KR100791320B1 - Control method of air-conditioner reflecting real length of refrigerant pipe - Google Patents

Control method of air-conditioner reflecting real length of refrigerant pipe Download PDF

Info

Publication number
KR100791320B1
KR100791320B1 KR1020060107831A KR20060107831A KR100791320B1 KR 100791320 B1 KR100791320 B1 KR 100791320B1 KR 1020060107831 A KR1020060107831 A KR 1020060107831A KR 20060107831 A KR20060107831 A KR 20060107831A KR 100791320 B1 KR100791320 B1 KR 100791320B1
Authority
KR
South Korea
Prior art keywords
pipe
eev
length
air conditioner
pressure
Prior art date
Application number
KR1020060107831A
Other languages
Korean (ko)
Inventor
최동석
Original Assignee
주식회사 대우일렉트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대우일렉트로닉스 filed Critical 주식회사 대우일렉트로닉스
Priority to KR1020060107831A priority Critical patent/KR100791320B1/en
Application granted granted Critical
Publication of KR100791320B1 publication Critical patent/KR100791320B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A method for controlling an air conditioner is provided to control an EEV installed at each indoor unit by appropriate control periods to reduce possibility of hunting and to reach a real temperature to a set temperature accurately. A high-pressure side pressure sensor installed at a discharge port of a compressor and a low-pressure side pressure sensor installed at an inlet port of the compressor detect pressures respectively when an air conditioner is operated initially. A pressure difference(delta P) between a high-pressure side and a low-pressure side, specific gravity(p) of a refrigerant, a pipe friction coefficient(Fd), flow velocity(v) of a refrigerant, and an inner diameter(D) of a pipe are substituted for a pipeline flux expression(DeltaP=Fd*L*pv^2/(2*D)) to calculate real length of a pipe. Each real length of a pipe is compared with EEV(Electronic Expansion Valve) appropriate control period correlation data related to stored pipe length, to decide an EEV control period corresponding to each real length of a pipe. Each EEV is controlled in accordance with the decided EEV control period.

Description

실제배관길이를 반영한 공기조화장치 제어방법{CONTROL METHOD OF AIR-CONDITIONER REFLECTING REAL LENGTH OF REFRIGERANT PIPE}CONTROL METHOD OF AIR-CONDITIONER REFLECTING REAL LENGTH OF REFRIGERANT PIPE}

도 1은 공기조화장치에서 헌팅현상으로 인한 실제온도의 변화의 일 예를 도시한 그래프, 1 is a graph showing an example of a change in the actual temperature due to hunting in the air conditioner,

도 2는 본 발명에 따른 공기조화장치 제어방법이 적용되는 공기조화장치의 일 예를 도시한 개략적 구성도,2 is a schematic configuration diagram showing an example of an air conditioner to which an air conditioner control method according to the present invention is applied;

도 3은 본 발명에 따른 공기조화장치 제어방법을 단계적으로 도시한 블럭도.Figure 3 is a block diagram showing a step-by-step air conditioning apparatus control method according to the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10: 실외기 15: 고압측 압력센서10: outdoor unit 15: high pressure side pressure sensor

20: 압축기 25: 저압측 압력센서20: compressor 25: low pressure side pressure sensor

30, 30', 30": EEV(전자팽창밸브:Electronic Expantion Valve)30, 30 ', 30 ": EEV (Electronic Expantion Valve)

40, 40', 40": 실내기40, 40 ', 40 ": indoor unit

본 발명은 공기조화장치의 제어방법에 관한 것으로서, 더욱 상세하게는 실내기와 실외기로 구분된 형태로 구성되어 서로를 연결하는 배관을 통해 냉매가 순환되는 공기조화장치를 제어함에 있어 설치된 상태에서의 실제배관길이가 냉각사이클의 제어에 반영될 수 있도록 하는 실제배관길이를 반영한 공기조화장치 제어방법에 관한 것이다.The present invention relates to a control method of an air conditioner, and more particularly, is configured in the form of the indoor unit and the outdoor unit in the actual state in the installed state in controlling the air conditioner in which the refrigerant is circulated through a pipe connecting each other. It relates to an air conditioner control method reflecting the actual piping length so that the piping length can be reflected in the control of the cooling cycle.

일반적으로, 공기조화장치는 실내열교환기와 실외열교환기가 일체화된 형태의 일체형 공기조화장치와, 실내열교환기를 포함하는 구성으로 이루어져 냉난방이 필요한 실내공간에 설치되는 실내기와 실외열교환기를 포함하는 구성으로 이루어져 통상 실외공간에 설치되는 실외기로 분리된 형태의 분리형 공기조화장치로 구분될 수 있으며, 근래에는 분리형 공기조화장치가 주로 보급되고 있는 추세라 할 수 있다. In general, the air conditioner comprises an integrated air conditioner having an indoor heat exchanger and an outdoor heat exchanger, and an indoor heat exchanger that is installed in an indoor space requiring cooling and heating. It can be classified into a separate type air conditioner of the type separated into an outdoor unit installed in the outdoor space, and in recent years, it can be said that the separate type air conditioner is prevalent.

