JP7467827B2 - Air conditioners - Google Patents

Air conditioners Download PDF

Info

Publication number
JP7467827B2
JP7467827B2 JP2019042822A JP2019042822A JP7467827B2 JP 7467827 B2 JP7467827 B2 JP 7467827B2 JP 2019042822 A JP2019042822 A JP 2019042822A JP 2019042822 A JP2019042822 A JP 2019042822A JP 7467827 B2 JP7467827 B2 JP 7467827B2
Authority
JP
Japan
Prior art keywords
expansion valve
indoor
heat exchanger
sub
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019042822A
Other languages
Japanese (ja)
Other versions
JP2020143879A (en
Inventor
昇平 仲田
純一 津野
博俊 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2019042822A priority Critical patent/JP7467827B2/en
Publication of JP2020143879A publication Critical patent/JP2020143879A/en
Application granted granted Critical
Publication of JP7467827B2 publication Critical patent/JP7467827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和機に関する。 The present invention relates to an air conditioner.

室外機と室内機を有する空気調和機では、一般的に、冷房運転時に室内機で検出する室内温度が、この室内温度の目標値となる設定温度より所定温度、例えば1℃下回った場合、あるいは、暖房運転時に室内温度が設定温度より所定温度、例えば1℃上回った場合は、室外機に搭載される圧縮機を停止するとともに室内機に搭載される室内ファンを停止させて、空気調和機の空調運転を停止させる所謂サーモオフ状態とする。そして、冷房運転時に室内温度が設定温度より上昇した場合、あるいは、暖房運転時に室内温度が設定温度より低下した場合は、圧縮機および室内ファンを再起動させて、空気調和機の空調運転を再開させる所謂サーモオン状態とする(例えば、特許文献1を参照)。 In an air conditioner having an outdoor unit and an indoor unit, generally, when the indoor temperature detected by the indoor unit during cooling operation falls below a predetermined temperature, for example 1°C, below the set temperature that is the target value for this indoor temperature, or when the indoor temperature during heating operation exceeds the set temperature by a predetermined temperature, for example 1°C, the compressor mounted in the outdoor unit is stopped and the indoor fan mounted in the indoor unit is stopped, thereby stopping the air conditioning operation of the air conditioner in a so-called thermo-off state. Then, when the indoor temperature rises above the set temperature during cooling operation, or when the indoor temperature falls below the set temperature during heating operation, the compressor and indoor fan are restarted, and the air conditioning operation of the air conditioner is resumed in a so-called thermo-on state (see, for example, Patent Document 1).

特開2009-79847号公報JP 2009-79847 A

ところで、上述した空調運転中にサーモオフ状態やサーモオン状態となる空気調和機において、圧縮機の回転数が最低回転数とされている場合、つまりは、室内機で最低限の空調能力しか発揮していない場合であっても、当該空気調和機の室内機が設置されている部屋の負荷(以降、空調負荷と記載する)が小さければ、空調負荷と比べて発揮される空調能力が大きくなる場合がある。圧縮機の回転数が最低回転数とされていても空調負荷と比べて発揮される空調能力が大きくなる場合は、冷房運転時に室内温度が設定温度より所定温度を下回りやすくなるため、あるいは、暖房運転時に室内温度が設定温度より所定温度を上回りやすくなるため、頻繁にサーモオフ状態とサーモオン状態とが繰り返される。このように、サーモオフ状態とサーモオン状態とが頻繁に繰り返されると、そのたびに圧縮機が停止/再起動を繰り返すため、再起動時の圧縮機の消費電力増加によって空気調和機の省エネ性が悪化するという問題があった。また、頻繁に圧縮機が停止/再起動を繰り返すと、圧縮機の寿命が短くなる恐れがあった。 In the air conditioner that goes into the thermo-off state or thermo-on state during the above-mentioned air conditioning operation, even if the compressor speed is set to the minimum speed, that is, even if the indoor unit is only exerting the minimum air conditioning capacity, if the load of the room in which the indoor unit of the air conditioner is installed (hereinafter referred to as the air conditioning load) is small, the air conditioning capacity exerted may be greater than the air conditioning load. If the compressor speed is set to the minimum speed but the air conditioning capacity exerted is greater than the air conditioning load, the indoor temperature during cooling operation is likely to fall below the specified temperature rather than the set temperature, or the indoor temperature during heating operation is likely to exceed the specified temperature rather than the set temperature, so the thermo-off state and the thermo-on state are frequently repeated. In this way, if the thermo-off state and the thermo-on state are frequently repeated, the compressor is stopped and restarted repeatedly each time, and there is a problem that the energy saving performance of the air conditioner is deteriorated due to the increased power consumption of the compressor at the time of restart. In addition, if the compressor is stopped and restarted frequently, there is a risk that the life of the compressor will be shortened.

本発明は以上述べた問題点を解決するものであって、頻繁にサーモオフ状態とサーモオン状態とが繰り返されることがない空気調和機を提供することを目的とする。 The present invention aims to solve the problems mentioned above and provide an air conditioner that does not frequently alternate between the thermo-off state and the thermo-on state.

上記の課題を解決するために、本発明の空気調和機は、圧縮機と四方弁と室外熱交換器と主膨張弁と室内熱交換器とが冷媒配管で接続されて形成される冷媒回路と、空調空間の温度である室内温度を検出する室内温度センサと、冷媒回路に設けられて室内熱交換器における熱交換量を調整する熱交換量調整手段とを有する。さらに、熱交換量調整手段は、第1分岐管と第2分岐管と第1副膨張弁と第2副膨張弁と内部熱交換器とで形成され、第1分岐管は、室外熱交換器をバイパスするように、一端が四方弁と室外熱交換器とを接続する冷媒配管に接続され、他端が室外熱交換器と主膨張弁とを接続する冷媒配管に接続され、第2分岐管は、室内熱交換器をバイパスするように、一端が主膨張弁と室内熱交換器とを接続する冷媒配管に接続され、他端が室内熱交換器と四方弁とを接続する冷媒配管に接続される。そして、この空気調和機の暖房運転時に、室内温度がこの室内温度の目標値である設定温度に向かって上昇しており、かつ、設定温度から室内温度を減じた温度差が所定値より小さい値となったときに、圧縮機の回転数が所定回転数より低い場合、あるいは、冷房運転時に、室内温度が設定温度に向かって低下しており、かつ、室内温度から設定温度を減じた温度差が所定値より小さい値となったときに、圧縮機の回転数が所定回転数より低い場合は、第1副膨張弁は、第1分岐管を流れる冷媒の量を調整し、第2副膨張弁は、第2分岐管を流れる冷媒の量を調整し、内部熱交換器は、第1分岐管を流れる冷媒と第2分岐管を流れる冷媒とを熱交換させる。 In order to solve the above problems, the air conditioner of the present invention has a refrigerant circuit formed by connecting a compressor, a four-way valve, an outdoor heat exchanger, a main expansion valve, and an indoor heat exchanger with refrigerant piping, an indoor temperature sensor that detects the indoor temperature, which is the temperature of the air-conditioned space, and a heat exchange amount adjustment means provided in the refrigerant circuit and adjusts the heat exchange amount in the indoor heat exchanger. Furthermore, the heat exchange amount adjustment means is formed by a first branch pipe, a second branch pipe, a first sub-expansion valve, a second sub-expansion valve, and an internal heat exchanger, one end of the first branch pipe is connected to the refrigerant piping connecting the four-way valve and the outdoor heat exchanger so as to bypass the outdoor heat exchanger, and the other end is connected to the refrigerant piping connecting the outdoor heat exchanger and the main expansion valve , and the second branch pipe is connected to the refrigerant piping connecting the main expansion valve and the indoor heat exchanger so as to bypass the indoor heat exchanger, and the other end is connected to the refrigerant piping connecting the indoor heat exchanger and the four-way valve . Then, during heating operation of the air conditioner, when the indoor temperature is rising toward the set temperature, which is a target value for the indoor temperature, and the temperature difference obtained by subtracting the indoor temperature from the set temperature is smaller than a predetermined value, and the compressor rotation speed is lower than a predetermined value; or, during cooling operation, when the indoor temperature is decreasing toward the set temperature and the temperature difference obtained by subtracting the set temperature from the indoor temperature is smaller than a predetermined value, and the compressor rotation speed is lower than the predetermined value, the first sub-expansion valve adjusts the amount of refrigerant flowing through the first branch pipe, the second sub-expansion valve adjusts the amount of refrigerant flowing through the second branch pipe, and the internal heat exchanger exchanges heat between the refrigerant flowing through the first branch pipe and the refrigerant flowing through the second branch pipe.

上記のように構成した本発明の空気調和機によれば、頻繁にサーモオフ状態とサーモオン状態とが繰り返されることがないため、省エネ性の悪化や圧縮機の寿命が短くなることを防ぐことができる。 The air conditioner of the present invention configured as described above does not frequently alternate between the thermo-off state and the thermo-on state, preventing a deterioration in energy efficiency and a shortened compressor lifespan.

本発明の第1の実施形態における冷媒回路図である。FIG. 1 is a refrigerant circuit diagram according to a first embodiment of the present invention. 本発明の第1の実施形態における副膨張弁開度テーブルである。4 is a sub-expansion valve opening degree table according to the first embodiment of the present invention. 本発明の第2の実施形態における冷媒回路図である。FIG. 4 is a refrigerant circuit diagram according to a second embodiment of the present invention. 本発明の第3の実施形態における冷媒回路図である。FIG. 11 is a refrigerant circuit diagram according to a third embodiment of the present invention. 本発明の第3の実施形態における副膨張弁開度テーブルである。13 is a sub-expansion valve opening degree table according to the third embodiment of the present invention. 本発明の第4の実施形態における冷媒回路図である。FIG. 11 is a refrigerant circuit diagram according to a fourth embodiment of the present invention. 本発明の第5の実施形態における冷媒回路図である。FIG. 13 is a refrigerant circuit diagram according to a fifth embodiment of the present invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機と1台の室内機が2本の冷媒配管で接続された空気調和機を例に挙げて説明する。なお、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。 The following describes in detail an embodiment of the present invention with reference to the attached drawings. As an embodiment, an air conditioner in which one outdoor unit and one indoor unit are connected by two refrigerant pipes is taken as an example. Note that the present invention is not limited to the following embodiment, and various modifications are possible without departing from the spirit of the present invention.

図1に示すように、本実施例における空気調和機1は、屋外に設置される室外機2と、室内に設置され室外機2に液管4およびガス管5で接続された室内機3を備えている。詳細には、室外機2の閉鎖弁25と室内機3の液管接続部33とが液管4で接続されている。また、室外機2の閉鎖弁26と室内機3のガス管接続部34とがガス管5で接続されている。以上により、空気調和機1の冷媒回路10が形成されている。 As shown in FIG. 1, the air conditioner 1 in this embodiment includes an outdoor unit 2 installed outdoors, and an indoor unit 3 installed indoors and connected to the outdoor unit 2 by a liquid pipe 4 and a gas pipe 5. In detail, the shutoff valve 25 of the outdoor unit 2 and the liquid pipe connection part 33 of the indoor unit 3 are connected by the liquid pipe 4. In addition, the shutoff valve 26 of the outdoor unit 2 and the gas pipe connection part 34 of the indoor unit 3 are connected by the gas pipe 5. The above forms the refrigerant circuit 10 of the air conditioner 1.

<室外機の構成>
まずは、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、内部熱交換器24aと、液管4の一端が接続された閉鎖弁25と、ガス管5の一端が接続された閉鎖弁26と、主膨張弁27と、第1副膨張弁28aと、第2副膨張弁29aと、室外ファン30とを備えている。そして、室外ファン30を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路10aを形成している。
<Outdoor unit configuration>
First, the outdoor unit 2 will be described. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, an internal heat exchanger 24a, a stop valve 25 to which one end of the liquid pipe 4 is connected, a stop valve 26 to which one end of the gas pipe 5 is connected, a main expansion valve 27, a first sub-expansion valve 28a, a second sub-expansion valve 29a, and an outdoor fan 30. These devices except for the outdoor fan 30 are connected to each other by refrigerant pipes described in detail below to form an outdoor unit refrigerant circuit 10a that forms part of the refrigerant circuit 10.

圧縮機21は、図示しないインバータにより回転数が制御されることで、運転容量を変えることができる容量可変型圧縮機である。圧縮機21の冷媒吐出側と四方弁22のポートaとが、吐出管61で接続されている。また、圧縮機21の冷媒吸入側と四方弁22のポートcとが、吸入管66で接続されている。 Compressor 21 is a variable-capacity compressor whose operating capacity can be changed by controlling the rotation speed with an inverter (not shown). The refrigerant discharge side of compressor 21 and port a of four-way valve 22 are connected by discharge pipe 61. In addition, the refrigerant suction side of compressor 21 and port c of four-way valve 22 are connected by suction pipe 66.

四方弁22は、冷媒の流れる方向を切り替えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaは、上述したように圧縮機21の冷媒吐出側と吐出管61で接続されている。ポートbは、室外熱交換器23の一方の冷媒出入口と冷媒配管62で接続されている。ポートcは、上述したように圧縮機21の冷媒吸入側と吸入管66で接続されている。そして、ポートdは、閉鎖弁26と室外機ガス管64で接続されている。 The four-way valve 22 is a valve for switching the direction of refrigerant flow, and has four ports a, b, c, and d. As described above, port a is connected to the refrigerant discharge side of the compressor 21 by a discharge pipe 61. Port b is connected to one of the refrigerant inlets and outlets of the outdoor heat exchanger 23 by a refrigerant piping 62. As described above, port c is connected to the refrigerant suction side of the compressor 21 by a suction pipe 66. And port d is connected to the shutoff valve 26 by an outdoor unit gas pipe 64.

