JPH0798166A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH0798166A
JPH0798166A JP24324493A JP24324493A JPH0798166A JP H0798166 A JPH0798166 A JP H0798166A JP 24324493 A JP24324493 A JP 24324493A JP 24324493 A JP24324493 A JP 24324493A JP H0798166 A JPH0798166 A JP H0798166A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
flow
compressor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24324493A
Other languages
Japanese (ja)
Inventor
Takayoshi Iwanaga
隆喜 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24324493A priority Critical patent/JPH0798166A/en
Publication of JPH0798166A publication Critical patent/JPH0798166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve the heat exchanging efficiency of an air-conditioner and enable fast defrosting to be carried out without using any specific defrosting device. CONSTITUTION:The inlet port 17a for refrigerant in a heat exchanger 7 used as at least an evaporator is provided on the downstream side of the air flow passing through the heat exchanger 7 due to the rotation of a fan 19, and the outlet port 17b for refrigerant is provided on the upstream side. The air- conditioner has a heating mode in which the fans 15, 19 and a compressor 1 are on and the flow of refrigerant is made an opposing flow flowing from the downstream side inlet port 17a of the heat exchanger 7 toward the outlet 17b on the upstream side, and a defrosting mode in which the fans 15, 19 are off, the compressor 1 is on and the flow of refrigerant is made an opposing flow directed in the same direction as that in the heating mode in which the refrigerant flows from the downstream side inlet port 17a of the heat exchanger 7 to the upstream side outlet port 17b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、冷媒に非共沸混合冷
媒を用いた空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using a non-azeotropic mixed refrigerant as a refrigerant.

【0002】[0002]

【従来の技術】一般にヒートポンプタイプの空気調和装
置にあっては、圧縮機と室内熱交換器と減圧装置と室外
熱交換器とにより構成され、暖房モード時には、室内熱
交換器を凝縮器として、室外熱交換器を蒸発器として使
用する。また、冷房モード時には、室内熱交換器を蒸発
器として、室外熱交換器を凝縮器として使用し、冷凍サ
イクル内を循環する冷媒は、単一冷媒が用いられてい
る。
2. Description of the Related Art Generally, a heat pump type air conditioner is composed of a compressor, an indoor heat exchanger, a pressure reducing device and an outdoor heat exchanger, and in the heating mode, the indoor heat exchanger is used as a condenser. Use the outdoor heat exchanger as an evaporator. In the cooling mode, the indoor heat exchanger is used as an evaporator, the outdoor heat exchanger is used as a condenser, and a single refrigerant is used as the refrigerant circulating in the refrigeration cycle.

【0003】[0003]

【発明が解決しようとする課題】単一冷媒となるフロン
ガスは、近年、地球に悪影響を与える所から全廃される
方向にあり、それに変わって代替用の非共沸混合冷媒が
有力視されている。
In recent years, CFCs, which are a single refrigerant, have been abolished from the place where they adversely affect the earth, and instead, non-azeotropic mixed refrigerants for substitution have been considered promising. .

【0004】非共沸混合冷媒は、冷凍モード時の蒸発器
では、冷媒液は気液平衡を保ちながら冷媒蒸気となる。
この間、蒸発温度は次第に上昇していく温度勾配とな
る。凝縮器では全くこの逆で、凝縮温度は次第に低下し
ていく。一方、空気は、蒸発器では熱を奪われて低温に
なり、凝縮器では、熱を得て高温となる。これらの温度
関係をまとめると表−1のようになる。
In the evaporator in the refrigerating mode, the non-azeotropic mixed refrigerant becomes the refrigerant vapor while the refrigerant liquid maintains the vapor-liquid equilibrium.
During this time, the evaporation temperature has a temperature gradient that gradually increases. In the condenser, the opposite is true, and the condensation temperature gradually decreases. On the other hand, air loses heat in the evaporator and becomes low temperature, and heat is obtained in the condenser and becomes high temperature. Table 1 shows a summary of these temperature relationships.