분리형 공기조화장치는 실내기와 실외기를 서로 연결하는 배관을 통해 냉매가 순환될 수 있도록 하여 냉각사이클을 이루게 되는 것으로서, 실제로 설치된 상태에서의 실내기와 실외기를 연결하는 배관의 길이가 냉난방 성능과 제어에 큰 영향을 미치는 요소라 할 수 있다. 분리형 공기조화장치 중에서도 특히 근래 들어 보급이 증가하고 있는 하나의 실외기에 둘 이상의 실내기를 병렬로 연결하여 사용하는 멀티형 공기조화장치의 경우, 병렬로 연결되는 각 실내기를 연결하는 개별적인 배관의 길이가 서로 상이할 수밖에 없고, 따라서 각 실내기를 독립적으로 제어하는 과정에서 각 실내기를 실외기와 연결하는데 소요되는 개별적인 배관의 길이가 제어 에 반영된다면 냉난방 성능과 제어 측면에서 더욱 바람직하다 할 것이다.The separate type air conditioner is a cooling cycle by allowing the refrigerant to circulate through the pipe connecting the indoor unit and the outdoor unit to each other, and the length of the pipe connecting the indoor unit and the outdoor unit in the actual installation state is large for cooling and heating performance and control. It's an influential factor. Especially in the case of a multi-type air conditioner that uses two or more indoor units connected in parallel to a single outdoor unit, which has recently become more popular among the separate air conditioners, the lengths of the individual pipes connecting each indoor unit connected in parallel are different from each other. In the process of controlling each indoor unit independently, if the length of the individual pipes required to connect each indoor unit to the outdoor unit is reflected in the control, it may be more preferable in terms of cooling and heating performance and control.

구체적으로, 냉각사이클을 구성하는 전자팽창밸브(Electronic Expantion Valve: 이하, EEV)를 제어함에 있어서, EEV는 일정한 간격에 한 번씩 인가되는 제어신호에 의해 실제온도가 설정온도에 도달하도록 제어된다. 그리고, 제어신호를 인가함에 따른 제어시점과 냉각사이클의 반응시점 간에 시차가 발생할 수밖에 없고 배관의 길이가 길어질수록 제어시점과 반응시점 간의 시차는 커진다는 냉각사이클 고유의 특성이 존재하며, 따라서 배관의 길이에 따른 적절한 제어주기로 EEV를 제어하는 것이 바람직하다. Specifically, in controlling the electronic expansion valve (EEV) constituting the cooling cycle, the EEV is controlled so that the actual temperature reaches the set temperature by a control signal applied once at a predetermined interval. In addition, the time difference between the control time and the reaction time of the cooling cycle is inevitably generated by applying the control signal, and as the length of the pipe increases, the time difference between the control time and the reaction time increases. It is desirable to control the EEV with an appropriate control period along its length.

그러나, 종래기술에 따른 일반적인 공기조화장치는 설계시에 일반적인 설치환경에서 예상되는 배관의 길이를 통계적인 데이터에 의존하는 방법으로 산정하여 배관의 길이가 산정된 임의의 수치인 것으로 가정하여 공기조화장치의 제어에 반영하는 경우는 있을지라도, 이는 구체적인 설치환경에서 개별 설치공간의 공간적 특수성을 고려하지 않은 것으로서 실내기와 실외기를 연결하는데 실제로 소요된 배관의 길이를 그대로 제어에 반영하지는 못하고 있는 실정이다.However, a general air conditioner according to the prior art assumes that the length of a pipe is an arbitrary value calculated by calculating the length of a pipe expected in a typical installation environment at the time of design in a manner dependent on statistical data. Although it may be reflected in the control of the system, this does not take into account the spatial specificity of the individual installation space in a specific installation environment and does not reflect the length of the pipe actually required to connect the indoor unit and the outdoor unit to the control as it is.

마찬가지로, 종래기술에 따른 멀티형 공기조화장치 역시 설계시에 일반적인 설치환경에서 예상되는 배관의 길이를 통계적인 데이터에 의존하는 방법으로 산정하여, 예를 들어 3개의 실내기를 포함하는 것으로 가정했을 때, 제1실내기의 배관길이는 5m, 제2실내기의 배관길이는 10m, 제3실내기의 배관길이는 15m 등과 같이, 배관의 길이가 임의의 수치인 것으로 가정하여 개별 실내기를 제어하는데 반영하는 수준에 머무르고 있으며, 이는 역시 구체적인 설치환경에서 개별 설치공간의 공간 적 특수성을 고려하지 않은 것으로서 각 실내기와 실외기를 연결하는데 실제로 소요된 배관의 길이를 그대로 제어에 반영하지는 못하고 있다 할 것이다. Similarly, the multi-type air conditioner according to the prior art also calculates the length of pipes expected in a typical installation environment at the time of design by a method that depends on statistical data, and assumes that it includes three indoor units, for example. The length of pipe in room 1 is 5m, the length of pipe in room 2 is 10m, the length of pipe in room 3 is 15m and so on. However, this does not take into account the spatial specificity of individual installation spaces in a specific installation environment, and does not reflect the length of piping actually required to connect each indoor unit and outdoor unit to the control.

