JPH1089794A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH1089794A JPH1089794A JP24485996A JP24485996A JPH1089794A JP H1089794 A JPH1089794 A JP H1089794A JP 24485996 A JP24485996 A JP 24485996A JP 24485996 A JP24485996 A JP 24485996A JP H1089794 A JPH1089794 A JP H1089794A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- refrigerant
- valve
- auxiliary heat
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷媒として分子中
に塩素を含まない単一冷媒あるいは混合冷媒を用いた空
気調和機に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using a single refrigerant containing no chlorine in a molecule or a mixed refrigerant as a refrigerant.
【0002】[0002]
【従来の技術】従来より空気調和機の冷媒としてHCF
C22が広く用いられており、また空気調和機の冷房運
転効率を向上させるために、図5のように補助熱交換器
5を用いた構成が知られている。これを図6のHCFC
22の圧力−エンタルピ線図を用いて説明すると、冷房
運転時には低温となる圧縮機1吸入管から比較的高温で
ある外気によって奪われる冷却効果(図6中のイに相当
する)を凝縮器出口液を過冷却(図6中のロに相当す
る)するために利用することにより、蒸発器として作用
する室内熱交換器6での冷房能力増大(図6中のハに相
当する)することができるものである。2. Description of the Related Art Conventionally, HCF has been used as a refrigerant for air conditioners.
C22 is widely used, and a configuration using an auxiliary heat exchanger 5 as shown in FIG. 5 is known to improve the cooling operation efficiency of the air conditioner. This is shown in FIG.
Explaining with reference to the pressure-enthalpy diagram of FIG. 22, the cooling effect (corresponding to a in FIG. 6) taken by the relatively high temperature outside air from the suction pipe of the compressor 1 which becomes low during the cooling operation is taken out of the condenser outlet. By utilizing the liquid for supercooling (corresponding to b in FIG. 6), it is possible to increase the cooling capacity (corresponding to c in FIG. 6) of the indoor heat exchanger 6 acting as an evaporator. You can do it.
【0003】また、圧縮機としては回転数一定型と回転
数可変型があり、回転数一定型では冷房能力や暖房能力
はほぼ一定であり、圧縮機のON/OFF運転によって
空調負荷に対応させている。一方、回転数可変型では回
転数を変化させることで冷房能力や暖房能力を調整して
空調負荷に対応しているが、能力可変幅は主に圧縮機回
転数の下限と上限によって制限され、能力下限以下の空
調負荷には圧縮機のON/OFF運転によって対応して
いる。[0003] There are two types of compressors: a constant rotation speed type and a variable rotation speed type. In the constant rotation speed type, the cooling capacity and the heating capacity are almost constant. I correspond. On the other hand, in the variable rotation speed type, the cooling capacity and heating capacity are adjusted by changing the rotation speed to respond to the air conditioning load, but the capacity variable width is mainly limited by the lower limit and upper limit of the compressor rotation speed, The air conditioning load below the lower limit of the capacity is handled by ON / OFF operation of the compressor.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、HCF
C22はわずかながら成層圏オゾン層を破壊するために
使用が規制され、その代替冷媒として分子中に塩素を含
まない冷媒が注目されている。However, the HCF
The use of C22 is regulated to slightly destroy the stratospheric ozone layer, and a refrigerant that does not contain chlorine in its molecule has attracted attention as an alternative refrigerant.
【0005】また、冷房能力下限あるいは暖房能力下限
以下の空調負荷に対応するために圧縮機のON/OFF
運転を行うと、圧縮機停止中には冷房能力あるいは暖房
能力は0であるので空調負荷が増大する上に、圧縮機始
動時には最低回転数よりも大きな規定回転数にて起動さ
れるために最低回転数での運転以上に電力を消費し、さ
らに機器の熱容量に応じた冷房能力や暖房能力のロスが
避けられず、消費電力量が増大するという問題がある。Further, in order to cope with an air conditioning load having a cooling capacity lower limit or a heating capacity lower limit, ON / OFF of a compressor is required.
When the compressor is operated, the cooling capacity or the heating capacity is 0 while the compressor is stopped, so that the air-conditioning load is increased, and the compressor is started at a specified rotation speed larger than the minimum rotation speed when the compressor is started. There is a problem that power is consumed more than the operation at the number of rotations, and furthermore, a loss of cooling capacity or heating capacity in accordance with the heat capacity of the equipment is inevitable, resulting in an increase in power consumption.
【0006】本発明は、上記課題を解決するためになさ
れたもので、オゾン層を破壊しない冷媒を用いた空気調
和機において、能力可変幅の拡大により運転効率の向上
ならびに消費電力の低減を実現することを目的とするも
のである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has realized an improvement in operation efficiency and a reduction in power consumption in an air conditioner using a refrigerant that does not destroy the ozone layer by expanding a variable capacity range. It is intended to do so.
【0007】[0007]
【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであり、冷房能力下限あるい
は暖房能力下限以下の空調負荷に対応するために圧縮機
のON/OFF運転を行うと、運転効率が低下して消費
電力量が増大するという問題とオゾン層を保護しなけれ
ばならないという問題に対して、冷房能力下限あるいは
暖房能力下限をさらに小さくする手段として、減圧器と
室内熱交換器間の冷媒と圧縮機から吐出されて四方弁に
至る冷媒とを熱交換させる補助熱交換器と、補助熱交換
器の減圧器と室内熱交換器間の冷媒が流れる側あるいは
補助熱交換器の圧縮機から吐出された冷媒が流れる側を
バイパスする補助熱交換器バイパス管と、補助熱交換器
バイパス管への冷媒の流れを閉止する第一閉止弁と、補
助熱交換器への冷媒の流れを閉止する第二閉止弁を設
け、分子中に塩素を含まない単一冷媒あるいは混合冷媒
を封入したことを特徴とするものである。SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and has a compressor ON / OFF operation for responding to an air conditioning load having a cooling capacity lower limit or a heating capacity lower limit. Then, in order to solve the problem that the operating efficiency is reduced and the power consumption is increased and the problem that the ozone layer needs to be protected, as a means for further reducing the cooling capacity lower limit or the heating capacity lower limit, a decompressor and an indoor An auxiliary heat exchanger for exchanging heat between the refrigerant between the heat exchangers and the refrigerant discharged from the compressor to the four-way valve; and an auxiliary heat exchanger on the side where the refrigerant flows between the decompressor and the indoor heat exchanger of the auxiliary heat exchanger. An auxiliary heat exchanger bypass pipe that bypasses a side on which the refrigerant discharged from the compressor of the exchanger flows, a first shut-off valve that closes a flow of the refrigerant to the auxiliary heat exchanger bypass pipe, and an auxiliary heat exchanger. cold The second shut-off valve to close the flow provided, it is characterized in that the encapsulating single refrigerant or a mixed refrigerant containing no chlorine in their molecules.
【0008】あるいは、減圧器と室外熱交換器間の冷媒
と圧縮機から吐出されて四方弁に至る冷媒とを熱交換さ
せる補助熱交換器と、補助熱交換器の減圧器と室外熱交
換器間の冷媒が流れる側あるいは補助熱交換器の圧縮機
から吐出された冷媒が流れる側をバイパスする補助熱交
換器バイパス管と、補助熱交換器バイパス管への冷媒の
流れを閉止する第一閉止弁と、補助熱交換器への冷媒の
流れを閉止する第二閉止弁を設け、分子中に塩素を含ま
ない単一冷媒あるいは混合冷媒を封入したことを特徴と
するものである。Alternatively, an auxiliary heat exchanger for exchanging heat between the refrigerant between the decompressor and the outdoor heat exchanger and the refrigerant discharged from the compressor and reaching the four-way valve, a decompressor of the auxiliary heat exchanger and the outdoor heat exchanger An auxiliary heat exchanger bypass pipe that bypasses a side through which the refrigerant flows or a side through which the refrigerant discharged from the compressor of the auxiliary heat exchanger flows, and a first closure that closes a flow of the refrigerant to the auxiliary heat exchanger bypass pipe A valve and a second shut-off valve for shutting off the flow of the refrigerant to the auxiliary heat exchanger are provided, and a single refrigerant or a mixed refrigerant containing no chlorine in the molecule is sealed therein.
