenses the refrigerant;
    a pressure reducing valve whose opening degree can be changed and which reduces the pressure of the refrigerant;
    an evaporator that exchanges heat between the refrigerant and air to evaporate the refrigerant;
    refrigerant piping connecting the compressor, the condenser, the pressure reducing valve, and the evaporator;
    A control device that controls the operating frequency of the compressor and the opening degree of the pressure reducing valve,
    The control device selects a control pattern that generates an abnormal noise of a magnitude equal to or greater than a threshold value from among a plurality of control patterns determined by a combination of the operating frequency of the compressor and the opening degree of the pressure reducing valve, or the An air conditioner that avoids a set of control patterns that generate abnormal noise of a magnitude greater than a threshold value.
  2.  前記冷媒配管に設けられ、異音の発生を検出する異音検出装置を更に備え、
     前記制御装置は、前記制御パターンごとの前記異音検出装置の検出結果に基づいて前記回避対象を判定する
     請求項1に記載の空気調和装置。
    Further comprising an abnormal noise detection device installed in the refrigerant pipe and detecting the occurrence of abnormal noise,
    The air conditioner according to claim 1, wherein the control device determines the avoidance target based on a detection result of the abnormal noise detection device for each of the control patterns.
  3.  前記制御装置は、前記回避対象として判定された前記制御パターンの数を、制御時点で記憶されている全ての前記制御パターンの数で除した異音発生率に基づいて、前記圧縮機の前記運転周波数、および前記減圧弁の前記開度を段階的に変更して、前記閾値以上の大きさの異音を発生させる前記回避対象を回避する
     請求項1または2に記載の空気調和装置。
    The control device controls the operation of the compressor based on an abnormal noise occurrence rate obtained by dividing the number of control patterns determined to be avoided by the number of all control patterns stored at the time of control. The air conditioner according to claim 1 or 2, wherein the frequency and the opening degree of the pressure reducing valve are changed in stages to avoid the avoidance target that generates abnormal noise of a magnitude greater than the threshold value.
  4.  前記制御装置は、前記回避対象の傾向から異音の原因を推定し、推定結果に基づいて、前記圧縮機の前記運転周波数、および前記減圧弁の前記開度を変更して、前記回避対象を回避する
     請求項1~3の何れか1項に記載の空気調和装置。
    The control device estimates the cause of the abnormal noise from the tendency of the avoidance target, and changes the operating frequency of the compressor and the opening degree of the pressure reducing valve based on the estimation result to avoid the avoidance target. The air conditioner according to any one of claims 1 to 3.
  5.  前記制御装置は、
     室外機と室内機との高低差、および前記冷媒配管の配管長の設定を受け付け、
     前記高低差、前記配管長、前記圧縮機の前記運転周波数、および前記減圧弁の前記開度から異音の大きさを推論するための学習済みモデルを用いて、前記高低差、前記配管長、前記圧縮機の前記運転周波数、および前記減圧弁の前記開度から異音の大きさを出力する
     請求項1に記載の空気調和装置。
    The control device includes:
    Accepts settings for the height difference between the outdoor unit and the indoor unit and the piping length of the refrigerant piping,
    Using a trained model for inferring the magnitude of abnormal noise from the height difference, the piping length, the operating frequency of the compressor, and the opening degree of the pressure reducing valve, the height difference, the piping length, The air conditioner according to claim 1, wherein the level of abnormal noise is output based on the operating frequency of the compressor and the opening degree of the pressure reducing valve.
  6.  前記冷媒配管に設けられ、異音の発生を検出する異音検出装置を更に備え、
     前記制御装置は、前記学習済みモデルの出力結果と、前記異音検出装置の検出結果とに基づいて、前記学習済みモデルを評価し、評価結果に基づいて前記学習済みモデルを更新する
     請求項5に記載の空気調和装置。
    Further comprising an abnormal noise detection device installed in the refrigerant pipe and detecting the occurrence of abnormal noise,
    The control device evaluates the learned model based on the output result of the learned model and the detection result of the abnormal noise detection device, and updates the learned model based on the evaluation result. The air conditioner described in .
  7.  空気調和が行われる空調対象空間における人の有無を検知する人検知センサを更に備え、
     前記制御装置は、前記人検知センサの検知結果に基づいて、前記空調対象空間において人が存在する場合に前記回避対象を回避し、前記空調対象空間において人が存在しない場合に前記回避対象の回避を行わない
     請求項1~6の何れか1項に記載の空気調和装置。
    It is further equipped with a human detection sensor that detects the presence or absence of a person in the air-conditioned space where air conditioning is performed,
    The control device avoids the avoidance target when a person is present in the air-conditioned space, and avoids the avoidance target when no person exists in the air-conditioned space, based on the detection result of the human detection sensor. The air conditioner according to any one of claims 1 to 6, wherein the air conditioner does not perform.
  8.  前記冷媒配管に設けられ、冷媒温度を測定する温度センサと、
     前記冷媒配管に設けられ、冷媒圧力を測定する圧力センサと、を更に備え、
     前記制御装置は、前記温度センサが測定した前記冷媒温度、前記圧力センサが測定した前記冷媒圧力、前記制御パターンに基づいて冷暖房の効きやすさを判定し、前記冷暖房の効きやすさに基づいて前記圧縮機の前記運転周波数を制御する
     請求項1~7の何れか1項に記載の空気調和装置。
    a temperature sensor installed in the refrigerant pipe and measuring refrigerant temperature;
    further comprising a pressure sensor provided in the refrigerant pipe and measuring refrigerant pressure,
    The control device determines the effectiveness of the heating and cooling based on the refrigerant temperature measured by the temperature sensor, the refrigerant pressure measured by the pressure sensor, and the control pattern, and determines the effectiveness of the heating and cooling based on the effectiveness of the heating and cooling. The air conditioner according to any one of claims 1 to 7, wherein the operating frequency of the compressor is controlled.
  9.  前記制御装置は、異音の鳴り方から異音の原因を推定し、推定結果に基づいて、制御対象の機器の動作を変更する
     請求項1~8の何れか1項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 8, wherein the control device estimates the cause of the abnormal noise from the way the noise sounds, and changes the operation of the device to be controlled based on the estimation result. .
  10.  前記冷媒配管に設けられ、冷媒を一方向のみに流通させる逆止弁を更に備え、
     前記制御装置は、異音の鳴り方に基づいて、前記逆止弁が異音の原因であることを推定した場合、制御対象の機器の動作を変更する
     請求項9に記載の空気調和装置。
    Further comprising a check valve provided in the refrigerant pipe and allowing the refrigerant to flow in only one direction,
    The air conditioner according to claim 9, wherein the control device changes the operation of the device to be controlled when it is estimated that the check valve is the cause of the abnormal noise based on how the abnormal noise is generated.
PCT/JP2022/021747 2022-05-27 2022-05-27 Air conditioning device WO2023228407A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021747 WO2023228407A1 (en) 2022-05-27 2022-05-27 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021747 WO2023228407A1 (en) 2022-05-27 2022-05-27 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2023228407A1 true WO2023228407A1 (en) 2023-11-30