도 1은 공기조화장치에서 헌팅현상으로 인한 실제온도의 변화의 일 예를 도시한 그래프이다. 1 is a graph showing an example of a change in actual temperature due to hunting in the air conditioner.

설계배관길이와 실제배관길이가 상이하게 되면 EEV가 적정한 제어주기가 아닌 다른 제어주기로 제어된다는 것을 의미하며, 이와 같이 적절하지 제어주기로 EEV를 제어하게 되면, 도 1에 도시한 바와 같이, 설정온도를 기준으로 실제온도가 높아지거나 낮아지는 것이 파동형태로 반복되는 헌팅현상이 발생할 수 있으며, 이와 같은 헌팅현상은 실내공간의 온도변화가 극심함에 따른 불쾌감을 유발할 수 있을 뿐만 아니라 에너지소비효율을 저하시키는 부정적인 요인으로 작용할 수 있다.If the design piping length is different from the actual piping length, it means that the EEV is controlled by a control cycle other than an appropriate control cycle. When the EEV is controlled by an inappropriate control cycle, as shown in FIG. Hunting phenomenon may occur in which the actual temperature rises or decreases in the form of a wave as a reference, and this hunting phenomenon may not only cause discomfort due to extreme temperature changes in the indoor space, but also negatively reduce energy consumption efficiency. It can act as a factor.

또한, 멀티형 공기조화장치의 경우 실내기 수가 늘어날수록 실외기로부터 상당히 먼 거리에 설치되는 실내기가 있을 가능성이 크고, 이는 실제배관길이와 설계배관길이의 차이가 커질 수 있음을 의미하며, 따라서 EEV는 적절한 제어주기와 차이가 큰 제어주기로 제어될 수 있음을 고려했을 때 제어에 더욱더 부정적인 요인으로 작용할 수 있다 할 것이다. In addition, in the case of a multi-type air conditioner, as the number of indoor units increases, there is a high possibility that there is an indoor unit that is installed at a far distance from the outdoor unit, which means that the difference between the actual piping length and the design piping length may increase, so that the EEV is appropriately controlled. Considering that the period and the difference can be controlled by a large control period, it may be a more negative factor in the control.

상기한 바와 같은 종래기술의 문제점을 해결하기 위하여 발명한 것으로서,As invented to solve the problems of the prior art as described above,

본 발명은 공기조화장치의 설치 후 최초운전시 각 실내기와 실외기를 연결하여 냉각사이클을 이루는 개별적인 배관의 길이를 자체적으로 계산할 수 있도록 하 고, 계산된 배관의 길이를 제어에 반영하도록 하는 실제배관길이를 반영한 공기조화장치 제어방법을 제공하는 것을 목적으로 한다.The present invention connects the indoor unit and the outdoor unit during the initial operation after the installation of the air conditioner so that the length of the individual pipes forming the cooling cycle can be calculated by itself, and the actual pipe length is reflected in the control to the calculated pipe lengths. An object of the present invention is to provide a method for controlling an air conditioner that reflects this.

상기한 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

공기조화장치의 설치 후 최초운전시에, 압축기의 토출구측에 설치되는 고압측 압력센서와 압축기의 유입구측에 설치되는 저압측 압력센서에서 각각 압력을 검출하는 압력검출단계;A pressure detection step of detecting a pressure at a high pressure side pressure sensor provided at a discharge port side of the compressor and a low pressure side pressure sensor provided at an inlet side of the compressor at the first operation after the installation of the air conditioner;

마이컴에서 검출된 압력값으로 계산한 고압측과 저압측 간의 압력차(ΔP)와, 냉매의 비중(p), 관 마찰계수(Fd), 압축기의 압력에서 유량을 산출하여 산출된 유량을 배관단면적으로 나누는 방법으로 계산되는 냉매의 유속(v), 및 배관의 내경(D)을 관로유량식(ΔP=Fd*L*pv^2/(2*D))에 대입하여 실제배관길이(L) 계산하는 길이계산단계; The flow rate calculated by calculating the flow rate from the pressure difference (ΔP) between the high pressure side and the low pressure side calculated using the pressure value detected by the microcomputer, the specific gravity of the refrigerant (p), the pipe friction coefficient (Fd), and the pressure of the compressor is calculated. The actual pipe length (L) by substituting the flow rate (v) of the refrigerant and the inner diameter (D) of the pipe, calculated by dividing by, into the pipe flow rate equation (ΔP = Fd * L * pv ^ 2 / (2 * D)). Calculating a length calculating step;

