JP6501878B2 - Air conditioner and operation control device - Google Patents

Air conditioner and operation control device Download PDF

Info

Publication number
JP6501878B2
JP6501878B2 JP2017521358A JP2017521358A JP6501878B2 JP 6501878 B2 JP6501878 B2 JP 6501878B2 JP 2017521358 A JP2017521358 A JP 2017521358A JP 2017521358 A JP2017521358 A JP 2017521358A JP 6501878 B2 JP6501878 B2 JP 6501878B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat source
load
pressure
source side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017521358A
Other languages
Japanese (ja)
Other versions
JPWO2016194098A1 (en
Inventor
周平 水谷
周平 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016194098A1 publication Critical patent/JPWO2016194098A1/en
Application granted granted Critical
Publication of JP6501878B2 publication Critical patent/JP6501878B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、既設配管を流用可能な空気調和装置、及び当該空気調和装置を制御可能な運転制御装置に関する。   The present invention relates to an air conditioner that can divert existing piping and an operation control device that can control the air conditioner.

従来、既設配管を流用可能な空気調和装置としては、例えば、圧縮機の運転周波数、減圧装置の開度等を制御し、既設配管内の冷媒の圧力が耐圧基準値を超えないようにしたものが知られている(例えば、特許文献1)。   Conventionally, as an air conditioner that can divert existing piping, for example, one that controls the operating frequency of a compressor, the opening degree of a pressure reducing device, etc. so that the pressure of the refrigerant in the existing piping does not exceed the withstand pressure reference value Are known (for example, Patent Document 1).

特開2002−162126号公報JP, 2002-162126, A

しかしながら、特許文献1の空気調和装置では、外気温度が通常よりも高い環境(以降、「高外気温度環境」と称する。)下での冷房運転時に室内機の負荷容量(運転容量)が低下した場合、既設配管の冷媒の圧力が通常の冷房運転時よりも上昇する可能性が高くなる。したがって、特許文献1の空気調和装置では、既設配管の冷媒の圧力が耐圧基準値を超える可能性が高くなるため、圧力異常により空気調和装置が異常停止する頻度が高くなり、空気調和装置の信頼性が保持できないという問題点があった。   However, in the air conditioner of Patent Document 1, the load capacity (operating capacity) of the indoor unit decreases during the cooling operation under an environment where the outside air temperature is higher than usual (hereinafter referred to as "high outside air temperature environment"). In this case, the pressure of the refrigerant in the existing piping is more likely to rise than in the normal cooling operation. Therefore, in the air conditioner of Patent Document 1, since the pressure of the refrigerant in the existing pipe increases the possibility of exceeding the pressure reference value, the frequency of the air conditioner abnormally stops due to the pressure abnormality increases, and the reliability of the air conditioner is increased. There is a problem that sex can not hold.

本発明は、上述の問題を解決するためになされたものであり、高外気温度環境下での冷房運転時においても、既設配管の冷媒の圧力を耐圧基準値未満に抑制することが可能な空気調和装置及び運転制御装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and it is possible to suppress the pressure of the refrigerant of the existing piping to below the pressure resistance reference value even during the cooling operation under the high outside air temperature environment. An object of the present invention is to provide a conditioner and an operation control device.

本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、減圧装置、及び負荷側熱交換器を冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルと、前記圧縮機、前記熱源側熱交換器、及び前記減圧装置を収容する熱源側ユニットと、前記負荷側熱交換器を収容し、既設の冷媒配管を介して前記熱源側ユニットと連結される複数の負荷側ユニットと、前記冷凍サイクルを制御する制御装置とを備え、前記制御装置は、冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記複数の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整するものである。 In the air conditioner according to the present invention, a compressor, a heat source side heat exchanger, a pressure reducing device, and a load side heat exchanger are connected via a refrigerant pipe to circulate a refrigerant, and at least the heat source side heat exchanger is A refrigeration cycle that performs a cooling operation that functions as a radiator and the load-side heat exchanger functions as an evaporator; a heat source-side unit that accommodates the compressor, the heat source-side heat exchanger, and the pressure reducing device; accommodating the load side heat exchanger, comprising a plurality of load-side units which are connected to the heat source unit via the existing refrigerant piping, and a control device for controlling the refrigeration cycle, wherein the control device, the cooling operation Sometimes, when the outside air temperature of the outdoor air supplied to the heat source side heat exchanger exceeds the reference outside air temperature, and the total load capacity of the plurality of load side units decreases with time, the total load capacity is Fluctuation And adjusts the opening degree of the decompression device according to.