室外熱交換器23は、冷媒と、後述する室外ファン30の回転により室外機2の内部に取り込まれた外気とを熱交換させるものである。室外熱交換器23の一方の冷媒出入口は、上述したように四方弁22のポートbと冷媒配管62で接続され、他方の冷媒出入口は閉鎖弁25と室外機液管63で接続されている。室外熱交換器23は、空気調和機1が冷房運転を行う場合は凝縮器として機能し、暖房運転を行う場合は蒸発器として機能する。 The outdoor heat exchanger 23 exchanges heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 30 described below. One refrigerant inlet/outlet of the outdoor heat exchanger 23 is connected to port b of the four-way valve 22 by a refrigerant piping 62 as described above, and the other refrigerant inlet/outlet is connected to the shutoff valve 25 by an outdoor unit liquid pipe 63. The outdoor heat exchanger 23 functions as a condenser when the air conditioner 1 is operating in cooling mode, and as an evaporator when operating in heating mode.

主膨張弁27は電子膨張弁であり、室外機液管63に設けられている。主膨張弁27の開度が調整されることで、圧縮機21から吐出された冷媒の温度である吐出温度が、室内機3で要求される空調能力に基づいて定められた目標吐出温度とされる。第1副膨張弁28aは電子膨張弁であり、室外機液管63における室外熱交換器23と主膨張弁27の間に設けられている。第1副膨張弁28aの開度が調整されることで、後述する第1分流管67aを流れる冷媒の量が調整される。第2副膨張弁29aは電子膨張弁であり、室外機ガス管64に設けられている。第2副膨張弁29aの開度が調整されることで、後述する第2分流管68aを流れる冷媒の量が調整される。 The main expansion valve 27 is an electronic expansion valve and is provided in the outdoor unit liquid pipe 63. By adjusting the opening degree of the main expansion valve 27, the discharge temperature, which is the temperature of the refrigerant discharged from the compressor 21, is set to a target discharge temperature determined based on the air conditioning capacity required by the indoor unit 3. The first sub-expansion valve 28a is an electronic expansion valve and is provided between the outdoor heat exchanger 23 and the main expansion valve 27 in the outdoor unit liquid pipe 63. By adjusting the opening degree of the first sub-expansion valve 28a, the amount of refrigerant flowing through the first branch pipe 67a described later is adjusted. The second sub-expansion valve 29a is an electronic expansion valve and is provided in the outdoor unit gas pipe 64. By adjusting the opening degree of the second sub-expansion valve 29a, the amount of refrigerant flowing through the second branch pipe 68a described later is adjusted.

内部熱交換器24aは、例えば二重管熱交換器であり、第1分流管67aと第2分流管68aとが接続されて、第1分流管67aを流れる冷媒と第2分流管68aを流れる冷媒とを熱交換させる。ここで、第1分流管67aは、一端が室外機液管63における室外熱交換器23と第1副膨張弁28aの間に接続され、他端が室外機液管63における第1副膨張弁28aと主膨張弁27の間に接続される。つまり、第1分流管67aは、第1副膨張弁28aをバイパスするように室外機冷媒回路10aに接続される。また、第2分流管68aは、一端が室外機ガス管64における閉鎖弁26と第2副膨張弁29aの間に接続され、他端が室外機ガス管64における第2副膨張弁29aと四方弁22の間に接続される。つまり、第2分流管68aは、第2副膨張弁29aをバイパスするように室外機冷媒回路10aに接続される。 The internal heat exchanger 24a is, for example, a double-pipe heat exchanger, and the first branch pipe 67a and the second branch pipe 68a are connected to exchange heat between the refrigerant flowing through the first branch pipe 67a and the refrigerant flowing through the second branch pipe 68a. Here, the first branch pipe 67a is connected at one end between the outdoor heat exchanger 23 and the first sub-expansion valve 28a in the outdoor unit liquid pipe 63, and at the other end between the first sub-expansion valve 28a and the main expansion valve 27 in the outdoor unit liquid pipe 63. In other words, the first branch pipe 67a is connected to the outdoor unit refrigerant circuit 10a so as to bypass the first sub-expansion valve 28a. In addition, the second branch pipe 68a is connected at one end between the stop valve 26 and the second sub-expansion valve 29a in the outdoor unit gas pipe 64, and at the other end between the second sub-expansion valve 29a and the four-way valve 22 in the outdoor unit gas pipe 64. In other words, the second branch pipe 68a is connected to the outdoor unit refrigerant circuit 10a so as to bypass the second sub-expansion valve 29a.

なお、以上に説明した内部熱交換器24aと、第1副膨張弁28aと、第2副膨張弁29aと、第1分流管67aと、第2分流管68aとで、本発明の熱交換量調整手段が形成される。 The internal heat exchanger 24a, the first sub-expansion valve 28a, the second sub-expansion valve 29a, the first branch pipe 67a, and the second branch pipe 68a described above form the heat exchange amount adjustment means of the present invention.

室外ファン30は樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン30は、図示しないファンモータによって回転することで室外機2の図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を室外機2の図示しない吹出口から室外機2外部へ放出する。 The outdoor fan 30 is made of a resin material and is disposed near the outdoor heat exchanger 23. The outdoor fan 30 is rotated by a fan motor (not shown) to take in outside air from an intake port (not shown) of the outdoor unit 2 into the interior of the outdoor unit 2, and releases the outside air that has exchanged heat with the refrigerant in the outdoor heat exchanger 23 to the outside of the outdoor unit 2 from an outlet port (not shown) of the outdoor unit 2.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1に示すように、吐出管61には、圧縮機21から吐出される冷媒の圧力を検出する吐出圧力センサ71と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ73が設けられている。吸入管66には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ72と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ74とが設けられている。 In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1, the discharge pipe 61 is provided with a discharge pressure sensor 71 that detects the pressure of the refrigerant discharged from the compressor 21, and a discharge temperature sensor 73 that detects the temperature of the refrigerant discharged from the compressor 21. The suction pipe 66 is provided with a suction pressure sensor 72 that detects the pressure of the refrigerant sucked into the compressor 21, and a suction temperature sensor 74 that detects the temperature of the refrigerant sucked into the compressor 21.

室外熱交換器23の図示しない冷媒流路の中間部には、冷媒流路の中間部を流れる冷媒の温度、すなわち室外熱交換器23の温度を検出するための熱交温度センサ75が設けられている。室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ76が備えられている。 A heat exchanger temperature sensor 75 is provided in the middle of the refrigerant flow path (not shown) of the outdoor heat exchanger 23 to detect the temperature of the refrigerant flowing through the middle of the refrigerant flow path, i.e., the temperature of the outdoor heat exchanger 23. An outdoor air temperature sensor 76 is provided near the air intake (not shown) of the outdoor unit 2 to detect the temperature of the outdoor air flowing into the outdoor unit 2, i.e., the outdoor air temperature.

<室内機の構成>
次に、図1を用いて、室内機3について説明する。室内機3は、室内熱交換器31と、室内ファン32と、液管4の他端が接続された液管接続部33と、ガス管5の他端が接続されたガス管接続部34を備えている。そして、室内ファン32を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路10bを構成している。
<Indoor unit configuration>
Next, the indoor unit 3 will be described with reference to Fig. 1. The indoor unit 3 includes an indoor heat exchanger 31, an indoor fan 32, a liquid pipe connection part 33 to which the other end of the liquid pipe 4 is connected, and a gas pipe connection part 34 to which the other end of the gas pipe 5 is connected. These devices except for the indoor fan 32 are connected to each other by refrigerant pipes described in detail below to configure an indoor unit refrigerant circuit 10b that is a part of the refrigerant circuit 10.

室内熱交換器31は、冷媒と、後述する室内ファン32の回転により室内機3の図示しない吸込口から室内機3の内部に取り込まれた室内空気とを熱交換させるものであり、一方の冷媒出入口が液管接続部33と室内機液管91で接続され、他方の冷媒出入口がガス管接続部34と室内機ガス管92で接続されている。室内熱交換器31は、空気調和機1が冷房運転を行う場合は蒸発器として機能し、暖房運転を行う場合は凝縮器として機能する。なお、液管接続部33やガス管接続部34では、各冷媒配管が溶接やフレアナット等により接続されている。 The indoor heat exchanger 31 exchanges heat between the refrigerant and the indoor air taken into the indoor unit 3 from an intake port (not shown) of the indoor unit 3 by the rotation of the indoor fan 32 described later. One refrigerant inlet/outlet is connected to the liquid pipe connection part 33 and the indoor unit liquid pipe 91, and the other refrigerant inlet/outlet is connected to the gas pipe connection part 34 and the indoor unit gas pipe 92. The indoor heat exchanger 31 functions as an evaporator when the air conditioner 1 is in cooling operation, and functions as a condenser when the air conditioner 1 is in heating operation. The refrigerant pipes are connected to the liquid pipe connection part 33 and the gas pipe connection part 34 by welding, flare nuts, etc.

室内ファン32は樹脂材で形成されており、室内熱交換器31の近傍に配置されている。室内ファン31は、図示しないファンモータによって回転することで、室内機3の図示しない吸込口から室内機3の内部に室内空気を取り込み、室内熱交換器31において冷媒と熱交換した室内空気を室内機3の図示しない吹出口から室内へ吹き出す。 The indoor fan 32 is made of a resin material and is located near the indoor heat exchanger 31. The indoor fan 31 is rotated by a fan motor (not shown) to draw indoor air into the indoor unit 3 from an intake port (not shown) of the indoor unit 3, and blows the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 31 out into the room from an outlet port (not shown) of the indoor unit 3.

以上説明した構成の他に、室内機3には各種のセンサが設けられている。室内機液管91には、室内熱交換器31に流入あるいは室内熱交換器31から流出する冷媒の温度を検出する液側温度センサ81が設けられている。室内機ガス管92には、室内熱交換器31から流出あるいは室内熱交換器31に流入する冷媒の温度を検出するガス側温度センサ82が設けられている。そして、室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち室温を検出する室温センサ83が備えられている。 In addition to the configuration described above, the indoor unit 3 is provided with various sensors. The indoor unit liquid pipe 91 is provided with a liquid-side temperature sensor 81 that detects the temperature of the refrigerant flowing into or out of the indoor heat exchanger 31. The indoor unit gas pipe 92 is provided with a gas-side temperature sensor 82 that detects the temperature of the refrigerant flowing out of or into the indoor heat exchanger 31. A room temperature sensor 83 is provided near the air intake (not shown) of the indoor unit 3 to detect the temperature of the indoor air flowing into the indoor unit 3, i.e., the room temperature.

<冷媒回路の動作>
次に、本実施形態における空気調和機1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について説明する。本実施形態の空気調和機1は、熱交換量調整手段を動作させない空調運転と、熱交換量調整手段を動作させる空調運転とが行える。以下の説明では、熱交換量調整手段を動作させない暖房運転および冷房運転をそれぞれ通常暖房運転および通常冷房運転とし、熱交換量調整手段を動作させる暖房運転および冷房運転をそれぞれ調整暖房運転および調整冷房運転として、通常暖房運転と調整暖房運転とを例に挙げて、図1を用いて冷媒回路10の動作を説明する。
<Operation of the refrigerant circuit>
Next, the flow of refrigerant in the refrigerant circuit 10 and the operation of each part during air conditioning operation of the air conditioner 1 in this embodiment will be described. The air conditioner 1 in this embodiment can perform air conditioning operation without operating the heat exchange amount adjustment means, and air conditioning operation with the heat exchange amount adjustment means operating. In the following description, the heating operation and cooling operation without operating the heat exchange amount adjustment means are referred to as normal heating operation and normal cooling operation, respectively, and the heating operation and cooling operation with the heat exchange amount adjustment means operating are referred to as controlled heating operation and controlled cooling operation, respectively, and the operation of the refrigerant circuit 10 will be described using FIG. 1 as an example of normal heating operation and controlled heating operation.

<通常暖房運転>
空気調和機1が通常暖房運転を行う場合、図1に示す四方弁22が実線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するよう、また、ポートbとポートcとが連通するよう切り替えられる。これにより、冷媒回路10において実線矢印で示す方向に冷媒が循環し、冷媒回路10が、室外熱交換器23が蒸発器として機能するとともに室内熱交換器31が凝縮器として機能する暖房サイクルとなる。なお、通常暖房運転時は、第1副膨張弁28aと第2副膨張弁29aとは、それぞれの開度が全開とされている。
<Normal heating operation>
When the air conditioner 1 performs normal heating operation, the four-way valve 22 shown in Fig. 1 is switched to the state shown by the solid lines, i.e., so that ports a and d of the four-way valve 22 communicate with each other, and so that ports b and c of the four-way valve 22 communicate with each other. As a result, refrigerant circulates in the direction shown by the solid arrows in the refrigerant circuit 10, and the refrigerant circuit 10 becomes a heating cycle in which the outdoor heat exchanger 23 functions as an evaporator and the indoor heat exchanger 31 functions as a condenser. During normal heating operation, the first sub-expansion valve 28a and the second sub-expansion valve 29a are each fully open.

冷媒回路10が暖房サイクルとなった状態で圧縮機21を駆動すると、圧縮機21から吐出された高圧の冷媒は、吐出管61を流れて四方弁22に流入し、四方弁22から室外機ガス管64を流れ全開とされている第2副膨張弁29aを通過し、閉鎖弁26を介してガス管5に流出する。ガス管5を流れる冷媒は、ガス管接続部34を介して室内機3に流入する。 When the compressor 21 is driven with the refrigerant circuit 10 in the heating cycle, the high-pressure refrigerant discharged from the compressor 21 flows through the discharge pipe 61 and into the four-way valve 22, then flows from the four-way valve 22 through the outdoor unit gas pipe 64, passes through the second sub-expansion valve 29a which is fully open, and flows out into the gas pipe 5 through the stop valve 26. The refrigerant flowing through the gas pipe 5 flows into the indoor unit 3 through the gas pipe connection part 34.