마이컴에서 계산된 각 실제배관길이(L)를 저장된 배관길이에 대한 EEV 적정제어주기 상관관계 데이터(이하, 배관길이-EEV 적정제어주기 상관관계 데이터라고 함)와 비교하여 각각의 실제배관길이(L)에 대응하는 EEV 제어주기를 결정하는 주기결정단계; 및Each actual piping length (L) calculated by the microcomputer is compared with the EEV proper control cycle correlation data (hereinafter referred to as pipe length-EEV proper control cycle correlation data) for the stored pipe length, and each actual pipe length (L) A period determining step of determining an EEV control period corresponding to n); And

결정된 각 EEV 제어주기에 따라 각 EEV를 제어하는 EEV제어단계;를 포함하는 것을 특징으로 하는 실제배관길이를 반영한 공기조화장치 제어방법을 제공한다. EEV control step of controlling each EEV according to each determined EEV control period; provides an air conditioner control method reflecting the actual piping length.

그리고, 일련의 상기 압력검출단계, 길이계산단계 및 주기결정단계는 각 실내기 당 1회씩 수행되는 것을 특징으로 한다.And, a series of pressure detection step, length calculation step and period determination step is characterized in that it is performed once for each indoor unit.

또한, 상기 압력검출단계는 배관길이 계산의 대상이 되는 배관 상에 설치되는 EEV를 제외한 나머지 EEV는 모두 닫힌 상태에서 수행되는 것을 특징으로 한다. In addition, the pressure detection step is characterized in that all of the remaining EEVs except for the EEV installed on the pipe to be the target of the pipe length calculation is performed in a closed state.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 더욱 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 공기조화장치 제어방법이 적용되는 공기조화장치의 일 예를 도시한 개략적 구성도이고, 도 3은 본 발명에 따른 냉난방 겸용 공기조화장치 제어방법을 도시한 블럭도이다. 2 is a schematic block diagram showing an example of an air conditioner to which the air conditioner control method according to the present invention is applied, and FIG. 3 is a block diagram showing a control method for a combined air-conditioning and air conditioner according to the present invention.

본 발명에 따른 공기조화장치 제어방법은, 도 2에 도시한 바와 같이, 압축기(20)의 토출구측과 유입구측에 각각 설치되는 고압측 압력센서(15)와 저압측 압력센서(25)를 포함하며, 실내기(40, ...)와 실외기(10)가 분리되어 배관으로 연결되는 분리형 공기조화장치에 사용될 수 있다. 물론, 하나의 실내기(40)와 실외기(10)를 포함한 구성의 분리형 공기조화장치 뿐만 아니라, 도 2에 도시한 바와 같이, 병렬로 배치되는 다수의 실내기(40, 40', 40", ... )와 각 실내기와 실외기(10)를 개별적으로 연결하는 각 배관 상에 설치되는 다수의 EEV(30, 30', 30", ...)를 포함하는 멀티형 공기조화장치에도 사용될 수 있다 할 것이다. As shown in FIG. 2, the air conditioner control method according to the present invention includes a high pressure side pressure sensor 15 and a low pressure side pressure sensor 25 which are respectively installed at the discharge port side and the inlet side of the compressor 20. And, the indoor unit (40, ...) and the outdoor unit 10 can be used in a separate type air conditioner is separated and connected to the pipe. Of course, as well as the separate type air conditioner including the indoor unit 40 and the outdoor unit 10, as shown in Figure 2, a plurality of indoor units 40, 40 ', 40 ", ... It may also be used in a multi-type air conditioner including a plurality of EEVs (30, 30 ', 30 ", ...) installed on each pipe connecting the indoor unit and the outdoor unit 10 separately. .

이하, 하나의 실내기(40)와 실외기(10)를 포함한 구성의 분리형 공기조화장치의 경우에 관하여 본 발명에 따른 공기조화장치 제어방법을 설명한다. Hereinafter, a control method of an air conditioner according to the present invention will be described with respect to the case of a separate type air conditioner including one indoor unit 40 and an outdoor unit 10.

본 발명에 따른 공기조화장치 제어방법은, 공기조화장치를 설치한 후 최초운 전시에 수행될 수 있는 것으로서, 크게 압력검출단계, 길이계산단계, 주기결정단계 및 EEV제어단계로 구분될 수 있으며, 도 3을 참조하면 개략적으로 절차를 이해할 수 있을 것이다. Method for controlling the air conditioner according to the present invention, which can be performed in the first exhibition after installing the air conditioner, can be divided into pressure detection step, length calculation step, period determination step and EEV control step, Referring to FIG. 3, the procedure will be understood schematically.