Family

ID=88918813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021747 WO2023228407A1 (en) 2022-05-27 2022-05-27 Air conditioning device

Country Status (1)

Country Link
WO (1) WO2023228407A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109924A1 (en) * 2016-12-16 2018-06-21 三菱電機株式会社 Control device, ventilation system, ventilation device, ventilation method and program
WO2018122943A1 (en) * 2016-12-27 2018-07-05 三菱電機株式会社 Air conditioner
US20190170603A1 (en) * 2017-12-01 2019-06-06 Johnson Controls Technology Company Systems and methods for refrigerant leak management based on acoustic leak detection
WO2020026371A1 (en) * 2018-08-01 2020-02-06 三菱電機株式会社 Outdoor unit for air conditioner
JP2020165594A (en) * 2019-03-29 2020-10-08 三菱重工サーマルシステムズ株式会社 Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109924A1 (en) * 2016-12-16 2018-06-21 三菱電機株式会社 Control device, ventilation system, ventilation device, ventilation method and program
WO2018122943A1 (en) * 2016-12-27 2018-07-05 三菱電機株式会社 Air conditioner
US20190170603A1 (en) * 2017-12-01 2019-06-06 Johnson Controls Technology Company Systems and methods for refrigerant leak management based on acoustic leak detection
WO2020026371A1 (en) * 2018-08-01 2020-02-06 三菱電機株式会社 Outdoor unit for air conditioner
JP2020165594A (en) * 2019-03-29 2020-10-08 三菱重工サーマルシステムズ株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP4503646B2 (en) Air conditioner
JP5627620B2 (en) Air conditioner
CA2594637C (en) Method of controlling air conditioner
WO2011148856A1 (en) Method for controlling fan for heat source heat exchanger, and air conditioning device
KR100791121B1 (en) Method for controlling stop operating of air conditioner
JP2006162235A (en) Multi-air conditioner system, and valve opening control method for multi-air conditioner system
JP5527300B2 (en) Air conditioner
KR102071960B1 (en) Control device of configuring parameter based on artificial intelligent learning of space where the air-conditioner is installed
WO2016194098A1 (en) Air-conditioning device and operation control device
US20240005212A1 (en) Correction apparatus, prediction apparatus, method, non-transitory computer-readable recording medium storing program, and correction model
AU2019438605B2 (en) Air-conditioning apparatus
JPH06201176A (en) Air-conditioner
JP2009115384A (en) Air conditioner
WO2023228407A1 (en) Air conditioning device
KR20090051479A (en) An air conditioner and control method thereof
KR100791320B1 (en) Control method of air-conditioner reflecting real length of refrigerant pipe
CN110440492A (en) Air conditioning control method, device and air conditioner
EP3872424B1 (en) Sensor validation
KR102558826B1 (en) Air conditioner system and control method
JP5884381B2 (en) Refrigeration unit outdoor unit
KR101485848B1 (en) Control method of multi system air conditioner
KR101460714B1 (en) Air conditioner
JP2003254635A (en) Multi-chamber type air conditioner
JP5199713B2 (en) Multi-type air conditioner, indoor unit indoor electronic expansion valve operation confirmation method, computer program, and fault diagnosis apparatus
JPWO2020003529A1 (en) Air conditioning systems, air conditioning methods, and programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943807

Country of ref document: EP

Kind code of ref document: A1