また、本発明に係る運転制御装置は、熱源側ユニットに収容される圧縮機、熱源側熱交換器、及び減圧装置と、既設の冷媒配管を介して前記熱源側ユニットと連結される複数の負荷側ユニットに収容される負荷側熱交換器とを冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルを備える空気調和装置を制御し、冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記複数の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整するものである。 In the operation control device according to the present invention, the compressor housed in the heat source side unit, the heat source side heat exchanger, the pressure reducing device, and the plurality of loads connected to the heat source side unit via the existing refrigerant piping. The load side heat exchanger housed in the side unit is connected via a refrigerant pipe to circulate the refrigerant, and at least the heat source side heat exchanger functions as a radiator, and the load side heat exchanger is an evaporator Control an air conditioner provided with a refrigeration cycle for performing a cooling operation, and during the cooling operation, the outside air temperature of the outdoor air supplied to the heat source side heat exchanger exceeds a reference outside air temperature, and the plurality of loads In the case where the total load capacity of the side unit decreases with time, the opening degree of the pressure reducing device is adjusted in accordance with the fluctuation value of the total load capacity.

本発明によれば、1以上の負荷側ユニットの合計負荷容量の低減に応じて、熱源側減圧装置の開度を調整できるため、既設配管の冷媒の圧力が耐圧基準値以下となるように制御できる。したがって、本発明によれば、圧力異常により空気調和装置が異常停止する頻度を低減可能な、信頼性の高い空気調和装置及び運転制御装置を提供することができる。   According to the present invention, the opening degree of the heat source side pressure reducing device can be adjusted according to the reduction of the total load capacity of one or more load side units, so control is performed so that the pressure of the refrigerant of the existing piping becomes equal to or less it can. Therefore, according to the present invention, it is possible to provide a highly reliable air conditioner and operation control device capable of reducing the frequency at which the air conditioner abnormally stops due to pressure abnormality.

本発明の実施の形態1に係る空気調和装置1の一例を示す概略的な冷媒回路図である。FIG. 2 is a schematic refrigerant circuit diagram showing an example of the air-conditioning apparatus 1 according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing at the time of air_conditionaing | cooling operation in the control apparatus 500 of the air conditioning apparatus 1 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing at the time of air_conditionaing | cooling operation in the control apparatus 500 of the air conditioning apparatus 1 which concerns on Embodiment 2 of this invention.

実施の形態1.
本発明の実施の形態1に係る空気調和装置1(冷凍空調装置)について説明する。図1は、本実施の形態1に係る空気調和装置1の一例を示す概略的な冷媒回路図である。なお、図1を含む以下の図面では各構成部材の寸法の関係及び形状が、実際のものとは異なる場合がある。
Embodiment 1
An air conditioner 1 (refrigerating air conditioner) according to Embodiment 1 of the present invention will be described. FIG. 1 is a schematic refrigerant circuit diagram showing an example of the air conditioning apparatus 1 according to the first embodiment. In the following drawings including FIG. 1, the dimensional relationships and shapes of the respective constituent members may differ from actual ones.

図1に示すように、空気調和装置1は、室外機である熱源側ユニット100(熱源機)と、熱源側ユニット100に対し並列に配置された室内機である第1の負荷側ユニット200a及び第2の負荷側ユニット200bとを備える。熱源側ユニット100と第1の負荷側ユニット200a及び第2の負荷側ユニット200bとの間は、既設配管である第1の延長冷媒配管300(液配管)及び第2の延長冷媒配管400(ガス配管)で接続されている。なお、図1には、負荷側ユニットが2台接続された構成としているが、負荷側ユニットの接続台数は1台でもよいし、3台以上としてもよい。   As shown in FIG. 1, the air conditioner 1 includes a heat source unit 100 (heat source unit) which is an outdoor unit, and a first load unit 200 a which is an indoor unit disposed in parallel to the heat source unit 100. And a second load side unit 200b. Between the heat source side unit 100 and the first load side unit 200a and the second load side unit 200b, a first extension refrigerant pipe 300 (liquid pipe) and a second extension refrigerant pipe 400 (gas It is connected by piping). Although two load side units are connected in FIG. 1, the number of connected load side units may be one, or three or more.

本実施の形態1の空気調和装置1は、圧縮機2、熱源側熱交換器3、熱源側減圧装置4、第1の負荷側減圧装置5a及び第2の負荷側減圧装置5b、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6b、冷媒流路切替装置7、並びにアキュムレータ8に順次冷媒を循環させる1系統の冷凍サイクル(冷媒回路)を有している。   The air conditioner 1 of the first embodiment includes a compressor 2, a heat source side heat exchanger 3, a heat source side pressure reducing device 4, a first load side pressure reducing device 5a and a second load side pressure reducing device 5b, a first The load side heat exchanger 6a and the second load side heat exchanger 6b, the refrigerant flow switching device 7, and a single system refrigeration cycle (refrigerant circuit) for circulating the refrigerant sequentially to the accumulator 8 are provided.

圧縮機2は、熱源側ユニット100に収容され、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する周波数可変型の流体機械である。圧縮機2は、例えば、インバータにより回転周波数が制御されるスクロール圧縮機を用いることができる。   The compressor 2 is a variable frequency fluid machine that is accommodated in the heat source side unit 100, compresses the sucked low-pressure refrigerant, and discharges it as a high-pressure refrigerant. The compressor 2 can use, for example, a scroll compressor whose rotational frequency is controlled by an inverter.

熱源側熱交換器3(室外機熱交換器)は、冷房運転時には放熱器(凝縮器)として機能し、暖房運転時には蒸発器として機能する熱交換器であり、熱源側ユニット100に収容されている。熱源側熱交換器3は、熱源側熱交換器3の内部を流れる冷媒と、熱源側熱交換器用ファン(図示せず)によって送風される外気(例えば、室外空気)との熱交換を行うように構成される。熱源側熱交換器3は、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成できる。   The heat source side heat exchanger 3 (outdoor unit heat exchanger) is a heat exchanger that functions as a radiator (condenser) during cooling operation, and functions as an evaporator during heating operation, and is accommodated in the heat source side unit 100 There is. The heat source side heat exchanger 3 performs heat exchange between the refrigerant flowing inside the heat source side heat exchanger 3 and the outside air (for example, outdoor air) blown by the heat source side heat exchanger fan (not shown) Configured The heat source side heat exchanger 3 can be configured, for example, of a cross fin type fin-and-tube type heat exchanger composed of a heat transfer tube and a plurality of fins.

第1の熱源側冷媒配管10(室外機液ライン)は、熱源側ユニット100に収容されており、一方の末端部が熱源側熱交換器3に連結されている。第1の熱源側冷媒配管10の他方の末端部は、第1の熱源側冷媒配管10の上に設けられた第1の延長冷媒配管接続バルブ9a(液操作弁)で、第1の延長冷媒配管300に連結されている。第1の延長冷媒配管接続バルブ9aは、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。   The first heat source side refrigerant pipe 10 (outdoor machine liquid line) is accommodated in the heat source side unit 100, and one end portion is connected to the heat source side heat exchanger 3. The other end of the first heat source side refrigerant pipe 10 is a first extension refrigerant pipe connection valve 9 a (liquid operation valve) provided on the first heat source side refrigerant pipe 10, and is used as a first extension refrigerant. It is connected to the pipe 300. The first extension refrigerant pipe connection valve 9a is formed of, for example, a two-way valve such as a two-way solenoid valve capable of switching between opening and closing.