압력검출단계는 길이계산단계를 수행하기에 앞서 수행되는 것으로서, 압력검출단계에서 압축기(20)의 토출구측 배관 상에 설치되는 고압측 압력센서(15)와, 압축기(20)의 유입구측 배관 상에 설치되는 저압측 압력센서(25)에서 각각의 압력을 검출하게 된다. The pressure detection step is performed prior to performing the length calculation step, and the high pressure side pressure sensor 15 installed on the discharge port side pipe of the compressor 20 in the pressure detection step and the inlet side pipe phase of the compressor 20. Each pressure is detected by the low pressure side pressure sensor 25 installed in the.

길이계산단계에서는 마이컴(미도시)에서 검출된 압력값으로 계산한 고압측과 저압측 간의 압력차(ΔP)를 포함하는 다양한 요소를 관로유량식에 대입하여 마이컴에서의 연산을 통해 실제배관길이를 계산하게 된다. 관로유량식은 ΔP=Fd*L*pv^2/(2*D)과 같은 식이 사용되며, 관로유량식에 포함된 p는 냉매의 비중이고, Fd는 관 마찰계수이며, v는 압축기의 압력에서 유량을 산출하여 산출된 유량을 배관단면적으로 나누는 방법으로 계산되는 냉매의 유속이고, D는 배관으로 사용된 파이프의 내경이며, 그리고 L은 계산하고자하는 실제배관길이이다. 여기서. 관 마찰계수는 냉매배관으로 사용되는 파이프의 재질에 따라 다를 수 있는 상수로서, 예를 들어 동파이프가 배관으로 사용되는 경우에는 동파이프의 관 마찰계수를 사용하게 된다. 그리고, 냉매의 비중 역시 사용되는 냉매의 종류에 따라 달라질 수 있는 것으로서, 사용되는 냉매에 대응하는 비중 값을 사용하면 되며, 배관의 내경 역시 사용되는 파이프의 내경을 사용하면 된다.In the length calculation step, the actual piping length is calculated by substituting various factors including the pressure difference (ΔP) between the high pressure side and the low pressure side calculated by the pressure value detected by the microcomputer (not shown) into the pipeline flow formula. Calculate. The pipeline flow equation is the same as ΔP = Fd * L * pv ^ 2 / (2 * D), where p is the specific gravity of the refrigerant, Fd is the pipe friction coefficient, and v is the pressure of the compressor. The flow rate of the refrigerant is calculated by dividing the calculated flow rate by the pipe section area, D is the inner diameter of the pipe used as the pipe, and L is the actual pipe length to be calculated. here. The pipe friction coefficient is a constant that can vary depending on the material of the pipe used as the refrigerant pipe. For example, when the copper pipe is used as a pipe, the pipe friction coefficient of the copper pipe is used. In addition, the specific gravity of the refrigerant may also vary depending on the type of refrigerant used, and a specific gravity value corresponding to the refrigerant used may be used, and an internal diameter of a pipe may also be used.

주기결정단계에서는 이상과 같은 방법으로 마이컴에서 계산된 실제배관길 이(L)를 배관길이-EEV 적정제어주기 상관관계 데이터와 비교하여 실제배관길이(L)에 대응하는 EEV 제어주기를 결정하게 된다. 여기서, 배관길이-EEV 적정제어주기 상관관계 데이터란, 예를 들어 배관의 길이가 5m이면 EEV 적정제어주기는 5초, 배관의 길이가 10m이면 EEV 적정제어주기는 10초, 배관의 길이가 15m이면 EEV 적정제어주기는 15초와 같은 방식으로 마이컴에 사전에 저장되는 정보로서, 공기조화장치의 구체적인 사양에 따라 달라질 수는 성질의 것이며, 계산이나 실험을 통해 얻을 수 있는 것이라 하겠다. 물론, 5m간격으로 그리고 배관길이와 EEV 적정제어주기가 정비례하는 것으로 예를 들었으나, 연속적인 그래프와 같이 연속적이면서도 정비례하지 않는 값으로 제공될 수 있는 것이라 하겠다. In the period determination step, the EEV control period corresponding to the actual piping length (L) is determined by comparing the actual piping length (L) calculated by the microcomputer with the pipe length-EEV proper control period correlation data in the above manner. . Here, the pipe length-EEV proper control cycle correlation data is, for example, if the length of the pipe is 5 m, the EEV titration control cycle is 5 seconds, and if the length of the pipe is 10 m, the EEV titration control cycle is 10 seconds and the length of the pipe is 15 m. The EEV titration control period is information that is stored in the microcomputer in the same way as 15 seconds, and it is a property that can vary depending on the specific specifications of the air conditioner and can be obtained through calculation or experiment. Of course, the pipe length and the EEV proper control period are directly proportional to each other at 5m intervals, but they can be provided as continuous and non-proportional values such as continuous graphs.

