JPH06272992A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH06272992A
JPH06272992A JP5054538A JP5453893A JPH06272992A JP H06272992 A JPH06272992 A JP H06272992A JP 5054538 A JP5054538 A JP 5054538A JP 5453893 A JP5453893 A JP 5453893A JP H06272992 A JPH06272992 A JP H06272992A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
compressor
cooling water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5054538A
Other languages
Japanese (ja)
Inventor
Masataka Matsushita
優隆 松下
Mikio Mori
美喜男 森
Original Assignee
Osaka Gas Co Ltd
大阪瓦斯株式会社
Mitsubishi Electric Corp
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, 大阪瓦斯株式会社, Mitsubishi Electric Corp, 三菱電機株式会社 filed Critical Osaka Gas Co Ltd
Priority to JP5054538A priority Critical patent/JPH06272992A/en
Publication of JPH06272992A publication Critical patent/JPH06272992A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PURPOSE:To provide an air conditioner in which a heating capacity can be increased without influence of heat to be recovered from exhaust gas to performance of an outdoor heat exchanger of refrigerant. CONSTITUTION:The air conditioner comprises a refrigerating cycle 7 provided by sequentially connecting a compressor 1, a four-way switching valve 2, an indoor heat exchanger 3, a pressure reducing unit 4 and an outdoor heat exchanger 5 via a refrigerant tube 6, and a third heat exchanger 20 connected to the tube 6 of a discharge side of the compressor 1 to heat exchange exhaust gas of an engine 10 for driving the compressor 1 with refrigerant flowing in the tube 6.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】この発明は、圧縮機の吐出側冷媒
配管に、この吐出側冷媒配管内を流れる冷媒と圧縮機を
駆動するエンジンの排気ガスとの熱交換を行う熱交換器
を備えた空気調和装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a discharge side refrigerant pipe of a compressor with a heat exchanger for exchanging heat between the refrigerant flowing through the discharge side refrigerant pipe and the exhaust gas of an engine for driving the compressor. It relates to an air conditioner.
【0002】[0002]
【従来の技術】図4は例えば特開昭63−105377
号公報に示された従来の空気調和装置の構成を示す回路
図である。図において、1は圧縮機、2は四方切換弁、
3は室内側熱交換器、4は減圧装置、5は室外側熱交換
器で、これら1〜5を順次冷媒配管6で連結することに
より冷凍サイクル7が構成されている。8、9は室内側
熱交換器3および室外側熱交換器5にそれぞれ送風する
送風機、10は圧縮機1を駆動するためのエンジンであ
る。
2. Description of the Related Art FIG. 4 shows, for example, Japanese Patent Laid-Open No. 63-105377.
It is a circuit diagram which shows the structure of the conventional air conditioning apparatus shown by the publication. In the figure, 1 is a compressor, 2 is a four-way switching valve,
Reference numeral 3 is an indoor heat exchanger, 4 is a pressure reducing device, and 5 is an outdoor heat exchanger. A refrigeration cycle 7 is configured by sequentially connecting these 1 to 5 with a refrigerant pipe 6. Reference numerals 8 and 9 denote blowers for blowing air to the indoor heat exchanger 3 and the outdoor heat exchanger 5, respectively, and 10 denotes an engine for driving the compressor 1.
【0003】11はこのエンジン10を冷却する冷却水
を循環させるための冷却水用配管、12はこの冷却水用
配管11に介挿されるポンプ、13は冷却水用配管11
を流れる冷却水と、排気ガス管14を介して導入される
エンジン10の排気ガスとの熱交換を行う排気ガス側熱
交換器、15は圧縮機1の吸入側の冷媒配管6および排
気ガス側熱交換器13より下流側の冷却水用配管11に
接続され、両配管6、11内をそれぞれ流れる冷媒と冷
却水との熱交換を行う冷却水側熱交換器、16は放熱器
で、切換弁17によって切り換えられることにより、冷
却水用配管11内を流れる冷却水が配管18を介して流
通する。
Reference numeral 11 is a cooling water pipe for circulating the cooling water for cooling the engine 10, 12 is a pump inserted in the cooling water pipe 11, and 13 is a cooling water pipe 11.
An exhaust gas side heat exchanger for exchanging heat between the cooling water flowing through the exhaust gas and the exhaust gas of the engine 10 introduced through the exhaust gas pipe 14, and 15 is a refrigerant pipe 6 on the intake side of the compressor 1 and an exhaust gas side. The cooling water side heat exchanger, which is connected to the cooling water pipe 11 on the downstream side of the heat exchanger 13 and exchanges heat between the refrigerant and the cooling water flowing in both pipes 6 and 11, and 16 is a radiator, and is switched. By being switched by the valve 17, the cooling water flowing in the cooling water pipe 11 flows through the pipe 18.
【0004】上記のように構成された従来の空気調和装
置において、暖房運転時(冷媒の流れを図中実線による
矢印で示す)には、エンジン10によって駆動される圧
縮機1から吐出された高温高圧のガス冷媒は、暖房側に
切り替えられた四方切換弁2を通って室内側熱交換器3
に入り、送風機8によって送風される室内空気と熱交換
し室内空気を加熱して暖房するとともに、これによりガ
ス冷媒は凝縮液化される。そして、この液冷媒は減圧装
置4で減圧されて低温低圧の液冷媒となる。その後、液
冷媒は室外側熱交換器5に入り、送風機9によって送風
される外気と熱交換して蒸発し再びガス冷媒となり、四
方切換弁2を経て冷却水側熱交換器15でエンジン10
の冷却水と熱交換した後圧縮機1に戻る。
In the conventional air conditioner configured as described above, the high temperature discharged from the compressor 1 driven by the engine 10 during the heating operation (the flow of the refrigerant is indicated by the solid arrow in the figure). The high-pressure gas refrigerant passes through the four-way switching valve 2 switched to the heating side and the indoor heat exchanger 3
The air enters and exchanges heat with the room air blown by the blower 8 to heat and heat the room air, and thereby the gas refrigerant is condensed and liquefied. Then, this liquid refrigerant is decompressed by the decompression device 4 to become a low temperature and low pressure liquid refrigerant. After that, the liquid refrigerant enters the outdoor heat exchanger 5, exchanges heat with the outside air blown by the blower 9, evaporates again to become a gas refrigerant, and passes through the four-way switching valve 2 to the cooling water side heat exchanger 15 in the engine 10
After exchanging heat with the cooling water, the compressor 1 is returned to.
【0005】一方、冷却水側熱交換器15内を流れる冷
却水は、ポンプ12によってエンジン10内から冷却水
用配管11を介して循環されており、排気ガス側熱交換
器13で排気ガス管14を介して導入されるエンジン1
0の排気ガスの熱を奪って加熱された後、上述したよう
に、冷却水側熱交換器15で冷媒配管6内を流れる冷媒
と熱交換し冷やされてエンジン10に戻る。又、上記動
作は暖房時のみしか説明しなかったが、冷房時等で冷却
水の廃熱を回収する必要がない場合は、切換弁17を切
り換えることにより配管18を介して冷却水を放熱器1
6側に導入し外気に放出している。
On the other hand, the cooling water flowing through the cooling water side heat exchanger 15 is circulated from the inside of the engine 10 by the pump 12 through the cooling water pipe 11, and the exhaust gas side heat exchanger 13 exhaust gas pipe. Engine 1 introduced via 14
After the heat of the exhaust gas of 0 is taken and heated, as described above, the cooling water side heat exchanger 15 exchanges heat with the refrigerant flowing in the refrigerant pipe 6 and is cooled and returned to the engine 10. Although the above operation was described only during heating, when it is not necessary to recover the waste heat of the cooling water during cooling or the like, the switching valve 17 is switched to dissipate the cooling water through the pipe 18 to the radiator. 1
It is introduced to the 6 side and released to the outside air.
【0006】[0006]
【発明が解決しようとする課題】従来の空気調和装置は
以上のように構成され、エンジン10の排気ガスを排気
ガス側熱交換器13で冷却水と熱交換させ、冷却水側熱
交換器15で冷媒の蒸発側に放熱するようにしているの
で、この放熱量が多くなればなるほど蒸発温度が上昇
し、室外側熱交換器6で回収される熱量が減少し、暖房
能力が大幅に低下するという問題点があった。
The conventional air conditioner is constructed as described above, and the exhaust gas of the engine 10 is exchanged with the cooling water in the exhaust gas side heat exchanger 13, and the cooling water side heat exchanger 15 is provided. Since the heat is radiated to the evaporation side of the refrigerant, the evaporation temperature rises as the amount of heat radiation increases, the amount of heat recovered by the outdoor heat exchanger 6 decreases, and the heating capacity significantly decreases. There was a problem.
【0007】この発明は上記のような問題点を解消する
ためになされたもので、排気ガスから回収される熱が冷
媒の室外側熱交換器の性能に影響を及ぼすことなく、暖
房能力の増大を図ることが可能な空気調和装置を提供す
ることを目的とするものである。
The present invention has been made to solve the above-mentioned problems, and the heat recovered from the exhaust gas does not affect the performance of the refrigerant outdoor heat exchanger, and the heating capacity is increased. It is an object of the present invention to provide an air conditioner capable of achieving the above.
【0008】[0008]
【課題を解決するための手段】この発明に係る空気調和
装置は、圧縮機、四方切換弁、室内側熱交換器、減圧装
置および室外側熱交換器を冷媒配管で順次接続してなる
冷凍サイクル、上記圧縮機の吐出側の冷媒配管に接続さ
れ上記圧縮機を駆動するエンジンの排気ガスと上記吐出
側冷媒配管内を流れる冷媒との熱交換を行う第3の熱交
換器を備えたものである。
An air conditioner according to the present invention is a refrigeration cycle in which a compressor, a four-way switching valve, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger are sequentially connected by a refrigerant pipe. A third heat exchanger connected to the refrigerant pipe on the discharge side of the compressor for exchanging heat between the exhaust gas of the engine for driving the compressor and the refrigerant flowing in the refrigerant pipe on the discharge side. is there.
【0009】[0009]
【作用】この発明における空気調和装置の第3の熱交換
器は、高温の排気ガスで圧縮機の吐出側冷媒配管内を流
れる冷媒を加熱し、室内側熱交換器から放熱する熱量を
増大させる。
The third heat exchanger of the air conditioner according to the present invention heats the refrigerant flowing in the discharge side refrigerant pipe of the compressor with the high temperature exhaust gas to increase the amount of heat radiated from the indoor side heat exchanger. .
【0010】[0010]
【実施例】【Example】
実施例1.以下、この発明の実施例を図について説明す
る。図1はこの発明の実施例1における空気調和装置の
構成を示す回路図である。図において、図4に示す従来
装置と同様な部分は同一符号を付して説明を省略する。
19は圧縮機1の吸入側の冷媒配管6および冷却水用配
管11に接続され、両配管6、11内をそれぞれ流れる
冷媒と冷却水との熱交換を行う冷却水側熱交換器、20
は排気ガス管14を介して導入されるエンジン10の排
気ガスで、圧縮機1の吐出側の冷媒配管6内を流れる冷
媒を加熱する第3の熱交換器である。
Example 1. Embodiments of the present invention will be described below with reference to the drawings. 1 is a circuit diagram showing a configuration of an air conditioner according to a first embodiment of the present invention. In the figure, the same parts as those of the conventional device shown in FIG.
Reference numeral 19 denotes a cooling water side heat exchanger that is connected to the suction side refrigerant pipe 6 and the cooling water pipe 11 of the compressor 1 and performs heat exchange between the refrigerant and the cooling water flowing in both pipes 6 and 11, and 20.
Is a third heat exchanger for heating the refrigerant flowing in the refrigerant pipe 6 on the discharge side of the compressor 1 by the exhaust gas of the engine 10 introduced through the exhaust gas pipe 14.
【0011】次に、上記のように構成された実施例1に
おける空気調和装置の動作について説明する。暖房運転
時には、まずエンジン10によって駆動される圧縮機1
から吐出された高温高圧のガス冷媒は、第3の熱交換器
20でエンジン10の排気ガスによりさらに加熱され、
暖房側に切り替えられた四方切換弁2を通って室内側熱
交換器3に入り、送風機8によって送風される室内空気
と熱交換し室内空気を加熱して暖房するとともに、これ
によりガス冷媒は凝縮液化される。そして、この液冷媒
は減圧装置4で減圧されて低温低圧の液冷媒となる。そ
の後、液冷媒は室外側熱交換器5に入り、送風機9によ
って送風される外気と熱交換して蒸発し再びガス冷媒と
なり、四方切換弁2を経て冷却水側熱交換器19でエン
ジン10の冷却水と熱交換した後圧縮機1に戻る。
Next, the operation of the air conditioner of the first embodiment constructed as described above will be explained. During the heating operation, first, the compressor 1 driven by the engine 10
The high-temperature high-pressure gas refrigerant discharged from is further heated by the exhaust gas of the engine 10 in the third heat exchanger 20,
The heat enters the indoor heat exchanger 3 through the four-way switching valve 2 switched to the heating side, exchanges heat with the indoor air blown by the blower 8 to heat the indoor air to heat it, and thereby the gas refrigerant condenses. Liquefied. Then, this liquid refrigerant is decompressed by the decompression device 4 to become a low temperature and low pressure liquid refrigerant. After that, the liquid refrigerant enters the outdoor heat exchanger 5, exchanges heat with the outside air blown by the blower 9, evaporates again to become a gas refrigerant, and passes through the four-way switching valve 2 to the cooling water side heat exchanger 19 of the engine 10. After exchanging heat with the cooling water, it returns to the compressor 1.
【0012】一方、冷却水側熱交換器19内を流れる冷
却水は、ポンプ12によってエンジン10内から冷却水
用配管11を介して循環されており、上述したように、
冷却水側熱交換器19で冷媒配管6内を流れる冷媒と熱
交換し冷やされてエンジン10に戻る。又、上記動作は
暖房時のみしか説明しなかったが、冷房時等で冷却水の
廃熱を回収する必要がない場合は、切換弁17を切り換
えることにより配管18を介して冷却水を放熱器16側
に導入し外気に放出している。
On the other hand, the cooling water flowing in the cooling water side heat exchanger 19 is circulated from the inside of the engine 10 by the pump 12 through the cooling water pipe 11, and as described above,
The heat exchanger 19 on the cooling water side exchanges heat with the refrigerant flowing through the inside of the refrigerant pipe 6 to be cooled and returned to the engine 10. Although the above operation was described only during heating, when it is not necessary to recover the waste heat of the cooling water during cooling or the like, the switching valve 17 is switched to dissipate the cooling water through the pipe 18 to the radiator. It is introduced to the 16 side and released to the outside air.
【0013】上記実施例1によれば、高温の排気ガスで
圧縮機1の吐出側冷媒を直接加熱するようにしているの
で、図2に示すモリエル線図中破線で示す従来装置の場
合と比較すると明らかなように、冷媒は圧縮機1の吐出
側で温度上昇するが、蒸発温度の上昇等のように蒸発側
の性能に影響することなく、第3の熱交換器20で授受
された排気ガスの熱量が、そのまま室内側熱交換器3に
流入されるので、エンタルピーはi2−i1だけ増加しそ
の分暖房能力は増大する。
According to the first embodiment described above, since the discharge side refrigerant of the compressor 1 is directly heated by the high temperature exhaust gas, a comparison is made with the conventional device shown by the broken line in the Mollier diagram shown in FIG. Then, as is apparent, the temperature of the refrigerant rises on the discharge side of the compressor 1, but the exhaust gas exchanged by the third heat exchanger 20 does not affect the performance on the evaporation side such as the increase of the evaporation temperature. Since the heat quantity of the gas flows into the indoor heat exchanger 3 as it is, the enthalpy is increased by i 2 −i 1 and the heating capacity is increased accordingly.
【0014】なお、図3に示すモリエル線図中破線で示
す従来装置の場合は、一旦、冷却水側熱交換器15で熱
交換し蒸発熱量を増加させているので、図中実線で示す
排熱を回収しない場合と比較すると、蒸発温度が上昇し
凝縮温度も高くなるので、暖房能力は若干増すが、蒸発
温度が高くなるために外気との温度差が小さくなって、
室外側熱交換器5からの熱の汲み上げ量が減少するた
め、暖房能力の大幅な増大にはつながらない。
In the case of the conventional device shown by the broken line in the Mollier diagram shown in FIG. 3, since the heat is temporarily exchanged in the cooling water side heat exchanger 15 to increase the amount of evaporation heat, the exhaust shown by the solid line in the diagram Compared to the case where heat is not recovered, the evaporation temperature rises and the condensation temperature also rises, so the heating capacity slightly increases, but the evaporation temperature rises and the temperature difference from the outside air becomes smaller,
Since the amount of heat pumped from the outdoor heat exchanger 5 decreases, it does not lead to a significant increase in heating capacity.
【0015】実施例2.尚、上記実施例1では、圧縮機
1の吸入側冷媒配管6中を流れる冷媒と、エンジン10
の冷却水との熱交換を行う冷却水側熱交換器19を設け
た場合について説明したが、冷却水側熱交換器19が設
けられていない場合に適用しても、上記実施例1と同様
の効果を得ることができる。
Example 2. In the first embodiment, the refrigerant flowing through the suction side refrigerant pipe 6 of the compressor 1 and the engine 10
The case where the cooling water side heat exchanger 19 for exchanging heat with the cooling water is provided has been described. However, even when it is applied when the cooling water side heat exchanger 19 is not provided, it is the same as in the first embodiment. The effect of can be obtained.
【0016】[0016]
【発明の効果】以上のように、この発明によれば圧縮
機、四方切換弁、室内側熱交換器、減圧装置および室外
側熱交換器を冷媒配管で順次接続してなる冷凍サイク
ル、上記圧縮機の吐出側の冷媒配管に接続され上記圧縮
機を駆動するエンジンの排気ガスと上記吐出側冷媒配管
内を流れる冷媒との熱交換を行う第3の熱交換器を備え
たので、排気ガスから回収される熱が冷媒の室外側熱交
換器の性能に影響を及ぼすことなく、暖房能力の増大を
図ることが可能な空気調和装置を提供することができ
る。
As described above, according to the present invention, the compressor, the four-way switching valve, the indoor heat exchanger, the pressure reducing device, and the outdoor heat exchanger are connected in sequence by the refrigerant pipes. Since the third heat exchanger for exchanging heat between the exhaust gas of the engine driving the compressor and connected to the refrigerant pipe on the discharge side of the machine and the refrigerant flowing in the refrigerant pipe on the discharge side is provided, It is possible to provide an air conditioner capable of increasing the heating capacity without the recovered heat affecting the performance of the refrigerant outdoor heat exchanger.
【図面の簡単な説明】[Brief description of drawings]
【図1】この発明の実施例1における空気調和装置の構
成を示す回路図である。
FIG. 1 is a circuit diagram showing a configuration of an air conditioner according to a first embodiment of the present invention.
【図2】図1における空気調和装置の冷凍サイクルを示
すモリエル線図である。
FIG. 2 is a Mollier diagram showing a refrigeration cycle of the air conditioner shown in FIG.
【図3】従来の空気調和装置の冷凍サイクルを示すモリ
エル線図である。
FIG. 3 is a Mollier diagram showing a refrigeration cycle of a conventional air conditioner.
【図4】従来の空気調和装置の構成を示す回路図であ
る。
FIG. 4 is a circuit diagram showing a configuration of a conventional air conditioner.
【符号の説明】[Explanation of symbols]
1 圧縮機 2 四方切換弁 3 室内側熱交換器 4 減圧装置 5 室外側熱交換器 10 エンジン 19 冷却水側熱交換器 20 第3の熱交換器 1 Compressor 2 Four-way switching valve 3 Indoor heat exchanger 4 Decompression device 5 Outdoor heat exchanger 10 Engine 19 Cooling water side heat exchanger 20 Third heat exchanger

Claims (1)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 圧縮機、四方切換弁、室内側熱交換器、
    減圧装置および室外側熱交換器を冷媒配管で順次接続し
    てなる冷凍サイクル、上記圧縮機の吐出側の冷媒配管に
    接続され上記圧縮機を駆動するエンジンの排気ガスと上
    記吐出側冷媒配管内を流れる冷媒との熱交換を行う第3
    の熱交換器を備えたことを特徴とする空気調和装置。
    1. A compressor, a four-way switching valve, an indoor heat exchanger,
    A refrigeration cycle in which a decompression device and an outdoor heat exchanger are sequentially connected by a refrigerant pipe, exhaust gas of an engine that drives the compressor and is connected to the refrigerant pipe on the discharge side of the compressor, and the inside of the refrigerant pipe on the discharge side. Third that exchanges heat with the flowing refrigerant
    An air conditioner comprising the heat exchanger of.
JP5054538A 1993-03-16 1993-03-16 Air conditioner Pending JPH06272992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5054538A JPH06272992A (en) 1993-03-16 1993-03-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5054538A JPH06272992A (en) 1993-03-16 1993-03-16 Air conditioner

Publications (1)

Publication Number Publication Date
JPH06272992A true JPH06272992A (en) 1994-09-27

Family

ID=12973450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5054538A Pending JPH06272992A (en) 1993-03-16 1993-03-16 Air conditioner

Country Status (1)

Country Link
JP (1) JPH06272992A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591320B1 (en) * 2004-12-13 2006-06-19 엘지전자 주식회사 Air-conditioner using cogeneration system
KR100657471B1 (en) * 2004-08-17 2006-12-13 엘지전자 주식회사 Cogeneration system
KR100657472B1 (en) * 2004-08-17 2006-12-13 엘지전자 주식회사 Cogeneration system
JP2013076554A (en) * 2011-09-12 2013-04-25 Osaka Gas Co Ltd Heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657471B1 (en) * 2004-08-17 2006-12-13 엘지전자 주식회사 Cogeneration system
KR100657472B1 (en) * 2004-08-17 2006-12-13 엘지전자 주식회사 Cogeneration system
KR100591320B1 (en) * 2004-12-13 2006-06-19 엘지전자 주식회사 Air-conditioner using cogeneration system
JP2013076554A (en) * 2011-09-12 2013-04-25 Osaka Gas Co Ltd Heat pump

Similar Documents

Publication Publication Date Title
US20060037348A1 (en) Cogeneration system
JPH10166847A (en) Air conditioner for vehicle
JP2006194526A (en) Air conditioner
KR100613502B1 (en) Heat pump type air conditioner
JPH09196489A (en) Refrigeration cycle for air conditioner
JPH06272992A (en) Air conditioner
KR100950402B1 (en) Heat pump system for electric-car
JP2001108317A (en) Heat pump cooling and heating type air conditioner carbon dioxide refrigerant
JP3155645B2 (en) Air conditioner
JPH11173710A (en) Defrosting system using exhaust heat of compressor
KR20050010412A (en) Air conditioner
JP2000320914A (en) Refrigerating machine
KR100543606B1 (en) driving mode conversion method for dehumidification air conditioner
KR100268266B1 (en) Cooling/heating apparatus of airconditioner
JPH06272993A (en) Engine-driven cooler/heater
KR20030044452A (en) Frost elimination apparatus of heat pump air conditioner
KR100329269B1 (en) Device and method for defrosting for inverter cooling and heating system
JP2653749B2 (en) Heat pump package
KR100403017B1 (en) An inverter cooling device and process of heat pump
JPH06273008A (en) Air conditioning apparatus
JP2002349996A (en) Exhaust heat recovery air conditioner
KR100406047B1 (en) Condenser cooling device using condensing water of air-conditioner
JPH0798166A (en) Air-conditioner
JP2004116930A (en) Gas heat pump type air conditioner
KR20060039340A (en) Return circuit of outdoor unit in heat pump