【0009】あるいは、冷房運転時には室外熱交換器を
経た冷媒が第一逆止弁、補助熱交換器、減圧器、第三逆
止弁を経て室内熱交換器に流入し、暖房運転時には室内
熱交換器を経た冷媒が第二逆止弁、補助熱交換器、減圧
器、第四逆止弁を経て室外熱交換器に流入し、補助熱交
換器では第一逆止弁あるいは第二逆止弁と減圧器間の冷
媒と圧縮機から吐出された冷媒とを熱交換させ、補助熱
交換器バイパス管は補助熱交換器の第一逆止弁あるいは
第二逆止弁と減圧器間の冷媒が流れる側あるいは補助熱
交換器の圧縮機から吐出された冷媒が流れる側をバイパ
スさせ、補助熱交換器バイパス管への冷媒の流れを閉止
する第一閉止弁と、補助熱交換器への冷媒の流れを閉止
する第二閉止弁を設け、分子中に塩素を含まない単一冷
媒あるいは混合冷媒を封入したことを特徴とするもので
ある。Alternatively, during the cooling operation, the refrigerant that has passed through the outdoor heat exchanger flows into the indoor heat exchanger through the first check valve, the auxiliary heat exchanger, the pressure reducer, and the third check valve. The refrigerant that has passed through the exchanger flows into the outdoor heat exchanger via the second check valve, the auxiliary heat exchanger, the pressure reducer, and the fourth check valve, and the auxiliary heat exchanger uses the first check valve or the second check valve. The refrigerant between the valve and the decompressor exchanges heat with the refrigerant discharged from the compressor, and the auxiliary heat exchanger bypass pipe connects the refrigerant between the first check valve or the second check valve of the auxiliary heat exchanger and the depressurizer. A first shut-off valve that bypasses the side through which the refrigerant flows from the side of the auxiliary heat exchanger or through which the refrigerant discharged from the compressor flows, and shuts off the flow of the refrigerant to the auxiliary heat exchanger bypass pipe; and the refrigerant to the auxiliary heat exchanger. A second shut-off valve to shut off the flow It is characterized in that the encapsulating.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図1から図4を用いて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.
【0011】(実施の形態1)図1に本発明にかかる第
1の実施の形態の空気調和機を示す。また冷媒として分
子中に塩素を含まない単一冷媒あるいは混合冷媒が封入
されている。図1においては、補助熱交換器5をバイパ
スする補助熱交換器バイパス管13は室内熱交換器6と
減圧器4間に設けられ、さらに補助熱交換器バイパス管
13の途中には第一閉止弁14、補助熱交換器5と補助
熱交換器バイパス管13との間には第二閉止弁15が設
けられている。また補助熱交換器5は、暖房運転時は第
二閉止弁15を経て減圧器4に至る冷媒と圧縮機1から
吐出された冷媒を、冷房運転時には減圧器4を経て第二
閉止弁15に至る冷媒と圧縮機1から吐出された冷媒を
熱交換させるように構成されている。(Embodiment 1) FIG. 1 shows an air conditioner according to a first embodiment of the present invention. A single refrigerant or a mixed refrigerant containing no chlorine in the molecule is sealed as the refrigerant. In FIG. 1, an auxiliary heat exchanger bypass pipe 13 that bypasses the auxiliary heat exchanger 5 is provided between the indoor heat exchanger 6 and the decompressor 4. A second shutoff valve 15 is provided between the valve 14, the auxiliary heat exchanger 5 and the auxiliary heat exchanger bypass pipe 13. Further, the auxiliary heat exchanger 5 transfers the refrigerant reaching the decompressor 4 via the second shut-off valve 15 and the refrigerant discharged from the compressor 1 during the heating operation to the second shut-off valve 15 via the depressurizer 4 during the cooling operation. It is configured to exchange heat between the refrigerant flowing therethrough and the refrigerant discharged from the compressor 1.
【0012】上記構成による空気調和機の動作について
説明する。The operation of the air conditioner having the above configuration will be described.
【0013】まず暖房運転時には、四方弁2を図1中の
実線のように設定する。また通常の暖房運転時には第一
閉止弁14を開、第二閉止弁15を閉に設定する。する
と圧縮機1で圧縮されて高温高圧となったガス冷媒は補
助熱交換器5、四方弁2を経て室内熱交換器6に導入さ
れる。ここで、ガス冷媒は室内空気と熱交換して放熱し
て凝縮し液冷媒となる。First, during the heating operation, the four-way valve 2 is set as shown by the solid line in FIG. During a normal heating operation, the first closing valve 14 is opened and the second closing valve 15 is closed. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the indoor heat exchanger 6 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with room air to release heat and condense to become a liquid refrigerant.
【0014】さらに、室内熱交換器6で凝縮して液状態
となった冷媒は、通常の暖房運転時には補助熱交換器バ
イパス管13を経て減圧器4に導入される。すなわち補
助熱交換器5で熱交換は行われない。減圧器4で減圧さ
れて低温低圧の二相状態となった冷媒は室外熱交換器3
に導入される。室外熱交換器3では、冷媒は室外の空気
と熱交換して吸熱して蒸発し低温低圧のガス冷媒とな
る。さらに、室外熱交換器3で蒸発して低温低圧のガス
状態となった冷媒は、四方弁2を経て圧縮機1に吸入さ
れる。Further, the refrigerant condensed in the indoor heat exchanger 6 to be in a liquid state is introduced into the pressure reducer 4 through the auxiliary heat exchanger bypass pipe 13 during a normal heating operation. That is, heat exchange is not performed in the auxiliary heat exchanger 5. The refrigerant which has been decompressed by the decompressor 4 and has become a low-temperature and low-pressure two-phase state is
Will be introduced. In the outdoor heat exchanger 3, the refrigerant exchanges heat with outdoor air, absorbs heat, evaporates, and becomes a low-temperature low-pressure gas refrigerant. Further, the refrigerant evaporated in the outdoor heat exchanger 3 into a low-temperature low-pressure gas state is sucked into the compressor 1 through the four-way valve 2.
【0015】つぎに、暖房能力を圧縮機1の最低回転数
での運転時よりもさらに小さくしたいときには第一閉止
弁14を閉、第二閉止弁15を開に設定する。すると圧
縮機1で圧縮されて高温高圧となったガス冷媒は補助熱
交換器5、四方弁2を経て室内熱交換器6に導入され
る。ここで、ガス冷媒は室内空気と熱交換して放熱して
凝縮し液冷媒となる。Next, when it is desired to make the heating capacity even smaller than when the compressor 1 is operating at the minimum rotational speed, the first closing valve 14 is closed and the second closing valve 15 is opened. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the indoor heat exchanger 6 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with room air to release heat and condense to become a liquid refrigerant.
【0016】さらに、室内熱交換器6で凝縮して液状態
となった冷媒は、開に設定された第二閉止弁15を経て
補助熱交換器5に導入される。この時補助熱交換器5で
は、室内熱交換器6で放熱して液状態となった冷媒によ
って圧縮機1から吐出された高温の冷媒が冷却されて、
室内熱交換器6に導入される冷媒の温度が低下するため
に室内熱交換器6での室内空気への放熱量が減り、暖房
能力を小さくすることができる。Further, the refrigerant condensed in the indoor heat exchanger 6 to be in a liquid state is introduced into the auxiliary heat exchanger 5 through the second shut-off valve 15 which is set to be open. At this time, in the auxiliary heat exchanger 5, the high-temperature refrigerant discharged from the compressor 1 is cooled by the refrigerant that has released heat in the indoor heat exchanger 6 and is in a liquid state,
Since the temperature of the refrigerant introduced into the indoor heat exchanger 6 decreases, the amount of heat released to the indoor air in the indoor heat exchanger 6 decreases, and the heating capacity can be reduced.
【0017】補助熱交換器5を経て減圧器4で減圧され
て低温低圧の二相状態となった冷媒は室外熱交換器3に
導入される。室外熱交換器3では、冷媒は室外の空気と
熱交換して吸熱して蒸発し低温低圧のガス冷媒となる。
さらに、室外熱交換器3で蒸発して低温低圧のガス状態
となった冷媒は、四方弁2を経て圧縮機1に吸入され
る。The refrigerant which has been decompressed by the decompressor 4 via the auxiliary heat exchanger 5 and is in a low-temperature and low-pressure two-phase state is introduced into the outdoor heat exchanger 3. In the outdoor heat exchanger 3, the refrigerant exchanges heat with outdoor air, absorbs heat, evaporates, and becomes a low-temperature low-pressure gas refrigerant.