배관길이-EEV 적정제어주기 상관관계 데이터를 사용한 EEV 제어주기 결정방법에 관하여 좀 더 상세히 설명하면, EEV 제어주기는 길이계산단계에서 계산된 실제배관길이(L)를 배관길이-EEV 적정제어주기 상관관계 데이터와 직접비교를 통해 EEV 제어주기를 결정하게 되는 것으로서, 예를 들어 실제배관길이(L)가 7m라면 배관길이-EEV 적정제어주기 상관관계 데이터에서 배관길이 7m에 대응하는 EEV 제어주기로 결정하게 되는 것이다.In more detail about the EEV control cycle determination method using the pipe length-EEV proper control cycle correlation data, the EEV control cycle correlates the actual pipe length (L) calculated in the length calculation step to the pipe length-EEV proper control cycle correlation data. The EEV control cycle is determined through direct comparison with the relation data. For example, if the actual piping length (L) is 7m, the EEV control cycle corresponding to the pipe length of 7m is determined from the pipe length-EEV proper control cycle correlation data. Will be.

EEV 제어단계에서는, 이상과 같은 일련의 단계를 거쳐 실제배관길이 및 실제배관길이에 대응하는 적정한 EEV 제어주기가 결정되면, 결정된 EEV 제어주기에 따라 EEV를 제어할 수 있게 된다. In the EEV control step, if the appropriate EEV control period corresponding to the actual pipe length and the actual pipe length is determined through the above series of steps, the EEV can be controlled according to the determined EEV control period.

한편, 둘 이상의 실내기와 실외기를 포함한 구성의 멀티형 공기조화장치의 경우에, 본 발명에 따른 공기조화장치 제어방법은 이상에서 설명한 일련의 압력검출단계, 길이계산단계 및 주기결정단계를 포함되는 EEV의 수만큼, 즉 각 실내기 당 1회씩 반복적으로 수행하는 방식으로 적용될 수 있다.On the other hand, in the case of a multi-type air conditioner including two or more indoor units and an outdoor unit, the air conditioner control method according to the present invention includes an EEV including a series of pressure detection steps, length calculation steps, and period determination steps described above. It can be applied in a manner that is repeatedly performed by a number, that is, once for each indoor unit.

좀 더 상세히 설명하면, 각 실내기(40, 40', 40", ...)를 실외기(10)와 연결하는 개별적인 배관의 길이를 계산하고, 각 배관의 실제배관길이(L)를 배관길이-EEV 적정제어주기 상관관계 데이터와 비교하여 각 EEV에 적정한 제어주기를 결정하게 된다. In more detail, the length of each pipe connecting each indoor unit (40, 40 ', 40 ", ...) to the outdoor unit (10) is calculated, and the actual pipe length (L) of each pipe is calculated as the pipe length-. The control period appropriate for each EEV is determined by comparing with the EEV proper control cycle correlation data.

이때, 길이계산단계에 앞서 수행되는 각 압력검출단계는 배관길이 계산의 대상이 되는 배관 상에 설치되는 EEV를 제외한 나머지 EEV는 모두 닫힌상태에서 수행되어야 한다. At this time, each pressure detection step performed before the length calculation step should be performed in the closed state except for the EEV installed on the pipe to be calculated for the length of the pipe.

이와 같이, 적정한 EEV 제어주기가 개별적으로 결정되면, 결정된 EEV 제어주기에 따라 각 EEV(30, 30', 30", ...)를 독립적으로 제어할 수 있게 된다. As such, when the appropriate EEV control period is individually determined, each of the EEVs 30, 30 ', 30 ", ... can be independently controlled according to the determined EEV control period.

이상과 같은 본 발명에 따른 실제배관길이를 반영한 공기조화장치 제어방법을 제공함으로써, 본 발명은 각 실내기 당 하나씩 설치되어 순환하는 냉매를 제어하는 EEV가 각각 적정한 제어주기로 제어될 수 있도록 하며, 따라서 헌팅현상의 발생가능성을 감소시킴과 더불어 실제온도를 신속하고도 더욱 정확하게 설정온도에 도달할 수 있도록 함으로써, 쾌적한 분위기 유지에 바람직함과 더불어 에너지소비효율을 상승시키는 등 다양한 효과를 얻을 수 있도록 한다.By providing a method for controlling the air conditioner reflecting the actual piping length according to the present invention as described above, the present invention allows the EEVs to control the refrigerant circulating installed one by one for each indoor unit can be controlled in an appropriate control cycle, and therefore hunting In addition to reducing the possibility of occurrence of the phenomenon, it is possible to achieve the actual temperature quickly and more accurately to the set temperature, it is desirable to maintain a pleasant atmosphere and to achieve a variety of effects, such as to increase the energy consumption efficiency.