熱源側減圧装置4は、冷房運転時に熱源側熱交換器3から流入する高圧液冷媒を膨張及び減圧させて、既設配管である第1の延長冷媒配管300に流入させるものである。熱源側減圧装置4は、熱源側ユニット100に収容されており、第1の熱源側冷媒配管10に設けられている。熱源側減圧装置4は、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁(LEV)等の電子膨張弁が用いられ、室外電子膨張弁として構成される。なお、熱源側減圧装置4は、暖房運転時には、第1の延長冷媒配管300から第1の熱源側冷媒配管10に流入する中圧の液冷媒又は二相冷媒を更に膨張及び減圧させて、熱源側熱交換器3に流入させるように構成できる。   The heat source side pressure reducing device 4 expands and reduces the pressure of the high pressure liquid refrigerant flowing from the heat source side heat exchanger 3 during the cooling operation, and causes the high pressure liquid refrigerant to flow into the first extended refrigerant pipe 300 which is an existing pipe. The heat source side pressure reducing device 4 is accommodated in the heat source side unit 100, and is provided in the first heat source side refrigerant pipe 10. The heat source side pressure reducing device 4 uses, for example, an electronic expansion valve such as a linear electronic expansion valve (LEV) whose opening degree can be adjusted in multiple stages or continuously, and is configured as an outdoor electronic expansion valve. During the heating operation, the heat source side pressure reducing device 4 further expands and decompresses the medium pressure liquid refrigerant or the two-phase refrigerant flowing from the first extended refrigerant pipe 300 into the first heat source side refrigerant pipe 10 to generate a heat source. It can be configured to flow into the side heat exchanger 3.

第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bは、冷房運転時に第1の延長冷媒配管300から流入する中圧の液冷媒又は二相冷媒を更に膨張及び減圧させて、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bにそれぞれ流入させるものである。第1の負荷側減圧装置5aは、第1の負荷側ユニット200aに収容されており、第2の負荷側減圧装置5bは、第2の負荷側ユニット200bに収容されている。第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bは、例えば多段階又は連続的に開度を調節可能なリニア電子膨張弁等の電子膨張弁が用いられ、室内電子膨張弁として構成される。   The first load-side decompression device 5a and the second load-side decompression device 5b further expand and decompress the medium pressure liquid refrigerant or two-phase refrigerant flowing from the first extension refrigerant pipe 300 during the cooling operation, It is made to flow in into one load side heat exchanger 6a and the 2nd load side heat exchanger 6b, respectively. The first load-side pressure reducing device 5a is housed in the first load-side unit 200a, and the second load-side pressure-reducing device 5b is housed in the second load-side unit 200b. As the first load side pressure reducing device 5a and the second load side pressure reducing device 5b, for example, electronic expansion valves such as linear electronic expansion valves whose opening degree can be adjusted in multiple stages or continuously are used. Configured

なお、第1の負荷側ユニット200aにおける冷房運転及び暖房運転の停止時においては、第1の負荷側減圧装置5aは閉止されるように調整される。同様に、第2の負荷側ユニット200bにおける冷房運転及び暖房運転の停止時においては、第2の負荷側減圧装置5bは閉止されるように調整される。また、第1の負荷側減圧装置5aは、暖房運転時においては、第1の負荷側熱交換器6aから流入する高圧液冷媒を膨張及び減圧させて、既設配管である第1の延長冷媒配管300に流入させるように構成できる。同様に、第2の負荷側減圧装置5bは、暖房運転時においては、第2の負荷側熱交換器6bから流入する高圧液冷媒を膨張及び減圧させて、既設配管である第1の延長冷媒配管300に流入させるように構成できる。   When the cooling operation and the heating operation in the first load unit 200a are stopped, the first load pressure reducing device 5a is adjusted to be closed. Similarly, when the cooling operation and the heating operation in the second load side unit 200b are stopped, the second load side pressure reducing device 5b is adjusted to be closed. Further, in the heating operation, the first load-side pressure reducing device 5a expands and reduces the pressure of the high-pressure liquid refrigerant flowing from the first load-side heat exchanger 6a to form a first extension refrigerant pipe which is an existing pipe. It can be configured to flow into 300. Similarly, in the heating operation, the second load-side pressure reducing device 5b expands and reduces the pressure of the high-pressure liquid refrigerant flowing in from the second load-side heat exchanger 6b to form a first extension refrigerant which is an existing pipe. It can be configured to flow into the pipe 300.

第1の負荷側熱交換器6a及び第2の負荷側熱交換器6b(室外機熱交換器)は、冷房運転時には蒸発器として機能し、暖房運転時には放熱器として機能する熱交換器である。第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bは、例えば、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bの内部を流れる冷媒と、外気(例えば、室内空気)との熱交換を行うように構成される。第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bは、例えば、伝熱管と複数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器として構成できる。   The first load side heat exchanger 6a and the second load side heat exchanger 6b (outdoor unit heat exchanger) function as an evaporator during the cooling operation and function as a radiator during the heating operation. . The first load-side heat exchanger 6a and the second load-side heat exchanger 6b are, for example, refrigerant flowing inside the first load-side heat exchanger 6a and the second load-side heat exchanger 6b; Heat exchange with (for example, indoor air) is performed. The first load-side heat exchanger 6a and the second load-side heat exchanger 6b can be configured, for example, as a cross-fin-type fin-and-tube heat exchanger composed of a heat transfer tube and a plurality of fins. .

なお、第1の負荷側熱交換器6aは、第1の負荷側ユニット200aに収容されており、第2の負荷側熱交換器6bは、第2の負荷側ユニット200bに収容されている。また、本実施の形態1の空気調和装置1では、負荷側熱交換器用ファン(図示せず)からの送風によって、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bに外気が供給されるように構成できる。   The first load-side heat exchanger 6a is accommodated in the first load-side unit 200a, and the second load-side heat exchanger 6b is accommodated in the second load-side unit 200b. In the air conditioner 1 of the first embodiment, the first load side heat exchanger 6a and the second load side heat exchanger 6b are blown by air from the load side heat exchanger fan (not shown). It can be configured to supply ambient air.

冷媒流路切替装置7は、冷房運転時と暖房運転時とを切り替える際に、冷凍サイクルにおける冷媒の流れ方向を切り替えるものであり、熱源側ユニット100に収容されている。冷媒流路切替装置7としては、例えば四方弁が用いられる。   The refrigerant flow switching device 7 switches the flow direction of the refrigerant in the refrigeration cycle when switching between cooling operation and heating operation, and is accommodated in the heat source side unit 100. For example, a four-way valve is used as the refrigerant flow switching device 7.

冷媒流路切替装置7と、熱源側熱交換器3との間には、第5の熱源側冷媒配管18が連結されている。冷媒流路切替装置7とアキュムレータ8の冷媒流入口との間には、第3の熱源側冷媒配管14(アキュムレータ手前配管)が連結されている。冷媒流路切替装置7と圧縮機2の吐出口との間には、第4の熱源側冷媒配管16が連結されている。冷媒流路切替装置7と第2の延長冷媒配管400との間には、第2の熱源側冷媒配管12が連結されている。   A fifth heat source side refrigerant pipe 18 is connected between the refrigerant flow path switching device 7 and the heat source side heat exchanger 3. A third heat source side refrigerant pipe 14 (an accumulator front pipe) is connected between the refrigerant flow switching device 7 and the refrigerant inlet of the accumulator 8. A fourth heat source side refrigerant pipe 16 is connected between the refrigerant flow switching device 7 and the discharge port of the compressor 2. The second heat source side refrigerant pipe 12 is connected between the refrigerant flow path switching device 7 and the second extension refrigerant pipe 400.

冷媒流路切替装置7は、冷房運転時において、第2の熱源側冷媒配管12から第3の熱源側冷媒配管14に冷媒が流れ、第4の熱源側冷媒配管16から第5の熱源側冷媒配管18に冷媒が流れるように構成される。また、冷媒流路切替装置7は、暖房運転において、第5の熱源側冷媒配管18から第3の熱源側冷媒配管14に冷媒が流れ、第4の熱源側冷媒配管16から第2の熱源側冷媒配管12に冷媒が流れるように構成される。   In the refrigerant flow switching device 7, the refrigerant flows from the second heat source side refrigerant pipe 12 to the third heat source side refrigerant pipe 14 during the cooling operation, and the fourth heat source side refrigerant pipe 16 to the fifth heat source side refrigerant The refrigerant is configured to flow through the pipe 18. In the refrigerant flow switching device 7, the refrigerant flows from the fifth heat source side refrigerant pipe 18 to the third heat source side refrigerant pipe 14 in the heating operation, and from the fourth heat source side refrigerant pipe 16 to the second heat source side The refrigerant is configured to flow through the refrigerant pipe 12.

なお、第2の熱源側冷媒配管12、第3の熱源側冷媒配管14、第4の熱源側冷媒配管16、及び第5の熱源側冷媒配管18は、熱源側ユニット100に収容されている。また、第2の熱源側冷媒配管12は、第2の熱源側冷媒配管12に設けられた第2の延長冷媒配管接続バルブ9b(ガス操作弁)で、第2の延長冷媒配管400に連結されている。第2の延長冷媒配管接続バルブ9bは、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。   The second heat source side refrigerant pipe 12, the third heat source side refrigerant pipe 14, the fourth heat source side refrigerant pipe 16, and the fifth heat source side refrigerant pipe 18 are accommodated in the heat source side unit 100. Further, the second heat source side refrigerant pipe 12 is connected to the second extension refrigerant pipe 400 by a second extension refrigerant pipe connection valve 9 b (gas operation valve) provided in the second heat source side refrigerant pipe 12. ing. The second extension refrigerant pipe connection valve 9 b is configured by, for example, a two-way valve such as a two-way solenoid valve capable of switching between opening and closing.

アキュムレータ8は、余剰冷媒を貯留する冷媒貯留機能と、運転状態が変化する際に一時的に発生する液冷媒を滞留させることにより、圧縮機2に大量の液冷媒が流入するのを防ぐ気液分離機能とを有するものである。アキュムレータ8は、圧縮機2の吸入管側に配置され、熱源側ユニット100に収容されている。   The accumulator 8 has a refrigerant storage function for storing surplus refrigerant, and a gas / liquid that prevents a large amount of liquid refrigerant from flowing into the compressor 2 by retaining the liquid refrigerant that is temporarily generated when the operating state changes. And a separation function. The accumulator 8 is disposed on the suction pipe side of the compressor 2 and is accommodated in the heat source side unit 100.

次に、本実施の形態1に係る空気調和装置1に設けられた熱源側ユニット100のバイパス冷媒回路の構成について説明する。   Next, the configuration of the bypass refrigerant circuit of the heat source side unit 100 provided in the air conditioning apparatus 1 according to Embodiment 1 will be described.

熱源側ユニット100は、熱源側減圧装置4と第1の延長冷媒配管接続バルブ9aとの間の位置で、第1の熱源側冷媒配管10から分岐されたバイパス冷媒配管20(高低圧バイパス配管)を備えている。バイパス冷媒配管20の末端部は、冷媒流路切替装置7とアキュムレータ8との間の位置で、第3の熱源側冷媒配管14に連結される。すなわち、バイパス冷媒配管20は、熱源側減圧装置4の冷媒流出口側の冷媒配管である第1の熱源側冷媒配管10と、アキュムレータ8の冷媒流入口側に連結された冷媒配管である第3の熱源側冷媒配管14との間をバイパスする冷媒配管である。   The heat source side unit 100 is a bypass refrigerant pipe 20 (high and low pressure bypass pipe) branched from the first heat source side refrigerant pipe 10 at a position between the heat source side pressure reducing device 4 and the first extended refrigerant pipe connection valve 9a. Is equipped. The end of the bypass refrigerant pipe 20 is connected to the third heat source side refrigerant pipe 14 at a position between the refrigerant flow switching device 7 and the accumulator 8. That is, the bypass refrigerant pipe 20 is a first heat source side refrigerant pipe 10 which is a refrigerant pipe on the refrigerant outlet side of the heat source side pressure reducing device 4 and a third pipe which is a refrigerant pipe connected to the refrigerant inlet side of the accumulator 8. It is a refrigerant piping which bypasses between the heat source side refrigerant piping 14 of these.

バイパス冷媒配管20には、電力供給又は電力停止によって、流路を開放又は閉止するバルブである電磁弁25が設けられている。電磁弁25は、第1の熱源側冷媒配管10に流入した冷媒を、アキュムレータ8に流入させるものである。第1の熱源側冷媒配管10に流入する高圧又は中圧の冷媒の圧力を低圧まで減圧可能な容量係数(CV値)を有している。電磁弁25は、例えば、開放及び閉止の切り替えが可能な二方向電磁弁等の二方弁で構成されている。   The bypass refrigerant pipe 20 is provided with a solenoid valve 25 which is a valve that opens or closes the flow path by power supply or power stop. The solenoid valve 25 causes the refrigerant flowing into the first heat source side refrigerant pipe 10 to flow into the accumulator 8. The first heat source side refrigerant pipe 10 has a capacity coefficient (CV value) capable of reducing the pressure of the high pressure or medium pressure refrigerant flowing into the first heat source side refrigerant pipe 10 to a low pressure. The solenoid valve 25 is configured by, for example, a two-way valve such as a two-way solenoid valve capable of switching between opening and closing.

次に、本実施の形態1に係る空気調和装置1に配置されるセンサについて説明する。   Next, sensors disposed in the air conditioner 1 according to Embodiment 1 will be described.

本実施の形態1に係る空気調和装置1は、第1の温度センサ30と、第2の温度センサ35aと、第1の圧力センサ40と、第2の圧力センサ45とを備える。   The air conditioner 1 according to the first embodiment includes a first temperature sensor 30, a second temperature sensor 35a, a first pressure sensor 40, and a second pressure sensor 45.

第1の温度センサ30は、熱源側送風ファン(図示せず)によって吸い込まれ、熱源側熱交換器3に送風される外気(室外空気)の温度を検知する外気温度センサ(室外温度センサ)である。第1の温度センサ30は、例えば熱源側送風ファン(図示せず)の上流側に配置される。第2の温度センサ35aは、例えば、第1の負荷側ユニット200aに収容された負荷側送風ファン(図示せず)によって吸い込まれ、第1の負荷側熱交換器6aに送風される室内空気の温度を検知する外気温度センサ(室内機吸い込み温度センサ)にできる。第2の温度センサ35aが外気温度センサとして構成される場合、第2の温度センサ35aは、例えば負荷側送風ファン(利用側送風機)の上流側に配置される。第3の温度センサ35bは、例えば、第2の負荷側ユニット200bに収容された負荷側送風ファン(図示せず)によって吸い込まれ、第2の負荷側熱交換器6bに送風される室内空気の温度を検知する外気温度センサ(室内機吸い込み温度センサ)にできる。第3の温度センサ35bが外気温度センサとして構成される場合、第3の温度センサ35bは、例えば負荷側送風ファン(利用側送風機)の上流側に配置される。   The first temperature sensor 30 is an outside air temperature sensor (outdoor temperature sensor) that detects the temperature of the outside air (outdoor air) sucked by the heat source side blower fan (not shown) and blown to the heat source side heat exchanger 3 is there. The first temperature sensor 30 is disposed, for example, on the upstream side of the heat source side blower fan (not shown). The second temperature sensor 35a is, for example, an indoor air sucked into the first load-side heat exchanger 6a by being sucked by a load-side blower fan (not shown) accommodated in the first load-side unit 200a. It can be an outside air temperature sensor (indoor unit suction temperature sensor) that detects the temperature. When the second temperature sensor 35a is configured as an outside air temperature sensor, the second temperature sensor 35a is disposed, for example, on the upstream side of the load-side blower fan (use-side blower). The third temperature sensor 35b is, for example, a room air that is sucked by a load-side blower fan (not shown) accommodated in the second load-side unit 200b and is blown to the second load-side heat exchanger 6b. It can be an outside air temperature sensor (indoor unit suction temperature sensor) that detects the temperature. When the third temperature sensor 35 b is configured as an outside air temperature sensor, the third temperature sensor 35 b is disposed, for example, on the upstream side of the load-side blower fan (use-side blower).

第1の圧力センサ40は、冷房運転時において、熱源側減圧装置4の冷媒流出口側の第1の熱源側冷媒配管10を流れる冷媒の圧力Pを検知する圧力センサ(中間圧力センサ)である。すなわち、第1の圧力センサ40は、第1の熱源側冷媒配管10の、熱源側減圧装置4と第1の延長冷媒配管接続バルブ9aとの間の位置に配置されている。第2の圧力センサ45は、冷房運転時においては、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bの出口から流出し、合流した冷媒の低圧圧力を検知する圧力センサ(低圧圧力センサ)であり、暖房運転時においては、熱源側熱交換器3の出口から流出する冷媒の圧力を検知するものである。第2の圧力センサ45は、第3の熱源側冷媒配管14に配置されている。   The first pressure sensor 40 is a pressure sensor (intermediate pressure sensor) that detects the pressure P of the refrigerant flowing through the first heat source side refrigerant pipe 10 on the refrigerant outlet side of the heat source side pressure reducing device 4 during the cooling operation. . That is, the first pressure sensor 40 is disposed at a position of the first heat source side refrigerant pipe 10 between the heat source side pressure reducing device 4 and the first extension refrigerant pipe connection valve 9 a. The second pressure sensor 45 is a pressure sensor that detects the low pressure pressure of the joined refrigerant flowing out from the outlets of the first load side heat exchanger 6 a and the second load side heat exchanger 6 b during the cooling operation. (Low pressure pressure sensor) which detects the pressure of the refrigerant flowing out of the outlet of the heat source side heat exchanger 3 during heating operation. The second pressure sensor 45 is disposed in the third heat source side refrigerant pipe 14.