【0005】[0005]

【表1】 この非共沸混合冷媒を用いた冷凍モード時は、向流方式
の熱交換を行なうことにより、相変化の温度が濃度に依
存する特性を利用して冷媒を冷起流体あるいは加熱流体
との熱交換損失を減少させ、成績係数を向上させること
ができる。向流方式とは、空気流に対して、冷媒の入口
が最も風下の列にあり、出口が最も風上の列にあって、
冷媒の風下の列から順次風上の列に流れるように配置さ
れた場合をいう。また、これと逆の場合を並流方式と呼
ばれるもので、冷房モード時、暖房モード時に、熱交換
器が対向流となるよう効率の向上を図った特開昭59−
115945号公報が知られている。
[Table 1] In the refrigeration mode using this non-azeotropic mixed refrigerant, countercurrent heat exchange is performed to utilize the characteristic that the temperature of the phase change depends on the concentration to make the refrigerant heat with the cold fluid or heating fluid. Exchange loss can be reduced and the coefficient of performance can be improved. The countercurrent method is that the inlet of the refrigerant is the most downwind row and the outlet is the most upwind row with respect to the air flow.
This is a case where the refrigerant is arranged so as to sequentially flow from the leeward row to the leeward row. The opposite case is called a parallel flow system, and the efficiency is improved so that the heat exchanger is in the counter flow in the cooling mode and the heating mode.
No. 115945 is known.

【0006】しかしながら、蒸発器において、入口側か
ら出口側へ向けて温度が順次高くなる温度勾配のある非
共沸混合冷媒を用いた空気調和装置にあっては、対向流
又は、並行流による純伝熱現象的な熱交換率の外に、例
えば、蒸発器の入口側フィンに成長する着霜によって、
フィンとフィンの間の通風量が低下し、通風量低下によ
る熱交換率も考慮する必要がある。この着霜による熱交
換率について、前記特開昭59−115945号公報に
あっては何等考慮されてなく、霜取りを行なうには特別
な霜取り装置を必要とする。
However, in the evaporator, in the air conditioner using the non-azeotropic mixed refrigerant having a temperature gradient in which the temperature gradually increases from the inlet side to the outlet side, the counterflow or parallel flow pure air flow is used. In addition to the heat transfer phenomenon heat exchange rate, for example, by frost formation growing on the inlet fins of the evaporator,
The amount of ventilation between fins decreases, and it is necessary to consider the heat exchange rate due to the reduction in ventilation. The heat exchange rate due to this frost is not taken into consideration in JP-A-59-115945, and a special defrosting device is required to perform defrosting.

【0007】そこで、この発明は、純伝熱現象的な熱交
換率の向上が図れるようにすると共に、特別な霜取り装
置を用いることなく、迅速に霜取りが行なえるようにし
た空気調和装置を提供することを目的としている。
[0007] Therefore, the present invention provides an air conditioner capable of improving the heat exchange rate in a pure heat transfer phenomenon and rapidly defrosting without using a special defrosting device. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、圧縮機と室内熱交換器と減圧装置と室
外熱交換器とにより構成され、暖房モード時に、室内熱
交換器を凝縮器として、室外熱交換器を蒸発器として使
用する一方、冷房モード時に、室内熱交換器を蒸発器と
して、室外熱交換器を凝縮器として使用すると共に冷凍
サイクル内を循環する冷媒に、非共沸混合冷媒を用いた
空気調和装置において、少なくとも、蒸発器として使用
する熱交換器の冷媒の入口側を、ファンの回転によって
熱交換器を通過する空気流に対して風下側に、冷媒の出
口側を、風上側にそれぞれ設ける一方、ファン及び圧縮
機をオンとして、冷媒の流れを、熱交換器の風下の入口
側から風上の出口側へ向かうよう対向流とする暖房モー
ド運転と、ファンをオフ、圧縮機をオンとして、冷媒の
流れを、熱交換器の風下の入口側から風上の出口側へ向
かう暖房モード時と同一方向に向かうよう対向流とする
除霜モード運転とを備えている。
In order to achieve the above object, the present invention comprises a compressor, an indoor heat exchanger, a pressure reducing device and an outdoor heat exchanger. As a condenser, while using the outdoor heat exchanger as an evaporator, during the cooling mode, the indoor heat exchanger as an evaporator, the outdoor heat exchanger as a condenser and the refrigerant circulating in the refrigeration cycle, non- In the air conditioner using the azeotropic mixed refrigerant, at least the inlet side of the refrigerant of the heat exchanger used as the evaporator, the leeward side with respect to the air flow passing through the heat exchanger by the rotation of the fan, of the refrigerant. While the outlet side is provided on the windward side, respectively, the fan and the compressor are turned on, and the heating mode operation is such that the flow of the refrigerant is a counterflow from the leeward inlet side of the heat exchanger toward the windward outlet side. fan With the defrosting mode operation in which the compressor is turned on, the flow of the refrigerant is counter-current so as to flow in the same direction as in the heating mode from the leeward inlet side of the heat exchanger to the leeward outlet side. There is.

【0009】[0009]

【作用】かかる空気調和装置によれば、例えば、暖房モ
ード運転とすることで、圧縮機から吐出した高温・高圧
の冷媒蒸気は四方弁を介してまず室内熱交換器に入り、
室内空気に放熱して凝縮する。凝縮した冷媒は減圧装置
で減圧され低温・低圧となり室外熱交換器で室外空気か
ら吸熱して気化する。気化した冷媒は圧縮機に吸入さ
れ、再び高温・高圧の蒸気になって、暖房サイクルを繰
返すようになる。
According to such an air conditioner, for example, in the heating mode operation, the high-temperature / high-pressure refrigerant vapor discharged from the compressor first enters the indoor heat exchanger through the four-way valve,
It radiates heat to indoor air and condenses. The condensed refrigerant is decompressed by the decompression device to become low temperature and low pressure, and absorbs heat from the outdoor air in the outdoor heat exchanger to be vaporized. The vaporized refrigerant is sucked into the compressor, becomes high-temperature and high-pressure vapor again, and repeats the heating cycle.

【0010】この暖房サイクル時において、冷媒は空気
流に対し、風下の入口側から風上の出口側へ向かう対向
流の関係となるため、効率のよい熱交換が行なえるよう
になる。
During this heating cycle, since the refrigerant has a counterflow relationship with the airflow from the leeward inlet side to the leeward outlet side, efficient heat exchange can be performed.

【0011】一方、除霜モード運転に入ると、圧縮機は
オン、ファンはオフとなり、冷媒は、暖房モード運転と
同一の流れとなるので、高温の冷媒が入口側から流れる
ため、入口側領域のフィンに着霜した霜は迅速に解ける
ようになる。この場合、特別な霜取り装置を用いること
なく霜取りが可能となる。
On the other hand, when the defrosting mode operation is started, the compressor is turned on and the fan is turned off, and the refrigerant has the same flow as in the heating mode operation. Therefore, the high temperature refrigerant flows from the inlet side, so that the inlet side region The frost that frosted on the fins can be quickly thawed. In this case, defrosting is possible without using a special defrosting device.

【0012】[0012]

【実施例】以下、図1乃至図4の図面を参照しながらこ
の発明の一実施例を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings of FIGS.

【0013】図2は冷媒に、例えば、R32とR134
aの非共沸混合冷媒が用いられた空気調和装置Aの冷凍
サイクルを示している。空気調和装置Aは、圧縮機1と
室内熱交換器3と減圧装置5と室外熱交換器7とから成
っており、四方弁9を切換えることで、圧縮機1から吐
出された冷媒は、実線矢印の如く室内側熱交換器3側
へ、また図3実線矢印の如く室外側熱交換器7側へ向か
う冷凍サイクルが得られるようになっており、運転モー
ドに対応した切換制御が可能となっている。
FIG. 2 shows refrigerants such as R32 and R134.
The refrigerating cycle of the air conditioning apparatus A using the non-azeotropic mixed refrigerant of a is shown. The air conditioner A includes a compressor 1, an indoor heat exchanger 3, a decompression device 5, and an outdoor heat exchanger 7. By switching the four-way valve 9, the refrigerant discharged from the compressor 1 is shown by a solid line. A refrigeration cycle can be obtained which goes to the indoor heat exchanger 3 side as shown by the arrow and to the outdoor heat exchanger 7 side as shown by the solid line arrow in FIG. 3, and switching control corresponding to the operation mode becomes possible. ing.

【0014】室内熱交換器3は、連続した伝熱管11と
所定のピッチで設けられたフィン13とから成り、伝熱
管11の一端は四方弁9と、他端は減圧装置5とそれぞ
れ接続連通し、図2に示すように暖房モード時に、実線
矢印の如く冷媒が流れることで、凝縮器として機能す
る。また、図3に示すように冷房モード時に、実線矢印
の如く流れることで蒸発器として機能するようになって
おり、ファン15の回転で空気流は、矢印の如くフィン
13とフィン13の間を流れるようになっている。
The indoor heat exchanger 3 comprises a continuous heat transfer tube 11 and fins 13 provided at a predetermined pitch. One end of the heat transfer tube 11 is connected to the four-way valve 9 and the other end is connected to the pressure reducing device 5, respectively. Then, as shown in FIG. 2, in the heating mode, the refrigerant flows as indicated by the solid arrow, thereby functioning as a condenser. Further, as shown in FIG. 3, in the cooling mode, it functions as an evaporator by flowing as shown by the solid arrow, and the rotation of the fan 15 causes the air flow to flow between the fins 13 and 13 as shown by the arrow. It's flowing.

【0015】室外熱交換器7は、連続した伝熱管17と
所定のピッチで設けられたフィン18とから成り、伝熱
管17の一端は四方弁9と、他端は減圧装置5とそれぞ
れ接続連通し、図2に示すように暖房モード時に、実線
矢印の如く冷媒が流れることで、蒸発器として機能す
る。また、図3の如く冷房モード時に実線矢印の如く冷
媒が流れることで凝縮器として機能するようになってお
り、ファン19の回転で、空気流は矢印の如くフィン1
8とフィン18の間を風上a側から風下b側へ向かって
流れるようになっている。
The outdoor heat exchanger 7 is composed of a continuous heat transfer tube 17 and fins 18 provided at a predetermined pitch. One end of the heat transfer tube 17 is connected to the four-way valve 9 and the other end is connected to the pressure reducing device 5, respectively. Then, as shown in FIG. 2, in the heating mode, the refrigerant flows as indicated by the solid arrow, thereby functioning as an evaporator. Further, as shown in FIG. 3, in the cooling mode, the refrigerant flows as indicated by the solid line arrow to function as a condenser, and the rotation of the fan 19 causes the air flow to move to the fins 1 as indicated by the arrow.
It flows between the windshield 8 and the fin 18 from the windward side a toward the leeward side b.

【0016】室外熱交換器7側の回路には、独立した第
1制御回路21と第2制御回路23がX状に接続され、
第1制御回路21には第1開閉弁25が、第2制御回路
23には第2開閉弁27がそれぞれ設けられている。ま
た、第1、第2制御回路21,23の両接続部と接続部
の間の回路には第3開閉弁29,29がそれぞれ設けら
れ、第1、第2、第3開閉弁25,27,29は、冷房
モード運転の操作部31、暖房モード運転の操作部3
3、除霜モード運転の操作部35の操作に対応して、開
閉自在制御可能となっている。
An independent first control circuit 21 and second control circuit 23 are connected in an X-shape to the circuit on the side of the outdoor heat exchanger 7,
The first control circuit 21 is provided with a first opening / closing valve 25, and the second control circuit 23 is provided with a second opening / closing valve 27. Further, the third opening / closing valves 29, 29 are provided in the circuits between both connecting portions of the first and second control circuits 21, 23, respectively, and the first, second, third opening / closing valves 25, 27 are provided. , 29 are the operation unit 31 for the cooling mode operation and the operation unit 3 for the heating mode operation
3. The open / close control can be performed according to the operation of the operation unit 35 in the defrosting mode operation.

【0017】冷房モード運転31時は、図3に示すよう
に、第1、第2開閉弁25,27は開、第3開閉弁2
9,29は閉となる一方、圧縮機1と各ファン15,1
9はオンの作動状態となり、実線矢印の如く冷媒が流れ
る冷凍サイクルとなる。
During the cooling mode operation 31 as shown in FIG. 3, the first and second opening / closing valves 25 and 27 are open and the third opening / closing valve 2 is opened.
While 9, 29 are closed, the compressor 1 and each fan 15, 1 are closed.
9 is in the ON operation state, which is a refrigeration cycle in which the refrigerant flows as indicated by the solid arrow.

【0018】この冷凍サイクルにおいて、室外熱交換器
7は、空気流に対し風下b側の冷媒の入口17a側から
風上a側の冷媒の出口17b側へ流れる対向流が得られ
るようになっている。
In this refrigeration cycle, the outdoor heat exchanger 7 can obtain a counterflow to the airflow from the refrigerant inlet 17a side on the leeward b side to the refrigerant outlet 17b side on the upwind a side. There is.

【0019】暖房モード運転33時は、図2に示すよう
に、第1、第2開閉弁25,27は閉、第3開閉弁2
9,29は開となる一方、圧縮機1と各ファン15,1
9はオンの作動状態となり、実線矢印の冷凍サイクルと
なる。
During the heating mode operation 33, as shown in FIG. 2, the first and second opening / closing valves 25 and 27 are closed and the third opening / closing valve 2 is opened.
9, 29 are open, while the compressor 1 and each fan 15, 1
9 is in the operating state of ON, and the refrigeration cycle indicated by the solid arrow.

【0020】この冷凍サイクルにおいて、室外熱交換器
7は、空気流に対し、風下b側の冷媒の入口17a側か
ら風上a側の出口17b側へ流れる対向流が得られるよ
うになっている。
In this refrigeration cycle, the outdoor heat exchanger 7 is adapted to obtain a counterflow with respect to the air flow, which flows from the refrigerant inlet 17a side on the leeward b side to the outlet 17b side on the upwind a side. .

【0021】除霜モード運転35時は、図1に示すよう
に、第1、第2開閉弁25,27は閉、第3開閉弁2
9,29は開となる一方、圧縮機1はオン、各ファン1
5,19はオフの状態となり、実線矢印の如く冷媒が流
れる冷凍サイクルとなる。
In the defrosting mode operation 35, as shown in FIG. 1, the first and second opening / closing valves 25 and 27 are closed and the third opening / closing valve 2 is opened.
9, 29 are open, compressor 1 is on, each fan 1
Reference numerals 5 and 19 are in an off state, which is a refrigeration cycle in which a refrigerant flows as indicated by a solid arrow.

【0022】この冷凍サイクルにおいて、冷媒は、空気
流の流れの停止した室外熱交換器7の冷媒の入口17a
側から出口17b側へ向けて流れるようになっている。
In this refrigeration cycle, the refrigerant is the refrigerant inlet 17a of the outdoor heat exchanger 7 in which the air flow has stopped.
It flows from the side toward the outlet 17b side.

【0023】このように構成された空気調和装置によれ
ば、冷房運転時は圧縮機1から吐出した高温・高圧の冷
媒蒸気は四方弁9を介して室外熱交換器7に入り、室外
空気に放熱して凝縮する。凝縮した冷媒は減圧装置5で
減圧され低温・低圧となり室内熱交換器3で室内空気か
ら吸熱して気化する。気化した冷媒は圧縮機1に吸入さ
れ、再び高温・高圧の蒸気になって、冷凍サイクルを繰
返すようになる。一方、ヒートポンプ暖房運転時は、圧
縮機1から吐出した高温・高圧の冷媒蒸気は四方弁9を
介してまず室内熱交換器3に入り、室内空気に放熱して
凝縮する。凝縮した冷媒は減圧装置5で減圧され低温・
低圧となり室外熱交換器7で室外空気から吸熱して気化
する。気化した冷媒は圧縮機1に吸入され、再び高温・
高圧の蒸気になって、暖房サイクルを繰返すようにな
る。
According to the air conditioner thus constructed, during the cooling operation, the high temperature and high pressure refrigerant vapor discharged from the compressor 1 enters the outdoor heat exchanger 7 through the four-way valve 9 and becomes the outdoor air. It dissipates heat and condenses. The condensed refrigerant is decompressed by the decompression device 5, becomes low temperature and low pressure, and absorbs heat from the indoor air in the indoor heat exchanger 3 to be vaporized. The vaporized refrigerant is sucked into the compressor 1, becomes high-temperature and high-pressure vapor again, and the refrigeration cycle is repeated. On the other hand, during the heat pump heating operation, the high-temperature, high-pressure refrigerant vapor discharged from the compressor 1 first enters the indoor heat exchanger 3 via the four-way valve 9 and radiates heat to indoor air to be condensed. The condensed refrigerant is decompressed by the decompression device 5, and the low temperature
The pressure becomes low and the outdoor heat exchanger 7 absorbs heat from the outdoor air and vaporizes. The vaporized refrigerant is sucked into the compressor 1, and the high temperature
It becomes high-pressure steam and repeats the heating cycle.

【0024】この暖房モード運転33時において、室外
熱交換器7にあっては、冷媒は、風下a側の入口17a
側から出口17b側へ向かう対向流となるため効率のよ
い熱交換が行なわれる。
At the time of this heating mode operation 33, in the outdoor heat exchanger 7, the refrigerant is the inlet 17a on the leeward side a.
Since it is a counterflow from the side toward the outlet 17b, efficient heat exchange is performed.

【0025】この暖房モード運転33時において、外気
温が低く、冷媒の入口17a側周辺のフィン18に霜が
発生した際には、除霜モード運転35に入る。
In this heating mode operation 33, when the outside air temperature is low and frost is generated on the fins 18 around the refrigerant inlet 17a side, the defrosting mode operation 35 is started.

【0026】この時、ファン15,19はオフの状態
で、空気流による熱交換は行われず図1に示すように、
冷媒は暖房モード運転33時と同じ流れとなり、高温の
冷媒が冷媒の入口17a側へ向かう流れとなるため、迅
速に霜取りが行なえるようになる。
At this time, the fans 15 and 19 are in the off state, heat exchange is not performed by the air flow, and as shown in FIG.
The refrigerant has the same flow as in the heating mode operation 33, and the high temperature refrigerant flows toward the refrigerant inlet 17a side, so that defrosting can be performed quickly.

【0027】なお、図4に示すように第1、第2、第3
開閉弁25,27,29の変りに、逆止弁37,39,
40,40を採用することでも同様の効果が期待でき
る。また、図示していないが、四方弁を用いて第1、第
2、第3開閉弁25,27,29,29にかわる働きが
得られるようにする回路構成としてもよい。
As shown in FIG. 4, the first, second and third
Instead of the on-off valves 25, 27, 29, check valves 37, 39,
The same effect can be expected by adopting 40, 40. Although not shown, a four-way valve may be used to obtain a circuit configuration that allows the functions of the first, second, and third on-off valves 25, 27, 29, 29 to be obtained.

【0028】また、この実施例は室外熱交換器7側につ
いて説明したが、室外熱交換器7に加えて室内熱交換器
3側に設けるようにしてもよい。
Although this embodiment has been described on the outdoor heat exchanger 7 side, it may be provided on the indoor heat exchanger 3 side in addition to the outdoor heat exchanger 7.

【0029】[0029]

【発明の効果】以上、説明したように、この発明によれ
ば、運転モードに対応して熱交換器を対向流として使用
できるため、効率のより熱交換が可能となり、効率の向
上が図れる。また、特別な霜取り装置を新たに設けるこ
となく迅速に霜を取除くことができる。
As described above, according to the present invention, since the heat exchanger can be used as the counter flow in accordance with the operation mode, the efficiency of heat exchange can be improved and the efficiency can be improved. Further, it is possible to quickly remove frost without newly providing a special defrosting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を実施した除霜モード時の冷凍サイク
ルを示した説明図。
FIG. 1 is an explanatory view showing a refrigeration cycle in a defrosting mode implementing the present invention.

【図2】暖房モード時の冷凍サイクルを示した説明図。FIG. 2 is an explanatory diagram showing a refrigeration cycle in a heating mode.

【図3】冷房モード時の冷凍サイクルを示した説明図。FIG. 3 is an explanatory diagram showing a refrigeration cycle in a cooling mode.

【図4】冷房、暖房、除霜モード運転の操作部と空気調
和装置を示したブロック図。
FIG. 4 is a block diagram showing an operation unit and an air conditioner for cooling, heating, and defrosting mode operation.

【図5】第1、第2、第3開閉弁を逆止弁にかえた図1
と同様の説明図。
FIG. 5 is a view in which the first, second, and third on-off valves are replaced with check valves.
Explanatory drawing similar to FIG.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室内熱交換器 5 減圧装置 7 室外熱交換器 9 四方弁 15,19 ファン 17a 入口側 17b 出口側 21 第1制御回路 23 第2制御回路 25 第1開閉弁 27 第2開閉弁 29 第3開閉弁 1 Compressor 3 Indoor heat exchanger 5 Decompressor 7 Outdoor heat exchanger 9 Four-way valve 15, 19 Fan 17a Inlet side 17b Outlet side 21 First control circuit 23 Second control circuit 25 First on-off valve 27 Second on-off valve 29 3rd on-off valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と室内熱交換器と減圧装置と室外
熱交換器とにより構成され、暖房モード時に、室内熱交
換器を凝縮器として、室外熱交換器を蒸発器として使用
する一方、冷房モード時に、室内熱交換器を蒸発器とし
て、室外熱交換器を凝縮器として使用すると共に冷凍サ
イクル内を循環する冷媒に、非共沸混合冷媒を用いた空
気調和装置において、少なくとも、蒸発器として使用す
る熱交換器の冷媒の入口側を、ファンの回転によって熱
交換器を通過する空気流に対して風下側に、冷媒の出口
側を、風上側にそれぞれ設ける一方、ファン及び圧縮機
をオンとして、冷媒の流れを、熱交換器の風下の入口側
から風上の出口側へ向かうよう対向流とする暖房モード
運転と、ファンをオフ、圧縮機をオンとして、冷媒の流
れを、熱交換器の風下の入口側から風上の出口側へ向か
う暖房モード時と同一方向に向かうよう対向流とする除
霜モード運転とを備えていることを特徴とする空気調和
装置。
1. A compressor, an indoor heat exchanger, a decompression device, and an outdoor heat exchanger. In the heating mode, the indoor heat exchanger is used as a condenser and the outdoor heat exchanger is used as an evaporator. In the cooling mode, the indoor heat exchanger is used as an evaporator, the outdoor heat exchanger is used as a condenser, and the refrigerant circulating in the refrigeration cycle is an air conditioner using a non-azeotropic mixed refrigerant, at least the evaporator. The refrigerant inlet side of the heat exchanger used as, the leeward side with respect to the air flow passing through the heat exchanger by the rotation of the fan, the refrigerant outlet side is provided on the windward side, while the fan and the compressor are Heating mode operation in which the flow of the refrigerant is turned on so that the flow of the refrigerant is a counterflow from the leeward inlet side of the heat exchanger toward the windward outlet side, the fan is turned off, the compressor is turned on, and the refrigerant flow is changed to the heat Wind of exchanger An air conditioner comprising: a defrosting mode operation in which a counterflow is performed in the same direction as in a heating mode from a lower inlet side to a windward outlet side.
JP24324493A 1993-09-29 1993-09-29 Air-conditioner Pending JPH0798166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24324493A JPH0798166A (en) 1993-09-29 1993-09-29 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24324493A JPH0798166A (en) 1993-09-29 1993-09-29 Air-conditioner

Publications (1)

Publication Number Publication Date
JPH0798166A true JPH0798166A (en) 1995-04-11

Family

ID=17100989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24324493A Pending JPH0798166A (en) 1993-09-29 1993-09-29 Air-conditioner

Country Status (1)

Country Link
JP (1) JPH0798166A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202624A (en) * 2011-03-25 2012-10-22 Toshiba Carrier Corp Refrigeration cycle apparatus
KR101228100B1 (en) * 2011-06-20 2013-02-04 한국생산기술연구원 Heat pump system having heat source of water by using water line changing and coolant line changing method
JPWO2021048897A1 (en) * 2019-09-09 2021-03-18
JPWO2022102077A1 (en) * 2020-11-13 2022-05-19

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202624A (en) * 2011-03-25 2012-10-22 Toshiba Carrier Corp Refrigeration cycle apparatus
KR101228100B1 (en) * 2011-06-20 2013-02-04 한국생산기술연구원 Heat pump system having heat source of water by using water line changing and coolant line changing method
JPWO2021048897A1 (en) * 2019-09-09 2021-03-18
WO2021048897A1 (en) * 2019-09-09 2021-03-18 三菱電機株式会社 Refrigeration cycle device
JPWO2022102077A1 (en) * 2020-11-13 2022-05-19
WO2022102077A1 (en) * 2020-11-13 2022-05-19 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
WO2018047330A1 (en) Air conditioner
KR100186526B1 (en) Defrosting apparatus of heat pump
JP6647406B2 (en) Refrigeration cycle device
US5964099A (en) Air conditioner coolant circulation route changing apparatus
JP2000274879A (en) Air conditioner
JPH07208821A (en) Air conditioner
JPH09196489A (en) Refrigeration cycle for air conditioner
JP3650358B2 (en) Air conditioner
JP3286038B2 (en) Air conditioner
JPH074794A (en) Air-conditioning equipment
JPH0798166A (en) Air-conditioner
JP3155645B2 (en) Air conditioner
JP3724011B2 (en) Air conditioner
KR20060086761A (en) Airconditioning apparatus for combined use of cooler and heater
JP3677887B2 (en) Air conditioner
WO2021014520A1 (en) Air-conditioning device
CN206846873U (en) Heating unit
JPH10196984A (en) Air conditioner
JP2001330309A (en) Air conditioner
JPH07103622A (en) Air-conditioner
CN107238124A (en) Heating unit and control method thereof
JPH11325637A (en) Air conditioner
WO2023243054A1 (en) Air conditioner
KR100329269B1 (en) Device and method for defrosting for inverter cooling and heating system
JPH06272992A (en) Air conditioner