Claims (3)

공기조화장치의 설치 후 최초운전시에, 압축기의 토출구측에 설치되는 고압측 압력센서와 압축기의 유입구측에 설치되는 저압측 압력센서에서 각각 압력을 검출하는 압력검출단계;A pressure detection step of detecting a pressure at a high pressure side pressure sensor provided at a discharge port side of the compressor and a low pressure side pressure sensor provided at an inlet side of the compressor at the first operation after the installation of the air conditioner; 마이컴에서 검출된 압력값으로 계산한 고압측과 저압측 간의 압력차(ΔP)와, 냉매의 비중(p), 관 마찰계수(Fd), 압축기의 압력에서 유량을 산출하여 산출된 유량을 배관단면적으로 나누는 방법으로 계산되는 냉매의 유속(v), 및 배관의 내경(D)을 관로유량식(ΔP=Fd*L*pv^2/(2*D))에 대입하여 실제배관길이(L) 계산하는 길이계산단계; The flow rate calculated by calculating the flow rate from the pressure difference (ΔP) between the high pressure side and the low pressure side calculated using the pressure value detected by the microcomputer, the specific gravity of the refrigerant (p), the pipe friction coefficient (Fd), and the pressure of the compressor is calculated. The actual pipe length (L) by substituting the flow rate (v) of the refrigerant and the inner diameter (D) of the pipe, calculated by dividing by, into the pipe flow rate equation (ΔP = Fd * L * pv ^ 2 / (2 * D)). Calculating a length calculating step; 마이컴에서 계산된 각 실제배관길이(L)를 저장된 배관길이에 대한 EEV 적정제어주기 상관관계 데이터와 비교하여 각각의 실제배관길이(L)에 대응하는 EEV 제어주기를 결정하는 주기결정단계; 및A period determination step of determining an EEV control period corresponding to each actual pipe length L by comparing each actual pipe length L calculated by the microcomputer with the EEV proper control period correlation data for the stored pipe length ; And 결정된 각 EEV 제어주기에 따라 각 EEV를 제어하는 EEV제어단계;를 포함하는 것을 특징으로 하는 실제배관길이를 반영한 공기조화장치 제어방법.And an EEV control step of controlling each EEV according to each determined EEV control cycle. 제 1항에 있어서,The method of claim 1, 일련의 상기 압력검출단계, 길이계산단계 및 주기결정단계는 각 실내기 당 1회씩 수행되는 것을 특징으로 하는 실제배관길이를 반영한 공기조화장치 제어방법.A series of pressure detection step, length calculation step and period determination step is a control method of the air conditioner reflecting the actual pipe length, characterized in that performed once for each indoor unit. 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2, 상기 압력검출단계는 배관길이 계산의 대상이 되는 배관 상에 설치되는 EEV를 제외한 나머지 EEV는 모두 닫힌 상태에서 수행되는 것을 특징으로 하는 실제배관길이를 반영한 공기조화장치 제어방법.The pressure detection step is an air conditioner control method reflecting the actual pipe length, characterized in that all of the remaining EEV is carried out in the closed state except the EEV is installed on the pipe to be the target of the pipe length calculation.
KR1020060107831A 2006-11-02 2006-11-02 Control method of air-conditioner reflecting real length of refrigerant pipe KR100791320B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060107831A KR100791320B1 (en) 2006-11-02 2006-11-02 Control method of air-conditioner reflecting real length of refrigerant pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060107831A KR100791320B1 (en) 2006-11-02 2006-11-02 Control method of air-conditioner reflecting real length of refrigerant pipe

Publications (1)

Publication Number Publication Date
KR100791320B1 true KR100791320B1 (en) 2008-01-03

Family

ID=39216585

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060107831A KR100791320B1 (en) 2006-11-02 2006-11-02 Control method of air-conditioner reflecting real length of refrigerant pipe

Country Status (1)