Further, the refrigerant evaporated in the outdoor heat exchanger 3 into a low-temperature low-pressure gas state is sucked into the compressor 1 through the four-way valve 2.
【0018】次に冷房運転時には、四方弁2を図1中の
点線のように設定する。また通常の冷房運転時には第一
閉止弁14を開、第二閉止弁15を閉に設定する。する
と圧縮機1で圧縮されて高温高圧となったガス冷媒は補
助熱交換器5、四方弁2を経て室外熱交換器3に導入さ
れる。ここで、ガス冷媒は室外の空気と熱交換して放熱
して凝縮し液冷媒となる。Next, during the cooling operation, the four-way valve 2 is set as shown by the dotted line in FIG. During normal cooling operation, the first closing valve 14 is opened and the second closing valve 15 is closed. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the outdoor heat exchanger 3 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with outdoor air, radiates heat, condenses, and becomes a liquid refrigerant.
【0019】さらに、室外熱交換器3で凝縮して液状態
となった冷媒は、減圧器4で減圧されて低温低圧の二相
状態となり、通常の冷房運転時には補助熱交換器バイパ
ス管13を経て室内熱交換器6に導入される。すなわち
補助熱交換器5で熱交換は行われない。室内熱交換器6
で冷媒は室内の空気と熱交換して吸熱して蒸発し低温低
圧のガス冷媒となり、四方弁2を経て圧縮機1に吸入さ
れる。Further, the refrigerant condensed in the outdoor heat exchanger 3 to be in a liquid state is decompressed by the decompressor 4 to be in a low-temperature and low-pressure two-phase state. During normal cooling operation, the auxiliary heat exchanger bypass pipe 13 is connected. After that, it is introduced into the indoor heat exchanger 6. That is, heat exchange is not performed in the auxiliary heat exchanger 5. Indoor heat exchanger 6
The refrigerant exchanges heat with the air in the room, absorbs heat, evaporates and becomes a low-temperature low-pressure gas refrigerant, and is sucked into the compressor 1 through the four-way valve 2.
【0020】つぎに、冷房能力を圧縮機1の最低回転数
での運転時よりもさらに小さくしたいときには第一閉止
弁14を閉、第二閉止弁15を開に設定する。すると圧
縮機1で圧縮されて高温高圧となったガス冷媒は補助熱
交換器5、四方弁2を経て室外熱交換器3に導入され
る。ここで、ガス冷媒は室外の空気と熱交換して放熱し
て凝縮し液冷媒となる。Next, when it is desired to make the cooling capacity smaller than that at the time of operating the compressor 1 at the minimum rotation speed, the first stop valve 14 is closed and the second stop valve 15 is opened. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the outdoor heat exchanger 3 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with outdoor air, radiates heat, condenses, and becomes a liquid refrigerant.
【0021】さらに、室外熱交換器3で凝縮して液状態
となった冷媒は、減圧器4で減圧されて低温低圧の二相
状態となり、第一閉止弁14は閉に設定されているので
補助熱交換器5に導入される。この時補助熱交換器5で
は、図2の圧力−エンタルピ線図に示すように圧縮機1
から吐出された高温の冷媒(図2中のイ)によって減圧
器4で減圧されて低温低圧になった冷媒が加熱(図2中
のロ)されて、室内熱交換器6に導入される冷媒のエン
タルピが上昇するために室内熱交換器の入口と出口での
エンタルピ差が小さくなり、室内熱交換器6での室内空
気からの吸熱量が減り、冷房能力を小さくすることがで
きる。Further, the refrigerant condensed in the outdoor heat exchanger 3 to be in a liquid state is decompressed by the decompressor 4 to be in a low-temperature low-pressure two-phase state, and the first shut-off valve 14 is set to be closed. It is introduced into the auxiliary heat exchanger 5. At this time, in the auxiliary heat exchanger 5, as shown in the pressure-enthalpy diagram of FIG.
The refrigerant which has been decompressed by the decompressor 4 and becomes low temperature and low pressure by the high-temperature refrigerant (a in FIG. 2) discharged from the heater is heated (b in FIG. 2) and introduced into the indoor heat exchanger 6 Since the enthalpy of the indoor heat exchanger rises, the difference in enthalpy between the inlet and the outlet of the indoor heat exchanger becomes small, the amount of heat absorbed from the indoor air in the indoor heat exchanger 6 decreases, and the cooling capacity can be reduced.
【0022】さらに、室内熱交換器6で蒸発して低温低
圧のガス状態となった冷媒は、四方弁2を経て圧縮機1
に吸入される。Further, the refrigerant evaporated in the indoor heat exchanger 6 into a low-temperature and low-pressure gas state passes through the four-way valve 2 and the compressor 1.
Inhaled.
【0023】以上のように、分子中に塩素を含まない単
一冷媒あるいは混合冷媒を用いることによりオゾン層を
破壊することはなく、暖房能力あるいは冷房能力をより
小さくしたいときには補助熱交換器5を作用させること
により、圧縮機の最低回転数での能力以下での運転がで
きて、圧縮機1のON/OFF運転の頻度を低減できて
消費電力量を小さくすることができる。As described above, the ozone layer is not destroyed by using a single refrigerant or a mixed refrigerant containing no chlorine in the molecule, and the auxiliary heat exchanger 5 is used when the heating capacity or the cooling capacity is to be reduced. By operating the compressor, it is possible to operate the compressor at a capacity equal to or lower than the minimum rotational speed, so that the frequency of the ON / OFF operation of the compressor 1 can be reduced, and the power consumption can be reduced.
【0024】なお、図1においては、補助熱交換器バイ
パス管13、第一閉止弁14、第二閉止弁15は室内熱
交換器6と減圧器4の間に設けたものとして説明した
が、圧縮機1の吐出側と四方弁2の間に設けても同じ効
果が得られるのは明らかである。In FIG. 1, the auxiliary heat exchanger bypass pipe 13, the first shut-off valve 14, and the second shut-off valve 15 are described as being provided between the indoor heat exchanger 6 and the decompressor 4. Obviously, the same effect can be obtained even if provided between the discharge side of the compressor 1 and the four-way valve 2.
【0025】(実施の形態2)図3に本発明にかかる第
2の実施の形態の空気調和機を示す。なお図3において
図1と同じ構成要素には同じ符号を付す。また冷媒とし
て分子中に塩素を含まない単一冷媒あるいは混合冷媒が
封入されている。図3においては、補助熱交換器5をバ
イパスする補助熱交換器バイパス管13は室外熱交換器
3と減圧器4間に設けられ、さらに補助熱交換器バイパ
ス管13の途中には第一閉止弁14、補助熱交換器5と
補助熱交換器バイパス管13との間には第二閉止弁15
が設けられている。また補助熱交換器5は、暖房運転時
は減圧器4、第二閉止弁15を経た冷媒と圧縮機1から
吐出された冷媒を、冷房運転時には室外熱交換器3を経
て第二閉止弁15に至る冷媒と圧縮機1から吐出された
冷媒を熱交換させるように構成されている。(Embodiment 2) FIG. 3 shows an air conditioner according to a second embodiment of the present invention. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals. A single refrigerant or a mixed refrigerant containing no chlorine in the molecule is sealed as the refrigerant. In FIG. 3, an auxiliary heat exchanger bypass pipe 13 that bypasses the auxiliary heat exchanger 5 is provided between the outdoor heat exchanger 3 and the decompressor 4. A second shutoff valve 15 is provided between the valve 14 and the auxiliary heat exchanger 5 and the auxiliary heat exchanger bypass pipe 13.
Is provided. In addition, the auxiliary heat exchanger 5 receives the refrigerant having passed through the decompressor 4 and the second shut-off valve 15 and the refrigerant discharged from the compressor 1 during the heating operation, and the second shut-off valve 15 through the outdoor heat exchanger 3 during the cooling operation. And the refrigerant discharged from the compressor 1 is subjected to heat exchange.
【0026】上記構成による空気調和機の動作について
説明する。The operation of the air conditioner having the above configuration will be described.
【0027】まず暖房運転時には、四方弁2を図3中の
実線のように設定する。また通常の暖房運転時には第一
閉止弁14を開、第二閉止弁15を閉に設定する。する
と圧縮機1で圧縮されて高温高圧となったガス冷媒は補
助熱交換器5、四方弁2を経て室内熱交換器6に導入さ
れる。ここで、ガス冷媒は室内空気と熱交換して放熱し
て凝縮し液冷媒となる。First, during the heating operation, the four-way valve 2 is set as shown by the solid line in FIG. During a normal heating operation, the first closing valve 14 is opened and the second closing valve 15 is closed. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the indoor heat exchanger 6 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with room air to release heat and condense to become a liquid refrigerant.