室内機3に流入した冷媒は、室内機ガス管92を流れて室内熱交換器31に流入し、室内ファン32の回転により室内機3の内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器31が凝縮器として機能し、室内熱交換器31で冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機3が設置された室内の暖房が行われる。 The refrigerant that flows into the indoor unit 3 flows through the indoor unit gas pipe 92 and into the indoor heat exchanger 31, where it exchanges heat with the indoor air drawn into the indoor unit 3 by the rotation of the indoor fan 32, and is condensed. In this way, the indoor heat exchanger 31 functions as a condenser, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchanger 31 is blown out into the room from an air outlet (not shown), heating the room in which the indoor unit 3 is installed.

室内熱交換器31から流出した冷媒は室内機液管91を流れ、液管接続部33を介して液管4に流出する。液管4を流れ閉鎖弁25を介して室外機2に流入した冷媒は室外機液管63を流れ、吐出温度センサ73で検出される吐出温度が目標吐出温度となるように開度が調整された主膨張弁27を通過する際に減圧される。主膨張弁27を通過した冷媒は、全開とされている第1副膨張弁を通過して室外熱交換器23に流入し、室外熱交換器23で室外ファン30の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から冷媒配管62に流出した冷媒は、四方弁22、吸入管66を流れ、圧縮機21に吸入されて再び圧縮される。 The refrigerant flowing out from the indoor heat exchanger 31 flows through the indoor unit liquid pipe 91 and flows out into the liquid pipe 4 through the liquid pipe connection part 33. The refrigerant that flows through the liquid pipe 4 and flows into the outdoor unit 2 through the stop valve 25 flows through the outdoor unit liquid pipe 63 and is reduced in pressure when passing through the main expansion valve 27, the opening of which is adjusted so that the discharge temperature detected by the discharge temperature sensor 73 becomes the target discharge temperature. The refrigerant that has passed through the main expansion valve 27 passes through the first auxiliary expansion valve, which is fully open, and flows into the outdoor heat exchanger 23, where it exchanges heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 30, and evaporates. The refrigerant that flows out from the outdoor heat exchanger 23 to the refrigerant piping 62 flows through the four-way valve 22 and the suction pipe 66, is sucked into the compressor 21, and is compressed again.

<調整暖房運転>
空気調和機1が調整暖房運転を行う場合の冷媒回路10の状態および動作は、熱交換量調整手段が動作する点を除いて、通常暖房運転時と同じである。通常暖房運転時の室内温度が設定温度に向けて上昇しているとき、例えば、暖房運転を開始してから室内温度が設定温度に到達するまでの間であって、設定温度から室内温度センサ81で検出する室内温度を減じた温度差が所定値未満となり、かつ、このときの圧縮機21が所定回転数以下で駆動していれば、熱交換量調整手段を動作させて調整暖房運転を行う。
<Adjustable heating operation>
The state and operation of the refrigerant circuit 10 when the air conditioner 1 performs the controlled heating operation is the same as that during normal heating operation, except that the heat exchange amount adjustment means operates. When the indoor temperature during normal heating operation is rising toward the set temperature, for example, between the start of heating operation and the time when the indoor temperature reaches the set temperature, if the temperature difference obtained by subtracting the indoor temperature detected by the indoor temperature sensor 81 from the set temperature is less than a predetermined value, and the compressor 21 is operating at a predetermined rotation speed or less at this time, the heat exchange amount adjustment means is operated to perform the controlled heating operation.

ここで、上述した圧縮機21の所定回転数は予め定められた値、例えば、圧縮機21の性能上の許容下限回転数より所定値(例えば10rps)高い回転数であり、この所定回転数以下で圧縮機21が駆動しているときは、室内機3で発揮される暖房能力が最低の能力であることが判明しているものである。また、上述した温度差の所定値も予め試験などを行って定められた値であり、室内温度が設定温度に向かって上昇しており、かつ、設定温度と室内温度との温度差がこの所定値未満であるときに、圧縮機21が所定回転数以下で駆動していれば、室内機3で発揮される暖房能力が過剰で、このままの状態で暖房運転を続けると空気調和機1がサーモオフとなることが判明している値である。なお、温度差の値は、一例として4℃である。 Here, the above-mentioned specified rotation speed of the compressor 21 is a predetermined value, for example, a rotation speed that is a predetermined value (for example, 10 rps) higher than the minimum allowable rotation speed in terms of the performance of the compressor 21, and it has been found that when the compressor 21 is driven at or below this specified rotation speed, the heating capacity exerted by the indoor unit 3 is the minimum capacity. In addition, the above-mentioned specified value of the temperature difference is also a value determined in advance through testing, etc., and it has been found that if the compressor 21 is driven at or below the specified rotation speed when the indoor temperature is rising toward the set temperature and the temperature difference between the set temperature and the indoor temperature is less than this specified value, the heating capacity exerted by the indoor unit 3 is excessive, and if the heating operation is continued in this state, the air conditioner 1 will be thermo-off. The value of the temperature difference is, for example, 4°C.

上記のように、通常暖房運転時に室内温度が設定温度に向けて上昇しており、かつ、設定温度と室内温度との温度差が所定値以下となったときに、圧縮機21が所定回転数以下で駆動している、つまり、室内機3で発揮される暖房能力が最低の能力である場合は、室内機3が設置された部屋の空調負荷が小さいなどの理由により、発揮されている暖房能力が空調負荷に対して過剰となっている。この状態のまま通常暖房運転を続ければ、室内温度が設定温度より所定温度、例えば1℃以上高い温度(以降、サーモオフ温度と記載する場合がある)となって空気調和機1がサーモオフ状態となり、その後室内温度が設定温度を下回ってサーモオン状態となり、またサーモオフ状態となるといったことを繰り返す恐れがある。 As described above, when the indoor temperature is rising toward the set temperature during normal heating operation and the temperature difference between the set temperature and the indoor temperature is below a predetermined value, the compressor 21 is operating at a predetermined rotation speed or less, i.e., the heating capacity exerted by the indoor unit 3 is at its minimum capacity, the heating capacity exerted is excessive for the air conditioning load due to reasons such as a small air conditioning load in the room in which the indoor unit 3 is installed. If normal heating operation is continued in this state, there is a risk that the indoor temperature will reach a predetermined temperature, for example a temperature 1°C or more higher than the set temperature (hereinafter sometimes referred to as the thermo-off temperature), causing the air conditioner 1 to enter the thermo-off state, and then the indoor temperature will fall below the set temperature, causing the thermo-on state, and then the thermo-off state will be repeated.

そこで、本実施形態の空気調和機1では、通常暖房運転時に室内温度が設定温度に向けて上昇しており、かつ、設定温度から室内温度を減じた温度差が所定値未満となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させる調整暖房運転を行う。具体的には、図2に示す副膨張弁開度テーブル300aを用いて、設定温度と室内温度との温度差に応じて、第1副膨張弁28aの開度と第2副膨張弁29aの開度を調整する。 In the air conditioner 1 of this embodiment, when the indoor temperature is rising toward the set temperature during normal heating operation and the temperature difference obtained by subtracting the indoor temperature from the set temperature falls below a predetermined value, if the compressor 21 is operating at a rotation speed equal to or lower than a predetermined rotation speed, an adjusted heating operation is performed to operate the heat exchange amount adjustment means. Specifically, the opening degree of the first sub-expansion valve 28a and the opening degree of the second sub-expansion valve 29a are adjusted according to the temperature difference between the set temperature and the indoor temperature, using the sub-expansion valve opening degree table 300a shown in FIG. 2.

ここで、副膨張弁開度テーブル300aは予め定められているものであり、例えば、室外機2の図示しない記憶部に記憶されているものである。図2に示すように、副膨張弁開度テーブル300aには、調整暖房運転時と後述する調整冷房運転時のそれぞれについて、設定温度と室内温度との温度差に応じて第1副膨張弁28aの開度と第2副膨張弁29aの開度が定められている。なお、副膨張弁開度テーブル300aでは、各服膨張弁の開度は全開の場合を100%、全閉の場合を0%とした百分率で表されている。 The sub-expansion valve opening table 300a is determined in advance and is stored, for example, in a storage unit (not shown) of the outdoor unit 2. As shown in FIG. 2, the sub-expansion valve opening table 300a determines the opening of the first sub-expansion valve 28a and the opening of the second sub-expansion valve 29a according to the temperature difference between the set temperature and the indoor temperature for each of the controlled heating operation and the controlled cooling operation described below. In the sub-expansion valve opening table 300a, the opening of each expansion valve is expressed as a percentage, with 100% being fully open and 0% being fully closed.

より具体的には、副膨張弁開度テーブル300aにおける調整暖房運転時では、設定温度から室内温度を減じた温度差が4℃以上、つまり、室内温度が設定温度より4℃以上低い温度である場合は、空気調和機1は調整暖房運転ではなく通常暖房運転を行うため、第1副膨張弁28aの開度と第2副膨張弁29aの開度はそれぞれ100%(全開)となっている。一般的に、二重管熱交換器である内部熱交換器24aは流路抵抗が大きいため、第1副膨張弁28aの開度と第2副膨張弁29aの開度とがそれぞれ全開となっていれば、第1分岐管67aや第2分岐管68aには冷媒がほとんど流れない。 More specifically, during controlled heating operation in the sub-expansion valve opening table 300a, if the temperature difference obtained by subtracting the indoor temperature from the set temperature is 4°C or more, that is, if the indoor temperature is 4°C or more lower than the set temperature, the air conditioner 1 performs normal heating operation rather than controlled heating operation, so the opening of the first sub-expansion valve 28a and the opening of the second sub-expansion valve 29a are each 100% (fully open). Generally, the internal heat exchanger 24a, which is a double-pipe heat exchanger, has a large flow resistance, so if the opening of the first sub-expansion valve 28a and the opening of the second sub-expansion valve 29a are both fully open, almost no refrigerant flows through the first branch pipe 67a or the second branch pipe 68a.

また、設定温度から室内温度を減じた温度差が-1℃以上0℃未満、つまり、室内温度が設定温度より高い温度であり、かつ、室内温度がサーモオフ温度より低い温度である場合は、第1副膨張弁28aの開度と第2副膨張弁29aの開度はそれぞれ0%(全閉)となっている。このように、第1副膨張弁28aの開度と第2副膨張弁29aの開度をそれぞれ全閉とすれば、第1分岐管67aと第2分岐管68aに流れる冷媒量がそれぞれ最大となり、内部熱交換器24aで第1分岐管67aを流れる冷媒と第2分岐管68aを流れる冷媒との熱交換量が最大となる。これにより、室内熱交換器31における冷媒と室内空気との熱交換量が最小となって室内機3で発揮される暖房能力も最小となるので、室内温度が上昇して空気調和機1がサーモオフ状態となることを抑制できる。 In addition, when the temperature difference obtained by subtracting the indoor temperature from the set temperature is -1°C or more and less than 0°C, that is, when the indoor temperature is higher than the set temperature and lower than the thermo-off temperature, the opening degree of the first sub-expansion valve 28a and the opening degree of the second sub-expansion valve 29a are each 0% (fully closed). In this way, if the opening degree of the first sub-expansion valve 28a and the opening degree of the second sub-expansion valve 29a are each fully closed, the amount of refrigerant flowing through the first branch pipe 67a and the second branch pipe 68a is maximized, and the amount of heat exchange between the refrigerant flowing through the first branch pipe 67a and the refrigerant flowing through the second branch pipe 68a in the internal heat exchanger 24a is maximized. As a result, the amount of heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 31 is minimized, and the heating capacity exerted by the indoor unit 3 is also minimized, so that it is possible to prevent the indoor temperature from rising and the air conditioner 1 from entering the thermo-off state.

そして、設定温度から室内温度を減じた温度差が0℃以上4℃未満である場合は、この温度差を1℃ずつ区分した領域を設け、温度差の高い領域から低い領域に向かうのにつれて、第1副膨張弁28aの開度と第2副膨張弁29aの開度はそれぞれ80%→20%へと20%刻みで開度が小さくなるように定められている。このように、第1副膨張弁28aの開度と第2副膨張弁29aの開度をそれぞれ温度差に応じて変化させることで、第1分岐管67aと第2分岐管68aに流れる冷媒量がそれぞれ変化し、内部熱交換器24aで第1分岐管67aを流れる冷媒と第2分岐管68aを流れる冷媒との熱交換量が変化する。これにより、室内熱交換器31における冷媒と室内空気との熱交換量が変化するので、室内機3で発揮される暖房能力も変化させることができる。なお、副膨張弁開度テーブル300aにおける調整冷房運転時では、調整暖房運転時と比べて温度差が室内温度から設定温度を減じたものとなっている点を除いて、各温度差に応じた第1副膨張弁28aの開度と第2副膨張弁29aの開度は同じであるため、詳細な説明は省略する。 And, when the temperature difference obtained by subtracting the indoor temperature from the set temperature is 0°C or more and less than 4°C, the temperature difference is divided into regions in increments of 1°C, and the opening degree of the first sub-expansion valve 28a and the opening degree of the second sub-expansion valve 29a are set so that the opening degree decreases in increments of 20% from 80% to 20% as the temperature difference moves from the high temperature difference region to the low temperature difference region. In this way, by changing the opening degree of the first sub-expansion valve 28a and the opening degree of the second sub-expansion valve 29a according to the temperature difference, the amount of refrigerant flowing through the first branch pipe 67a and the second branch pipe 68a changes, respectively, and the amount of heat exchange between the refrigerant flowing through the first branch pipe 67a and the refrigerant flowing through the second branch pipe 68a in the internal heat exchanger 24a changes. As a result, the amount of heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 31 changes, and the heating capacity exhibited by the indoor unit 3 can also be changed. In addition, during controlled cooling operation in the sub-expansion valve opening table 300a, the opening of the first sub-expansion valve 28a and the opening of the second sub-expansion valve 29a corresponding to each temperature difference are the same, except that the temperature difference is the indoor temperature minus the set temperature compared to controlled heating operation, so detailed explanations are omitted.

調整暖房運転を行っているときは、上述した副膨張弁開度テーブル300aにおける調整暖房運転時の項目を参照し、温度差に応じて第1副膨張弁28aの開度と第2副膨張弁29aの開度をそれぞれ調整する。第1副膨張弁28aの開度を温度差に応じて全開状態より小さくしていくことによって、主膨張弁27を通過して室外機液管63を流れる冷媒の一部(第1副膨張弁28aの開度に見合った量の冷媒)が第1分岐管67aを流れる。一方で、第2副膨張弁29aの開度を温度差に応じて全開状態より小さくしていくことによって、四方弁22から流出して室外機ガス管64を流れる冷媒の一部(第2副膨張弁28aの開度に見合った量の冷媒)が第2分岐管68aを流れる。なお、図1では、第1分岐管67aにおける冷媒の流れと第2分岐管68aにおける冷媒の流れとを、それぞれ破線矢印で示している。 When the regulated heating operation is performed, the opening degree of the first sub-expansion valve 28a and the opening degree of the second sub-expansion valve 29a are adjusted according to the temperature difference by referring to the item for regulated heating operation in the above-mentioned sub-expansion valve opening degree table 300a. By making the opening degree of the first sub-expansion valve 28a smaller than the fully open state according to the temperature difference, a part of the refrigerant (amount of refrigerant corresponding to the opening degree of the first sub-expansion valve 28a) that passes through the main expansion valve 27 and flows through the outdoor unit liquid pipe 63 flows through the first branch pipe 67a. On the other hand, by making the opening degree of the second sub-expansion valve 29a smaller than the fully open state according to the temperature difference, a part of the refrigerant (amount of refrigerant corresponding to the opening degree of the second sub-expansion valve 28a) that flows out of the four-way valve 22 and flows through the outdoor unit gas pipe 64 flows through the second branch pipe 68a. In FIG. 1, the flow of the refrigerant in the first branch pipe 67a and the flow of the refrigerant in the second branch pipe 68a are respectively indicated by dashed arrows.

そして、第1分岐管67aを流れる冷媒と第2分岐管68aを流れる冷媒とが、内部熱交換器24aで熱交換を行う。このとき、内部熱交換器24aにおける、第1分岐管67aを流れる冷媒と第2分岐管68aを流れる冷媒との熱交換量は、第1分岐管67aを流れる冷媒の量と第2分岐管68aを流れる冷媒の量で決まる、つまり、第1副膨張弁28aの開度と第2副膨張弁29aの開度によって内部熱交換器24aにおける熱交換量が決定する。 The refrigerant flowing through the first branch pipe 67a and the refrigerant flowing through the second branch pipe 68a exchange heat in the internal heat exchanger 24a. At this time, the amount of heat exchanged between the refrigerant flowing through the first branch pipe 67a and the refrigerant flowing through the second branch pipe 68a in the internal heat exchanger 24a is determined by the amount of refrigerant flowing through the first branch pipe 67a and the amount of refrigerant flowing through the second branch pipe 68a. In other words, the amount of heat exchanged in the internal heat exchanger 24a is determined by the opening degree of the first sub-expansion valve 28a and the opening degree of the second sub-expansion valve 29a.

以上に記載したように、内部熱交換器24aで第1分岐管67aを流れる冷媒と第2分岐管68aを流れる冷媒とを熱交換させ、かつ、設定温度から室内温度を減じた温度差に応じて、第1副膨張弁28aの開度と第2副膨張弁29aの開度をそれぞれ変化させる。そして、内部熱交換器24aで第1分岐管67aを流れる冷媒と第2分岐管68aを流れる冷媒との熱交換量が増加するほど、室内熱交換器31における熱交換量は減少する。このように、調整暖房運転時に熱交換量調整手段を動作させることによって、室内熱交換器31における熱交換量を減少させて室内機3で発揮される暖房能力を減少させることで、室内温度の上昇を抑制でき、かつ、室内温度がサーモオフ温度以下に留まるようにできるので、空気調和機1が頻繁にサーモオフ状態とサーモオン状態を繰り返すことを防止できる。 As described above, the internal heat exchanger 24a exchanges heat between the refrigerant flowing through the first branch pipe 67a and the refrigerant flowing through the second branch pipe 68a, and changes the opening degree of the first sub-expansion valve 28a and the opening degree of the second sub-expansion valve 29a according to the temperature difference obtained by subtracting the indoor temperature from the set temperature. The more the amount of heat exchange between the refrigerant flowing through the first branch pipe 67a and the refrigerant flowing through the second branch pipe 68a in the internal heat exchanger 24a increases, the less the amount of heat exchange in the indoor heat exchanger 31 decreases. In this way, by operating the heat exchange amount adjustment means during the adjusted heating operation, the amount of heat exchange in the indoor heat exchanger 31 is reduced to reduce the heating capacity exerted by the indoor unit 3, thereby suppressing the rise in the indoor temperature and keeping the indoor temperature below the thermo-off temperature, and thus preventing the air conditioner 1 from frequently repeating the thermo-off state and the thermo-on state.

なお、空気調和機1が通常冷房運転あるいは調整冷媒運転を行う場合、図1に示す四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートcとポートdとが連通するよう切り替えられて、冷媒回路10が、室外熱交換器23が凝縮器として機能するとともに室内熱交換器31が蒸発器として機能する冷房サイクルとなる。 When the air conditioner 1 is in normal cooling operation or adjusted refrigerant operation, the four-way valve 22 shown in FIG. 1 is switched to the state shown by the dashed lines, that is, so that ports a and b of the four-way valve 22 are in communication with each other, and so that ports c and d of the four-way valve 22 are in communication with each other, and the refrigerant circuit 10 is in a cooling cycle in which the outdoor heat exchanger 23 functions as a condenser and the indoor heat exchanger 31 functions as an evaporator.

通常冷房運転時は、第1副膨張弁28aと第2副膨張弁29aとはそれぞれの開度が全開とされる。通常冷房運転時に、室内温度が設定温度に向かって低下しており、かつ、室内温度から設定温度を減じた温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させる調整冷房運転を行う。具体的には、図2に示す副膨張弁開度テーブル300aにおける調整冷房運転時の項目を参照して第1副膨張弁28aの開度と第2副膨張弁29aの開度をそれぞれ調整する、つまり、熱交換量調整手段を動作させて室内熱交換器31における熱交換量を減少させることで、室内機3で発揮される冷房能力を低下させる。なお、調整冷房運転は、通常冷房運転時に圧縮機21の回転数が所定回転数以下で駆動しており、かつ、室内温度から設定温度を減じた温度差が所定値未満となれば行うようにすればよい。 During normal cooling operation, the first sub-expansion valve 28a and the second sub-expansion valve 29a are fully opened. During normal cooling operation, when the indoor temperature is decreasing toward the set temperature and the temperature difference obtained by subtracting the set temperature from the indoor temperature is equal to or less than a predetermined value, if the compressor 21 is operating at a rotation speed equal to or less than a predetermined rotation speed, the heat exchange amount adjustment means is operated to operate the heat exchange amount adjustment means to perform the adjusted cooling operation. Specifically, the opening degree of the first sub-expansion valve 28a and the opening degree of the second sub-expansion valve 29a are adjusted by referring to the item for the adjusted cooling operation in the sub-expansion valve opening degree table 300a shown in FIG. 2, that is, the heat exchange amount adjustment means is operated to reduce the heat exchange amount in the indoor heat exchanger 31, thereby reducing the cooling capacity exerted by the indoor unit 3. The adjusted cooling operation may be performed if the compressor 21 is operating at a rotation speed equal to or less than a predetermined rotation speed during normal cooling operation and the temperature difference obtained by subtracting the set temperature from the indoor temperature is equal to or less than a predetermined value.

以上説明したように、本実施形態の空気調和機1が空調運転を行っているときに、室内温度が設定温度に向かって上昇あるいは低下しており、かつ、室内温度と設定温度の温度差が所定値未満となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させて調整暖房運転あるいは調整冷房運転を行う。これにより、空気調和機1が頻繁にサーモオフ状態とサーモオン状態とを繰り返すことを防止できるので、圧縮機21の頻繁な停止/再起動に起因する省エネ性の悪化や圧縮域21の寿命が短くなることを防止できる。 As described above, when the air conditioner 1 of this embodiment is performing air conditioning operation, if the indoor temperature is rising or falling toward the set temperature and the temperature difference between the indoor temperature and the set temperature is less than a predetermined value, and the compressor 21 is operating at a rotation speed equal to or lower than a predetermined rotation speed, the heat exchange amount adjustment means is operated to perform regulated heating operation or regulated cooling operation. This prevents the air conditioner 1 from frequently repeatedly switching between the thermo-off state and the thermo-on state, thereby preventing a deterioration in energy efficiency and a shortened lifespan of the compression region 21 due to frequent stopping and restarting of the compressor 21.

次に、本発明の第2の実施形態について、主に図3を用いて説明する。本実施形態の空気調和機1は、熱交換量調整手段が第1の実施形態と異なる点を除いて、第1の実施形態と同じである。このため、通常暖房運転時、調整暖房運転時、通常冷房運転時、および、調整冷房運転時の冷媒回路10の動作などについては詳細な説明を省略し、熱交換量調整手段の構成およびその働きについてのみ説明する。 Next, a second embodiment of the present invention will be described mainly with reference to FIG. 3. The air conditioner 1 of this embodiment is the same as the first embodiment, except that the heat exchange amount adjustment means is different from that of the first embodiment. For this reason, detailed explanations of the operation of the refrigerant circuit 10 during normal heating operation, controlled heating operation, normal cooling operation, and controlled cooling operation will be omitted, and only the configuration and function of the heat exchange amount adjustment means will be described.

図3に示す内部熱交換器24bと、第1副膨張弁28bと、第2副膨張弁29aと、第1分流管67aと、第2分流管68aとで、本実施形態の熱交換量調整手段は形成される。 The heat exchange amount adjustment means of this embodiment is formed by the internal heat exchanger 24b, the first sub-expansion valve 28b, the second sub-expansion valve 29a, the first branch pipe 67a, and the second branch pipe 68a shown in FIG. 3.

第1副膨張弁28bは電子膨張弁であり、室外機液管63における主膨張弁27と閉鎖弁25の間に設けられている。第1副膨張弁28bの開度が調整されることで、後述する第1分流管67bを流れる冷媒の量が調整される。第2副膨張弁29bは電子膨張弁であり、冷媒配管62に設けられている。第2副膨張弁29bの開度が調整されることで、後述する第2分流管68bを流れる冷媒の量が調整される。 The first sub-expansion valve 28b is an electronic expansion valve and is provided between the main expansion valve 27 and the shutoff valve 25 in the outdoor unit liquid pipe 63. The amount of refrigerant flowing through the first branch pipe 67b (described later) is adjusted by adjusting the opening degree of the first sub-expansion valve 28b. The second sub-expansion valve 29b is an electronic expansion valve and is provided in the refrigerant pipe 62. The amount of refrigerant flowing through the second branch pipe 68b (described later) is adjusted by adjusting the opening degree of the second sub-expansion valve 29b.

内部熱交換器24bは、例えば二重管熱交換器であり、第1分流管67bと第2分流管68bとが接続されて第1分流管67bを流れる冷媒と第2分流管68bを流れる冷媒とを熱交換させる。ここで、第1分流管67bは、一端が室外機液管63における主膨張弁27と第1副膨張弁28bの間に接続され、他端が室外機液管63における第1副膨張弁28bと閉鎖弁25の間に接続される。つまり、第1分流管67bは、第1副膨張弁28bをバイパスするように室外機冷媒回路10aに接続される。また、第2分流管68bは、一端が冷媒配管62における四方弁22と第2副膨張弁29bの間に接続され、他端が冷媒配管62における第2副膨張弁29bと室外熱交換器23の間に接続される。つまり、第2分流管68bは、第2副膨張弁29bをバイパスするように室外機冷媒回路10aに接続される。 The internal heat exchanger 24b is, for example, a double-pipe heat exchanger, in which the first branch pipe 67b and the second branch pipe 68b are connected to exchange heat between the refrigerant flowing through the first branch pipe 67b and the refrigerant flowing through the second branch pipe 68b. Here, the first branch pipe 67b is connected at one end between the main expansion valve 27 and the first sub-expansion valve 28b in the outdoor unit liquid pipe 63, and at the other end between the first sub-expansion valve 28b and the stop valve 25 in the outdoor unit liquid pipe 63. In other words, the first branch pipe 67b is connected to the outdoor unit refrigerant circuit 10a so as to bypass the first sub-expansion valve 28b. In addition, the second branch pipe 68b is connected at one end between the four-way valve 22 and the second sub-expansion valve 29b in the refrigerant piping 62, and at the other end between the second sub-expansion valve 29b and the outdoor heat exchanger 23 in the refrigerant piping 62. In other words, the second branch pipe 68b is connected to the outdoor unit refrigerant circuit 10a so as to bypass the second sub-expansion valve 29b.

以上に説明した熱交換量調整手段を、本実施形態の空気調和機1が調整暖房運転あるいは調整冷房運転を行う際に動作させる。具体的には、図2に示す副膨張弁開度テーブル300aを用い、設定温度と室内温度との温度差に応じて、第1副膨張弁28bおよび第2副膨張弁29bのそれぞれの開度を調整する。 The heat exchange amount adjustment means described above is operated when the air conditioner 1 of this embodiment performs regulated heating operation or regulated cooling operation. Specifically, the sub-expansion valve opening degree table 300a shown in FIG. 2 is used to adjust the opening degrees of the first sub-expansion valve 28b and the second sub-expansion valve 29b according to the temperature difference between the set temperature and the room temperature.

空気調和機1が通常暖房運転を行っているときに、室内温度が設定温度に向かって上昇しており、かつ、設定温度から室内温度を減じた温度差が所定値未満となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させる調整暖房運転を行う。具体的には、図2に示す副膨張弁開度テーブル300aの調整暖房運転時の項目を参照し、温度差に応じて第1副膨張弁28bの開度と第2副膨張弁29bの開度をそれぞれ調整する。これにより、第1分岐管67bと第2分岐管68bを流れる冷媒量が調整され、第1分岐管67bを流れる冷媒と第2分岐管68bを流れる冷媒とが内部熱交換器24bで熱交換を行うことで、室内熱交換器31における熱交換量が減少するので、室内機3で発揮される暖房能力が低下して室内温度の上昇を抑制できる。なお、図3では、第1分岐管67bにおける冷媒の流れと第2分岐管68bにおける冷媒の流れを、それぞれ破線矢印で示している。 When the air conditioner 1 is performing normal heating operation, if the indoor temperature is rising toward the set temperature and the temperature difference obtained by subtracting the indoor temperature from the set temperature is less than a predetermined value, if the compressor 21 is operating at a rotation speed equal to or lower than a predetermined rotation speed, the air conditioner 1 performs controlled heating operation to operate the heat exchange amount adjustment means. Specifically, the items for controlled heating operation in the sub-expansion valve opening table 300a shown in FIG. 2 are referenced, and the opening of the first sub-expansion valve 28b and the opening of the second sub-expansion valve 29b are adjusted according to the temperature difference. As a result, the amount of refrigerant flowing through the first branch pipe 67b and the second branch pipe 68b is adjusted, and the refrigerant flowing through the first branch pipe 67b and the refrigerant flowing through the second branch pipe 68b exchange heat in the internal heat exchanger 24b, thereby reducing the amount of heat exchanged in the indoor heat exchanger 31, and the heating capacity exerted by the indoor unit 3 is reduced, thereby suppressing the rise in the indoor temperature. In FIG. 3, the flow of refrigerant in the first branch pipe 67b and the flow of refrigerant in the second branch pipe 68b are indicated by dashed arrows, respectively.

一方、空気調和機1が通常冷房運転を行っているときに、室内温度が設定温度に向かって低下しており、かつ、室内温度から設定温度を減じた温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させる調整冷房運転を行う。具体的には、図2に示す副膨張弁開度テーブル300aの調整冷房運転時の項目を参照し、温度差に応じて第1副膨張弁28bの開度と第2副膨張弁29bの開度をそれぞれ調整する。これにより、第1分岐管67bと第2分岐管68bを流れる冷媒量が調整され、第1分岐管67bを流れる冷媒と第2分岐管68bを流れる冷媒とが内部熱交換器24bで熱交換を行うことで、室外熱交換器23における熱交換量が減少する、ひいては、室内熱交換器31における熱交換量が減少するので、室内機3で発揮される冷房能力が低下して室内温度の低下を抑制できる。 On the other hand, when the air conditioner 1 is performing normal cooling operation, if the indoor temperature is decreasing toward the set temperature and the temperature difference obtained by subtracting the set temperature from the indoor temperature is equal to or less than a predetermined value, and the compressor 21 is operating at a rotation speed equal to or less than a predetermined rotation speed, the air conditioner 1 performs a controlled cooling operation in which the heat exchange amount adjustment means is operated. Specifically, the items for controlled cooling operation in the sub-expansion valve opening table 300a shown in FIG. 2 are referenced, and the opening degree of the first sub-expansion valve 28b and the opening degree of the second sub-expansion valve 29b are adjusted according to the temperature difference. As a result, the amount of refrigerant flowing through the first branch pipe 67b and the second branch pipe 68b is adjusted, and the refrigerant flowing through the first branch pipe 67b and the refrigerant flowing through the second branch pipe 68b exchange heat in the internal heat exchanger 24b, thereby reducing the amount of heat exchange in the outdoor heat exchanger 23, and thus reducing the amount of heat exchange in the indoor heat exchanger 31. This reduces the cooling capacity exerted by the indoor unit 3, thereby suppressing the decrease in the indoor temperature.

以上説明したように、本実施形態の空気調和機1が空調運転を行っているときに、室内温度が設定温度に向かって上昇あるいは低下しており、かつ、室内温度と設定温度の温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させて調整暖房運転あるいは調整冷房運転を行う。これにより、空気調和機1が頻繁にサーモオフ状態とサーモオン状態とを繰り返すことを防止できるので、圧縮機21の頻繁な停止/再起動に起因する省エネ性の悪化や圧縮域21の寿命が短くなることを防止できる。 As described above, when the air conditioner 1 of this embodiment is performing air conditioning operation, if the indoor temperature is rising or falling toward the set temperature and the temperature difference between the indoor temperature and the set temperature is below a predetermined value, and the compressor 21 is operating at a rotation speed below a predetermined rotation speed, the heat exchange amount adjustment means is operated to perform regulated heating operation or regulated cooling operation. This prevents the air conditioner 1 from frequently repeatedly switching between the thermo-off state and the thermo-on state, thereby preventing a deterioration in energy efficiency and a shortened lifespan of the compression region 21 due to frequent stopping and restarting of the compressor 21.

なお、第1の実施形態では、調整暖房運転時に室外機2から室内機3へと流れる冷媒の一部を第2分岐管68aへと流し、内部熱交換器24aで第1分岐管67aを流れる冷媒と熱交換させることで、暖房運転時に凝縮器として機能する室内熱交換器31における熱交換量を減少させていた。つまり、第1の実施形態は調整冷房運転時より調整暖房運転時により好適に作用するものであった。これに対し、本実施形態では、調整冷房運転時に凝縮器として機能する室外熱交換器23へと流れる冷媒の一部を第2分岐管68aへと流し、内部熱交換器24aで第1分岐管67aを流れる冷媒と熱交換させることで、冷房運転時に凝縮器として機能する室外熱交換器23における熱交換量を減少させ、ひいては、室内熱交換器31における熱交換量を減少させるものである。このため、本実施形態は調整暖房運転時より調整冷房運転時により好適に作用するものである。 In the first embodiment, a part of the refrigerant flowing from the outdoor unit 2 to the indoor unit 3 during the controlled heating operation is caused to flow to the second branch pipe 68a, and is heat exchanged with the refrigerant flowing through the first branch pipe 67a in the internal heat exchanger 24a, thereby reducing the amount of heat exchanged in the indoor heat exchanger 31 functioning as a condenser during the heating operation. In other words, the first embodiment works better during the controlled heating operation than during the controlled cooling operation. In contrast, in the present embodiment, a part of the refrigerant flowing to the outdoor heat exchanger 23 functioning as a condenser during the controlled cooling operation is caused to flow to the second branch pipe 68a, and is heat exchanged with the refrigerant flowing through the first branch pipe 67a in the internal heat exchanger 24a, thereby reducing the amount of heat exchanged in the outdoor heat exchanger 23 functioning as a condenser during the cooling operation, and thus reducing the amount of heat exchanged in the indoor heat exchanger 31. For this reason, the present embodiment works better during the controlled cooling operation than during the controlled heating operation.

次に、本発明の第3の実施形態について、図4および図5を用いて説明する。第1の実施形態および第2の実施形態では、熱交換量調整手段によって室内熱交換器31における熱交換量を減少させることで、室内温度が、空気調和機1がサーモオフとなる温度に到達しないようした。これに対し、本実施形態の空気調和機1では、熱交換量調整手段が冷媒回路10における冷媒循環量を減少させることで、室内熱交換器31における熱交換量を減少させる。 Next, a third embodiment of the present invention will be described with reference to Figures 4 and 5. In the first and second embodiments, the heat exchange amount adjustment means reduces the heat exchange amount in the indoor heat exchanger 31 to prevent the indoor temperature from reaching the temperature at which the air conditioner 1 turns off. In contrast, in the air conditioner 1 of this embodiment, the heat exchange amount adjustment means reduces the amount of refrigerant circulating in the refrigerant circuit 10 to reduce the heat exchange amount in the indoor heat exchanger 31.

なお、本実施形態の空気調和機1は、熱交換量調整手段が第1の実施形態と異なる点を除いて、第1の実施形態と同じである。このため、暖房運転時や冷房運転時の冷媒回路10の動作などについては詳細な説明を省略し、熱交換量調整手段の構成およびその働きについてのみ説明する。 The air conditioner 1 of this embodiment is the same as the first embodiment, except that the heat exchange amount adjustment means is different from that of the first embodiment. For this reason, detailed explanations of the operation of the refrigerant circuit 10 during heating operation and cooling operation will be omitted, and only the configuration and function of the heat exchange amount adjustment means will be explained.

図4に示す第1副膨張弁28cと、高低圧バイパス管69とで、本実施形態の熱交換量調整手段は形成される。高低圧バイパス管69は、一端が吐出管61に接続され、他端が吸入管66に接続される。つまり、高低圧バイパス管69は、圧縮機21の冷媒吐出側と冷媒吸入側とをバイパスする。第1副膨張弁28cは高低圧バイパス管69に設けられる電子膨張弁であり、その開度が調整されることで、圧縮機21から吐出管61に吐出された冷媒のうち、第1副膨張弁28cの開度に応じた量の冷媒を高低圧バイパス管69に流す。 The heat exchange amount adjustment means of this embodiment is formed by the first sub-expansion valve 28c and the high-low pressure bypass pipe 69 shown in FIG. 4. One end of the high-low pressure bypass pipe 69 is connected to the discharge pipe 61, and the other end is connected to the suction pipe 66. In other words, the high-low pressure bypass pipe 69 bypasses the refrigerant discharge side and the refrigerant suction side of the compressor 21. The first sub-expansion valve 28c is an electronic expansion valve provided in the high-low pressure bypass pipe 69, and by adjusting the opening degree thereof, the amount of refrigerant discharged from the compressor 21 to the discharge pipe 61 that corresponds to the opening degree of the first sub-expansion valve 28c is allowed to flow to the high-low pressure bypass pipe 69.

以上に説明した熱交換量調整手段を、本実施形態の空気調和機1が調整暖房運転あるいは調整冷房運転を行う際に動作させる。具体的には、図5に示す副膨張弁開度テーブル300bを用いて、設定温度と室内温度との温度差に応じて、第1副膨張弁28cの開度を調整する。 The heat exchange amount adjustment means described above is operated when the air conditioner 1 of this embodiment performs regulated heating operation or regulated cooling operation. Specifically, the opening of the first sub-expansion valve 28c is adjusted according to the temperature difference between the set temperature and the room temperature using the sub-expansion valve opening table 300b shown in FIG. 5.

ここで、副膨張弁開度テーブル300bは予め定められているものであり、例えば、室外機2の図示しない記憶部に記憶されているものである。図5に示すように、副膨張弁開度テーブル300bには、調整暖房運転時と後述する調整冷房運転時のそれぞれについて、設定温度と室内温度との温度差に応じて第1副膨張弁28cの開度が定められている。なお、副膨張弁開度テーブル300bでは、第1副膨張弁28cの開度は全開の場合を100%、全閉の場合を0%とした百分率で表されている。 The sub-expansion valve opening table 300b is determined in advance and is stored, for example, in a storage unit (not shown) of the outdoor unit 2. As shown in FIG. 5, the sub-expansion valve opening table 300b determines the opening of the first sub-expansion valve 28c according to the temperature difference between the set temperature and the indoor temperature during both regulated heating operation and regulated cooling operation (described later). In the sub-expansion valve opening table 300b, the opening of the first sub-expansion valve 28c is expressed as a percentage, with 100% being fully open and 0% being fully closed.

より具体的には、副膨張弁開度テーブル300bにおける調整暖房運転時では、設定温度から室内温度を減じた温度差が4℃以上、つまり、室内温度が設定温度より4℃以上低い温度である場合は、空気調和機1は調整暖房運転ではなく通常暖房運転を行うため、第1副膨張弁28cの開度は0%(全閉)となっている。このように、第1副膨張弁28cの開度が全閉とされることで、高低差バイパス管69に冷媒が流れないので、通常暖房運転は冷媒回路10を循環する冷媒の量が減少しない。 More specifically, during controlled heating operation in the sub-expansion valve opening table 300b, if the temperature difference obtained by subtracting the indoor temperature from the set temperature is 4°C or more, in other words, if the indoor temperature is 4°C or more lower than the set temperature, the air conditioner 1 performs normal heating operation rather than controlled heating operation, and the opening of the first sub-expansion valve 28c is 0% (fully closed). In this way, by fully closing the opening of the first sub-expansion valve 28c, no refrigerant flows through the elevation difference bypass pipe 69, so the amount of refrigerant circulating through the refrigerant circuit 10 does not decrease during normal heating operation.

また、設定温度から室内温度を減じた温度差が-1℃以上0℃未満、つまり、室内温度が設定温度より高い温度であり、かつ、空気調和機1がサーモオフ温度より低い温度である場合は、室内温度が上昇して空気調和機1がサーモオフ状態とならないようにするために、第1副膨張弁28cの開度は100%(全開)となっている。このように、第1副膨張弁28cの開度が全開とされることで、高低差バイパス管69に冷媒が多く流れるので、通常暖房運転は冷媒回路10を循環する冷媒の量が減少し、ひいては、室内熱交換器31における熱交換量が減少する。なお、図4では、高低圧バイパス管69における冷媒の流れを、破線矢印で示している。 In addition, when the temperature difference obtained by subtracting the indoor temperature from the set temperature is -1°C or more and less than 0°C, that is, when the indoor temperature is higher than the set temperature and lower than the thermo-off temperature of the air conditioner 1, the opening degree of the first sub-expansion valve 28c is set to 100% (fully open) to prevent the indoor temperature from rising and the air conditioner 1 from entering the thermo-off state. In this way, by fully opening the first sub-expansion valve 28c, a large amount of refrigerant flows through the elevation difference bypass pipe 69, so that the amount of refrigerant circulating through the refrigerant circuit 10 is reduced during normal heating operation, and the amount of heat exchanged in the indoor heat exchanger 31 is reduced. In FIG. 4, the flow of refrigerant through the high and low pressure bypass pipe 69 is indicated by dashed arrows.

そして、設定温度から室内温度を減じた温度差が0℃以上4℃未満である場合は、この温度差を1℃ずつ区分した領域を設け、温度差の高い領域から低い領域に向かうのにつれて、第1副膨張弁28aの開度と第2副膨張弁29aの開度はそれぞれ20%→80%へと20%刻みで開度が大きくなるように定められている。このように、第1副膨張弁28aの開度を温度差に応じて変化させることで、高低差バイパス管69を流れる冷媒量が変化し、ひいては、室内熱交換器31へと流れる冷媒量が変化するので、室内機3で発揮される暖房能力も変化させることができる。なお、副膨張弁開度テーブル300bにおける調整冷房運転時では、調整暖房運転時と比べて温度差が室内温度から設定温度を減じたものとなっている点を除いて、各温度差に応じた第1副膨張弁28cの開度は同じであるため、詳細な説明は省略する。 When the temperature difference obtained by subtracting the indoor temperature from the set temperature is 0°C or more and less than 4°C, the temperature difference is divided into regions in increments of 1°C, and the opening degree of the first sub-expansion valve 28a and the opening degree of the second sub-expansion valve 29a are set so that the opening degree increases in increments of 20% from 20% to 80% as the temperature difference moves from the high temperature difference region to the low temperature difference region. In this way, by changing the opening degree of the first sub-expansion valve 28a according to the temperature difference, the amount of refrigerant flowing through the elevation difference bypass pipe 69 changes, and thus the amount of refrigerant flowing to the indoor heat exchanger 31 changes, so that the heating capacity exerted by the indoor unit 3 can also be changed. Note that during the regulated cooling operation in the sub-expansion valve opening degree table 300b, the opening degree of the first sub-expansion valve 28c according to each temperature difference is the same as during the regulated heating operation, except that the temperature difference is the indoor temperature minus the set temperature compared to the regulated heating operation, so a detailed description is omitted.

空気調和機1が通常暖房運転を行っているときに、室内温度が設定温度に向かって上昇しており、かつ、設定温度から室内温度を減じた温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させる調整暖房運転を行う。調整暖房運転を行っているときは、上述した副膨張弁開度テーブル300bにおける調整暖房運転時の項目を参照し、温度差に応じて通常暖房運転時に全閉とされていた第1副膨張弁28cの開度を調整する。第1副膨張弁28cの開度を温度差に応じて大きくすることにより、圧縮機21から吐出管61に吐出された冷媒のうち、第1副膨張弁28cの開度に応じた量の冷媒が高低圧バイパス管69へと流れる。これにより、室外機2から室内機3へと流れる冷媒量が減少して室内熱交換器31における熱交換量が減少するので、室内機3で発揮される暖房能力が低下して室内温度の上昇を抑制できる。 When the air conditioner 1 is performing normal heating operation, if the indoor temperature is rising toward the set temperature and the temperature difference obtained by subtracting the indoor temperature from the set temperature becomes equal to or less than a predetermined value, and the compressor 21 is operating at a rotation speed equal to or less than a predetermined rotation speed, the air conditioner 1 performs a controlled heating operation in which the heat exchange amount adjustment means is operated. When the controlled heating operation is performed, the items for controlled heating operation in the sub-expansion valve opening table 300b described above are referenced, and the opening of the first sub-expansion valve 28c, which was fully closed during normal heating operation, is adjusted according to the temperature difference. By increasing the opening of the first sub-expansion valve 28c according to the temperature difference, of the refrigerant discharged from the compressor 21 to the discharge pipe 61, an amount of refrigerant according to the opening of the first sub-expansion valve 28c flows into the high-low pressure bypass pipe 69. As a result, the amount of refrigerant flowing from the outdoor unit 2 to the indoor unit 3 is reduced, and the amount of heat exchanged in the indoor heat exchanger 31 is reduced, so that the heating capacity exerted by the indoor unit 3 is reduced and the rise in the indoor temperature can be suppressed.

一方、空気調和機1が通常冷房運転を行っているときに、室内温度が設定温度に向かって低下しており、かつ、室内温度から設定温度を減じた温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させる調整冷房運転を行う。調整冷房運転を行っているときは、上述した副膨張弁開度テーブル300bにおける調整暖房運転時の項目を参照し、温度差に応じて通常暖房運転時に全閉とされていた第1副膨張弁28cの開度を調整する。第1副膨張弁28cの開度を大きくすることにより、圧縮機21から吐出管61に吐出された冷媒のうち、第1副膨張弁28cの開度に応じた量の冷媒が高低圧バイパス管69へと流れる。これにより、室外機2から室内機3へと流れる冷媒量が減少して室内熱交換器31における熱交換量が減少するので、室内機3で発揮される冷房能力が低下して室内温度の低下を抑制できる。 On the other hand, when the air conditioner 1 is performing normal cooling operation, if the indoor temperature is decreasing toward the set temperature and the temperature difference obtained by subtracting the set temperature from the indoor temperature is equal to or less than a predetermined value, and the compressor 21 is operating at a rotation speed equal to or less than a predetermined rotation speed, the air conditioner 1 performs a controlled cooling operation in which the heat exchange amount adjustment means is operated. When the controlled cooling operation is performed, the items for controlled heating operation in the above-mentioned sub-expansion valve opening table 300b are referenced, and the opening degree of the first sub-expansion valve 28c, which was fully closed during normal heating operation, is adjusted according to the temperature difference. By increasing the opening degree of the first sub-expansion valve 28c, of the refrigerant discharged from the compressor 21 to the discharge pipe 61, an amount of refrigerant corresponding to the opening degree of the first sub-expansion valve 28c flows into the high-low pressure bypass pipe 69. As a result, the amount of refrigerant flowing from the outdoor unit 2 to the indoor unit 3 is reduced, and the amount of heat exchanged in the indoor heat exchanger 31 is reduced, so that the cooling capacity exerted by the indoor unit 3 is reduced and the drop in the indoor temperature can be suppressed.

以上説明したように、本実施形態の空気調和機1が空調運転を行っているときに、室内温度が設定温度に向かって上昇あるいは低下しており、かつ、室内温度と設定温度の温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させて調整暖房運転あるいは調整冷房運転を行う。これにより、空気調和機1が頻繁にサーモオフ状態とサーモオン状態とを繰り返すことを防止できるので、圧縮機21の頻繁な停止/再起動に起因する省エネ性の悪化や圧縮域21の寿命が短くなることを防止できる。 As described above, when the air conditioner 1 of this embodiment is performing air conditioning operation, if the indoor temperature is rising or falling toward the set temperature and the temperature difference between the indoor temperature and the set temperature is below a predetermined value, and the compressor 21 is operating at a rotation speed below a predetermined rotation speed, the heat exchange amount adjustment means is operated to perform regulated heating operation or regulated cooling operation. This prevents the air conditioner 1 from frequently repeatedly switching between the thermo-off state and the thermo-on state, thereby preventing a deterioration in energy efficiency and a shortened lifespan of the compression region 21 due to frequent stopping and restarting of the compressor 21.

なお、第1の実施形態および第2の実施形態では、それぞれの熱交換量調整手段が内部熱交換器と、2個の副膨張弁と、2本の分岐管とで形成されていた。これに対し、本実施形態の熱交換量調整手段は、1個の副膨張弁(第1副膨張弁28c)と1本の冷媒配管(高低圧バイパス管69)のみで形成されている。つまり、本実施形態では、第1の実施形態や第2の実施形態と比べて熱交換量調整手段を形成するための部材が少なくて済むため、安価に熱交換量調整手段を実現できる。また、第1の実施形態や第2の実施形態と比べて制御する副膨張弁の数が少ないため、簡易な制御で室内熱交換器31における熱交換量の調整が行える。 In the first and second embodiments, each heat exchange amount adjustment means is formed of an internal heat exchanger, two sub-expansion valves, and two branch pipes. In contrast, the heat exchange amount adjustment means of this embodiment is formed of only one sub-expansion valve (first sub-expansion valve 28c) and one refrigerant pipe (high/low pressure bypass pipe 69). In other words, in this embodiment, fewer components are required to form the heat exchange amount adjustment means compared to the first and second embodiments, so the heat exchange amount adjustment means can be realized at low cost. In addition, since the number of sub-expansion valves to be controlled is smaller than in the first and second embodiments, the heat exchange amount in the indoor heat exchanger 31 can be adjusted with simple control.

次に、本発明の第4の実施形態について、図6を用いて説明する。第3の実施形態では、熱交換量調整手段によって圧縮機21から吐出された冷媒の一部を圧縮機21の冷媒吸入側に戻すことで、室内機3に流入する冷媒量を減少させて、室内熱交換器31における熱交換量を減少させることで、室内温度が、空気調和機1がサーモオフとなる温度に到達しないようした。これに対し、本実施形態の空気調和機1では、熱交換量調整手段が室外機液管63を流れる冷媒の一部を圧縮機21の冷媒吸入側に戻すことで室内機3に流入する冷媒の量を減少させて、室内熱交換器31における熱交換量を減少させる。 Next, a fourth embodiment of the present invention will be described with reference to FIG. 6. In the third embodiment, the amount of refrigerant flowing into the indoor unit 3 is reduced by returning a portion of the refrigerant discharged from the compressor 21 to the refrigerant intake side of the compressor 21 by the heat exchange amount adjustment means, and the amount of heat exchange in the indoor heat exchanger 31 is reduced, so that the indoor temperature does not reach the temperature at which the air conditioner 1 turns off the thermostat. In contrast, in the air conditioner 1 of this embodiment, the heat exchange amount adjustment means returns a portion of the refrigerant flowing through the outdoor unit liquid pipe 63 to the refrigerant intake side of the compressor 21, thereby reducing the amount of refrigerant flowing into the indoor unit 3 and reducing the amount of heat exchange in the indoor heat exchanger 31.

なお、本実施形態の空気調和機1は、熱交換量調整手段が第3の実施形態と異なる点を除いて、第3の実施形態と同じである。このため、暖房運転時や冷房運転時の冷媒回路10の動作などについては詳細な説明を省略し、熱交換量調整手段の構成およびその働きについてのみ説明する。 The air conditioner 1 of this embodiment is the same as the third embodiment, except that the heat exchange amount adjustment means is different from that of the third embodiment. For this reason, detailed explanations of the operation of the refrigerant circuit 10 during heating operation and cooling operation will be omitted, and only the configuration and function of the heat exchange amount adjustment means will be explained.

図6に示すように、レシーバ200と、第1副膨張弁28dと、流出管70とで、本実施形態の熱交換量調整手段は形成される。レシーバ200は、円筒形状の密閉容器からなり、室外機液管63における室外熱交換器23と主膨張弁27の間に配置されている。このレシーバ200と室外機ガス管64とが流出管70で接続され、流出管70に第1副膨張弁28dが設けられている。第1副膨張弁28dは電子膨張弁であり、その開度が調整されることで、レシーバ200に滞留する冷媒のうち、第1副膨張弁28cの開度に応じた量の冷媒を室外機ガス管64に流す。 As shown in FIG. 6, the receiver 200, the first sub-expansion valve 28d, and the outflow pipe 70 constitute the heat exchange amount adjustment means of this embodiment. The receiver 200 is a cylindrical sealed container and is disposed between the outdoor heat exchanger 23 and the main expansion valve 27 in the outdoor unit liquid pipe 63. The receiver 200 and the outdoor unit gas pipe 64 are connected by the outflow pipe 70, and the first sub-expansion valve 28d is provided on the outflow pipe 70. The first sub-expansion valve 28d is an electronic expansion valve, and by adjusting the opening degree thereof, the amount of refrigerant remaining in the receiver 200 that corresponds to the opening degree of the first sub-expansion valve 28c is caused to flow to the outdoor unit gas pipe 64.

以上に説明した熱交換量調整手段を、本実施形態の空気調和機1が調整暖房運転あるいは調整冷房運転を行う際に動作させる。具体的には、図5に示す副膨張弁開度テーブル300bを用いて、設定温度と室内温度との温度差に応じて、第1副膨張弁28dの開度を調整する。なお、図5では、レシーバ200から流出管70への冷媒の流れを、破線矢印で示している。 The heat exchange amount adjustment means described above is operated when the air conditioner 1 of this embodiment performs regulated heating operation or regulated cooling operation. Specifically, the opening of the first sub-expansion valve 28d is adjusted according to the temperature difference between the set temperature and the room temperature using the sub-expansion valve opening table 300b shown in FIG. 5. Note that in FIG. 5, the flow of refrigerant from the receiver 200 to the outflow pipe 70 is indicated by dashed arrows.

空気調和機1が通常暖房運転を行っているときに、室内温度が設定温度に向かって上昇しており、かつ、設定温度から室内温度を減じた温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させる調整暖房運転を行う。調整暖房運転を行っているときは、上述した副膨張弁開度テーブル300bにおける調整暖房運転時の項目を参照し、温度差に応じて通常暖房運転時に全閉とされていた第1副膨張弁28dの開度を調整する。第1副膨張弁28dの開度を大きくすることにより、レシーバ200に滞留する冷媒のうち、第1副膨張弁28dの開度に応じた量の冷媒が流出管70を介して室外機ガス管64へと流れる。これにより、室外機2から室内機3へと流れる冷媒量が減少して室内熱交換器31における熱交換量が減少するので、室内機3で発揮される暖房能力が低下して室内温度の上昇を抑制できる。 When the air conditioner 1 is performing normal heating operation, if the indoor temperature is rising toward the set temperature and the temperature difference obtained by subtracting the indoor temperature from the set temperature is equal to or less than a predetermined value, and the compressor 21 is operating at a rotation speed equal to or less than a predetermined rotation speed, the air conditioner 1 performs controlled heating operation to operate the heat exchange amount adjustment means. When controlled heating operation is performed, the items for controlled heating operation in the sub-expansion valve opening table 300b described above are referenced, and the opening of the first sub-expansion valve 28d, which was fully closed during normal heating operation, is adjusted according to the temperature difference. By increasing the opening of the first sub-expansion valve 28d, an amount of refrigerant that corresponds to the opening of the first sub-expansion valve 28d flows through the outflow pipe 70 to the outdoor unit gas pipe 64 from the refrigerant that is retained in the receiver 200. As a result, the amount of refrigerant that flows from the outdoor unit 2 to the indoor unit 3 is reduced, and the amount of heat exchanged in the indoor heat exchanger 31 is reduced, so that the heating capacity exhibited by the indoor unit 3 is reduced and the rise in the indoor temperature can be suppressed.

一方、空気調和機1が通常冷房運転を行っているときに、室内温度が設定温度に向かって上昇しており、かつ、室内温度から設定温度を減じた温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させる調整冷房運転を行う。調整冷房運転を行っているときは、上述した副膨張弁開度テーブル300bにおける調整冷房運転時の項目を参照し、温度差に応じて通常暖房運転時に全閉とされていた第1副膨張弁28dの開度を調整する。第1副膨張弁28dの開度を大きくすることにより、レシーバ200に滞留する冷媒のうち、第1副膨張弁28dの開度に応じた量の冷媒が流出管70を介して室外機ガス管64へと流れる。これにより、室外機2から室内機3へと流れる冷媒量が減少して室内熱交換器31における熱交換量が減少するので、室内機3で発揮される冷房能力が低下して室内温度の低下を抑制できる。 On the other hand, when the air conditioner 1 is performing normal cooling operation, if the indoor temperature is rising toward the set temperature and the temperature difference obtained by subtracting the set temperature from the indoor temperature is equal to or less than a predetermined value, and the compressor 21 is operating at a rotation speed equal to or less than a predetermined rotation speed, the air conditioner 1 performs a controlled cooling operation in which the heat exchange amount adjustment means is operated. When the controlled cooling operation is performed, the items for controlled cooling operation in the above-mentioned sub-expansion valve opening table 300b are referenced, and the opening of the first sub-expansion valve 28d, which was fully closed during normal heating operation, is adjusted according to the temperature difference. By increasing the opening of the first sub-expansion valve 28d, an amount of refrigerant that corresponds to the opening of the first sub-expansion valve 28d flows through the outflow pipe 70 to the outdoor unit gas pipe 64 from the refrigerant that remains in the receiver 200. As a result, the amount of refrigerant that flows from the outdoor unit 2 to the indoor unit 3 is reduced, and the heat exchange amount in the indoor heat exchanger 31 is reduced, so that the cooling capacity exhibited by the indoor unit 3 is reduced and the drop in the indoor temperature can be suppressed.

以上説明したように、本実施形態の空気調和機1が空調運転を行っているときに、室内温度が設定温度に向かって上昇あるいは低下しており、かつ、室内温度から設定温度を減じた温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させて調整暖房運転あるいは調整冷房運転を行う。これにより、空気調和機1が頻繁にサーモオフ状態とサーモオン状態とを繰り返すことを防止できるので、圧縮機21の頻繁な停止/再起動に起因する省エネ性の悪化や圧縮域21の寿命が短くなることを防止できる。 As described above, when the air conditioner 1 of this embodiment is performing air conditioning operation, if the indoor temperature is rising or falling toward the set temperature and the temperature difference obtained by subtracting the set temperature from the indoor temperature is equal to or less than a predetermined value, and the compressor 21 is operating at a rotation speed equal to or less than a predetermined rotation speed, the heat exchange amount adjustment means is operated to perform regulated heating operation or regulated cooling operation. This prevents the air conditioner 1 from frequently repeatedly switching between the thermo-off state and the thermo-on state, thereby preventing a deterioration in energy efficiency and a shortened lifespan of the compression region 21 due to frequent stopping and restarting of the compressor 21.

なお、第1の実施形態および第2の実施形態では、それぞれの熱交換量調整手段が内部熱交換器と、2個の副膨張弁と、2本の分岐管とで形成されていた。これに対し、本実施形態の熱交換量調整手段は、1個の副膨張弁(第1副膨張弁28c)と、1個のレシーバ(レシーバ200)と、1本の冷媒配管(流出管70)のみで形成されている。つまり、本実施形態では、第1の実施形態や第2の実施形態と比べて熱交換量調整手段を形成するための部材が少なくて済むため、安価に熱交換量調整手段を実現できる。また、第1の実施形態や第2の実施形態と比べて制御する副膨張弁の数が少ないため、簡易な制御で室内熱交換器31における熱交換量の調整が行える。 In the first and second embodiments, the heat exchange amount adjustment means is formed of an internal heat exchanger, two sub-expansion valves, and two branch pipes. In contrast, the heat exchange amount adjustment means of this embodiment is formed of only one sub-expansion valve (first sub-expansion valve 28c), one receiver (receiver 200), and one refrigerant pipe (outlet pipe 70). In other words, in this embodiment, fewer components are required to form the heat exchange amount adjustment means compared to the first and second embodiments, so the heat exchange amount adjustment means can be realized at low cost. In addition, since the number of sub-expansion valves to be controlled is smaller than in the first and second embodiments, the heat exchange amount in the indoor heat exchanger 31 can be adjusted with simple control.

次に、本発明の第5の実施形態について、図7を用いて説明する。第1の実施形態および第2の実施形態では、調整暖房運転時あるいは調整冷房運転時に熱交換量調整手段により、凝縮器として機能する熱交換器(暖房運転時は室内熱交換器31、冷房運転時は室外熱交換器23)に流入する冷媒と、主膨張弁27で減圧された後の冷媒とを内部熱交換器24aあるいは内部熱交換器24bで熱交換させることで、室内熱交換器31における熱交換量を低減させた。また、第3の実施形態および第4の実施形態では、調整暖房運転時あるいは調整冷房運転時に熱交換量調整手段により、室内熱交換器31を流れる冷媒量を減少させることで、室内熱交換器31における熱交換量を低減させた。 Next, the fifth embodiment of the present invention will be described with reference to FIG. 7. In the first and second embodiments, the heat exchange amount adjustment means during controlled heating or controlled cooling operation exchanges heat between the refrigerant flowing into the heat exchanger functioning as a condenser (the indoor heat exchanger 31 during heating operation, and the outdoor heat exchanger 23 during cooling operation) and the refrigerant decompressed by the main expansion valve 27 in the internal heat exchanger 24a or 24b, thereby reducing the heat exchange amount in the indoor heat exchanger 31. In the third and fourth embodiments, the heat exchange amount adjustment means during controlled heating or controlled cooling operation reduces the amount of refrigerant flowing through the indoor heat exchanger 31, thereby reducing the heat exchange amount in the indoor heat exchanger 31.

上記これまでの各実施形態に対し、本実施形態の空気調和機1で調整暖房運転あるいは調整冷房運転を行うとき、室外熱交換器23をバイパスする冷媒配管と、室内熱交換器31をバイパスする冷媒配管と、これら各冷媒配管を流れる冷媒を熱交換させる内部熱交換器で形成される熱交換量調整手段を動作させて、室内熱交換器31における熱交換量を低減させる。 In contrast to each of the above-mentioned embodiments, when the air conditioner 1 of this embodiment performs regulated heating operation or regulated cooling operation, the heat exchange amount adjustment means formed by the refrigerant piping that bypasses the outdoor heat exchanger 23, the refrigerant piping that bypasses the indoor heat exchanger 31, and the internal heat exchanger that exchanges heat with the refrigerant flowing through each of these refrigerant piping is operated to reduce the heat exchange amount in the indoor heat exchanger 31.

以下に、本発明の第5の実施形態について、主に図7を用いて説明する。本実施形態の空気調和機1は、熱交換量調整手段が第1の実施形態乃至第4の実施形態と異なる点を除いて、第1の実施形態乃至第4の実施形態と同じである。このため、通常暖房運転時、調整暖房運転時、通常冷房運転時、および、調整冷房運転時の冷媒回路10の動作などについては詳細な説明を省略し、熱交換量調整手段の構成およびその働きについてのみ説明する。 The fifth embodiment of the present invention will be described below mainly with reference to FIG. 7. The air conditioner 1 of this embodiment is the same as the first to fourth embodiments except that the heat exchange amount adjustment means is different from the first to fourth embodiments. For this reason, detailed explanations of the operation of the refrigerant circuit 10 during normal heating operation, controlled heating operation, normal cooling operation, and controlled cooling operation will be omitted, and only the configuration and function of the heat exchange amount adjustment means will be described.

図7に示す内部熱交換器24cと、第1副膨張弁28eと、第2副膨張弁29eと、第1分流管67cと、第2分流管68cとで、本実施形態の熱交換量調整手段は形成される。 The heat exchange amount adjustment means of this embodiment is formed by the internal heat exchanger 24c, the first sub-expansion valve 28e, the second sub-expansion valve 29e, the first branch pipe 67c, and the second branch pipe 68c shown in FIG. 7.

第1分流管67cは、一端が冷媒配管62に接続され、他端が室外機液管63における室外熱交換器23と主膨張弁27の間に接続される。つまり、第1分流管67cは、室外熱交換器23をバイパスするように室外機冷媒回路10aに接続される。また、第2分流管68cは、一端が室外機液管63における主膨張弁27と閉鎖弁25の間に接続され、他端が室外機ガス管64に接続される。つまり、第2分流管68cは、室内熱交換器31をバイパスするように室外機冷媒回路10aに接続される。 The first branch pipe 67c has one end connected to the refrigerant piping 62, and the other end connected to the outdoor unit liquid pipe 63 between the outdoor heat exchanger 23 and the main expansion valve 27. In other words, the first branch pipe 67c is connected to the outdoor unit refrigerant circuit 10a so as to bypass the outdoor heat exchanger 23. The second branch pipe 68c has one end connected to the outdoor unit liquid pipe 63 between the main expansion valve 27 and the stop valve 25, and the other end connected to the outdoor unit gas pipe 64. In other words, the second branch pipe 68c is connected to the outdoor unit refrigerant circuit 10a so as to bypass the indoor heat exchanger 31.

内部熱交換器24cは、例えば二重管熱交換器であり、第1分流管67cを流れる冷媒と第2分流管68cを流れる冷媒とを熱交換させる。第1副膨張弁28eは電子膨張弁であり、第1分流管67cにおける内部熱交換器24cと第1分流管67cの室外機液管63側の接続部の間に設けられている。第1副膨張弁28eの開度が調整されることで、第1分流管67cを流れる冷媒量が調整される。第2副膨張弁29bは電子膨張弁であり、第2分流管68cにおける内部熱交換器24cと第2分流管68cの室外機ガス管64側の接続部の間に設けられている。第2副膨張弁29eの開度が調整されることで、第2分流管68cを流れる冷媒量が調整される。 The internal heat exchanger 24c is, for example, a double-pipe heat exchanger, and exchanges heat between the refrigerant flowing through the first branch pipe 67c and the refrigerant flowing through the second branch pipe 68c. The first sub-expansion valve 28e is an electronic expansion valve, and is provided in the first branch pipe 67c between the internal heat exchanger 24c and the outdoor unit liquid pipe 63 side of the first branch pipe 67c. The amount of refrigerant flowing through the first branch pipe 67c is adjusted by adjusting the opening degree of the first sub-expansion valve 28e. The second sub-expansion valve 29b is an electronic expansion valve, and is provided in the second branch pipe 68c between the internal heat exchanger 24c and the outdoor unit gas pipe 64 side of the second branch pipe 68c. The amount of refrigerant flowing through the second branch pipe 68c is adjusted by adjusting the opening degree of the second sub-expansion valve 29e.

以上に説明した熱交換量調整手段を、本実施形態の空気調和機1が調整暖房運転あるいは調整冷房運転を行う際に動作させる。具体的には、図2に示す副膨張弁開度テーブル300aを用いて、設定温度と室内温度との温度差に応じて、第1副膨張弁28eおよび第2副膨張弁29eのそれぞれの開度を調整する。 The heat exchange amount adjustment means described above is operated when the air conditioner 1 of this embodiment performs regulated heating operation or regulated cooling operation. Specifically, the opening degree of each of the first sub-expansion valve 28e and the second sub-expansion valve 29e is adjusted according to the temperature difference between the set temperature and the room temperature, using the sub-expansion valve opening degree table 300a shown in FIG. 2.