Country Link
KR (1) KR100791320B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620393A (en) * 2012-03-15 2012-08-01 浙江盾安人工环境股份有限公司 Outlet water temperature control device of full-year refrigerating air-conditioning unit
CN106813430A (en) * 2016-12-31 2017-06-09 广州市粤联水产制冷工程有限公司 The refrigerating capacity computational methods and device of a kind of vertical separation container
CN106813429A (en) * 2016-12-31 2017-06-09 广州市粤联水产制冷工程有限公司 The refrigerating capacity computational methods and device of a kind of vertical separation container
KR20190125159A (en) * 2018-04-26 2019-11-06 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 Air conditioner
CN114440502A (en) * 2020-11-04 2022-05-06 广东美的制冷设备有限公司 Control method for initial opening degree of electronic expansion valve, multi-split air conditioner and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248722A (en) * 1992-03-05 1993-09-24 Matsushita Seiko Co Ltd Refrigerant control device for multi-chamber type air conditioner
JPH10267355A (en) 1997-03-28 1998-10-09 Matsushita Seiko Co Ltd Multi-chamber type air conditioner
JPH1183128A (en) 1997-09-11 1999-03-26 Zexel Corp Highly efficient multiple air conditioning system
KR20000015027A (en) * 1998-08-26 2000-03-15 구자홍 Air conditioner corresponding to long pipe and control method thereof
KR20010063373A (en) * 1999-12-22 2001-07-09 구자홍 Method for controlling a degree of opening of expansion valve in air conditioner
KR20050034080A (en) * 2003-10-08 2005-04-14 위니아만도 주식회사 Method for operating of multi type air-conditioner by install position of indoor-unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248722A (en) * 1992-03-05 1993-09-24 Matsushita Seiko Co Ltd Refrigerant control device for multi-chamber type air conditioner
JPH10267355A (en) 1997-03-28 1998-10-09 Matsushita Seiko Co Ltd Multi-chamber type air conditioner
JPH1183128A (en) 1997-09-11 1999-03-26 Zexel Corp Highly efficient multiple air conditioning system
KR20000015027A (en) * 1998-08-26 2000-03-15 구자홍 Air conditioner corresponding to long pipe and control method thereof
KR20010063373A (en) * 1999-12-22 2001-07-09 구자홍 Method for controlling a degree of opening of expansion valve in air conditioner
KR20050034080A (en) * 2003-10-08 2005-04-14 위니아만도 주식회사 Method for operating of multi type air-conditioner by install position of indoor-unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620393A (en) * 2012-03-15 2012-08-01 浙江盾安人工环境股份有限公司 Outlet water temperature control device of full-year refrigerating air-conditioning unit
CN106813430A (en) * 2016-12-31 2017-06-09 广州市粤联水产制冷工程有限公司 The refrigerating capacity computational methods and device of a kind of vertical separation container
CN106813429A (en) * 2016-12-31 2017-06-09 广州市粤联水产制冷工程有限公司 The refrigerating capacity computational methods and device of a kind of vertical separation container
CN106813430B (en) * 2016-12-31 2019-08-23 广州市粤联水产制冷工程有限公司 A kind of the refrigerating capacity calculation method and device of vertical separation vessel
CN106813429B (en) * 2016-12-31 2019-09-13 广州市粤联水产制冷工程有限公司 A kind of the refrigerating capacity calculation method and device of vertical separation vessel
KR20190125159A (en) * 2018-04-26 2019-11-06 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 Air conditioner
US10533783B2 (en) 2018-04-26 2020-01-14 Hitachi-Johnson Controls Air Conditioning, Inc. Air conditioner having compressor bypass and evaluation of volume of connecting pipe
KR102110915B1 (en) * 2018-04-26 2020-05-14 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 Air conditioner
CN114440502A (en) * 2020-11-04 2022-05-06 广东美的制冷设备有限公司 Control method for initial opening degree of electronic expansion valve, multi-split air conditioner and storage medium
CN114440502B (en) * 2020-11-04 2024-05-28 广东美的制冷设备有限公司 Control method for initial opening degree of electronic expansion valve, multi-split air conditioner and storage medium

Similar Documents

Publication Publication Date Title
CN105758065B (en) A kind of air-conditioning system method for controlling oil return
CN102884382B (en) Method for controlling fan for heat source heat exchanger, and air conditioning device
US10094599B2 (en) Oil return method for multi-split air conditioning in heating
EP1972871B1 (en) Hot water system
CN106247676B (en) Control method, control device and the air conditioner of air conditioner
CN107178944B (en) method for preventing exhaust superheat degree of air conditioner from being too small and air conditioner control system
KR100791320B1 (en) Control method of air-conditioner reflecting real length of refrigerant pipe
JP2007333219A (en) Multi-type air-conditioning system
US10527334B2 (en) Refrigeration system
CN107477798B (en) method and device for controlling refrigerant of air conditioner and air conditioner
KR100661144B1 (en) Method for sensing refrigerants leakage of multi-air conditioner
CN103644621A (en) Central arithmetic type multi-split air conditioner system and state switching control method thereof
CN111121249B (en) Control method and control device of multi-split system and multi-split system
EP3779323B1 (en) Air conditioning system control device, outdoor unit, relay unit, heat source unit, and air conditioning system
Yan et al. A novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor humidity control
Chen et al. Development of a steady-state physical-based mathematical model for a direct expansion based enhanced dehumidification air conditioning system
Min et al. Performance analysis of multi-split variable refrigerant flow (VRF) system with vapor-injection in cold season
WO2014103520A1 (en) Refrigeration device
Hong et al. A theoretical refrigerant charge prediction equation for air source heat pump system based on sensor information
Yan et al. Operating characteristics of a three-evaporator air conditioning (TEAC) system
JPH09280681A (en) Air conditioner
CN113503620A (en) Air conditioning system control method and device, storage medium and air conditioning system
CN105674484A (en) Control method for heating of water-cooling multiple online machine
CN101086372A (en) Method for preventing central air conditioner indoor machine liquid refrigerant detention
KR20030095615A (en) Method for controlling working of multi-type air conditioner

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131223

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141217

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151223

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161208

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee