WO2016194098A1 - Air-conditioning device and operation control device - Google Patents

Air-conditioning device and operation control device Download PDF

Info

Publication number
WO2016194098A1
WO2016194098A1 PCT/JP2015/065730 JP2015065730W WO2016194098A1 WO 2016194098 A1 WO2016194098 A1 WO 2016194098A1 JP 2015065730 W JP2015065730 W JP 2015065730W WO 2016194098 A1 WO2016194098 A1 WO 2016194098A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
refrigerant
load
refrigerant pipe
source side
Prior art date
Application number
PCT/JP2015/065730
Other languages
French (fr)
Japanese (ja)
Inventor
周平 水谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017521358A priority Critical patent/JP6501878B2/en
Priority to CN201580081017.7A priority patent/CN107709887B/en
Priority to PCT/JP2015/065730 priority patent/WO2016194098A1/en
Priority to EP15894133.6A priority patent/EP3306214B1/en
Publication of WO2016194098A1 publication Critical patent/WO2016194098A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser

Definitions

  • the present invention relates to an air conditioner capable of diverting existing piping and an operation control apparatus capable of controlling the air conditioner.
  • an air conditioner capable of diverting existing piping for example, an operation frequency of a compressor, an opening degree of a decompression device, etc. are controlled so that the pressure of the refrigerant in the existing piping does not exceed a pressure resistance reference value.
  • Patent Document 1 Japanese Patent Document 1
  • the load capacity (operating capacity) of the indoor unit is reduced during cooling operation in an environment where the outside air temperature is higher than usual (hereinafter referred to as “high outside air temperature environment”).
  • high outside air temperature environment there is a high possibility that the pressure of the refrigerant in the existing piping will rise more than during normal cooling operation. Therefore, in the air conditioner of Patent Document 1, since the possibility that the refrigerant pressure in the existing pipe exceeds the pressure resistance reference value increases, the frequency of the air conditioner abnormally stopping due to pressure abnormality increases, and the reliability of the air conditioner is increased. There was a problem that sex could not be maintained.
  • the present invention has been made to solve the above-described problem, and is capable of suppressing the pressure of the refrigerant in the existing piping to less than the pressure resistance reference value even during a cooling operation in a high outside air temperature environment. It aims at providing a harmony device and an operation control device.
  • An air conditioner connects a compressor, a heat source side heat exchanger, a pressure reducing device, and a load side heat exchanger via a refrigerant pipe to circulate the refrigerant, and at least the heat source side heat exchanger includes A refrigeration cycle that functions as a radiator and performs a cooling operation in which the load-side heat exchanger functions as an evaporator, the compressor, the heat-source-side heat exchanger, and a heat-source-side unit that houses the decompression device, One or more load-side units that house a load-side heat exchanger and are connected to the heat source-side unit via an existing refrigerant pipe, and a control device that controls the refrigeration cycle, When the outdoor air temperature of the outdoor air supplied to the heat source side heat exchanger exceeds a reference outdoor air temperature during operation and the total load capacity of the one or more load side units decreases with time, the total load capacity And adjusts the opening degree of the pressure reducing device in accordance with a variation value.
  • the operation control apparatus includes a compressor, a heat source side heat exchanger, and a decompression device housed in the heat source side unit, and one or more connected to the heat source side unit via an existing refrigerant pipe.
  • a load side heat exchanger accommodated in the load side unit is connected via a refrigerant pipe to circulate the refrigerant.
  • At least the heat source side heat exchanger functions as a radiator and the load side heat exchanger evaporates.
  • the opening degree of the decompression device is adjusted according to the fluctuation value of the total load capacity.
  • the opening degree of the heat source side pressure reducing device can be adjusted according to the reduction of the total load capacity of one or more load side units, the pressure of the refrigerant in the existing pipe is controlled to be equal to or lower than the pressure resistance reference value. it can. Therefore, according to the present invention, it is possible to provide a highly reliable air conditioning apparatus and operation control apparatus that can reduce the frequency with which the air conditioning apparatus abnormally stops due to pressure abnormality.
  • FIG. 1 is a schematic refrigerant circuit diagram illustrating an example of the air-conditioning apparatus 1 according to Embodiment 1.
  • FIG. 1 the dimensional relationship and shape of each component may be different from the actual one.
  • the air conditioner 1 includes a heat source side unit 100 (heat source unit) that is an outdoor unit, a first load side unit 200a that is an indoor unit arranged in parallel to the heat source side unit 100, and And a second load side unit 200b. Between the heat source side unit 100 and the first load side unit 200a and the second load side unit 200b, a first extended refrigerant pipe 300 (liquid pipe) and a second extended refrigerant pipe 400 (gas) which are existing pipes are provided. Connected by piping). In FIG. 1, two load-side units are connected, but the number of load-side units connected may be one or three or more.
  • the air conditioner 1 includes a compressor 2, a heat source side heat exchanger 3, a heat source side decompression device 4, a first load side decompression device 5a, a second load side decompression device 5b, and a first
  • the load-side heat exchanger 6a and the second load-side heat exchanger 6b, the refrigerant flow switching device 7, and the accumulator 8 have a single refrigeration cycle (refrigerant circuit) for circulating the refrigerant sequentially.
  • the compressor 2 is a variable frequency type fluid machine that is housed in the heat source side unit 100, compresses the sucked low-pressure refrigerant, and discharges it as a high-pressure refrigerant.
  • a scroll compressor whose rotation frequency is controlled by an inverter can be used.
  • the heat source side heat exchanger 3 (outdoor unit heat exchanger) is a heat exchanger that functions as a radiator (condenser) during cooling operation and functions as an evaporator during heating operation, and is accommodated in the heat source side unit 100. Yes.
  • the heat source side heat exchanger 3 performs heat exchange between the refrigerant flowing inside the heat source side heat exchanger 3 and the outside air (for example, outdoor air) blown by a heat source side heat exchanger fan (not shown). Configured.
  • the heat source side heat exchanger 3 can be constituted by, for example, a cross fin type fin-and-tube heat exchanger constituted by a heat transfer tube and a plurality of fins.
  • the first heat source side refrigerant pipe 10 (outdoor unit liquid line) is accommodated in the heat source side unit 100, and one end is connected to the heat source side heat exchanger 3.
  • the other end portion of the first heat source side refrigerant pipe 10 is a first extended refrigerant pipe connection valve 9a (liquid operation valve) provided on the first heat source side refrigerant pipe 10, and the first extended refrigerant. It is connected to the pipe 300.
  • the first extended refrigerant pipe connection valve 9a is composed of, for example, a two-way valve such as a two-way solenoid valve that can be switched between open and closed.
  • the heat source side decompression device 4 expands and decompresses the high-pressure liquid refrigerant flowing from the heat source side heat exchanger 3 during the cooling operation, and flows it into the first extended refrigerant pipe 300 which is an existing pipe.
  • the heat source side decompression device 4 is accommodated in the heat source side unit 100 and is provided in the first heat source side refrigerant pipe 10.
  • an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously can be used as the heat source side pressure reducing device 4 and is configured as an outdoor electronic expansion valve.
  • LEV linear electronic expansion valve
  • the heat source side decompression device 4 further expands and decompresses the medium-pressure liquid refrigerant or the two-phase refrigerant flowing from the first extended refrigerant pipe 300 into the first heat source side refrigerant pipe 10, It can be configured to flow into the side heat exchanger 3.
  • the first load side decompression device 5a and the second load side decompression device 5b further expand and decompress the medium-pressure liquid refrigerant or two-phase refrigerant flowing from the first extended refrigerant pipe 300 during the cooling operation, It is made to flow in 1 load side heat exchanger 6a and 2nd load side heat exchanger 6b, respectively.
  • the first load-side decompression device 5a is accommodated in the first load-side unit 200a
  • the second load-side decompression device 5b is accommodated in the second load-side unit 200b.
  • the first load-side pressure reducing device 5a and the second load-side pressure reducing device 5b are, for example, electronic expansion valves such as linear electronic expansion valves whose opening degree can be adjusted in multiple stages or continuously, and are used as indoor electronic expansion valves. Composed.
  • the first load side pressure reducing device 5a is adjusted to be closed.
  • the second load side pressure reducing device 5b is adjusted to be closed.
  • the first load-side decompression device 5a expands and decompresses the high-pressure liquid refrigerant flowing from the first load-side heat exchanger 6a during the heating operation, and the first extended refrigerant pipe that is an existing pipe. It can be configured to flow into 300.
  • the second load-side decompression device 5b expands and decompresses the high-pressure liquid refrigerant flowing from the second load-side heat exchanger 6b, and is a first extended refrigerant that is an existing pipe. It can be configured to flow into the pipe 300.
  • the first load side heat exchanger 6a and the second load side heat exchanger 6b are heat exchangers that function as an evaporator during cooling operation and function as a radiator during heating operation.
  • the first load side heat exchanger 6a and the second load side heat exchanger 6b are, for example, a refrigerant flowing inside the first load side heat exchanger 6a and the second load side heat exchanger 6b, and the outside air It is configured to exchange heat with (for example, room air).
  • the 1st load side heat exchanger 6a and the 2nd load side heat exchanger 6b can be constituted as a fin and tube type heat exchanger of the cross fin type constituted by a heat exchanger tube and a plurality of fins, for example. .
  • the first load side heat exchanger 6a is accommodated in the first load side unit 200a, and the second load side heat exchanger 6b is accommodated in the second load side unit 200b. Moreover, in the air conditioning apparatus 1 according to the first embodiment, the first load side heat exchanger 6a and the second load side heat exchanger 6b are blown by air from a fan for load side heat exchanger (not shown). It can be configured to supply outside air.
  • the refrigerant flow switching device 7 switches the refrigerant flow direction in the refrigeration cycle when switching between the cooling operation and the heating operation, and is accommodated in the heat source unit 100.
  • a four-way valve is used as the refrigerant flow switching device 7.
  • a fifth heat source side refrigerant pipe 18 is connected between the refrigerant flow switching device 7 and the heat source side heat exchanger 3.
  • a third heat source side refrigerant pipe 14 (pipe before the accumulator) is connected between the refrigerant flow switching device 7 and the refrigerant inlet of the accumulator 8.
  • a fourth heat source side refrigerant pipe 16 is connected between the refrigerant flow switching device 7 and the discharge port of the compressor 2.
  • a second heat source side refrigerant pipe 12 is connected between the refrigerant flow switching device 7 and the second extended refrigerant pipe 400.
  • the refrigerant flow switching device 7 causes the refrigerant to flow from the second heat source side refrigerant pipe 12 to the third heat source side refrigerant pipe 14, and from the fourth heat source side refrigerant pipe 16 to the fifth heat source side refrigerant.
  • the refrigerant is configured to flow through the pipe 18.
  • the refrigerant flow switching device 7 causes the refrigerant to flow from the fifth heat source side refrigerant pipe 18 to the third heat source side refrigerant pipe 14, and from the fourth heat source side refrigerant pipe 16 to the second heat source side.
  • the refrigerant is configured to flow through the refrigerant pipe 12.
  • the second heat source side refrigerant pipe 12, the third heat source side refrigerant pipe 14, the fourth heat source side refrigerant pipe 16, and the fifth heat source side refrigerant pipe 18 are accommodated in the heat source side unit 100.
  • the second heat source side refrigerant pipe 12 is connected to the second extended refrigerant pipe 400 by a second extended refrigerant pipe connection valve 9b (gas operation valve) provided in the second heat source side refrigerant pipe 12. ing.
  • the second extended refrigerant pipe connection valve 9b is composed of, for example, a two-way valve such as a two-way solenoid valve that can be switched between open and closed.
  • the accumulator 8 is a gas / liquid that prevents a large amount of liquid refrigerant from flowing into the compressor 2 by retaining a refrigerant storage function that stores excess refrigerant and liquid refrigerant that is temporarily generated when the operating state changes. It has a separation function.
  • the accumulator 8 is disposed on the suction pipe side of the compressor 2 and is accommodated in the heat source side unit 100.
  • the heat source side unit 100 is a bypass refrigerant pipe 20 (high / low pressure bypass pipe) branched from the first heat source side refrigerant pipe 10 at a position between the heat source side pressure reducing device 4 and the first extended refrigerant pipe connection valve 9a. It has.
  • the end of the bypass refrigerant pipe 20 is connected to the third heat source side refrigerant pipe 14 at a position between the refrigerant flow switching device 7 and the accumulator 8.
  • the bypass refrigerant pipe 20 is a first heat source side refrigerant pipe 10 that is a refrigerant pipe on the refrigerant outlet side of the heat source side decompression device 4 and a refrigerant pipe that is connected to the refrigerant inlet side of the accumulator 8.
  • This is a refrigerant pipe that bypasses the heat source side refrigerant pipe 14.
  • the bypass refrigerant pipe 20 is provided with an electromagnetic valve 25 that is a valve that opens or closes the flow path when power is supplied or stopped.
  • the solenoid valve 25 causes the refrigerant that has flowed into the first heat source side refrigerant pipe 10 to flow into the accumulator 8. It has a capacity coefficient (CV value) that can reduce the pressure of the high-pressure or medium-pressure refrigerant flowing into the first heat source side refrigerant pipe 10 to a low pressure.
  • the electromagnetic valve 25 is configured by a two-way valve such as a two-way electromagnetic valve capable of switching between opening and closing, for example.
  • the air conditioner 1 includes a first temperature sensor 30, a second temperature sensor 35a, a first pressure sensor 40, and a second pressure sensor 45.
  • the first temperature sensor 30 is an outside air temperature sensor (outdoor temperature sensor) that detects the temperature of the outside air (outdoor air) that is sucked by a heat source side fan (not shown) and blown to the heat source side heat exchanger 3. is there.
  • the 1st temperature sensor 30 is arrange
  • the second temperature sensor 35a is sucked in by a load-side blower fan (not shown) housed in the first load-side unit 200a and is sent to the first load-side heat exchanger 6a.
  • the 2nd temperature sensor 35a When the 2nd temperature sensor 35a is comprised as an outside temperature sensor, the 2nd temperature sensor 35a is arrange
  • the third temperature sensor 35b is sucked in by a load-side fan (not shown) housed in the second load-side unit 200b and is sent to the second load-side heat exchanger 6b. It can be an outside air temperature sensor (indoor unit intake temperature sensor) that detects the temperature.
  • the 3rd temperature sensor 35b is comprised as an outside temperature sensor, the 3rd temperature sensor 35b is arrange
  • the first pressure sensor 40 is a pressure sensor (intermediate pressure sensor) that detects the pressure P of the refrigerant flowing through the first heat source side refrigerant pipe 10 on the refrigerant outlet side of the heat source side decompression device 4 during the cooling operation. . That is, the first pressure sensor 40 is disposed at a position of the first heat source side refrigerant pipe 10 between the heat source side pressure reducing device 4 and the first extended refrigerant pipe connection valve 9a.
  • the second pressure sensor 45 flows out from the outlets of the first load side heat exchanger 6a and the second load side heat exchanger 6b and detects the low pressure of the merged refrigerant. It is a (low pressure sensor) and detects the pressure of the refrigerant flowing out from the outlet of the heat source side heat exchanger 3 during heating operation.
  • the second pressure sensor 45 is disposed in the third heat source side refrigerant pipe 14.
  • the first temperature sensor 30 As a material of the first temperature sensor 30, the second temperature sensor 35a, and the third temperature sensor 35b, a semiconductor (for example, a thermistor) or a metal (for example, a resistance temperature detector) is used. Further, as the first pressure sensor 40 and the second pressure sensor 45, a crystal piezoelectric pressure sensor, a semiconductor sensor, a pressure transducer, or the like is used. In addition, the 1st temperature sensor 30, the 2nd temperature sensor 35a, and the 3rd temperature sensor 35b may be comprised with the same material, and may be comprised with a different material. Also, the first pressure sensor 40 and the second pressure sensor 45 may be made of the same type or different types.
  • control device 500 operation control device that performs overall control of the air-conditioning apparatus 1 according to Embodiment 1 will be described.
  • the control device 500 controls the operation state of the first control unit 50 (outdoor unit side control device) that controls the operation state of the heat source side unit 100 and the first load side unit 200a.
  • a second control unit 55a (indoor unit side control device) and a third control unit 55b (indoor unit side control device) that controls the operating state of the second load side unit 200b are provided.
  • the first control unit 50, the second control unit 55a, and the third control unit 55b include a microcomputer that includes a CPU, a memory (eg, ROM, RAM, etc.), an I / O port, and the like. .
  • the control device 500 connects the first control unit 50, the second control unit 55a, and the third control unit 55b with a communication line 58 to communicate with each other such as transmission and reception of control signals. Configured to be able to do. Note that communication between the first control unit 50 and the second control unit 55a and the third control unit 55b may be performed wirelessly.
  • the first control unit 50 starts and stops the operation of the heat source side unit 100, adjusts the opening degree of the heat source side decompression device 4, opens or closes the electromagnetic valve 25, adjusts the operation frequency of the compressor 2, and the like. It is configured to be able to control the operating state.
  • the first control unit 50 is configured to have a storage unit (not shown) that can store various data such as a control target value.
  • the first control unit 50 also receives an electrical signal of temperature information detected by the first temperature sensor 30 and an electrical signal of pressure information detected by the first pressure sensor 40 and the second pressure sensor 45. Configured as follows.
  • the second control unit 55a is configured to control operation states such as start and stop of the operation of the first load-side unit 200a and adjustment of the opening degree of the first load-side decompression device 5a.
  • the second control unit 55a is configured to measure the load capacity Q1 (operating capacity) of the first load side unit 200a at a predetermined interval (for example, every minute).
  • the second control unit 55a is configured to receive an electrical signal of temperature information detected by the second temperature sensor 35a.
  • the third control unit 55b is configured to control the operation state such as the start and stop of the operation of the second load side unit 200b and the adjustment of the opening degree of the second load side decompression device 5b.
  • the third control unit 55b is configured to measure the load capacity Q2 of the second load-side unit 200b at a predetermined interval (for example, every 1 minute), and the second control unit 55a 3 is configured to receive an electrical signal of temperature information detected by the temperature sensor 35b.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 3.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 3 is heat-exchanged by releasing heat to a low-temperature medium such as outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is expanded and depressurized by the heat source-side decompression device 4 provided in the first heat source-side refrigerant pipe 10 to become a medium-pressure liquid refrigerant or a two-phase refrigerant, and passes through the first extended refrigerant pipe 300. Then, it flows into the heat source side unit 100.
  • the medium-pressure liquid refrigerant or two-phase refrigerant flowing into the first load-side decompression device 5a and the second load-side decompression device 5b is further expanded and decompressed to become a low-temperature and low-pressure two-phase refrigerant.
  • the two-phase refrigerant having a high dryness or the low-temperature and low-pressure gas refrigerant that has flowed out of the first load-side heat exchanger 6a and the second load-side heat exchanger 6b is supplied to the second extended refrigerant pipe 400, the second heat source side.
  • the refrigerant flows into the accumulator 8 via the refrigerant pipe 12, the refrigerant flow switching device 7, and the third heat source side refrigerant pipe 14.
  • the two-phase refrigerant having a high degree of dryness or the low-temperature and low-pressure gas refrigerant is sucked into the compressor 2 after the liquid phase component is removed by the accumulator 8.
  • the refrigerant sucked into the compressor 2 is compressed to become a high-temperature and high-pressure gas refrigerant and is discharged from the compressor 2.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 3 via the fourth heat source side refrigerant pipe 16, the refrigerant flow switching device 7, and the fifth heat source side refrigerant pipe 18. To do. In the cooling operation of the air conditioner 1, the above cycle is repeated.
  • the flow path inside the refrigerant flow switching device 7 is switched from the solid flow path to the dotted flow path as shown in FIG.
  • the high-temperature and high-pressure gas refrigerant flows into the first load-side heat exchanger 6a and the second load-side heat exchanger 6b, releases heat to a low-temperature medium such as indoor air, and the high-pressure liquid refrigerant and Become.
  • the indoor air is heated by the heat dissipation action of the refrigerant.
  • the control device 500 of the air-conditioning apparatus 1 according to Embodiment 1 is configured such that the outdoor air temperature supplied to the heat source side heat exchanger 3 exceeds the reference outdoor air temperature during cooling operation, and one or more load sides When the total load capacity Q of the units (the first load side unit 200a and the second load side unit 200b) decreases with time, the opening degree of the heat source side pressure reducing device 4 according to the fluctuation value of the total load capacity Q Configured to adjust.
  • FIG. 2 is a flowchart showing an example of control processing during cooling operation in the control device 500 of the air-conditioning apparatus 1 according to Embodiment 1.
  • the control process of FIG. 2 may be performed all the time during the cooling operation, or may be performed at any time when a change in the outside air temperature T is detected, for example.
  • step S11 the control device 500 determines whether or not the outside air temperature T detected by the first temperature sensor 30 is higher than the reference outside air temperature T0.
  • the reference outside air temperature T0 is set as a boundary value between the high outside air temperature environment and the normal outside air temperature environment, and is set to 52 ° C., for example.
  • the normal temperature environment refers to an outside air temperature environment in which the pressure of the refrigerant flowing through the existing piping does not exceed the pressure resistance reference value due to the fluctuation of the total load capacity Q.
  • step S12 the control device 500 causes the current load capacity Q1 now in the first load side unit 200a and the current load capacity Q2 now in the second load side unit 200b. And the current total load capacity Qnow is calculated by the following equation (2).
  • Q now Q1 now + Q2 now (2)
  • step S ⁇ b> 13 the control device 500 determines whether or not the current total load capacity Q now is less than the latest total load capacity Q last stored in the storage unit of the control apparatus 500.
  • the control process is terminated and normal cooling operation is continued.
  • the opening degree adjustment value ⁇ D of the heat source side decompression device 4 is calculated in step S14.
  • the correction coefficient K is, for example, a fluctuation value of the total load capacity Q, a fluctuation value of the pressure P detected by the first pressure sensor 40, and an opening adjustment value ⁇ D for canceling the fluctuation of the pressure P. It is a constant that is calculated and determined from the correlation of measured values.
  • the refrigeration cycle to be performed the compressor 2, the heat source side heat exchanger 3, the heat source side unit 100 housing the pressure reducing device (heat source side pressure reducing device 4), and the load side heat exchanger (first load side heat exchanger 6a). , The second load-side heat exchanger 6b), and the existing refrigerant pipe (the first extended refrigerant distribution). 300, one or more load side units (first load side unit 200a, second load side unit 200b) connected to the heat source side unit 100 via the second extended refrigerant pipe 400) and the refrigeration cycle are controlled.
  • the total load capacity in a state where all five indoor units are in operation is 100%.
  • the total load capacity of the indoor units is 20%.
  • the electronic expansion valves of the four stopped indoor units are closed. Therefore, assuming that the refrigerant circulation amount in a state in which all five indoor units are in operation is 100%, the refrigerant pressure that flows into the existing piping is maintained when the four indoor units are stopped.
  • control device 500 opens the electromagnetic valve 25 in step S22.
  • step S23 the control device 500 counts the time M during which the electromagnetic valve 25 is opened, and determines whether or not a certain time M0 has elapsed. When the fixed time M0 has not elapsed, the open state of the solenoid valve 25 is maintained.
  • step S24 the control device 500 closes the electromagnetic valve 25 and ends the control process.
  • the heat source side unit 100 includes the accumulator 8 disposed on the suction pipe side of the compressor 2 and the refrigerant flow of the decompression device (heat source side decompression device 4).
  • Bypass refrigerant pipe 20 that bypasses between the refrigerant pipe on the outlet side (first heat source side refrigerant pipe 10) and the refrigerant pipe (third heat source side refrigerant pipe 14) connected to the refrigerant inlet side of the accumulator 8.
  • a solenoid valve 25 provided in the bypass refrigerant pipe 20, and the control device 500 has a refrigerant pipe (first heat source side) on the refrigerant outlet side of the pressure reducing apparatus (heat source side pressure reducing apparatus 4) during the cooling operation.
  • the pressure of the refrigerant flowing through the refrigerant pipe 10) exceeds the pressure resistance reference value of the existing refrigerant pipe (first extended refrigerant pipe 300)
  • the electromagnetic valve 25 is opened for a certain period of time.
  • control device 500 includes an accumulator 8 disposed on the suction pipe side of the compressor 2 and a refrigerant on the refrigerant outlet side of the decompression device (heat source side decompression device 4).
  • a bypass refrigerant pipe 20 that bypasses between the pipe (first heat source side refrigerant pipe 10) and a refrigerant pipe (third heat source side refrigerant pipe 14) connected to the refrigerant inlet side of the accumulator 8, and a bypass refrigerant
  • the air conditioner 1 that further accommodates the electromagnetic valve 25 provided in the pipe 20 in the heat source side unit 100 is controlled, and the refrigerant pipe (first pipe) on the refrigerant outlet side of the pressure reducing apparatus (heat source side pressure reducing apparatus 4) during cooling operation.
  • a device 500 operation control device
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the above-described embodiment is not limited to the air conditioner 1 and can be used for a water heater or the like.

Abstract

The air-conditioning device 1 according to the present invention is equipped with a control device 500 (operation control device). If, during a cooling operation, the outside air temperature of outdoor air supplied to a heat-source-side heat exchanger 3 exceeds a reference outside air temperature and the total load-carrying capacity of one or more load-side units (a first load-side unit 200a and a second load-side unit 200b) is reduced over time, the control device 500 (operation control device) adjusts the opening degree of a decompression device (heat-source-side decompression device 4) according to the variation of the total load-carrying capacity.

Description

空気調和装置及び運転制御装置Air conditioning apparatus and operation control apparatus
 本発明は、既設配管を流用可能な空気調和装置、及び当該空気調和装置を制御可能な運転制御装置に関する。 The present invention relates to an air conditioner capable of diverting existing piping and an operation control apparatus capable of controlling the air conditioner.
 従来、既設配管を流用可能な空気調和装置としては、例えば、圧縮機の運転周波数、減圧装置の開度等を制御し、既設配管内の冷媒の圧力が耐圧基準値を超えないようにしたものが知られている(例えば、特許文献1)。 Conventionally, as an air conditioner capable of diverting existing piping, for example, an operation frequency of a compressor, an opening degree of a decompression device, etc. are controlled so that the pressure of the refrigerant in the existing piping does not exceed a pressure resistance reference value. Is known (for example, Patent Document 1).
特開2002-162126号公報JP 2002-162126 A
 しかしながら、特許文献1の空気調和装置では、外気温度が通常よりも高い環境(以降、「高外気温度環境」と称する。)下での冷房運転時に室内機の負荷容量(運転容量)が低下した場合、既設配管の冷媒の圧力が通常の冷房運転時よりも上昇する可能性が高くなる。したがって、特許文献1の空気調和装置では、既設配管の冷媒の圧力が耐圧基準値を超える可能性が高くなるため、圧力異常により空気調和装置が異常停止する頻度が高くなり、空気調和装置の信頼性が保持できないという問題点があった。 However, in the air conditioner of Patent Document 1, the load capacity (operating capacity) of the indoor unit is reduced during cooling operation in an environment where the outside air temperature is higher than usual (hereinafter referred to as “high outside air temperature environment”). In this case, there is a high possibility that the pressure of the refrigerant in the existing piping will rise more than during normal cooling operation. Therefore, in the air conditioner of Patent Document 1, since the possibility that the refrigerant pressure in the existing pipe exceeds the pressure resistance reference value increases, the frequency of the air conditioner abnormally stopping due to pressure abnormality increases, and the reliability of the air conditioner is increased. There was a problem that sex could not be maintained.
 本発明は、上述の問題を解決するためになされたものであり、高外気温度環境下での冷房運転時においても、既設配管の冷媒の圧力を耐圧基準値未満に抑制することが可能な空気調和装置及び運転制御装置を提供することを目的とする。 The present invention has been made to solve the above-described problem, and is capable of suppressing the pressure of the refrigerant in the existing piping to less than the pressure resistance reference value even during a cooling operation in a high outside air temperature environment. It aims at providing a harmony device and an operation control device.
 本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、減圧装置、及び負荷側熱交換器を冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルと、前記圧縮機、前記熱源側熱交換器、及び前記減圧装置を収容する熱源側ユニットと、前記負荷側熱交換器を収容し、既設の冷媒配管を介して前記熱源側ユニットと連結される1以上の負荷側ユニットと、前記冷凍サイクルを制御する制御装置とを備え、前記制御装置は、冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記1以上の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整するものである。 An air conditioner according to the present invention connects a compressor, a heat source side heat exchanger, a pressure reducing device, and a load side heat exchanger via a refrigerant pipe to circulate the refrigerant, and at least the heat source side heat exchanger includes A refrigeration cycle that functions as a radiator and performs a cooling operation in which the load-side heat exchanger functions as an evaporator, the compressor, the heat-source-side heat exchanger, and a heat-source-side unit that houses the decompression device, One or more load-side units that house a load-side heat exchanger and are connected to the heat source-side unit via an existing refrigerant pipe, and a control device that controls the refrigeration cycle, When the outdoor air temperature of the outdoor air supplied to the heat source side heat exchanger exceeds a reference outdoor air temperature during operation and the total load capacity of the one or more load side units decreases with time, the total load capacity And adjusts the opening degree of the pressure reducing device in accordance with a variation value.
 また、本発明に係る運転制御装置は、熱源側ユニットに収容される圧縮機、熱源側熱交換器、及び減圧装置と、既設の冷媒配管を介して前記熱源側ユニットと連結される1以上の負荷側ユニットに収容される負荷側熱交換器とを冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルを備える空気調和装置を制御し、冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記1以上の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整するものである。 Moreover, the operation control apparatus according to the present invention includes a compressor, a heat source side heat exchanger, and a decompression device housed in the heat source side unit, and one or more connected to the heat source side unit via an existing refrigerant pipe. A load side heat exchanger accommodated in the load side unit is connected via a refrigerant pipe to circulate the refrigerant. At least the heat source side heat exchanger functions as a radiator and the load side heat exchanger evaporates. Controlling an air conditioner including a refrigeration cycle that performs a cooling operation functioning as a cooler, and during the cooling operation, the outdoor air temperature of the outdoor air supplied to the heat source side heat exchanger exceeds a reference outdoor air temperature, and the one or more When the total load capacity of the load side unit decreases with time, the opening degree of the decompression device is adjusted according to the fluctuation value of the total load capacity.
 本発明によれば、1以上の負荷側ユニットの合計負荷容量の低減に応じて、熱源側減圧装置の開度を調整できるため、既設配管の冷媒の圧力が耐圧基準値以下となるように制御できる。したがって、本発明によれば、圧力異常により空気調和装置が異常停止する頻度を低減可能な、信頼性の高い空気調和装置及び運転制御装置を提供することができる。 According to the present invention, since the opening degree of the heat source side pressure reducing device can be adjusted according to the reduction of the total load capacity of one or more load side units, the pressure of the refrigerant in the existing pipe is controlled to be equal to or lower than the pressure resistance reference value. it can. Therefore, according to the present invention, it is possible to provide a highly reliable air conditioning apparatus and operation control apparatus that can reduce the frequency with which the air conditioning apparatus abnormally stops due to pressure abnormality.
本発明の実施の形態1に係る空気調和装置1の一例を示す概略的な冷媒回路図である。It is a schematic refrigerant circuit diagram which shows an example of the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing at the time of air_conditionaing | cooling operation in the control apparatus 500 of the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing at the time of air_conditionaing | cooling operation in the control apparatus 500 of the air conditioning apparatus 1 which concerns on Embodiment 2 of this invention.
実施の形態1.
 本発明の実施の形態1に係る空気調和装置1(冷凍空調装置)について説明する。図1は、本実施の形態1に係る空気調和装置1の一例を示す概略的な冷媒回路図である。なお、図1を含む以下の図面では各構成部材の寸法の関係及び形状が、実際のものとは異なる場合がある。
Embodiment 1 FIG.
An air conditioner 1 (refrigeration air conditioner) according to Embodiment 1 of the present invention will be described. FIG. 1 is a schematic refrigerant circuit diagram illustrating an example of the air-conditioning apparatus 1 according to Embodiment 1. In FIG. In the following drawings including FIG. 1, the dimensional relationship and shape of each component may be different from the actual one.
 図1に示すように、空気調和装置1は、室外機である熱源側ユニット100(熱源機)と、熱源側ユニット100に対し並列に配置された室内機である第1の負荷側ユニット200a及び第2の負荷側ユニット200bとを備える。熱源側ユニット100と第1の負荷側ユニット200a及び第2の負荷側ユニット200bとの間は、既設配管である第1の延長冷媒配管300(液配管)及び第2の延長冷媒配管400(ガス配管)で接続されている。なお、図1には、負荷側ユニットが2台接続された構成としているが、負荷側ユニットの接続台数は1台でもよいし、3台以上としてもよい。 As shown in FIG. 1, the air conditioner 1 includes a heat source side unit 100 (heat source unit) that is an outdoor unit, a first load side unit 200a that is an indoor unit arranged in parallel to the heat source side unit 100, and And a second load side unit 200b. Between the heat source side unit 100 and the first load side unit 200a and the second load side unit 200b, a first extended refrigerant pipe 300 (liquid pipe) and a second extended refrigerant pipe 400 (gas) which are existing pipes are provided. Connected by piping). In FIG. 1, two load-side units are connected, but the number of load-side units connected may be one or three or more.
 本実施の形態1の空気調和装置1は、圧縮機2、熱源側熱交換器3、熱源側減圧装置4、第1の負荷側減圧装置5a及び第2の負荷側減圧装置5b、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6b、冷媒流路切替装置7、並びにアキュムレータ8に順次冷媒を循環させる1系統の冷凍サイクル(冷媒回路)を有している。 The air conditioner 1 according to the first embodiment includes a compressor 2, a heat source side heat exchanger 3, a heat source side decompression device 4, a first load side decompression device 5a, a second load side decompression device 5b, and a first The load-side heat exchanger 6a and the second load-side heat exchanger 6b, the refrigerant flow switching device 7, and the accumulator 8 have a single refrigeration cycle (refrigerant circuit) for circulating the refrigerant sequentially.
 圧縮機2は、熱源側ユニット100に収容され、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する周波数可変型の流体機械である。圧縮機2は、例えば、インバータにより回転周波数が制御されるスクロール圧縮機を用いることができる。 The compressor 2 is a variable frequency type fluid machine that is housed in the heat source side unit 100, compresses the sucked low-pressure refrigerant, and discharges it as a high-pressure refrigerant. As the compressor 2, for example, a scroll compressor whose rotation frequency is controlled by an inverter can be used.
 熱源側熱交換器3(室外機熱交換器)は、冷房運転時には放熱器(凝縮器)として機能し、暖房運転時には蒸発器として機能する熱交換器であり、熱源側ユニット100に収容されている。熱源側熱交換器3は、熱源側熱交換器3の内部を流れる冷媒と、熱源側熱交換器用ファン(図示せず)によって送風される外気(例えば、室外空気)との熱交換を行うように構成される。熱源側熱交換器3は、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成できる。 The heat source side heat exchanger 3 (outdoor unit heat exchanger) is a heat exchanger that functions as a radiator (condenser) during cooling operation and functions as an evaporator during heating operation, and is accommodated in the heat source side unit 100. Yes. The heat source side heat exchanger 3 performs heat exchange between the refrigerant flowing inside the heat source side heat exchanger 3 and the outside air (for example, outdoor air) blown by a heat source side heat exchanger fan (not shown). Configured. The heat source side heat exchanger 3 can be constituted by, for example, a cross fin type fin-and-tube heat exchanger constituted by a heat transfer tube and a plurality of fins.
 第1の熱源側冷媒配管10(室外機液ライン)は、熱源側ユニット100に収容されており、一方の末端部が熱源側熱交換器3に連結されている。第1の熱源側冷媒配管10の他方の末端部は、第1の熱源側冷媒配管10の上に設けられた第1の延長冷媒配管接続バルブ9a(液操作弁)で、第1の延長冷媒配管300に連結されている。第1の延長冷媒配管接続バルブ9aは、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。 The first heat source side refrigerant pipe 10 (outdoor unit liquid line) is accommodated in the heat source side unit 100, and one end is connected to the heat source side heat exchanger 3. The other end portion of the first heat source side refrigerant pipe 10 is a first extended refrigerant pipe connection valve 9a (liquid operation valve) provided on the first heat source side refrigerant pipe 10, and the first extended refrigerant. It is connected to the pipe 300. The first extended refrigerant pipe connection valve 9a is composed of, for example, a two-way valve such as a two-way solenoid valve that can be switched between open and closed.
 熱源側減圧装置4は、冷房運転時に熱源側熱交換器3から流入する高圧液冷媒を膨張及び減圧させて、既設配管である第1の延長冷媒配管300に流入させるものである。熱源側減圧装置4は、熱源側ユニット100に収容されており、第1の熱源側冷媒配管10に設けられている。熱源側減圧装置4は、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁(LEV)等の電子膨張弁が用いられ、室外電子膨張弁として構成される。なお、熱源側減圧装置4は、暖房運転時には、第1の延長冷媒配管300から第1の熱源側冷媒配管10に流入する中圧の液冷媒又は二相冷媒を更に膨張及び減圧させて、熱源側熱交換器3に流入させるように構成できる。 The heat source side decompression device 4 expands and decompresses the high-pressure liquid refrigerant flowing from the heat source side heat exchanger 3 during the cooling operation, and flows it into the first extended refrigerant pipe 300 which is an existing pipe. The heat source side decompression device 4 is accommodated in the heat source side unit 100 and is provided in the first heat source side refrigerant pipe 10. For example, an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously can be used as the heat source side pressure reducing device 4 and is configured as an outdoor electronic expansion valve. In the heating operation, the heat source side decompression device 4 further expands and decompresses the medium-pressure liquid refrigerant or the two-phase refrigerant flowing from the first extended refrigerant pipe 300 into the first heat source side refrigerant pipe 10, It can be configured to flow into the side heat exchanger 3.
 第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bは、冷房運転時に第1の延長冷媒配管300から流入する中圧の液冷媒又は二相冷媒を更に膨張及び減圧させて、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bにそれぞれ流入させるものである。第1の負荷側減圧装置5aは、第1の負荷側ユニット200aに収容されており、第2の負荷側減圧装置5bは、第2の負荷側ユニット200bに収容されている。第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bは、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁等の電子膨張弁が用いられ、室内電子膨張弁として構成される。 The first load side decompression device 5a and the second load side decompression device 5b further expand and decompress the medium-pressure liquid refrigerant or two-phase refrigerant flowing from the first extended refrigerant pipe 300 during the cooling operation, It is made to flow in 1 load side heat exchanger 6a and 2nd load side heat exchanger 6b, respectively. The first load-side decompression device 5a is accommodated in the first load-side unit 200a, and the second load-side decompression device 5b is accommodated in the second load-side unit 200b. The first load-side pressure reducing device 5a and the second load-side pressure reducing device 5b are, for example, electronic expansion valves such as linear electronic expansion valves whose opening degree can be adjusted in multiple stages or continuously, and are used as indoor electronic expansion valves. Composed.
 なお、第1の負荷側ユニット200aにおける冷房運転及び暖房運転の停止時においては、第1の負荷側減圧装置5aは閉止されるように調整される。同様に、第2の負荷側ユニット200bにおける冷房運転及び暖房運転の停止時においては、第2の負荷側減圧装置5bは閉止されるように調整される。また、第1の負荷側減圧装置5aは、暖房運転時においては、第1の負荷側熱交換器6aから流入する高圧液冷媒を膨張及び減圧させて、既設配管である第1の延長冷媒配管300に流入させるように構成できる。同様に、第2の負荷側減圧装置5bは、暖房運転時においては、第2の負荷側熱交換器6bから流入する高圧液冷媒を膨張及び減圧させて、既設配管である第1の延長冷媒配管300に流入させるように構成できる。 In addition, when the cooling operation and the heating operation in the first load side unit 200a are stopped, the first load side pressure reducing device 5a is adjusted to be closed. Similarly, when the cooling operation and the heating operation in the second load side unit 200b are stopped, the second load side pressure reducing device 5b is adjusted to be closed. In addition, the first load-side decompression device 5a expands and decompresses the high-pressure liquid refrigerant flowing from the first load-side heat exchanger 6a during the heating operation, and the first extended refrigerant pipe that is an existing pipe. It can be configured to flow into 300. Similarly, during the heating operation, the second load-side decompression device 5b expands and decompresses the high-pressure liquid refrigerant flowing from the second load-side heat exchanger 6b, and is a first extended refrigerant that is an existing pipe. It can be configured to flow into the pipe 300.
 第1の負荷側熱交換器6a及び第2の負荷側熱交換器6b(室外機熱交換器)は、冷房運転時には蒸発器として機能し、暖房運転時には放熱器として機能する熱交換器である。第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bは、例えば、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bの内部を流れる冷媒と、外気(例えば、室内空気)との熱交換を行うように構成される。第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bは、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器として構成できる。 The first load side heat exchanger 6a and the second load side heat exchanger 6b (outdoor unit heat exchanger) are heat exchangers that function as an evaporator during cooling operation and function as a radiator during heating operation. . The first load side heat exchanger 6a and the second load side heat exchanger 6b are, for example, a refrigerant flowing inside the first load side heat exchanger 6a and the second load side heat exchanger 6b, and the outside air It is configured to exchange heat with (for example, room air). The 1st load side heat exchanger 6a and the 2nd load side heat exchanger 6b can be constituted as a fin and tube type heat exchanger of the cross fin type constituted by a heat exchanger tube and a plurality of fins, for example. .
 なお、第1の負荷側熱交換器6aは、第1の負荷側ユニット200aに収容されており、第2の負荷側熱交換器6bは、第2の負荷側ユニット200bに収容されている。また、本実施の形態1の空気調和装置1では、負荷側熱交換器用ファン(図示せず)からの送風によって、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bに外気が供給されるように構成できる。 The first load side heat exchanger 6a is accommodated in the first load side unit 200a, and the second load side heat exchanger 6b is accommodated in the second load side unit 200b. Moreover, in the air conditioning apparatus 1 according to the first embodiment, the first load side heat exchanger 6a and the second load side heat exchanger 6b are blown by air from a fan for load side heat exchanger (not shown). It can be configured to supply outside air.
 冷媒流路切替装置7は、冷房運転時と暖房運転時とを切り替える際に、冷凍サイクルにおける冷媒の流れ方向を切り替えるものであり、熱源側ユニット100に収容されている。冷媒流路切替装置7としては、例えば四方弁が用いられる。 The refrigerant flow switching device 7 switches the refrigerant flow direction in the refrigeration cycle when switching between the cooling operation and the heating operation, and is accommodated in the heat source unit 100. For example, a four-way valve is used as the refrigerant flow switching device 7.
 冷媒流路切替装置7と、熱源側熱交換器3との間には、第5の熱源側冷媒配管18が連結されている。冷媒流路切替装置7とアキュムレータ8の冷媒流入口との間には、第3の熱源側冷媒配管14(アキュムレータ手前配管)が連結されている。冷媒流路切替装置7と圧縮機2の吐出口との間には、第4の熱源側冷媒配管16が連結されている。冷媒流路切替装置7と第2の延長冷媒配管400との間には、第2の熱源側冷媒配管12が連結されている。 A fifth heat source side refrigerant pipe 18 is connected between the refrigerant flow switching device 7 and the heat source side heat exchanger 3. A third heat source side refrigerant pipe 14 (pipe before the accumulator) is connected between the refrigerant flow switching device 7 and the refrigerant inlet of the accumulator 8. A fourth heat source side refrigerant pipe 16 is connected between the refrigerant flow switching device 7 and the discharge port of the compressor 2. A second heat source side refrigerant pipe 12 is connected between the refrigerant flow switching device 7 and the second extended refrigerant pipe 400.
 冷媒流路切替装置7は、冷房運転時において、第2の熱源側冷媒配管12から第3の熱源側冷媒配管14に冷媒が流れ、第4の熱源側冷媒配管16から第5の熱源側冷媒配管18に冷媒が流れるように構成される。また、冷媒流路切替装置7は、暖房運転において、第5の熱源側冷媒配管18から第3の熱源側冷媒配管14に冷媒が流れ、第4の熱源側冷媒配管16から第2の熱源側冷媒配管12に冷媒が流れるように構成される。 During the cooling operation, the refrigerant flow switching device 7 causes the refrigerant to flow from the second heat source side refrigerant pipe 12 to the third heat source side refrigerant pipe 14, and from the fourth heat source side refrigerant pipe 16 to the fifth heat source side refrigerant. The refrigerant is configured to flow through the pipe 18. Further, in the heating operation, the refrigerant flow switching device 7 causes the refrigerant to flow from the fifth heat source side refrigerant pipe 18 to the third heat source side refrigerant pipe 14, and from the fourth heat source side refrigerant pipe 16 to the second heat source side. The refrigerant is configured to flow through the refrigerant pipe 12.
 なお、第2の熱源側冷媒配管12、第3の熱源側冷媒配管14、第4の熱源側冷媒配管16、及び第5の熱源側冷媒配管18は、熱源側ユニット100に収容されている。また、第2の熱源側冷媒配管12は、第2の熱源側冷媒配管12に設けられた第2の延長冷媒配管接続バルブ9b(ガス操作弁)で、第2の延長冷媒配管400に連結されている。第2の延長冷媒配管接続バルブ9bは、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。 The second heat source side refrigerant pipe 12, the third heat source side refrigerant pipe 14, the fourth heat source side refrigerant pipe 16, and the fifth heat source side refrigerant pipe 18 are accommodated in the heat source side unit 100. The second heat source side refrigerant pipe 12 is connected to the second extended refrigerant pipe 400 by a second extended refrigerant pipe connection valve 9b (gas operation valve) provided in the second heat source side refrigerant pipe 12. ing. The second extended refrigerant pipe connection valve 9b is composed of, for example, a two-way valve such as a two-way solenoid valve that can be switched between open and closed.
 アキュムレータ8は、余剰冷媒を貯留する冷媒貯留機能と、運転状態が変化する際に一時的に発生する液冷媒を滞留させることにより、圧縮機2に大量の液冷媒が流入するのを防ぐ気液分離機能とを有するものである。アキュムレータ8は、圧縮機2の吸入管側に配置され、熱源側ユニット100に収容されている。 The accumulator 8 is a gas / liquid that prevents a large amount of liquid refrigerant from flowing into the compressor 2 by retaining a refrigerant storage function that stores excess refrigerant and liquid refrigerant that is temporarily generated when the operating state changes. It has a separation function. The accumulator 8 is disposed on the suction pipe side of the compressor 2 and is accommodated in the heat source side unit 100.
 次に、本実施の形態1に係る空気調和装置1に設けられた熱源側ユニット100のバイパス冷媒回路の構成について説明する。 Next, the configuration of the bypass refrigerant circuit of the heat source side unit 100 provided in the air-conditioning apparatus 1 according to Embodiment 1 will be described.
 熱源側ユニット100は、熱源側減圧装置4と第1の延長冷媒配管接続バルブ9aとの間の位置で、第1の熱源側冷媒配管10から分岐されたバイパス冷媒配管20(高低圧バイパス配管)を備えている。バイパス冷媒配管20の末端部は、冷媒流路切替装置7とアキュムレータ8との間の位置で、第3の熱源側冷媒配管14に連結される。すなわち、バイパス冷媒配管20は、熱源側減圧装置4の冷媒流出口側の冷媒配管である第1の熱源側冷媒配管10と、アキュムレータ8の冷媒流入口側に連結された冷媒配管である第3の熱源側冷媒配管14との間をバイパスする冷媒配管である。 The heat source side unit 100 is a bypass refrigerant pipe 20 (high / low pressure bypass pipe) branched from the first heat source side refrigerant pipe 10 at a position between the heat source side pressure reducing device 4 and the first extended refrigerant pipe connection valve 9a. It has. The end of the bypass refrigerant pipe 20 is connected to the third heat source side refrigerant pipe 14 at a position between the refrigerant flow switching device 7 and the accumulator 8. That is, the bypass refrigerant pipe 20 is a first heat source side refrigerant pipe 10 that is a refrigerant pipe on the refrigerant outlet side of the heat source side decompression device 4 and a refrigerant pipe that is connected to the refrigerant inlet side of the accumulator 8. This is a refrigerant pipe that bypasses the heat source side refrigerant pipe 14.
 バイパス冷媒配管20には、電力供給又は電力停止によって、流路を開放又は閉止するバルブである電磁弁25が設けられている。電磁弁25は、第1の熱源側冷媒配管10に流入した冷媒を、アキュムレータ8に流入させるものである。第1の熱源側冷媒配管10に流入する高圧又は中圧の冷媒の圧力を低圧まで減圧可能な容量係数(CV値)を有している。電磁弁25は、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。 The bypass refrigerant pipe 20 is provided with an electromagnetic valve 25 that is a valve that opens or closes the flow path when power is supplied or stopped. The solenoid valve 25 causes the refrigerant that has flowed into the first heat source side refrigerant pipe 10 to flow into the accumulator 8. It has a capacity coefficient (CV value) that can reduce the pressure of the high-pressure or medium-pressure refrigerant flowing into the first heat source side refrigerant pipe 10 to a low pressure. The electromagnetic valve 25 is configured by a two-way valve such as a two-way electromagnetic valve capable of switching between opening and closing, for example.
 次に、本実施の形態1に係る空気調和装置1に配置されるセンサについて説明する。 Next, the sensor arranged in the air conditioner 1 according to Embodiment 1 will be described.
 本実施の形態1に係る空気調和装置1は、第1の温度センサ30と、第2の温度センサ35aと、第1の圧力センサ40と、第2の圧力センサ45とを備える。 The air conditioner 1 according to the first embodiment includes a first temperature sensor 30, a second temperature sensor 35a, a first pressure sensor 40, and a second pressure sensor 45.
 第1の温度センサ30は、熱源側送風ファン(図示せず)によって吸い込まれ、熱源側熱交換器3に送風される外気(室外空気)の温度を検知する外気温度センサ(室外温度センサ)である。第1の温度センサ30は、例えば熱源側送風ファン(図示せず)の上流側に配置される。第2の温度センサ35aは、例えば、第1の負荷側ユニット200aに収容された負荷側送風ファン(図示せず)によって吸い込まれ、第1の負荷側熱交換器6aに送風される室内空気の温度を検知する外気温度センサ(室内機吸い込み温度センサ)にできる。第2の温度センサ35aが外気温度センサとして構成される場合、第2の温度センサ35aは、例えば負荷側送風ファン(利用側送風機)の上流側に配置される。第3の温度センサ35bは、例えば、第2の負荷側ユニット200bに収容された負荷側送風ファン(図示せず)によって吸い込まれ、第2の負荷側熱交換器6bに送風される室内空気の温度を検知する外気温度センサ(室内機吸い込み温度センサ)にできる。第3の温度センサ35bが外気温度センサとして構成される場合、第3の温度センサ35bは、例えば負荷側送風ファン(利用側送風機)の上流側に配置される。 The first temperature sensor 30 is an outside air temperature sensor (outdoor temperature sensor) that detects the temperature of the outside air (outdoor air) that is sucked by a heat source side fan (not shown) and blown to the heat source side heat exchanger 3. is there. The 1st temperature sensor 30 is arrange | positioned, for example in the upstream of the heat-source side ventilation fan (not shown). For example, the second temperature sensor 35a is sucked in by a load-side blower fan (not shown) housed in the first load-side unit 200a and is sent to the first load-side heat exchanger 6a. It can be an outside air temperature sensor (indoor unit intake temperature sensor) that detects the temperature. When the 2nd temperature sensor 35a is comprised as an outside temperature sensor, the 2nd temperature sensor 35a is arrange | positioned at the upstream of a load side ventilation fan (use side air blower), for example. For example, the third temperature sensor 35b is sucked in by a load-side fan (not shown) housed in the second load-side unit 200b and is sent to the second load-side heat exchanger 6b. It can be an outside air temperature sensor (indoor unit intake temperature sensor) that detects the temperature. When the 3rd temperature sensor 35b is comprised as an outside temperature sensor, the 3rd temperature sensor 35b is arrange | positioned, for example in the upstream of a load side ventilation fan (use side air blower).
 第1の圧力センサ40は、冷房運転時において、熱源側減圧装置4の冷媒流出口側の第1の熱源側冷媒配管10を流れる冷媒の圧力Pを検知する圧力センサ(中間圧力センサ)である。すなわち、第1の圧力センサ40は、第1の熱源側冷媒配管10の、熱源側減圧装置4と第1の延長冷媒配管接続バルブ9aとの間の位置に配置されている。第2の圧力センサ45は、冷房運転時においては、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bの出口から流出し、合流した冷媒の低圧圧力を検知する圧力センサ(低圧圧力センサ)であり、暖房運転時においては、熱源側熱交換器3の出口から流出する冷媒の圧力を検知するものである。第2の圧力センサ45は、第3の熱源側冷媒配管14に配置されている。 The first pressure sensor 40 is a pressure sensor (intermediate pressure sensor) that detects the pressure P of the refrigerant flowing through the first heat source side refrigerant pipe 10 on the refrigerant outlet side of the heat source side decompression device 4 during the cooling operation. . That is, the first pressure sensor 40 is disposed at a position of the first heat source side refrigerant pipe 10 between the heat source side pressure reducing device 4 and the first extended refrigerant pipe connection valve 9a. During the cooling operation, the second pressure sensor 45 flows out from the outlets of the first load side heat exchanger 6a and the second load side heat exchanger 6b and detects the low pressure of the merged refrigerant. It is a (low pressure sensor) and detects the pressure of the refrigerant flowing out from the outlet of the heat source side heat exchanger 3 during heating operation. The second pressure sensor 45 is disposed in the third heat source side refrigerant pipe 14.
 第1の温度センサ30、第2の温度センサ35a、及び、第3の温度センサ35bの材料としては、半導体(例えば、サーミスタ)又は金属(例えば、測温抵抗体)等が用いられる。また、第1の圧力センサ40及び第2の圧力センサ45としては、水晶圧電式圧力センサ、半導体センサ、又は圧力トランスデューサ等が用いられる。なお、第1の温度センサ30、第2の温度センサ35a、及び、第3の温度センサ35bは、同一の材料で構成してもよいし、異なる材料で構成してもよい。また、第1の圧力センサ40及び第2の圧力センサ45についても、同種類のもので構成してもよいし、異なる種類のもので構成してもよい。 As a material of the first temperature sensor 30, the second temperature sensor 35a, and the third temperature sensor 35b, a semiconductor (for example, a thermistor) or a metal (for example, a resistance temperature detector) is used. Further, as the first pressure sensor 40 and the second pressure sensor 45, a crystal piezoelectric pressure sensor, a semiconductor sensor, a pressure transducer, or the like is used. In addition, the 1st temperature sensor 30, the 2nd temperature sensor 35a, and the 3rd temperature sensor 35b may be comprised with the same material, and may be comprised with a different material. Also, the first pressure sensor 40 and the second pressure sensor 45 may be made of the same type or different types.
 次に、本実施の形態1に係る空気調和装置1の全体の制御を行う制御装置500(運転制御装置)について説明する。 Next, a control device 500 (operation control device) that performs overall control of the air-conditioning apparatus 1 according to Embodiment 1 will be described.
 本実施の形態1に係る制御装置500は、熱源側ユニット100の運転状態を制御する第1の制御部50(室外機側制御装置)と、第1の負荷側ユニット200aの運転状態を制御する第2の制御部55a(室内機側制御装置)と、第2の負荷側ユニット200bの運転状態を制御する第3の制御部55b(室内機側制御装置)とを備える。 The control device 500 according to the first embodiment controls the operation state of the first control unit 50 (outdoor unit side control device) that controls the operation state of the heat source side unit 100 and the first load side unit 200a. A second control unit 55a (indoor unit side control device) and a third control unit 55b (indoor unit side control device) that controls the operating state of the second load side unit 200b are provided.
 第1の制御部50、第2の制御部55a、及び第3の制御部55bは、CPU、メモリ(例えば、ROM、RAM等)、I/Oポート等を備えたマイクロコンピュータを有している。なお、制御装置500は、第1の制御部50と、第2の制御部55a及び第3の制御部55bとの間を通信線58で接続して、制御信号の送受信等、相互に通信を行うことができるように構成される。なお、第1の制御部50と、第2の制御部55a及び第3の制御部55bとの間の通信は無線で行うように構成してもよい。 The first control unit 50, the second control unit 55a, and the third control unit 55b include a microcomputer that includes a CPU, a memory (eg, ROM, RAM, etc.), an I / O port, and the like. . The control device 500 connects the first control unit 50, the second control unit 55a, and the third control unit 55b with a communication line 58 to communicate with each other such as transmission and reception of control signals. Configured to be able to do. Note that communication between the first control unit 50 and the second control unit 55a and the third control unit 55b may be performed wirelessly.
 第1の制御部50は、例えば、熱源側ユニット100の運転の開始及び停止、熱源側減圧装置4の開度の調整、電磁弁25の開放又は閉止、圧縮機2の運転周波数の調整等の運転状態を制御できるように構成される。また、第1の制御部50は、制御目標値等の各種データを記憶できる記憶部(図示せず)を有するように構成される。また、第1の制御部50は、第1の温度センサ30で検知した温度情報の電気信号、並びに第1の圧力センサ40及び第2の圧力センサ45で検知した圧力情報の電気信号を受信するように構成される。 For example, the first control unit 50 starts and stops the operation of the heat source side unit 100, adjusts the opening degree of the heat source side decompression device 4, opens or closes the electromagnetic valve 25, adjusts the operation frequency of the compressor 2, and the like. It is configured to be able to control the operating state. The first control unit 50 is configured to have a storage unit (not shown) that can store various data such as a control target value. The first control unit 50 also receives an electrical signal of temperature information detected by the first temperature sensor 30 and an electrical signal of pressure information detected by the first pressure sensor 40 and the second pressure sensor 45. Configured as follows.
 第2の制御部55aは、第1の負荷側ユニット200aの運転の開始及び停止、第1の負荷側減圧装置5aの開度の調整等の運転状態を制御するように構成される。第2の制御部55aは、第1の負荷側ユニット200aの負荷容量Q1(運転容量)を所定の間隔で(例えば、1分おきに)計測するように構成される。また、第2の制御部55aは、第2の温度センサ35aで検知した温度情報の電気信号を受信するように構成される。 The second control unit 55a is configured to control operation states such as start and stop of the operation of the first load-side unit 200a and adjustment of the opening degree of the first load-side decompression device 5a. The second control unit 55a is configured to measure the load capacity Q1 (operating capacity) of the first load side unit 200a at a predetermined interval (for example, every minute). The second control unit 55a is configured to receive an electrical signal of temperature information detected by the second temperature sensor 35a.
 第3の制御部55bは、第2の負荷側ユニット200bの運転の開始及び停止、第2の負荷側減圧装置5bの開度の調整等の運転状態を制御するように構成される。第3の制御部55bは、第2の負荷側ユニット200bの負荷容量Q2を所定の間隔で(例えば、1分おきに)計測するように構成され、また、第2の制御部55aは、第3の温度センサ35bで検知した温度情報の電気信号を受信するように構成される。 The third control unit 55b is configured to control the operation state such as the start and stop of the operation of the second load side unit 200b and the adjustment of the opening degree of the second load side decompression device 5b. The third control unit 55b is configured to measure the load capacity Q2 of the second load-side unit 200b at a predetermined interval (for example, every 1 minute), and the second control unit 55a 3 is configured to receive an electrical signal of temperature information detected by the temperature sensor 35b.
 なお、第2の制御部55aにおいて計測された第1の負荷側ユニット200aの負荷容量Q1及び第3の制御部55bにおいて計測された第2の負荷側ユニット200bの負荷容量Q2は、通信線58を介して第1の制御部50に送信される。第1の制御部50では、第1の負荷側ユニット200a及び第2の負荷側ユニット200bにおける合計負荷容量Qが以下の式(1)で算出され、第1の制御部50の記憶部に記憶される。
   Q=Q1+Q2   …(1)
The load capacity Q1 of the first load side unit 200a measured by the second control unit 55a and the load capacity Q2 of the second load side unit 200b measured by the third control unit 55b are the communication line 58. Is transmitted to the first control unit 50 via. In the first control unit 50, the total load capacity Q in the first load side unit 200 a and the second load side unit 200 b is calculated by the following formula (1) and stored in the storage unit of the first control unit 50. Is done.
Q = Q1 + Q2 (1)
 次に、本実施の形態1に係る空気調和装置1の通常の冷房運転時の動作について説明する。 Next, the operation during normal cooling operation of the air-conditioning apparatus 1 according to Embodiment 1 will be described.
 圧縮機2から吐出された高温高圧のガス冷媒は、熱源側熱交換器3へ流入する。熱源側熱交換器3に流入した高温高圧のガス冷媒は、室外空気等の低温の媒体に熱を放出することによって熱交換され、高圧の液冷媒となる。高圧の液冷媒は、第1の熱源側冷媒配管10に設けられた熱源側減圧装置4で膨張及び減圧されて、中圧の液冷媒又は二相冷媒となり、第1の延長冷媒配管300を経由して熱源側ユニット100に流入する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 3. The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 3 is heat-exchanged by releasing heat to a low-temperature medium such as outdoor air, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is expanded and depressurized by the heat source-side decompression device 4 provided in the first heat source-side refrigerant pipe 10 to become a medium-pressure liquid refrigerant or a two-phase refrigerant, and passes through the first extended refrigerant pipe 300. Then, it flows into the heat source side unit 100.
 熱源側ユニット100に流入した中圧の液冷媒又は二相冷媒は、第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bに流入する。第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bに流入した中圧の液冷媒又は二相冷媒は、更に膨張及び減圧されて低温低圧の二相冷媒となる。低温低圧の二相冷媒は、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bに流入し、室内空気等の高温の媒体から熱を吸収し、蒸発して乾き度の高い二相冷媒又は低温低圧のガス冷媒となる。第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bから流出した乾き度の高い二相冷媒又は低温低圧のガス冷媒は、第2の延長冷媒配管400、第2の熱源側冷媒配管12、冷媒流路切替装置7、及び第3の熱源側冷媒配管14を経由して、アキュムレータ8に流入する。乾き度の高い二相冷媒又は低温低圧のガス冷媒は、アキュムレータ8で液相成分が除去された後に、圧縮機2に吸入される。圧縮機2に吸入された冷媒は圧縮されて、高温高圧のガス冷媒となり、圧縮機2から吐出される。圧縮機2から吐出された高温高圧のガス冷媒は、第4の熱源側冷媒配管16、冷媒流路切替装置7、第5の熱源側冷媒配管18を経由して熱源側熱交換器3へ流入する。空気調和装置1の冷房運転では以上のサイクルが繰り返される。 The medium-pressure liquid refrigerant or two-phase refrigerant that has flowed into the heat source side unit 100 flows into the first load-side decompression device 5a and the second load-side decompression device 5b. The medium-pressure liquid refrigerant or two-phase refrigerant flowing into the first load-side decompression device 5a and the second load-side decompression device 5b is further expanded and decompressed to become a low-temperature and low-pressure two-phase refrigerant. The low-temperature and low-pressure two-phase refrigerant flows into the first load-side heat exchanger 6a and the second load-side heat exchanger 6b, absorbs heat from a high-temperature medium such as room air, and evaporates to dryness. It becomes a high two-phase refrigerant or a low-temperature and low-pressure gas refrigerant. The two-phase refrigerant having a high dryness or the low-temperature and low-pressure gas refrigerant that has flowed out of the first load-side heat exchanger 6a and the second load-side heat exchanger 6b is supplied to the second extended refrigerant pipe 400, the second heat source side. The refrigerant flows into the accumulator 8 via the refrigerant pipe 12, the refrigerant flow switching device 7, and the third heat source side refrigerant pipe 14. The two-phase refrigerant having a high degree of dryness or the low-temperature and low-pressure gas refrigerant is sucked into the compressor 2 after the liquid phase component is removed by the accumulator 8. The refrigerant sucked into the compressor 2 is compressed to become a high-temperature and high-pressure gas refrigerant and is discharged from the compressor 2. The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 3 via the fourth heat source side refrigerant pipe 16, the refrigerant flow switching device 7, and the fifth heat source side refrigerant pipe 18. To do. In the cooling operation of the air conditioner 1, the above cycle is repeated.
 なお、暖房運転時においては、冷媒流路切替装置7の内部の流路は、図1に示すように実線の流路から点線の流路に切り替えられる。これによって、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bに高温高圧のガス冷媒が流入し、室内空気等の低温の媒体に熱を放出し、高圧の液冷媒となる。これによって、室内空気は冷媒の放熱作用によって加熱されることとなる。 In the heating operation, the flow path inside the refrigerant flow switching device 7 is switched from the solid flow path to the dotted flow path as shown in FIG. As a result, the high-temperature and high-pressure gas refrigerant flows into the first load-side heat exchanger 6a and the second load-side heat exchanger 6b, releases heat to a low-temperature medium such as indoor air, and the high-pressure liquid refrigerant and Become. As a result, the indoor air is heated by the heat dissipation action of the refrigerant.
 次に、本実施の形態1に係る空気調和装置1の制御装置500における制御処理を説明する。 Next, the control process in the control device 500 of the air-conditioning apparatus 1 according to Embodiment 1 will be described.
 本実施の形態1に係る空気調和装置1の制御装置500は、冷房運転時に、熱源側熱交換器3に供給される室外空気の外気温度が基準外気温度を超え、かつ、1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)の合計負荷容量Qが経時的に低減した場合において、合計負荷容量Qの変動値に応じて熱源側減圧装置4の開度を調整するように構成される。 The control device 500 of the air-conditioning apparatus 1 according to Embodiment 1 is configured such that the outdoor air temperature supplied to the heat source side heat exchanger 3 exceeds the reference outdoor air temperature during cooling operation, and one or more load sides When the total load capacity Q of the units (the first load side unit 200a and the second load side unit 200b) decreases with time, the opening degree of the heat source side pressure reducing device 4 according to the fluctuation value of the total load capacity Q Configured to adjust.
 図2は、本実施の形態1に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。図2の制御処理は、冷房運転時に常時行うようにしてもよいし、例えば、外気温度Tの変動を検知した際に随時行うようにしてもよい。 FIG. 2 is a flowchart showing an example of control processing during cooling operation in the control device 500 of the air-conditioning apparatus 1 according to Embodiment 1. The control process of FIG. 2 may be performed all the time during the cooling operation, or may be performed at any time when a change in the outside air temperature T is detected, for example.
 ステップS11においては、第1の温度センサ30で検知した外気温度Tが、基準外気温度T0より高いか否かが制御装置500において判定される。基準外気温度T0は、高外気温度環境と通常の外気温度環境との間の境界値として設定され、例えば、52℃に設定される。ここで、通常の温度環境とは、合計負荷容量Qの変動によって既設配管を流れる冷媒の圧力が耐圧基準値を超えない外気温度環境をいう。外気温度Tが基準外気温度T0以下である場合、制御処理は終了し、通常の冷房運転が継続される。 In step S11, the control device 500 determines whether or not the outside air temperature T detected by the first temperature sensor 30 is higher than the reference outside air temperature T0. The reference outside air temperature T0 is set as a boundary value between the high outside air temperature environment and the normal outside air temperature environment, and is set to 52 ° C., for example. Here, the normal temperature environment refers to an outside air temperature environment in which the pressure of the refrigerant flowing through the existing piping does not exceed the pressure resistance reference value due to the fluctuation of the total load capacity Q. When the outside air temperature T is equal to or lower than the reference outside air temperature T0, the control process ends and the normal cooling operation is continued.
 外気温度Tが基準外気温度T0を超える場合、ステップS12において、制御装置500は、第1の負荷側ユニット200aにおける現在の負荷容量Q1now及び第2の負荷側ユニット200bにおける現在の負荷容量Q2nowを計測し、現在の合計負荷容量Qnowを以下の式(2)で演算する。
   Qnow=Q1now+Q2now  …(2)
When the outside air temperature T exceeds the reference outside air temperature T0, in step S12, the control device 500 causes the current load capacity Q1 now in the first load side unit 200a and the current load capacity Q2 now in the second load side unit 200b. And the current total load capacity Qnow is calculated by the following equation (2).
Q now = Q1 now + Q2 now (2)
 次いで、ステップS13において、現在の合計負荷容量Qnowが、制御装置500の記憶部に記憶されている直近の合計負荷容量Qlast未満であるか否かが制御装置500において判定される。現在の合計負荷容量Qnowが直近の合計負荷容量Qlast以上である場合、制御処理は終了し、通常の冷房運転が継続される。 Next, in step S <b> 13, the control device 500 determines whether or not the current total load capacity Q now is less than the latest total load capacity Q last stored in the storage unit of the control apparatus 500. When the current total load capacity Q now is equal to or greater than the latest total load capacity Q last , the control process is terminated and normal cooling operation is continued.
 現在の合計負荷容量Qnowが、直近の合計負荷容量Qlast未満である場合、ステップS14において、熱源側減圧装置4の開度調整値ΔDを算出する。開度調整値ΔDは補正係数Kを用いて以下の式(3)から演算される。
   ΔD=K×(Qlast-Qnow)  …(3)
When the current total load capacity Q now is less than the latest total load capacity Q last , the opening degree adjustment value ΔD of the heat source side decompression device 4 is calculated in step S14. The opening adjustment value ΔD is calculated from the following equation (3) using the correction coefficient K.
ΔD = K × (Q last −Q now ) (3)
 ここで、補正係数Kは、例えば、合計負荷容量Qの変動値、第1の圧力センサ40で検知される圧力Pの変動値、及び圧力Pの変動を相殺するための開度調整値ΔDの実測値の相関関係から演算され、決定される定数である。 Here, the correction coefficient K is, for example, a fluctuation value of the total load capacity Q, a fluctuation value of the pressure P detected by the first pressure sensor 40, and an opening adjustment value ΔD for canceling the fluctuation of the pressure P. It is a constant that is calculated and determined from the correlation of measured values.
 次いで、ステップS15において、制御装置500は、熱源側減圧装置4の開度Dを開度調整値ΔDだけ開放するように制御し、制御処理は終了する。 Next, in step S15, the control device 500 controls the opening D of the heat source side decompression device 4 to be opened by the opening adjustment value ΔD, and the control process ends.
 次に、本実施の形態1による本発明の効果を説明する。 Next, the effect of the present invention according to the first embodiment will be described.
 上述したとおり、本実施の形態1に係る空気調和装置1は、圧縮機2、熱源側熱交換器3、減圧装置(熱源側減圧装置4)、及び負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)を冷媒配管(例えば、第1の熱源側冷媒配管10、第1の延長冷媒配管300等)を介して接続して冷媒を循環させ、少なくとも、熱源側熱交換器3が放熱器として機能し、負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)が蒸発器として機能する冷房運転を行う冷凍サイクルと、圧縮機2、熱源側熱交換器3、及び減圧装置(熱源側減圧装置4)を収容する熱源側ユニット100と、負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)を収容し、既設の冷媒配管(第1の延長冷媒配管300、第2の延長冷媒配管400)を介して熱源側ユニット100と連結される1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)と、冷凍サイクルを制御する制御装置500とを備え、制御装置500は、冷房運転時に、熱源側熱交換器3に供給される室外空気の外気温度が基準外気温度を超え、かつ、1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)の合計負荷容量が経時的に低減した場合において、合計負荷容量の変動値に応じて減圧装置(熱源側減圧装置4)の開度を調整するものである。 As described above, the air-conditioning apparatus 1 according to Embodiment 1 includes the compressor 2, the heat source side heat exchanger 3, the pressure reducing device (heat source side pressure reducing device 4), and the load side heat exchanger (first load side). The heat exchanger 6a and the second load side heat exchanger 6b) are connected via a refrigerant pipe (for example, the first heat source side refrigerant pipe 10, the first extended refrigerant pipe 300, etc.) to circulate the refrigerant, At least cooling operation in which the heat source side heat exchanger 3 functions as a radiator and the load side heat exchanger (the first load side heat exchanger 6a and the second load side heat exchanger 6b) functions as an evaporator. The refrigeration cycle to be performed, the compressor 2, the heat source side heat exchanger 3, the heat source side unit 100 housing the pressure reducing device (heat source side pressure reducing device 4), and the load side heat exchanger (first load side heat exchanger 6a). , The second load-side heat exchanger 6b), and the existing refrigerant pipe (the first extended refrigerant distribution). 300, one or more load side units (first load side unit 200a, second load side unit 200b) connected to the heat source side unit 100 via the second extended refrigerant pipe 400) and the refrigeration cycle are controlled. The control device 500 includes a control device 500 for controlling the outdoor air temperature of the outdoor air supplied to the heat source side heat exchanger 3 during the cooling operation to exceed a reference outdoor air temperature, and one or more load side units (first When the total load capacity of the load side unit 200a and the second load side unit 200b) decreases with time, the opening degree of the decompression device (heat source side decompression device 4) is adjusted according to the fluctuation value of the total load capacity To do.
 また、本実施の形態1に係る運転制御装置(制御装置500)は、熱源側ユニット100に収容される圧縮機2、熱源側熱交換器3、及び減圧装置(熱源側減圧装置4)と、既設の冷媒配管(第1の延長冷媒配管300、第2の延長冷媒配管400)を介して熱源側ユニット100と連結される1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)に収容される負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)とを冷媒配管(例えば、第1の熱源側冷媒配管10、第1の延長冷媒配管300等)を介して接続して冷媒を循環させ、少なくとも、熱源側熱交換器3が放熱器として機能し、負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)が蒸発器として機能する冷房運転を行う冷凍サイクルを備える空気調和装置1を制御し、冷房運転時に、熱源側熱交換器3に供給される室外空気の外気温度が基準外気温度を超え、かつ、1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)の合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて減圧装置(熱源側減圧装置4)の開度を調整するものである。 The operation control device (control device 500) according to the first embodiment includes a compressor 2, a heat source side heat exchanger 3, and a pressure reducing device (heat source side pressure reducing device 4) housed in the heat source side unit 100. One or more load-side units (first load-side unit 200a, second load) connected to the heat-source-side unit 100 via existing refrigerant pipes (first extended refrigerant pipe 300, second extended refrigerant pipe 400) The load side heat exchanger (first load side heat exchanger 6a, second load side heat exchanger 6b) accommodated in the load side unit 200b) is connected to a refrigerant pipe (for example, the first heat source side refrigerant pipe 10). The first extended refrigerant pipe 300 or the like) to circulate the refrigerant, at least the heat source side heat exchanger 3 functions as a radiator, and the load side heat exchanger (first load side heat exchanger). 6a, the second load side heat exchanger 6b) And controlling the air conditioner 1 having a refrigeration cycle that performs a cooling operation that functions as the outside air temperature of the outdoor air supplied to the heat source side heat exchanger 3 during the cooling operation exceeds the reference outside air temperature, and one or more When the total load capacity of the load side units (the first load side unit 200a and the second load side unit 200b) is reduced with time, the pressure reducing device (the heat source side pressure reducing device) according to the fluctuation value of the total load capacity. The opening degree of 4) is adjusted.
 従来より、圧縮機、四方弁、室外熱交換器、室外機側絞り装置、及びアキュムレータを含む室外機と、室内側絞り装置、室内熱交換器を含む室内機とを、ガス配管及び液配管で接続して構成した冷凍空調装置がある。また、従来の冷凍空調装置には、冷凍空調装置の更新の際に、室外機及び室内機のみを更新し、ガス配管及び液配管については既設配管を流用し、既設配管(ガス配管及び液配管)を洗浄して再利用する機種(既設配管流用機種)がある。 Conventionally, an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, an outdoor unit side throttle device, and an accumulator, and an indoor unit including an indoor side throttle unit and an indoor heat exchanger are connected by gas piping and liquid piping. There is a refrigeration air conditioner that is connected and configured. In addition, in the conventional refrigeration air conditioner, when the refrigeration air conditioner is updated, only the outdoor unit and the indoor unit are updated, and the existing piping (gas piping and liquid piping) is used for the gas piping and liquid piping. ) Is cleaned and reused (existing piping diversion model).
 更新前の冷凍空調装置においては、ガス配管及び液配管は。R22又はR407C等の設計圧力が低い冷媒の冷媒特性に合わせて耐圧設計されている場合がある。また、更新後の冷凍空調装置においては、R22又はR407Cと比較して設計圧力が高いR410A等の冷媒が用いられる場合がある。したがって、既設配管を流用する冷凍空調装置は、室外機及び室内機で、既設配管に流入する冷媒の圧力がガス配管及び液配管の耐圧基準値を超えないように制御可能な構成を有している。 In the refrigeration air conditioner before renewal, gas and liquid piping are not used. The pressure resistance may be designed in accordance with the refrigerant characteristics of a refrigerant having a low design pressure such as R22 or R407C. In the refrigerating and air-conditioning apparatus after the update, a refrigerant such as R410A having a higher design pressure than R22 or R407C may be used. Therefore, the refrigeration air conditioner that diverts existing piping has a configuration that can be controlled so that the pressure of the refrigerant flowing into the existing piping does not exceed the pressure resistance reference value of the gas piping and liquid piping in the outdoor unit and indoor unit. Yes.
 例えば、既設配管を流用する冷凍空調装置としては、室外機液ラインに圧力センサを取り付け、既設配管に流入する冷媒の圧力(中間圧力)を検知するものがある。圧力センサを用いた冷凍空調装置では、圧縮機の周波数と、室外機液ラインに取り付けられた室外機側絞り装置の開度とを調整することで、圧力センサで検知した冷媒圧力が、目標値(目標中間圧力)になるように制御している。 For example, as a refrigerating and air-conditioning apparatus that diverts existing piping, there is one that attaches a pressure sensor to an outdoor unit liquid line and detects the pressure (intermediate pressure) of refrigerant flowing into the existing piping. In a refrigeration air conditioner using a pressure sensor, the refrigerant pressure detected by the pressure sensor is adjusted to the target value by adjusting the frequency of the compressor and the opening degree of the outdoor unit side throttle device attached to the outdoor unit liquid line. (Target intermediate pressure) is controlled.
 近年、地球温暖化の進行又は都市部のヒートアイランド現象により、冷凍空調装置の室外機が設置される環境温度が上昇する傾向にある。また、室外機の集中設置により吹き出し口及び吸い込み口が遮られ、室外機からの放熱が妨害されるショートサーキットにより、室外機の吸込み空気温度が上昇する場合がある。したがって、冷凍空調装置の室外機においては、室外機で利用可能な外気(室外空気)の温度の広範囲化(例えば、外気温度の許容上限値の上昇)が可能な構成が要求される。 Recently, due to the progress of global warming or the urban heat island phenomenon, the environmental temperature where the outdoor unit of the refrigeration air conditioner is installed tends to increase. Further, the intake air temperature of the outdoor unit may rise due to a short circuit in which the outlet and the suction port are blocked due to the concentrated installation of the outdoor unit and the heat radiation from the outdoor unit is blocked. Therefore, the outdoor unit of the refrigeration air conditioner is required to have a configuration capable of widening the temperature of the outside air (outdoor air) that can be used by the outdoor unit (for example, increasing the allowable upper limit value of the outside air temperature).
 しかしながら、高外気温度環境下の冷房運転時には、高圧圧力及び既設配管に流入する冷媒の圧力が上昇するため、冷凍空調装置の圧力異常の発生頻度が上昇する。一方、冷房運転中に室内機の負荷容量が減少した場合は、圧縮機周波数の減速のタイミングが、室内機の負荷容量の減少のタイミングよりも遅れるため、既設配管に流入する冷媒の圧力が上昇する。したがって、高外気温度環境下の冷房運転時に、室内機の負荷容量が減少した場合は、既設配管に流入する冷媒の圧力が耐圧基準値を超える可能性が高くなるという問題点があった。 However, during the cooling operation in a high outside air temperature environment, the high pressure and the pressure of the refrigerant flowing into the existing pipes increase, so the frequency of occurrence of pressure abnormalities in the refrigeration air conditioner increases. On the other hand, when the load capacity of the indoor unit decreases during the cooling operation, the pressure of the refrigerant flowing into the existing pipe rises because the timing of deceleration of the compressor frequency is delayed from the timing of decrease of the load capacity of the indoor unit To do. Therefore, when the load capacity of the indoor unit is reduced during the cooling operation under a high outside air temperature environment, there is a problem that the possibility that the pressure of the refrigerant flowing into the existing pipe exceeds the pressure resistance reference value is increased.
 例えば、室内機の接続台数が5台であり、5台とも負荷容量が同一の室内機を有する冷凍空調装置を考える。ここでは、5台全ての室内機を運転している状態の合計負荷容量を100%とする。高外気温度環境下の冷房運転時に、5台全ての室内機を運転している状態から4台の室内機が停止した場合、室内機の合計負荷容量は20%となる。また、5台全ての室内機が運転している状態から4台の室内機が停止した場合、停止した4台の室内機の電子膨張弁は閉止状態となる。よって、5台全ての室内機を運転している状態での冷媒循環量を100%とすると、4台の室内機が停止した場合は、既設配管に流入する冷媒の圧力を維持するため、冷媒循環量が20%となるように圧縮機周波数を減速させる必要がある。しかしながら、圧縮機周波数の減速のタイミングが、室内機の負荷容量の減少のタイミングよりも遅れるため、既設配管に流入する冷媒の圧力が一時的に上昇し、既設配管の耐圧基準値を超え、圧力異常が生じることとなる。 For example, consider a refrigeration / air-conditioning apparatus having five indoor units connected and having five indoor units with the same load capacity. Here, the total load capacity in a state where all five indoor units are in operation is 100%. When four indoor units are stopped from a state in which all five indoor units are operated during a cooling operation under a high outside air temperature environment, the total load capacity of the indoor units is 20%. Moreover, when four indoor units stop from the state in which all five indoor units are in operation, the electronic expansion valves of the four stopped indoor units are closed. Therefore, assuming that the refrigerant circulation amount in a state in which all five indoor units are in operation is 100%, the refrigerant pressure that flows into the existing piping is maintained when the four indoor units are stopped. It is necessary to decelerate the compressor frequency so that the circulation amount becomes 20%. However, since the timing of deceleration of the compressor frequency is later than the timing of reduction of the load capacity of the indoor unit, the pressure of the refrigerant flowing into the existing piping temporarily rises, exceeds the pressure resistance reference value of the existing piping, Abnormality will occur.
 これに対し、本実施の形態1の構成によれば、負荷容量の減少を検知したタイミングで、熱源側減圧装置4の開度を制御できる。すなわち、本実施の形態1の構成によれば、1以上の負荷側ユニットの合計負荷容量の低減に応じて、熱源側減圧装置4の開度を調整できる。よって、本実施の形態1の構成によれば、高外気温度環境下の冷房運転時に、負荷容量の減少により既設配管を流れる冷媒の圧力が上昇するのを抑制でき、既設配管を流れる冷媒の圧力が耐圧基準値P0(例えば、29kg/cm)以下となるように制御できる。したがって、本実施の形態1の構成によれば、圧力異常により空気調和装置1が異常停止する頻度を低減可能な、信頼性の高い空気調和装置1及び制御装置500(運転制御装置)を提供することができる。 On the other hand, according to the structure of this Embodiment 1, the opening degree of the heat-source side decompression device 4 can be controlled at the timing which detected the reduction | decrease of load capacity. That is, according to the configuration of the first embodiment, the opening degree of the heat source side decompression device 4 can be adjusted according to the reduction of the total load capacity of one or more load side units. Therefore, according to the configuration of the first embodiment, it is possible to suppress an increase in the pressure of the refrigerant flowing through the existing pipe due to the reduction of the load capacity during the cooling operation in a high outside air temperature environment, and the pressure of the refrigerant flowing through the existing pipe Can be controlled to be equal to or lower than the withstand voltage reference value P0 (for example, 29 kg / cm 2 ). Therefore, according to the configuration of the first embodiment, it is possible to provide a highly reliable air conditioner 1 and control device 500 (operation control device) that can reduce the frequency with which the air conditioner 1 abnormally stops due to pressure abnormality. be able to.
実施の形態2.
 本発明の実施の形態2では、上述の実施の形態1に係る制御装置500の電磁弁25の制御処理の一例を示す。図3は、本実施の形態2に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。
Embodiment 2. FIG.
In the second embodiment of the present invention, an example of the control process of the electromagnetic valve 25 of the control device 500 according to the above-described first embodiment will be described. FIG. 3 is a flowchart illustrating an example of a control process during cooling operation in the control device 500 of the air-conditioning apparatus 1 according to Embodiment 2.
 本実施の形態2の空気調和装置1では、制御装置500は、冷房運転時に、熱源側減圧装置4の冷媒流出口側の第1の熱源側冷媒配管10を流れる冷媒の圧力が、既設配管である第1の延長冷媒配管300の耐圧基準値を超えた場合において、電磁弁25を一定の時間、開放するように構成される。 In the air conditioner 1 according to the second embodiment, the control device 500 is configured so that the pressure of the refrigerant flowing through the first heat source side refrigerant pipe 10 on the refrigerant outlet side of the heat source side decompression apparatus 4 is the existing pipe during the cooling operation. When the pressure resistance reference value of a certain first extended refrigerant pipe 300 is exceeded, the electromagnetic valve 25 is configured to be opened for a certain time.
 ステップS21においては、制御装置500では、第1の圧力センサ40で検知された、熱源側減圧装置4の冷媒流出口側の第1の熱源側冷媒配管10を流れる冷媒の圧力Pが、第1の延長冷媒配管300の耐圧基準値P0を超えるか否かが判定される。耐圧基準値P0は、例えば29kg/cmに設定される。 In step S21, in the control device 500, the pressure P of the refrigerant flowing through the first heat source side refrigerant pipe 10 on the refrigerant outlet side of the heat source side decompression device 4 detected by the first pressure sensor 40 is the first pressure sensor 40. It is determined whether or not the pressure resistance reference value P0 of the extended refrigerant pipe 300 is exceeded. The pressure resistance reference value P0 is set to 29 kg / cm 2 , for example.
 圧力Pが耐圧基準値P0を超える場合、ステップS22において、制御装置500は電磁弁25を開放する。 When the pressure P exceeds the pressure resistance reference value P0, the control device 500 opens the electromagnetic valve 25 in step S22.
 次いで、ステップS23において、制御装置500では、電磁弁25が開放されている時間Mがカウントされ、一定の時間M0を経過したか否かが判定される。一定の時間M0を経過していない場合は、電磁弁25の開放状態を維持する。 Next, in step S23, the control device 500 counts the time M during which the electromagnetic valve 25 is opened, and determines whether or not a certain time M0 has elapsed. When the fixed time M0 has not elapsed, the open state of the solenoid valve 25 is maintained.
 ここで、一定の時間M0は、例えば制御装置500が圧縮機2の運転周波数を低減する制御を行い、圧力Pを耐圧基準値P0に抑制する場合、低減した圧縮機2の運転周波数が安定状態となるまでの時間とすることができる。例えば、一定の時間M0は60秒とすることができる。 Here, for a certain time M0, for example, when the control device 500 performs control to reduce the operating frequency of the compressor 2 and suppresses the pressure P to the pressure resistance reference value P0, the reduced operating frequency of the compressor 2 is stable. It can be the time to become. For example, the fixed time M0 can be 60 seconds.
 一定の時間M0を経過した後、ステップS24において、制御装置500は、電磁弁25を閉止し、制御処理を終了する。 After a predetermined time M0 has elapsed, in step S24, the control device 500 closes the electromagnetic valve 25 and ends the control process.
 上述したとおり、本実施の形態2に係る空気調和装置1は、熱源側ユニット100が、圧縮機2の吸入管側に配置されたアキュムレータ8と、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)と、アキュムレータ8の冷媒流入口側に連結された冷媒配管(第3の熱源側冷媒配管14)との間をバイパスするバイパス冷媒配管20と、バイパス冷媒配管20に設けられた電磁弁25とを更に備え、制御装置500は、冷房運転時に、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)を流れる冷媒の圧力が、既設の冷媒配管(第1の延長冷媒配管300)の耐圧基準値を超えた場合において、電磁弁25を一定の時間、開放するものである。 As described above, in the air conditioner 1 according to the second embodiment, the heat source side unit 100 includes the accumulator 8 disposed on the suction pipe side of the compressor 2 and the refrigerant flow of the decompression device (heat source side decompression device 4). Bypass refrigerant pipe 20 that bypasses between the refrigerant pipe on the outlet side (first heat source side refrigerant pipe 10) and the refrigerant pipe (third heat source side refrigerant pipe 14) connected to the refrigerant inlet side of the accumulator 8. And a solenoid valve 25 provided in the bypass refrigerant pipe 20, and the control device 500 has a refrigerant pipe (first heat source side) on the refrigerant outlet side of the pressure reducing apparatus (heat source side pressure reducing apparatus 4) during the cooling operation. When the pressure of the refrigerant flowing through the refrigerant pipe 10) exceeds the pressure resistance reference value of the existing refrigerant pipe (first extended refrigerant pipe 300), the electromagnetic valve 25 is opened for a certain period of time.
 また、本実施の形態2に係る運転制御装置(制御装置500)は、圧縮機2の吸入管側に配置されたアキュムレータ8と、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)と、アキュムレータ8の冷媒流入口側に連結された冷媒配管(第3の熱源側冷媒配管14)との間をバイパスするバイパス冷媒配管20と、バイパス冷媒配管20に設けられた電磁弁25とを熱源側ユニット100に更に収容した空気調和装置1を制御し、冷房運転時に、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)を流れる冷媒の圧力が、既設の冷媒配管(第1の延長冷媒配管300)の耐圧基準値を超えた場合において、電磁弁25を一定の時間、開放するものである。 Further, the operation control device (control device 500) according to the second embodiment includes an accumulator 8 disposed on the suction pipe side of the compressor 2 and a refrigerant on the refrigerant outlet side of the decompression device (heat source side decompression device 4). A bypass refrigerant pipe 20 that bypasses between the pipe (first heat source side refrigerant pipe 10) and a refrigerant pipe (third heat source side refrigerant pipe 14) connected to the refrigerant inlet side of the accumulator 8, and a bypass refrigerant The air conditioner 1 that further accommodates the electromagnetic valve 25 provided in the pipe 20 in the heat source side unit 100 is controlled, and the refrigerant pipe (first pipe) on the refrigerant outlet side of the pressure reducing apparatus (heat source side pressure reducing apparatus 4) during cooling operation. When the pressure of the refrigerant flowing through the first heat source side refrigerant pipe 10) exceeds the pressure resistance reference value of the existing refrigerant pipe (first extended refrigerant pipe 300), the electromagnetic valve 25 is opened for a certain period of time. is there.
 本実施の形態2の構成によれば、第1の延長冷媒配管300に流れる冷媒の圧力を電磁弁25の開放により即時に低下させることができるため、更に信頼性の高い空気調和装置1及び制御装置500(運転制御装置)を提供することができる。 According to the configuration of the second embodiment, since the pressure of the refrigerant flowing through the first extended refrigerant pipe 300 can be immediately reduced by opening the electromagnetic valve 25, the air conditioner 1 and the control with higher reliability can be achieved. A device 500 (operation control device) can be provided.
その他の実施の形態.
 上述の実施の形態に限らず種々の変形が可能である。例えば、上述の実施の形態は、空気調和装置1のみに限られず、給湯器等にも用いることができる。
Other embodiments.
The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the above-described embodiment is not limited to the air conditioner 1 and can be used for a water heater or the like.
 また、上述の実施の形態は互いに組み合わせて用いることが可能である。 Further, the above-described embodiments can be used in combination with each other.
 1 空気調和装置、2 圧縮機、3 熱源側熱交換器、4 熱源側減圧装置、5a 第1の負荷側減圧装置、5b 第2の負荷側減圧装置、6a 第1の負荷側熱交換器、6b 第2の負荷側熱交換器、7 冷媒流路切替装置、8 アキュムレータ、9a 第1の延長冷媒配管接続バルブ、9b 第2の延長冷媒配管接続バルブ、10 第1の熱源側冷媒配管、12 第2の熱源側冷媒配管、14 第3の熱源側冷媒配管、16 第4の熱源側冷媒配管、18 第5の熱源側冷媒配管、20 バイパス冷媒配管、25 電磁弁、30 第1の温度センサ、35a 第2の温度センサ、35b 第3の温度センサ、40 第1の圧力センサ、45 第2の圧力センサ、50 第1の制御部、55a 第2の制御部、55b 第3の制御部、58 通信線、100 熱源側ユニット、200a 第1の負荷側ユニット、200b 第2の負荷側ユニット、300 第1の延長冷媒配管、400 第2の延長冷媒配管、500 制御装置。 1 air conditioner, 2 compressor, 3 heat source side heat exchanger, 4 heat source side pressure reducing device, 5a first load side pressure reducing device, 5b second load side pressure reducing device, 6a first load side heat exchanger, 6b second load side heat exchanger, 7 refrigerant flow switching device, 8 accumulator, 9a first extended refrigerant pipe connection valve, 9b second extended refrigerant pipe connection valve, 10 first heat source side refrigerant pipe, 12 2nd heat source side refrigerant pipe, 14 3rd heat source side refrigerant pipe, 16 4th heat source side refrigerant pipe, 18 5th heat source side refrigerant pipe, 20 bypass refrigerant pipe, 25 solenoid valve, 30 1st temperature sensor 35a, second temperature sensor, 35b, third temperature sensor, 40, first pressure sensor, 45, second pressure sensor, 50, first control unit, 55a, second control unit, 55b, third control unit, 5 Communication lines, 100 heat-source side unit, 200a first load unit, 200b second load unit, 300 first extension refrigerant pipe, 400 second extension refrigerant pipe, 500 controller.

Claims (4)

  1.  圧縮機、熱源側熱交換器、減圧装置、及び負荷側熱交換器を冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルと、
     前記圧縮機、前記熱源側熱交換器、及び前記減圧装置を収容する熱源側ユニットと、
     前記負荷側熱交換器を収容し、既設の冷媒配管を介して前記熱源側ユニットと連結される1以上の負荷側ユニットと、
     前記冷凍サイクルを制御する制御装置と
    を備え、
     前記制御装置は、
     冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記1以上の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整するものである
    空気調和装置。
    A compressor, a heat source side heat exchanger, a pressure reducing device, and a load side heat exchanger are connected via a refrigerant pipe to circulate the refrigerant, at least the heat source side heat exchanger functions as a radiator, and the load side A refrigeration cycle that performs cooling operation in which the heat exchanger functions as an evaporator, and
    A heat source side unit that houses the compressor, the heat source side heat exchanger, and the pressure reducing device;
    One or more load side units that house the load side heat exchanger and are connected to the heat source side unit via an existing refrigerant pipe;
    A control device for controlling the refrigeration cycle,
    The controller is
    In the cooling operation, when the outside air temperature of the outdoor air supplied to the heat source side heat exchanger exceeds a reference outside air temperature, and the total load capacity of the one or more load side units decreases with time, the total An air conditioner that adjusts the opening of the decompression device in accordance with a fluctuation value of a load capacity.
  2.  前記熱源側ユニットが、
     前記圧縮機の吸入管側に配置されたアキュムレータと、
     前記減圧装置の冷媒流出口側の冷媒配管と、前記アキュムレータの冷媒流入口側に連結された冷媒配管との間をバイパスするバイパス冷媒配管と、
     前記バイパス冷媒配管に設けられた電磁弁と
    を更に備え、
     前記制御装置は、
     冷房運転時に、前記減圧装置の冷媒流出口側の冷媒配管を流れる冷媒の圧力が、既設の冷媒配管の耐圧基準値を超えた場合において、前記電磁弁を一定の時間、開放するものである
    請求項1に記載の空気調和装置。
    The heat source unit is
    An accumulator disposed on the suction pipe side of the compressor;
    A bypass refrigerant pipe that bypasses between the refrigerant pipe on the refrigerant outlet side of the decompressor and the refrigerant pipe connected to the refrigerant inlet side of the accumulator;
    A solenoid valve provided in the bypass refrigerant pipe;
    The controller is
    During cooling operation, when the pressure of the refrigerant flowing through the refrigerant pipe on the refrigerant outlet side of the decompression device exceeds the pressure resistance reference value of the existing refrigerant pipe, the electromagnetic valve is opened for a certain period of time. Item 2. The air conditioner according to Item 1.
  3.  熱源側ユニットに収容される圧縮機、熱源側熱交換器、及び減圧装置と、既設の冷媒配管を介して前記熱源側ユニットと連結される1以上の負荷側ユニットに収容される負荷側熱交換器とを冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルを備える空気調和装置を制御し、
     冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記1以上の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整する
    運転制御装置。
    A compressor, a heat source side heat exchanger, and a decompression device housed in the heat source side unit, and a load side heat exchange housed in one or more load side units connected to the heat source side unit via an existing refrigerant pipe A refrigerating cycle for performing a cooling operation in which at least the heat source side heat exchanger functions as a radiator and the load side heat exchanger functions as an evaporator. Control the air conditioner equipped,
    In the cooling operation, when the outside air temperature of the outdoor air supplied to the heat source side heat exchanger exceeds a reference outside air temperature, and the total load capacity of the one or more load side units decreases with time, the total An operation control device that adjusts an opening degree of the pressure reducing device in accordance with a fluctuation value of a load capacity.
  4.  前記圧縮機の吸入管側に配置されたアキュムレータと、
     前記減圧装置の冷媒流出口側の冷媒配管と、前記アキュムレータの冷媒流入口側に連結された冷媒配管との間をバイパスするバイパス冷媒配管と、
     前記バイパス冷媒配管に設けられた電磁弁と
    を前記熱源側ユニットに更に収容した空気調和装置を制御し、
     冷房運転時に、前記減圧装置の冷媒流出口側の冷媒配管を流れる冷媒の圧力が、既設の冷媒配管の耐圧基準値を超えた場合において、前記電磁弁を一定の時間、開放する
    請求項3に記載の運転制御装置。
    An accumulator disposed on the suction pipe side of the compressor;
    A bypass refrigerant pipe that bypasses between the refrigerant pipe on the refrigerant outlet side of the decompressor and the refrigerant pipe connected to the refrigerant inlet side of the accumulator;
    Controlling an air conditioner that further accommodates an electromagnetic valve provided in the bypass refrigerant pipe in the heat source side unit;
    In the cooling operation, the solenoid valve is opened for a certain time when the pressure of the refrigerant flowing through the refrigerant pipe on the refrigerant outlet side of the decompression device exceeds the pressure resistance reference value of the existing refrigerant pipe. The operation control device described.
PCT/JP2015/065730 2015-06-01 2015-06-01 Air-conditioning device and operation control device WO2016194098A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017521358A JP6501878B2 (en) 2015-06-01 2015-06-01 Air conditioner and operation control device
CN201580081017.7A CN107709887B (en) 2015-06-01 2015-06-01 Air conditioner and operation control device
PCT/JP2015/065730 WO2016194098A1 (en) 2015-06-01 2015-06-01 Air-conditioning device and operation control device
EP15894133.6A EP3306214B1 (en) 2015-06-01 2015-06-01 Air-conditioning device and operation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065730 WO2016194098A1 (en) 2015-06-01 2015-06-01 Air-conditioning device and operation control device

Publications (1)

Publication Number Publication Date
WO2016194098A1 true WO2016194098A1 (en) 2016-12-08

Family

ID=57440909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065730 WO2016194098A1 (en) 2015-06-01 2015-06-01 Air-conditioning device and operation control device

Country Status (4)

Country Link
EP (1) EP3306214B1 (en)
JP (1) JP6501878B2 (en)
CN (1) CN107709887B (en)
WO (1) WO2016194098A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020112A (en) * 2017-07-20 2019-02-07 ダイキン工業株式会社 Air conditioning system
WO2021065112A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device
JP2021081114A (en) * 2019-11-18 2021-05-27 ダイキン工業株式会社 Intermediate unit of refrigerating device and refrigerating device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110671847B (en) * 2018-07-02 2021-12-21 艾默生环境优化技术(苏州)有限公司 Variable-speed condensing unit, capacity self-adaptive adjusting method, storage medium and controller
FR3097807B1 (en) * 2019-06-28 2021-07-09 Valeo Systemes Thermiques Method for managing a thermal management device for a motor vehicle
CN111076279A (en) * 2020-01-08 2020-04-28 珠海格力电器股份有限公司 Control method for updating multi-split air conditioning system and multi-split air conditioning system updating method
CN113639411B (en) * 2021-07-15 2023-03-21 青岛海尔空调器有限总公司 Method for controlling external self-cleaning of outdoor heat exchanger
CN113639412B (en) * 2021-07-15 2023-03-24 青岛海尔空调器有限总公司 Method for controlling self-cleaning outside pipe of indoor heat exchanger
CN115751663A (en) * 2022-11-28 2023-03-07 贵州电网有限责任公司 Automatic regulating device and method for heat dissipation load of central air conditioner external unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162126A (en) * 2000-11-28 2002-06-07 Toshiba Kyaria Kk Air conditioner
JP2005140431A (en) * 2003-11-07 2005-06-02 Hitachi Home & Life Solutions Inc Air conditioner
JP2005147541A (en) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182670U (en) * 1984-05-15 1985-12-04 株式会社富士通ゼネラル air conditioner
JPH0769087B2 (en) * 1988-07-11 1995-07-26 ダイキン工業株式会社 Operation control device for air conditioner
JP2909187B2 (en) * 1990-10-26 1999-06-23 株式会社東芝 Air conditioner
JPH1114177A (en) * 1997-06-26 1999-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
CN101382353A (en) * 2008-10-30 2009-03-11 广东志高空调有限公司 Frequency constant heat pump energy-conserving air conditioning system
KR101237216B1 (en) * 2011-10-24 2013-02-26 엘지전자 주식회사 An air condtioner and a control method the same
EP2975338B1 (en) * 2013-03-12 2020-11-25 Mitsubishi Electric Corporation Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162126A (en) * 2000-11-28 2002-06-07 Toshiba Kyaria Kk Air conditioner
JP2005140431A (en) * 2003-11-07 2005-06-02 Hitachi Home & Life Solutions Inc Air conditioner
JP2005147541A (en) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020112A (en) * 2017-07-20 2019-02-07 ダイキン工業株式会社 Air conditioning system
EP3657090A4 (en) * 2017-07-20 2021-03-24 Daikin Industries, Ltd. Air conditioning system
US11371743B2 (en) 2017-07-20 2022-06-28 Daikin Industries, Ltd. Air conditioning system
WO2021065112A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device
JP2021081114A (en) * 2019-11-18 2021-05-27 ダイキン工業株式会社 Intermediate unit of refrigerating device and refrigerating device
WO2021100234A1 (en) * 2019-11-18 2021-05-27 ダイキン工業株式会社 Intermediate unit for refrigeration device, and refrigeration device

Also Published As

Publication number Publication date
JPWO2016194098A1 (en) 2017-12-28
CN107709887A (en) 2018-02-16
EP3306214A1 (en) 2018-04-11
CN107709887B (en) 2020-03-03
JP6501878B2 (en) 2019-04-17
EP3306214B1 (en) 2023-10-18
EP3306214A4 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
WO2016194098A1 (en) Air-conditioning device and operation control device
JP4968373B2 (en) Air conditioner
JP5447499B2 (en) Refrigeration equipment
JP5182358B2 (en) Refrigeration equipment
EP3312528B1 (en) Air conditioner
JP5979112B2 (en) Refrigeration equipment
JP2008232508A (en) Water heater
KR20180108762A (en) System and method for controlling refrigeration system
WO2017203655A1 (en) Heat pump type air conditioning and hot water supplying device
JP2019020112A (en) Air conditioning system
WO2016166801A1 (en) Air conditioning device
JP6576603B1 (en) Air conditioner
JP6422590B2 (en) Heat source system
WO2017010007A1 (en) Air conditioner
JP6698951B1 (en) Air conditioner
WO2018167961A1 (en) Air conditioner
JP6431393B2 (en) Air conditioner
JP2009139012A (en) Refrigeration air conditioning apparatus
US11624518B2 (en) Water source heat pump head pressure control for hot gas reheat
GB2578533A (en) Refrigeration cycle device
WO2017094172A1 (en) Air conditioning device
JP6507598B2 (en) Air conditioning system
JP6747226B2 (en) Refrigeration equipment
JP2008209021A (en) Multi-air conditioner
JP7467827B2 (en) Air conditioners

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521358

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015894133

Country of ref document: EP