空気調和機1が通常暖房運転を行っているときに、室内温度が設定温度に向かって上昇しており、かつ、室内温度から設定温度を減じた温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させる調整暖房運転を行う。具体的には、図2に示す副膨張弁開度テーブル300aの調整暖房運転時の項目を参照し、温度差に応じて第1副膨張弁28eの開度と第2副膨張弁29eの開度をそれぞれ調整する。これにより、第1分岐管67cと第2分岐管68cとに冷媒が流れ、第1分岐管67cを流れる冷媒と第2分岐管68cを流れる冷媒とが、内部熱交換器24cで熱交換を行って、室内熱交換器31における熱交換量が減少するので、室内機3で発揮される暖房能力が低下して室内温度の上昇を抑制できる。 When the air conditioner 1 is performing normal heating operation, if the indoor temperature is rising toward the set temperature and the temperature difference obtained by subtracting the set temperature from the indoor temperature is equal to or less than a predetermined value, and the compressor 21 is operating at a rotation speed equal to or less than a predetermined rotation speed, the air conditioner 1 performs an adjusted heating operation in which the heat exchange amount adjustment means is operated. Specifically, the items for adjusted heating operation in the sub-expansion valve opening table 300a shown in FIG. 2 are referenced, and the opening degree of the first sub-expansion valve 28e and the opening degree of the second sub-expansion valve 29e are adjusted according to the temperature difference. As a result, the refrigerant flows through the first branch pipe 67c and the second branch pipe 68c, and the refrigerant flowing through the first branch pipe 67c and the refrigerant flowing through the second branch pipe 68c exchange heat in the internal heat exchanger 24c, reducing the amount of heat exchange in the indoor heat exchanger 31. This reduces the heating capacity exerted by the indoor unit 3, thereby suppressing the rise in the indoor temperature.

一方、空気調和機1が通常冷房運転を行っているときに、室内温度が設定温度に向かって低下しており、かつ、室内温度から設定温度を減じた温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させる調整冷房運転を行う。具体的には、図2に示す副膨張弁開度テーブル300aの調整冷房運転時の項目を参照し、温度差に応じて第1副膨張弁28eの開度と第2副膨張弁29eの開度を小さくする。これにより、第1分岐管67cと第2分岐管68cとに冷媒が流れ、第1分岐管67cを流れる冷媒と第2分岐管68cを流れる冷媒とが内部熱交換器24cで熱交換を行、室外熱交換器23における熱交換量が減少する、ひいては、室内熱交換器31における熱交換量が減少するので、室内機3で発揮される冷房能力が低下して室内温度の低下を抑制できる。 On the other hand, when the air conditioner 1 is performing normal cooling operation, if the indoor temperature is decreasing toward the set temperature and the temperature difference obtained by subtracting the set temperature from the indoor temperature is equal to or less than a predetermined value, if the compressor 21 is operating at a rotation speed equal to or less than a predetermined rotation speed, the heat exchange amount adjustment means is operated to perform a controlled cooling operation. Specifically, the items for controlled cooling operation in the sub-expansion valve opening table 300a shown in FIG. 2 are referenced, and the opening degree of the first sub-expansion valve 28e and the opening degree of the second sub-expansion valve 29e are reduced according to the temperature difference. As a result, the refrigerant flows through the first branch pipe 67c and the second branch pipe 68c, and the refrigerant flowing through the first branch pipe 67c and the refrigerant flowing through the second branch pipe 68c exchange heat in the internal heat exchanger 24c, reducing the amount of heat exchange in the outdoor heat exchanger 23, and thus reducing the amount of heat exchange in the indoor heat exchanger 31. This reduces the cooling capacity exerted by the indoor unit 3, thereby suppressing the decrease in the indoor temperature.

以上説明したように、本実施形態の空気調和機1が空調運転を行っているときに、室内温度が設定温度に向かって上昇あるいは低下しており、かつ、室内温度から設定温度を減じた温度差が所定値以下となったときに、圧縮機21の回転数が所定回転数以下で駆動していれば、熱交換量調整手段を動作させて調整暖房運転あるいは調整冷房運転を行う。これにより、空気調和機1が頻繁にサーモオフ状態とサーモオン状態とを繰り返すことを防止できるので、圧縮機21の頻繁な停止/再起動に起因する省エネ性の悪化や圧縮域21の寿命が短くなることを防止できる。 As described above, when the air conditioner 1 of this embodiment is performing air conditioning operation, if the indoor temperature is rising or falling toward the set temperature and the temperature difference obtained by subtracting the set temperature from the indoor temperature is equal to or less than a predetermined value, and the compressor 21 is operating at a rotation speed equal to or less than a predetermined rotation speed, the heat exchange amount adjustment means is operated to perform regulated heating operation or regulated cooling operation. This prevents the air conditioner 1 from frequently repeatedly switching between the thermo-off state and the thermo-on state, thereby preventing a deterioration in energy efficiency and a shortened lifespan of the compression region 21 due to frequent stopping and restarting of the compressor 21.

なお、前述したように、第1の実施形態の空気調和機1に設けられた熱交換量調整手段は、調整暖房運転時により好適に作用し、第2の実施形態の空気調和機1に設けられた熱交換量調整手段は、調整冷房運転時により好適に作用すると説明した。これに対し、本実施形態の空気調和機1に設けられた熱交換量調整手段は、室外熱交換器23をバイパスする第1分岐管67cを流れる冷媒と、室内熱交換器31をバイパスする第2分岐管68cを流れる冷媒とを内部熱交換器24cで熱交換させるものである。このため、調整暖房運転時も調整冷房運転時も同様に作用して、室内熱交換器31における熱交換量を低減できる。 As described above, the heat exchange amount adjustment means provided in the air conditioner 1 of the first embodiment works better during regulated heating operation, and the heat exchange amount adjustment means provided in the air conditioner 1 of the second embodiment works better during regulated cooling operation. In contrast, the heat exchange amount adjustment means provided in the air conditioner 1 of this embodiment exchanges heat in the internal heat exchanger 24c between the refrigerant flowing through the first branch pipe 67c bypassing the outdoor heat exchanger 23 and the refrigerant flowing through the second branch pipe 68c bypassing the indoor heat exchanger 31. Therefore, it works in the same way during regulated heating operation and regulated cooling operation, and the heat exchange amount in the indoor heat exchanger 31 can be reduced.

1 空気調和機
2 室外機
3 室内機
10 冷媒回路
21 圧縮機
22 四方弁
23 室外熱交換器
24a~24c 内部熱交換器
27 主膨張弁
28a~28e 第1副膨張弁
29a、29b、29e 第2副膨張弁
31 室内熱交換器
67a~67c 第1分岐管
68a~68c 第2分岐管
69 バイパス管
70 流出管
300a、300b 副膨張弁開度テーブル
REFERENCE SIGNS LIST 1 Air conditioner 2 Outdoor unit 3 Indoor unit 10 Refrigerant circuit 21 Compressor 22 Four-way valve 23 Outdoor heat exchanger 24a to 24c Internal heat exchanger 27 Main expansion valve 28a to 28e First auxiliary expansion valve 29a, 29b, 29e Second auxiliary expansion valve 31 Indoor heat exchanger 67a to 67c First branch pipe 68a to 68c Second branch pipe 69 Bypass pipe 70 Outlet pipe 300a, 300b Auxiliary expansion valve opening degree table

Claims (1)

圧縮機と、四方弁と、室外熱交換器と、主膨張弁と、室内熱交換器とが冷媒配管で接続されて形成される冷媒回路と、
空調空間の温度である室内温度を検出する室内温度センサと、
前記冷媒回路に設けられて、前記室内熱交換器における熱交換量を調整する熱交換量調整手段と、
を有し、
前記熱交換量調整手段は、第1分岐管と、第2分岐管と、第1副膨張弁と、第2副膨張弁と、内部熱交換器とで形成され、
前記第1分岐管は、前記室外熱交換器をバイパスするように、一端が前記四方弁と前記室外熱交換器とを接続する冷媒配管に接続され、他端が前記室外熱交換器と前記主膨張弁とを接続する冷媒配管に接続され、
前記第2分岐管は、前記室内熱交換器をバイパスするように、一端が前記主膨張弁と前記室内熱交換器とを接続する冷媒配管に接続され、他端が前記室内熱交換器と前記四方弁とを接続する冷媒配管に接続され、
暖房運転時、前記室内温度が同室内温度の目標値である設定温度に向かって上昇しており、かつ、前記設定温度から前記室内温度を減じた温度差が所定値より小さい値となったときに、前記圧縮機の回転数が所定回転数より低い場合、
あるいは、
冷房運転時、前記室内温度が前記設定温度に向かって低下しており、かつ、前記室内温度から前記設定温度を減じた温度差が所定値より小さい値となったときに、前記圧縮機の回転数が所定回転数より低い場合は、
前記第1副膨張弁は、前記第1分岐管を流れる冷媒の量を調整し、
前記第2副膨張弁は、前記第2分岐管を流れる冷媒の量を調整し、
前記内部熱交換器は、前記第1分岐管を流れる冷媒と前記第2分岐管を流れる冷媒とを熱交換させる、
ことを特徴とする空気調和機。
a refrigerant circuit formed by connecting a compressor, a four-way valve, an outdoor heat exchanger, a main expansion valve, and an indoor heat exchanger with a refrigerant piping;
an indoor temperature sensor for detecting an indoor temperature, which is the temperature of an air-conditioned space;
a heat exchange amount adjusting means provided in the refrigerant circuit and adjusting a heat exchange amount in the indoor heat exchanger;
having
the heat exchange amount adjusting means is formed by a first branch pipe, a second branch pipe, a first sub-expansion valve, a second sub-expansion valve, and an internal heat exchanger,
the first branch pipe is connected at one end to a refrigerant pipe connecting the four-way valve and the outdoor heat exchanger so as to bypass the outdoor heat exchanger, and is connected at the other end to a refrigerant pipe connecting the outdoor heat exchanger and the main expansion valve ;
the second branch pipe has one end connected to a refrigerant pipe connecting the main expansion valve and the indoor heat exchanger so as to bypass the indoor heat exchanger, and the other end connected to a refrigerant pipe connecting the indoor heat exchanger and the four-way valve ;
During heating operation, when the indoor temperature is rising toward a set temperature, which is a target value of the indoor temperature, and a temperature difference obtained by subtracting the indoor temperature from the set temperature becomes smaller than a predetermined value, if the rotation speed of the compressor is lower than a predetermined rotation speed,
or,
During cooling operation, when the indoor temperature is decreasing toward the set temperature and the temperature difference obtained by subtracting the set temperature from the indoor temperature is smaller than a predetermined value, if the rotation speed of the compressor is lower than a predetermined rotation speed,
The first sub-expansion valve adjusts the amount of refrigerant flowing through the first branch pipe,
The second sub-expansion valve adjusts the amount of refrigerant flowing through the second branch pipe,
The internal heat exchanger exchanges heat between the refrigerant flowing through the first branch pipe and the refrigerant flowing through the second branch pipe.
An air conditioner characterized by the above.
JP2019042822A 2019-03-08 2019-03-08 Air conditioners Active JP7467827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019042822A JP7467827B2 (en) 2019-03-08 2019-03-08 Air conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019042822A JP7467827B2 (en) 2019-03-08 2019-03-08 Air conditioners

Publications (2)

Publication Number Publication Date
JP2020143879A JP2020143879A (en) 2020-09-10
JP7467827B2 true JP7467827B2 (en) 2024-04-16

Family

ID=72353964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019042822A Active JP7467827B2 (en) 2019-03-08 2019-03-08 Air conditioners

Country Status (1)

Country Link
JP (1) JP7467827B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024142327A1 (en) * 2022-12-27 2024-07-04 三菱電機株式会社 Air conditioning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012004094B3 (en) 2012-02-29 2013-06-13 Glen Dimplex Deutschland Gmbh Heat pump apparatus of heating system installed in e.g. single or multi-family dwelling, has control unit for passing refrigerant heated in heat accumulator through evaporator and defrosting refrigerant, in defrost mode
JP2018173260A (en) 2017-03-31 2018-11-08 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. Circulation system for heating and/or cooling, and operation method for heating and/or cooling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2987951B2 (en) * 1991-02-12 1999-12-06 ダイキン工業株式会社 Operation control device for air conditioner
JPH1089794A (en) * 1996-09-17 1998-04-10 Matsushita Electric Ind Co Ltd Air conditioner
JP2009041845A (en) * 2007-08-09 2009-02-26 Panasonic Corp Operation control method of multi-room type air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012004094B3 (en) 2012-02-29 2013-06-13 Glen Dimplex Deutschland Gmbh Heat pump apparatus of heating system installed in e.g. single or multi-family dwelling, has control unit for passing refrigerant heated in heat accumulator through evaporator and defrosting refrigerant, in defrost mode
JP2018173260A (en) 2017-03-31 2018-11-08 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. Circulation system for heating and/or cooling, and operation method for heating and/or cooling

Also Published As

Publication number Publication date
JP2020143879A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
JP5182358B2 (en) Refrigeration equipment
JP6320639B2 (en) Air conditioner
JP2019074222A (en) Refrigeration device
JP6493432B2 (en) Air conditioner
KR20020075393A (en) Air conditioner
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP2006258330A (en) Refrigerating plant
JP2007183020A (en) Capacity variable air conditioner
WO2016194098A1 (en) Air-conditioning device and operation control device
US10480837B2 (en) Refrigeration apparatus
JP7467827B2 (en) Air conditioners
JP6747226B2 (en) Refrigeration equipment
JP2015014372A (en) Air conditioner
JP6010294B2 (en) Air conditioner
JP2020193760A (en) Air conditioning system
JP2002147819A (en) Refrigeration unit
WO2019078247A1 (en) Air-conditioning apparatus
CN113614469B (en) Air conditioner
JP2003042585A (en) Air conditioner
JP2020128858A (en) Air conditioner
JP2019168130A (en) Air conditioner
JPWO2020148826A1 (en) Air conditioner
JP7398617B2 (en) air conditioner
JP7512639B2 (en) Air Conditioning Equipment
WO2024172077A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7467827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150