【0028】さらに、室内熱交換器6で凝縮して液状態
となった冷媒は、通常の暖房運転時には減圧器4で減圧
されて低温低圧の二相状態となり補助熱交換器バイパス
管13を経て室外熱交換器3に導入される。すなわち補
助熱交換器5で熱交換は行われない。室外熱交換器3で
は、冷媒は室外の空気と熱交換して吸熱して蒸発し低温
低圧のガス冷媒となる。さらに、室外熱交換器3で蒸発
して低温低圧のガス状態となった冷媒は、四方弁2を経
て圧縮機1に吸入される。Further, the refrigerant which has been condensed in the indoor heat exchanger 6 to be in a liquid state is depressurized by the decompressor 4 during normal heating operation to be in a two-phase state of low temperature and low pressure and passes through the auxiliary heat exchanger bypass pipe 13. It is introduced into the outdoor heat exchanger 3. That is, heat exchange is not performed in the auxiliary heat exchanger 5. In the outdoor heat exchanger 3, the refrigerant exchanges heat with outdoor air, absorbs heat, evaporates, and becomes a low-temperature low-pressure gas refrigerant. Further, the refrigerant evaporated in the outdoor heat exchanger 3 into a low-temperature low-pressure gas state is sucked into the compressor 1 through the four-way valve 2.
【0029】つぎに、暖房能力を圧縮機1の最低回転数
での運転時よりもさらに小さくしたいときには第一閉止
弁14を閉、第二閉止弁15を開に設定する。すると圧
縮機1で圧縮されて高温高圧となったガス冷媒は補助熱
交換器5、四方弁2を経て室内熱交換器6に導入され
る。ここで、ガス冷媒は室内空気と熱交換して放熱して
凝縮し液冷媒となる。Next, when it is desired to make the heating capacity even smaller than when the compressor 1 is operated at the minimum rotation speed, the first closing valve 14 is closed and the second closing valve 15 is opened. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the indoor heat exchanger 6 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with room air to release heat and condense to become a liquid refrigerant.
【0030】さらに、室内熱交換器6で凝縮して液状態
となった冷媒は、減圧器4で減圧されて低温低圧の二相
状態となり、開に設定された第二閉止弁15を経て補助
熱交換器5に導入される。この時補助熱交換器5では、
減圧器4で減圧されて低温となった冷媒によって圧縮機
1から吐出された高温の冷媒が冷却されて、室内熱交換
器6に導入される冷媒の温度が低下するために室内熱交
換器6での室内空気への放熱量が減り、暖房能力を小さ
くすることができる。Further, the refrigerant condensed in the indoor heat exchanger 6 to be in a liquid state is decompressed by the decompressor 4 to be in a two-phase state of low temperature and low pressure, and is assisted through the second closing valve 15 which is set to open. The heat is introduced into the heat exchanger 5. At this time, in the auxiliary heat exchanger 5,
The high-temperature refrigerant discharged from the compressor 1 is cooled by the low-temperature refrigerant which has been decompressed by the decompressor 4, and the temperature of the refrigerant introduced into the indoor heat exchanger 6 decreases. In this case, the amount of heat released to the indoor air is reduced, and the heating capacity can be reduced.
【0031】補助熱交換器5を経て室外熱交換器3に導
入された冷媒は、室外の空気と熱交換して吸熱して蒸発
し低温低圧のガス冷媒となる。さらに、室外熱交換器3
で蒸発して低温低圧のガス状態となった冷媒は、四方弁
2を経て圧縮機1に吸入される。The refrigerant introduced into the outdoor heat exchanger 3 via the auxiliary heat exchanger 5 exchanges heat with the outdoor air, absorbs heat, evaporates, and becomes a low-temperature low-pressure gas refrigerant. Furthermore, the outdoor heat exchanger 3
The refrigerant evaporated into a low-temperature and low-pressure gas state through the four-way valve 2 is sucked into the compressor 1.
【0032】次に冷房運転時には、四方弁2を図3中の
点線のように設定する。また通常の冷房運転時には第一
閉止弁14を開、第二閉止弁15を閉に設定する。する
と圧縮機1で圧縮されて高温高圧となったガス冷媒は補
助熱交換器5、四方弁2を経て室外熱交換器3に導入さ
れる。ここで、ガス冷媒は室外の空気と熱交換して放熱
して凝縮し液冷媒となる。Next, during the cooling operation, the four-way valve 2 is set as shown by the dotted line in FIG. During normal cooling operation, the first closing valve 14 is opened and the second closing valve 15 is closed. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the outdoor heat exchanger 3 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with outdoor air, radiates heat, condenses, and becomes a liquid refrigerant.
【0033】さらに、室外熱交換器3で凝縮して液状態
となった冷媒は、通常の冷房運転時には補助熱交換器バ
イパス管13を経て、減圧器4に導入される。すなわち
補助熱交換器5で熱交換は行われない。減圧器4で減圧
されて低温低圧の二相状態となった冷媒は、室内熱交換
器6で室内の空気と熱交換して吸熱して蒸発し低温低圧
のガス冷媒となる。さらに、室内熱交換器6で蒸発して
低温低圧のガス状態となった冷媒は、四方弁2を経て圧
縮機1に吸入される。Further, the refrigerant condensed in the outdoor heat exchanger 3 to be in a liquid state is introduced into the decompressor 4 through the auxiliary heat exchanger bypass pipe 13 during a normal cooling operation. That is, heat exchange is not performed in the auxiliary heat exchanger 5. The refrigerant that has been decompressed by the decompressor 4 and has become a low-temperature low-pressure two-phase state exchanges heat with indoor air in the indoor heat exchanger 6, absorbs heat and evaporates, and becomes a low-temperature low-pressure gas refrigerant. Further, the refrigerant evaporated into a low-temperature low-pressure gas state in the indoor heat exchanger 6 is sucked into the compressor 1 through the four-way valve 2.
【0034】つぎに、冷房能力を圧縮機1の最低回転数
での運転時よりもさらに小さくしたいときには第一閉止
弁14を閉、第二閉止弁15を開に設定する。すると圧
縮機1で圧縮されて高温高圧となったガス冷媒は補助熱
交換器5、四方弁2を経て室外熱交換器3に導入され
る。ここで、ガス冷媒は室外の空気と熱交換して放熱し
て凝縮し液冷媒となる。Next, when it is desired to make the cooling capacity smaller than that at the time of operating the compressor 1 at the minimum rotation speed, the first closing valve 14 is closed and the second closing valve 15 is opened. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the outdoor heat exchanger 3 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with outdoor air, radiates heat, condenses, and becomes a liquid refrigerant.
【0035】さらに、室外熱交換器3で凝縮して液状態
となった冷媒は、第一閉止弁14は閉に設定されている
ので補助熱交換器5に導入される。この時補助熱交換器
5では、圧縮機1から吐出された高温の冷媒によって減
圧器4に導入される冷媒が加熱されるため、室内熱交換
器6に導入される冷媒のエンタルピが上昇するために室
内熱交換器の入口と出口でのエンタルピ差が小さくな
り、室内熱交換器6での室内空気からの吸熱量が減り、
冷房能力を小さくすることができる。Further, the refrigerant condensed in the outdoor heat exchanger 3 to be in a liquid state is introduced into the auxiliary heat exchanger 5 because the first shut-off valve 14 is set to be closed. At this time, in the auxiliary heat exchanger 5, since the refrigerant introduced into the decompressor 4 is heated by the high-temperature refrigerant discharged from the compressor 1, the enthalpy of the refrigerant introduced into the indoor heat exchanger 6 increases. In addition, the enthalpy difference between the inlet and outlet of the indoor heat exchanger becomes smaller, and the amount of heat absorbed from indoor air in the indoor heat exchanger 6 decreases,
The cooling capacity can be reduced.
【0036】さらに、冷媒は減圧器4で減圧されて低温
低圧の二相状態となり、室内熱交換器6で蒸発して低温
低圧のガス状態となった冷媒は、四方弁2を経て圧縮機
1に吸入される。Further, the refrigerant is decompressed by the decompressor 4 to be in a low-temperature and low-pressure two-phase state, and the refrigerant which has been evaporated in the indoor heat exchanger 6 to be in a low-temperature and low-pressure gas state passes through the four-way valve 2 and the compressor 1. Inhaled.
【0037】以上のように、分子中に塩素を含まない単
一冷媒あるいは混合冷媒を用いることによりオゾン層を
破壊することはなく、暖房能力あるいは冷房能力をより
小さくしたいときには補助熱交換器5を作用させること
により、圧縮機1の最低回転数での能力以下での運転が
できて、圧縮機1のON/OFF運転の頻度を低減でき
て消費電力量を小さくすることができる。As described above, the ozone layer is not destroyed by using the single refrigerant or the mixed refrigerant containing no chlorine in the molecule, and the auxiliary heat exchanger 5 is used when the heating capacity or the cooling capacity is required to be smaller. By operating the compressor 1, the compressor 1 can be operated at a speed equal to or lower than the minimum rotational speed, the frequency of ON / OFF operation of the compressor 1 can be reduced, and the power consumption can be reduced.
【0038】なお、図3においては、補助熱交換器バイ
パス管13、第一閉止弁14、第二閉止弁15は室外熱
交換器3と減圧器4の間に設けたものとして説明した
が、圧縮機1の吐出側と四方弁2の間に設けても同じ効
果が得られるのは明らかである。In FIG. 3, the auxiliary heat exchanger bypass pipe 13, the first shut-off valve 14, and the second shut-off valve 15 are described as being provided between the outdoor heat exchanger 3 and the decompressor 4. Obviously, the same effect can be obtained even if provided between the discharge side of the compressor 1 and the four-way valve 2.
【0039】(実施の形態3)図4に本発明にかかる第
3の実施の形態の空気調和機を示す。なお図4において
図1あるいは図3と同じ構成要素には同じ符号を付す。
また冷媒として分子中に塩素を含まない単一冷媒あるい
は混合冷媒が封入されている。図4においては、冷房運
転時には室外熱交換器3で液状態となった冷媒は第一逆
止弁7を経て、暖房運転時には室内熱交換器6で液状態
となった冷媒は第2逆止弁8を経て図4中の左側から右
側へと補助熱交換器5内を流れて減圧器4で減圧され
て、冷房運転時には第三逆止弁9を経て室内熱交換器6
へ、暖房運転時には第四逆止弁10を経て室外熱交換器
3へ流れるように構成されている。一方、圧縮機1から
吐出された冷媒は図4中の右側から左側へと補助熱交換
器5内を流れて四方弁2に導入されるように構成されて
いる。(Embodiment 3) FIG. 4 shows an air conditioner according to a third embodiment of the present invention. In FIG. 4, the same components as those in FIG. 1 or FIG. 3 are denoted by the same reference numerals.
A single refrigerant or a mixed refrigerant containing no chlorine in the molecule is sealed as the refrigerant. In FIG. 4, the refrigerant that has become liquid in the outdoor heat exchanger 3 during the cooling operation passes through the first check valve 7, and the refrigerant that has become liquid in the indoor heat exchanger 6 during the heating operation is the second check valve. 4 flows from the left side to the right side in FIG. 4 through the auxiliary heat exchanger 5 and is decompressed by the decompressor 4. During the cooling operation, the indoor heat exchanger 6 passes through the third check valve 9.
In the heating operation, the air flows through the fourth check valve 10 to the outdoor heat exchanger 3. On the other hand, the refrigerant discharged from the compressor 1 is configured to flow through the auxiliary heat exchanger 5 from right to left in FIG.
【0040】また、補助熱交換器5をバイパスする補助
熱交換器バイパス管13は第一逆止弁7あるいは第二逆
止弁8と減圧器4間に設けられ、さらに補助熱交換器バ
イパス管13の途中には第一閉止弁14、補助熱交換器
5と補助熱交換器バイパス管13との間には第二閉止弁
15が設けられている。An auxiliary heat exchanger bypass pipe 13 for bypassing the auxiliary heat exchanger 5 is provided between the first check valve 7 or the second check valve 8 and the pressure reducer 4, and is further provided with an auxiliary heat exchanger bypass pipe. In the middle of 13, a first shut-off valve 14 and a second shut-off valve 15 between the auxiliary heat exchanger 5 and the auxiliary heat exchanger bypass pipe 13 are provided.
【0041】上記構成による空気調和機の動作について
説明する。The operation of the air conditioner having the above configuration will be described.
【0042】まず暖房運転時には、四方弁2を図4中の
実線のように設定する。また通常の暖房運転時には第一
閉止弁14を開、第二閉止弁15を閉に設定する。する
と圧縮機1で圧縮されて高温高圧となったガス冷媒は補
助熱交換器5、四方弁2を経て室内熱交換器6に導入さ
れる。ここで、ガス冷媒は室内の空気と熱交換して放熱
して凝縮し液冷媒となる。First, during the heating operation, the four-way valve 2 is set as shown by the solid line in FIG. During a normal heating operation, the first closing valve 14 is opened and the second closing valve 15 is closed. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the indoor heat exchanger 6 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with the indoor air to release heat and condense to become a liquid refrigerant.
【0043】さらに、室内熱交換器6で凝縮して液状態
となった冷媒は、通常の暖房運転時には第二逆止弁8、
補助熱交換器バイパス管13を経て減圧器4に導入され
る。すなわち補助熱交換器5で熱交換は行われない。減
圧器4で減圧されて低温低圧の二相状態となった冷媒は
第四逆止弁10を経て室外熱交換器3に導入されて室外
の空気と熱交換して吸熱して蒸発し低温低圧のガス冷媒
となり、四方弁2を経て圧縮機1に吸入される。Further, the refrigerant which has been condensed in the indoor heat exchanger 6 to be in a liquid state is supplied to the second check valve 8 during normal heating operation.
It is introduced into the pressure reducer 4 via the auxiliary heat exchanger bypass pipe 13. That is, heat exchange is not performed in the auxiliary heat exchanger 5. The refrigerant which has been decompressed by the decompressor 4 and has become a low-temperature and low-pressure two-phase state is introduced into the outdoor heat exchanger 3 through the fourth check valve 10, exchanges heat with outdoor air, absorbs heat, evaporates, and evaporates. And is sucked into the compressor 1 via the four-way valve 2.
【0044】つぎに、暖房能力を圧縮機1の最低回転数
での運転時よりもさらに小さくしたいときには第一閉止
弁14を閉、第二閉止弁15を開に設定する。すると圧
縮機1で圧縮されて高温高圧となったガス冷媒は補助熱
交換器5、四方弁2を経て室内熱交換器6に導入され
る。ここで、ガス冷媒は室内の空気と熱交換して放熱し
て凝縮し液冷媒となる。Next, when it is desired to make the heating capacity even smaller than when the compressor 1 is operating at the minimum rotational speed, the first closing valve 14 is closed and the second closing valve 15 is opened. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the indoor heat exchanger 6 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with the indoor air to release heat and condense to become a liquid refrigerant.
【0045】さらに、室内熱交換器6で凝縮して液状態
となった冷媒は、第二逆止弁8、開に設定された第二閉
止弁15を経て補助熱交換器5に導入される。この時補
助熱交換器5では、室内熱交換器6で室内の空気に放熱
した冷媒によって圧縮機1から吐出された高温の冷媒が
冷却されて、室内熱交換器6に導入される冷媒の温度が
低下するために室内熱交換器6での室内の空気への放熱
量が減り、暖房能力を小さくすることができる。Further, the refrigerant condensed in the indoor heat exchanger 6 into a liquid state is introduced into the auxiliary heat exchanger 5 through the second check valve 8 and the second close valve 15 which is set to be open. . At this time, in the auxiliary heat exchanger 5, the high-temperature refrigerant discharged from the compressor 1 is cooled by the refrigerant radiated to the indoor air by the indoor heat exchanger 6, and the temperature of the refrigerant introduced into the indoor heat exchanger 6 Is reduced, the amount of heat released to the indoor air in the indoor heat exchanger 6 is reduced, and the heating capacity can be reduced.
【0046】補助熱交換器5を経て減圧器4で減圧され
て低温低圧となった冷媒は、第四逆止弁10を経て室外
熱交換器3に導入されて室外の空気と熱交換して吸熱し
て蒸発し低温低圧のガス冷媒となり、四方弁2を経て圧
縮機1に吸入される。The refrigerant which has been decompressed by the decompressor 4 through the auxiliary heat exchanger 5 and has become low-temperature and low-pressure is introduced into the outdoor heat exchanger 3 through the fourth check valve 10 and exchanges heat with outdoor air. It absorbs heat and evaporates to become a low-temperature low-pressure gas refrigerant, which is sucked into the compressor 1 via the four-way valve 2.
【0047】次に冷房運転時には、四方弁2を図4中の
点線のように設定する。また通常の冷房運転時には第一
閉止弁14を開、第二閉止弁15を閉に設定する。する
と圧縮機1で圧縮されて高温高圧となったガス冷媒は補
助熱交換器5、四方弁2を経て室外熱交換器3に導入さ
れる。ここで、ガス冷媒は室外の空気と熱交換して放熱
して凝縮し液冷媒となる。Next, during the cooling operation, the four-way valve 2 is set as shown by the dotted line in FIG. During normal cooling operation, the first closing valve 14 is opened and the second closing valve 15 is closed. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the outdoor heat exchanger 3 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with outdoor air, radiates heat, condenses, and becomes a liquid refrigerant.
【0048】さらに、室外熱交換器3で凝縮して液状態
となった冷媒は、通常の冷房運転時には第一逆止弁7、
補助熱交換器バイパス管13を経て、減圧器4に導入さ
れる。すなわち補助熱交換器5で熱交換は行われない。
減圧器4で減圧されて低温低圧の二相状態となった冷媒
は、第三逆止弁9を経て室内熱交換器6で室内の空気と
熱交換して吸熱して蒸発し低温低圧のガス冷媒となり、
四方弁2を経て圧縮機1に吸入される。Further, the refrigerant condensed in the outdoor heat exchanger 3 to a liquid state is supplied to the first check valve 7 during normal cooling operation.
It is introduced into the decompressor 4 via the auxiliary heat exchanger bypass pipe 13. That is, heat exchange is not performed in the auxiliary heat exchanger 5.
The refrigerant which has been decompressed by the decompressor 4 and has become a low-temperature and low-pressure two-phase state passes through a third check valve 9 and exchanges heat with the indoor air in the indoor heat exchanger 6 to absorb heat and evaporate, thereby evaporating to a low-temperature and low-pressure gas. Becomes a refrigerant,
It is sucked into the compressor 1 via the four-way valve 2.
【0049】つぎに、冷房能力を圧縮機1の最低回転数
での運転時よりもさらに小さくしたいときには第一閉止
弁14を閉、第二閉止弁15を開に設定する。すると圧
縮機1で圧縮されて高温高圧となったガス冷媒は補助熱
交換器5、四方弁2を経て室外熱交換器3に導入され
る。ここで、ガス冷媒は室外の空気と熱交換して放熱し
て凝縮し液冷媒となる。Next, when it is desired to make the cooling capacity smaller than when the compressor 1 is operated at the minimum rotation speed, the first closing valve 14 is closed and the second closing valve 15 is opened. Then, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is introduced into the outdoor heat exchanger 3 through the auxiliary heat exchanger 5 and the four-way valve 2. Here, the gas refrigerant exchanges heat with outdoor air, radiates heat, condenses, and becomes a liquid refrigerant.
【0050】さらに、室外熱交換器3で凝縮して液状態
となった冷媒は、第一逆止弁7、開に設定された第二閉
止弁15を経て補助熱交換器5に導入される。この時補
助熱交換器5では、圧縮機1から吐出された高温の冷媒
によって減圧器4に導入される冷媒が加熱されるため、
室内熱交換器6に導入される冷媒のエンタルピが上昇す
るために室内熱交換器の入口と出口でのエンタルピ差が
小さくなり、室内熱交換器6での室内空気からの吸熱量
が減り、冷房能力を小さくすることができる。Further, the refrigerant condensed in the outdoor heat exchanger 3 to be in a liquid state is introduced into the auxiliary heat exchanger 5 through the first check valve 7 and the second close valve 15 set to be open. . At this time, in the auxiliary heat exchanger 5, the refrigerant introduced into the decompressor 4 is heated by the high-temperature refrigerant discharged from the compressor 1,
Since the enthalpy of the refrigerant introduced into the indoor heat exchanger 6 increases, the enthalpy difference between the inlet and the outlet of the indoor heat exchanger becomes small, the amount of heat absorbed from the indoor air in the indoor heat exchanger 6 decreases, and The ability can be reduced.
【0051】さらに、冷媒は減圧器4で減圧されて低温
低圧の二相状態となり、第三逆止弁9を経て室内熱交換
器6で蒸発して低温低圧のガス状態となり、四方弁2を
経て圧縮機1に吸入される。Further, the refrigerant is depressurized by the decompressor 4 to be in a low-temperature and low-pressure two-phase state, and is evaporated in the indoor heat exchanger 6 through the third check valve 9 to be in a low-temperature and low-pressure gas state. After that, it is sucked into the compressor 1.
【0052】以上のように、分子中に塩素を含まない単
一冷媒あるいは混合冷媒を用いることによりオゾン層を
破壊することはなく、暖房能力あるいは冷房能力をより
小さくしたいときには補助熱交換器5を作用させること
により、圧縮機の最低回転数での能力以下での運転がで
きて、圧縮機1のON/OFF運転の頻度を低減できて
消費電力量を小さくすることができる。また、暖房運
転、冷房運転ともに補助熱交換器5では対向流化できて
効率よく熱交換を行うことができる。As described above, the ozone layer is not destroyed by using a single refrigerant or a mixed refrigerant containing no chlorine in the molecule, and the auxiliary heat exchanger 5 is used when it is desired to reduce the heating capacity or the cooling capacity. By operating the compressor, it is possible to operate the compressor at a capacity equal to or lower than the minimum rotational speed, so that the frequency of the ON / OFF operation of the compressor 1 can be reduced, and the power consumption can be reduced. In addition, in both the heating operation and the cooling operation, the auxiliary heat exchanger 5 can make the flow counter-current, so that the heat exchange can be performed efficiently.
【0053】なお、図4においては、補助熱交換器バイ
パス管13、第一閉止弁14、第二閉止弁15は第一逆
止弁7あるいは第二逆止弁8と減圧器4の間に設けたも
のとして説明したが、圧縮機1の吐出側と四方弁2の間
に設けても同じ効果が得られるのは明らかである。ま
た、減圧器4は必ずしも補助熱交換器5の下流側に設け
る必要はなく、第一逆止弁7あるいは第二逆止弁8と補
助熱交換器バイパス管との間に設けたり、または複数個
設けたりしても同様の効果が得られるのは明らかであ
る。In FIG. 4, the auxiliary heat exchanger bypass pipe 13, the first stop valve 14, and the second stop valve 15 are provided between the first check valve 7 or the second check valve 8 and the pressure reducer 4. Although described as being provided, it is clear that the same effect can be obtained even if provided between the discharge side of the compressor 1 and the four-way valve 2. Further, the pressure reducer 4 does not necessarily need to be provided downstream of the auxiliary heat exchanger 5, and may be provided between the first check valve 7 or the second check valve 8 and the auxiliary heat exchanger bypass pipe, or Obviously, the same effect can be obtained by providing the same.
【0054】[0054]
【発明の効果】以上のように、本発明による空気調和機
では、減圧器と室内熱交換器間の冷媒と圧縮機から吐出
されて四方弁に至る冷媒とを熱交換させる補助熱交換器
と、補助熱交換器の減圧器と室内熱交換器間の冷媒が流
れる側あるいは補助熱交換器の圧縮機から吐出された冷
媒が流れる側をバイパスする補助熱交換器バイパス管
と、補助熱交換器バイパス管への冷媒の流れを閉止する
第一閉止弁と、補助熱交換器への冷媒の流れを閉止する
第二閉止弁を設け、分子中に塩素を含まない単一冷媒あ
るいは混合冷媒を封入することにより、オゾン層を破壊
することはなく、暖房能力あるいは冷房能力をより小さ
くしたいときには補助熱交換器を作用させることによ
り、圧縮機の最低回転数での能力以下での運転ができ
て、圧縮機のON/OFF運転の頻度を低減できて消費
電力量を小さくすることができる。As described above, in the air conditioner according to the present invention, the auxiliary heat exchanger for exchanging heat between the refrigerant between the decompressor and the indoor heat exchanger and the refrigerant discharged from the compressor and reaching the four-way valve is provided. An auxiliary heat exchanger bypass pipe for bypassing a side of the auxiliary heat exchanger where the refrigerant flows between the decompressor and the indoor heat exchanger or a side where the refrigerant discharged from the compressor of the auxiliary heat exchanger flows, and an auxiliary heat exchanger. A first shut-off valve that shuts off the flow of refrigerant to the bypass pipe and a second shut-off valve that shuts off the flow of refrigerant to the auxiliary heat exchanger are filled with a single refrigerant or mixed refrigerant that does not contain chlorine in the molecule. By doing so, the ozone layer is not destroyed, and when it is desired to make the heating capacity or cooling capacity smaller, by operating the auxiliary heat exchanger, it is possible to operate at a capacity less than the minimum rotation speed of the compressor, ON / OF of compressor It is possible to reduce the amount of power consumption can reduce the frequency of operation.
【0055】また、減圧器と室外熱交換器間の冷媒と圧
縮機から吐出されて四方弁に至る冷媒とを熱交換させる
補助熱交換器と、補助熱交換器の減圧器と室外熱交換器
間の冷媒が流れる側あるいは補助熱交換器の圧縮機から
吐出された冷媒が流れる側をバイパスする補助熱交換器
バイパス管と、補助熱交換器バイパス管への冷媒の流れ
を閉止する第一閉止弁と、補助熱交換器への冷媒の流れ
を閉止する第二閉止弁を設け、分子中に塩素を含まない
単一冷媒あるいは混合冷媒を封入することにより、オゾ
ン層を破壊することはなく、暖房能力あるいは冷房能力
をより小さくしたいときには補助熱交換器を作用させる
ことにより、圧縮機の最低回転数での能力以下での運転
ができて、圧縮機のON/OFF運転の頻度を低減でき
て消費電力量を小さくすることができる。Further, an auxiliary heat exchanger for exchanging heat between the refrigerant between the decompressor and the outdoor heat exchanger and the refrigerant discharged from the compressor and reaching the four-way valve, a decompressor of the auxiliary heat exchanger and the outdoor heat exchanger An auxiliary heat exchanger bypass pipe that bypasses a side through which the refrigerant flows or a side through which the refrigerant discharged from the compressor of the auxiliary heat exchanger flows, and a first closure that closes a flow of the refrigerant to the auxiliary heat exchanger bypass pipe By providing a valve and a second shut-off valve for shutting off the flow of the refrigerant to the auxiliary heat exchanger, and by enclosing a single refrigerant or a mixed refrigerant containing no chlorine in the molecule, the ozone layer is not destroyed, When it is desired to make the heating capacity or the cooling capacity smaller, by operating the auxiliary heat exchanger, it is possible to operate the compressor at a capacity lower than the minimum rotational speed, thereby reducing the frequency of ON / OFF operation of the compressor. Low power consumption Can Kusuru.
【0056】また、冷房運転時には室外熱交換器を経た
冷媒が第一逆止弁、補助熱交換器、減圧器、第三逆止弁
を経て室内熱交換器に流入し、暖房運転時には室内熱交
換器を経た冷媒が第二逆止弁、補助熱交換器、減圧器、
第四逆止弁を経て室外熱交換器に流入し、補助熱交換器
では第一逆止弁あるいは第二逆止弁と減圧器間の冷媒と
圧縮機から吐出された冷媒とを熱交換させ、補助熱交換
器バイパス管は補助熱交換器の第一逆止弁あるいは第二
逆止弁と減圧器間の冷媒が流れる側あるいは補助熱交換
器の圧縮機から吐出された冷媒が流れる側をバイパスさ
せ、補助熱交換器バイパス管への冷媒の流れを閉止する
第一閉止弁と、補助熱交換器への冷媒の流れを閉止する
第二閉止弁を設け、分子中に塩素を含まない単一冷媒あ
るいは混合冷媒を封入することにより、オゾン層を破壊
することはなく、暖房能力あるいは冷房能力をより小さ
くしたいときには補助熱交換器を作用させることによ
り、圧縮機の最低回転数での能力以下での運転ができ
て、圧縮機のON/OFF運転の頻度を低減できて消費
電力量を小さくすることができる。また、暖房運転、冷
房運転ともに補助熱交換器では対向流化できて効率よく
熱交換を行うことができる。During the cooling operation, the refrigerant that has passed through the outdoor heat exchanger flows into the indoor heat exchanger through the first check valve, the auxiliary heat exchanger, the pressure reducer, and the third check valve. The refrigerant that has passed through the exchanger is the second check valve, auxiliary heat exchanger, pressure reducer,
The refrigerant flows into the outdoor heat exchanger via the fourth check valve, and in the auxiliary heat exchanger, heat exchanges the refrigerant between the first check valve or the second check valve and the pressure reducer with the refrigerant discharged from the compressor. The auxiliary heat exchanger bypass pipe is connected to the side of the auxiliary heat exchanger where the refrigerant flows between the first check valve or the second check valve and the pressure reducer or the side where the refrigerant discharged from the compressor of the auxiliary heat exchanger flows. A first shut-off valve for bypassing and closing the flow of the refrigerant to the auxiliary heat exchanger bypass pipe, and a second shut-off valve for closing the flow of the refrigerant to the auxiliary heat exchanger are provided. By enclosing one refrigerant or mixed refrigerant, the ozone layer is not destroyed, and when it is desired to make the heating capacity or the cooling capacity smaller, the auxiliary heat exchanger is operated to reduce the capacity at the minimum speed of the compressor. ON / OFF of the compressor It is possible to reduce the amount of power consumption can reduce the frequency of F operation. In addition, in both the heating operation and the cooling operation, the auxiliary heat exchanger can make the flow counter-current, so that the heat exchange can be performed efficiently.
【図1】本発明の第1の実施の形態による空気調和機の
模式図である。FIG. 1 is a schematic diagram of an air conditioner according to a first embodiment of the present invention.
【図2】本発明の第1の実施の形態による空気調和機に
おける圧力−エンタルピ線図である。FIG. 2 is a pressure-enthalpy diagram in the air conditioner according to the first embodiment of the present invention.
【図3】本発明の第2の実施の形態による空気調和機の
模式図である。FIG. 3 is a schematic diagram of an air conditioner according to a second embodiment of the present invention.
【図4】本発明の第3の実施の形態による空気調和機の
模式図である。FIG. 4 is a schematic diagram of an air conditioner according to a third embodiment of the present invention.
【図5】従来の形態による空気調和機の模式図である。FIG. 5 is a schematic diagram of an air conditioner according to a conventional mode.
【図6】従来の形態による空気調和機における圧力−エ
ンタルピ線図である。FIG. 6 is a pressure-enthalpy diagram of an air conditioner according to a conventional mode.
1:圧縮機 2:四方弁 3:室外熱交換器 4:減圧器 5:補助熱交換器 6:室内熱交換器 7:第一逆止弁 8:第二逆止弁 9:第三逆止弁 10:第四逆止弁 11:第一減圧器 12:第二減圧器 13:補助熱交換器バイパス管 14:第一閉止弁 15:第二閉止弁 A:室外機 B:室内機 1: Compressor 2: Four-way valve 3: Outdoor heat exchanger 4: Depressurizer 5: Auxiliary heat exchanger 6: Indoor heat exchanger 7: First check valve 8: Second check valve 9: Third check Valve 10: Fourth check valve 11: First decompressor 12: Second decompressor 13: Auxiliary heat exchanger bypass pipe 14: First shutoff valve 15: Second shutoff valve A: Outdoor unit B: Indoor unit
Claims (3)
を切り替える四方弁、室外熱交換器、減圧器からなる室
外機と、少なくとも室内熱交換器からなる室内機とを配
管接続した空気調和機において、分子中に塩素を含まな
い単一冷媒あるいは混合冷媒を封入し、前記減圧器と前
記室内熱交換器間の冷媒と前記圧縮機から吐出されて前
記四方弁に至る冷媒とを熱交換させる補助熱交換器と、
前記補助熱交換器の前記減圧器と前記室内熱交換器間の
冷媒が流れる側あるいは前記補助熱交換器の前記圧縮機
から吐出された冷媒が流れる側をバイパスする補助熱交
換器バイパス管と、前記補助熱交換器バイパス管への冷
媒の流れを閉止する第一閉止弁と、前記補助熱交換器へ
の冷媒の流れを閉止する第二閉止弁を設けたことを特徴
とする空気調和機。An air conditioner in which at least a compressor, a four-way valve for switching between a cooling operation and a heating operation, an outdoor heat exchanger and a decompressor, and an indoor unit including at least an indoor heat exchanger are pipe-connected. A single refrigerant or a mixed refrigerant containing no chlorine in the molecule is sealed therein, and heat exchange between the refrigerant between the decompressor and the indoor heat exchanger and the refrigerant discharged from the compressor and reaching the four-way valve is performed. Heat exchanger,
An auxiliary heat exchanger bypass pipe that bypasses a side of the auxiliary heat exchanger through which the refrigerant flows between the decompressor and the indoor heat exchanger or a side of the auxiliary heat exchanger through which the refrigerant discharged from the compressor flows, An air conditioner comprising: a first shutoff valve for closing a flow of a refrigerant to the auxiliary heat exchanger bypass pipe; and a second shutoff valve for closing a flow of a refrigerant to the auxiliary heat exchanger.
を切り替える四方弁、室外熱交換器、減圧器からなる室
外機と、少なくとも室内熱交換器からなる室内機とを配
管接続した空気調和機において、分子中に塩素を含まな
い単一冷媒あるいは混合冷媒を封入し、前記減圧器と前
記室外熱交換器間の冷媒と前記圧縮機から吐出されて前
記四方弁に至る冷媒とを熱交換させる補助熱交換器と、
前記補助熱交換器の前記減圧器と前記室外熱交換器間の
冷媒が流れる側あるいは前記補助熱交換器の前記圧縮機
から吐出された冷媒が流れる側をバイパスする補助熱交
換器バイパス管と、前記補助熱交換器バイパス管への冷
媒の流れを閉止する第一閉止弁と、前記補助熱交換器へ
の冷媒の流れを閉止する第二閉止弁を設けたことを特徴
とする空気調和機。2. An air conditioner in which at least a compressor, a four-way valve for switching between a cooling operation and a heating operation, an outdoor heat exchanger and an outdoor unit comprising a decompressor, and at least an indoor unit comprising an indoor heat exchanger are pipe-connected. A single refrigerant or a mixed refrigerant containing no chlorine in the molecule is sealed therein, and a heat exchange between the refrigerant between the decompressor and the outdoor heat exchanger and the refrigerant discharged from the compressor and reaching the four-way valve is performed. Heat exchanger,
An auxiliary heat exchanger bypass pipe that bypasses a side of the auxiliary heat exchanger where the refrigerant flows between the decompressor and the outdoor heat exchanger or a side where the refrigerant discharged from the compressor of the auxiliary heat exchanger flows, An air conditioner comprising: a first shutoff valve for closing a flow of a refrigerant to the auxiliary heat exchanger bypass pipe; and a second shutoff valve for closing a flow of a refrigerant to the auxiliary heat exchanger.
を切り替える四方弁、室外熱交換器、減圧器からなる室
外機と、少なくとも室内熱交換器からなる室内機とを配
管接続した空気調和機において、分子中に塩素を含まな
い単一冷媒あるいは混合冷媒を封入し、第一逆止弁、第
二逆止弁、第三逆止弁、第四逆止弁、補助熱交換器、補
助熱交換器バイパス管、第一閉止弁、第二閉止弁を備
え、冷房運転時には前記室外熱交換器を経た冷媒が前記
第一逆止弁、前記補助熱交換器、前記減圧器、前記第三
逆止弁を経て前記室内熱交換器に流入し、暖房運転時に
は前記室内熱交換器を経た冷媒が前記第二逆止弁、前記
補助熱交換器、前記減圧器、前記第四逆止弁を経て前記
室外熱交換器に流入し、前記補助熱交換器では前記第一
逆止弁あるいは第二逆止弁と前記減圧器間の冷媒と前記
圧縮機から吐出された冷媒とを熱交換させ、前記補助熱
交換器バイパス管は前記補助熱交換器の前記第一逆止弁
あるいは前記第二逆止弁と前記減圧器間の冷媒が流れる
側あるいは前記補助熱交換器の前記圧縮機から吐出され
た冷媒が流れる側をバイパスさせ、前記補助熱交換器バ
イパス管への冷媒の流れを閉止する第一閉止弁と、前記
補助熱交換器への冷媒の流れを閉止する第二閉止弁を設
けたことを特徴とする空気調和機。3. An air conditioner in which at least a compressor, a four-way valve for switching between a cooling operation and a heating operation, an outdoor heat exchanger and a decompressor, and an indoor unit including at least an indoor heat exchanger are pipe-connected. A single or mixed refrigerant containing no chlorine in the molecule is sealed, and the first check valve, the second check valve, the third check valve, the fourth check valve, the auxiliary heat exchanger, the auxiliary heat exchange The cooling device has a bypass pipe, a first shut-off valve, and a second shut-off valve. During the cooling operation, the refrigerant that has passed through the outdoor heat exchanger receives the first check valve, the auxiliary heat exchanger, the pressure reducer, and the third check. The refrigerant flows into the indoor heat exchanger through a valve, and the refrigerant that has passed through the indoor heat exchanger during the heating operation passes through the second check valve, the auxiliary heat exchanger, the pressure reducer, and the fourth check valve. Flows into the outdoor heat exchanger, and in the auxiliary heat exchanger, the first check valve or the second check valve. The refrigerant between the stop valve and the decompressor exchanges heat with the refrigerant discharged from the compressor, and the auxiliary heat exchanger bypass pipe is connected to the first check valve or the second check valve of the auxiliary heat exchanger. A first for bypassing a side where the refrigerant flows between the valve and the decompressor or a side where the refrigerant discharged from the compressor of the auxiliary heat exchanger flows and closing a flow of the refrigerant to the auxiliary heat exchanger bypass pipe; An air conditioner comprising: a closing valve; and a second closing valve for closing a flow of the refrigerant to the auxiliary heat exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24485996A JPH1089794A (en) | 1996-09-17 | 1996-09-17 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24485996A JPH1089794A (en) | 1996-09-17 | 1996-09-17 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1089794A true JPH1089794A (en) | 1998-04-10 |
Family
ID=17125060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24485996A Pending JPH1089794A (en) | 1996-09-17 | 1996-09-17 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1089794A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100822432B1 (en) | 2007-01-08 | 2008-04-16 | 주식회사 대우일렉트로닉스 | Air conditioner having auxiliary exchanger |
JP2020143879A (en) * | 2019-03-08 | 2020-09-10 | 株式会社富士通ゼネラル | Air conditioner |
-
1996
- 1996-09-17 JP JP24485996A patent/JPH1089794A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100822432B1 (en) | 2007-01-08 | 2008-04-16 | 주식회사 대우일렉트로닉스 | Air conditioner having auxiliary exchanger |
JP2020143879A (en) * | 2019-03-08 | 2020-09-10 | 株式会社富士通ゼネラル | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07234038A (en) | Multiroom type cooling-heating equipment and operating method thereof | |
WO2003083381A1 (en) | Refrigerating cycle device | |
WO2007102345A1 (en) | Refrigeration device | |
KR100667517B1 (en) | Air conditioner equipped with variable capacity type compressor | |
JP2989491B2 (en) | Air conditioner | |
JP3650088B2 (en) | Heat pump equipment | |
JP3138154B2 (en) | Air conditioner | |
JP4084915B2 (en) | Refrigeration system | |
JP4273588B2 (en) | Air conditioner refrigerant circuit | |
JPH1089794A (en) | Air conditioner | |
US20220252317A1 (en) | A heat pump | |
JP3155645B2 (en) | Air conditioner | |
JP2800428B2 (en) | Air conditioner | |
KR100591323B1 (en) | Heat pump type air conditioner | |
KR100441008B1 (en) | Cooling and heating air conditioning system | |
JP2000074515A (en) | Air conditioner | |
JPH09318178A (en) | Air conditioner | |
JPH0798166A (en) | Air-conditioner | |
JPH10253171A (en) | Air conditioner | |
JPH04268165A (en) | Double-stage compression and freezing cycle device | |
JPH11325637A (en) | Air conditioner | |
WO2024166278A1 (en) | Air conditioning device | |
JPH07180927A (en) | Multi-chamber type cooling and heating device | |
JP3253276B2 (en) | Thermal storage type air conditioner and operation method thereof | |
JPH10103806A (en) | Air conditioner |