第1の温度センサ30、第2の温度センサ35a、及び、第3の温度センサ35bの材料としては、半導体(例えば、サーミスタ)又は金属(例えば、測温抵抗体)等が用いられる。また、第1の圧力センサ40及び第2の圧力センサ45としては、水晶圧電式圧力センサ、半導体センサ、又は圧力トランスデューサ等が用いられる。なお、第1の温度センサ30、第2の温度センサ35a、及び、第3の温度センサ35bは、同一の材料で構成してもよいし、異なる材料で構成してもよい。また、第1の圧力センサ40及び第2の圧力センサ45についても、同種類のもので構成してもよいし、異なる種類のもので構成してもよい。   As a material of the first temperature sensor 30, the second temperature sensor 35a, and the third temperature sensor 35b, a semiconductor (for example, a thermistor) or a metal (for example, a temperature measuring resistor) or the like is used. Further, as the first pressure sensor 40 and the second pressure sensor 45, a quartz crystal piezoelectric pressure sensor, a semiconductor sensor, a pressure transducer or the like is used. The first temperature sensor 30, the second temperature sensor 35a, and the third temperature sensor 35b may be made of the same material or different materials. The first pressure sensor 40 and the second pressure sensor 45 may be of the same type or may be of different types.

次に、本実施の形態1に係る空気調和装置1の全体の制御を行う制御装置500(運転制御装置)について説明する。   Next, a control device 500 (operation control device) that controls the entire air conditioning apparatus 1 according to Embodiment 1 will be described.

本実施の形態1に係る制御装置500は、熱源側ユニット100の運転状態を制御する第1の制御部50(室外機側制御装置)と、第1の負荷側ユニット200aの運転状態を制御する第2の制御部55a(室内機側制御装置)と、第2の負荷側ユニット200bの運転状態を制御する第3の制御部55b(室内機側制御装置)とを備える。   The control device 500 according to the first embodiment controls the operation state of the first load unit 200a and the first control unit 50 (the outdoor unit side control device) that controls the operation state of the heat source unit 100. A second control unit 55a (indoor unit control device) and a third control unit 55b (indoor unit control device) for controlling the operating state of the second load unit 200b are provided.

第1の制御部50、第2の制御部55a、及び第3の制御部55bは、CPU、メモリ(例えば、ROM、RAM等)、I/Oポート等を備えたマイクロコンピュータを有している。なお、制御装置500は、第1の制御部50と、第2の制御部55a及び第3の制御部55bとの間を通信線58で接続して、制御信号の送受信等、相互に通信を行うことができるように構成される。なお、第1の制御部50と、第2の制御部55a及び第3の制御部55bとの間の通信は無線で行うように構成してもよい。   The first control unit 50, the second control unit 55a, and the third control unit 55b each include a microcomputer including a CPU, a memory (for example, a ROM, a RAM, and the like), an I / O port, and the like. . The control device 500 connects the first control unit 50, the second control unit 55a, and the third control unit 55b with the communication line 58 to mutually communicate such as transmission and reception of control signals. Configured to be able to do. Communication between the first control unit 50 and the second control unit 55a and the third control unit 55b may be configured to be performed wirelessly.

第1の制御部50は、例えば、熱源側ユニット100の運転の開始及び停止、熱源側減圧装置4の開度の調整、電磁弁25の開放又は閉止、圧縮機2の運転周波数の調整等の運転状態を制御できるように構成される。また、第1の制御部50は、制御目標値等の各種データを記憶できる記憶部(図示せず)を有するように構成される。また、第1の制御部50は、第1の温度センサ30で検知した温度情報の電気信号、並びに第1の圧力センサ40及び第2の圧力センサ45で検知した圧力情報の電気信号を受信するように構成される。   The first control unit 50 may, for example, start and stop the operation of the heat source side unit 100, adjust the opening degree of the heat source side pressure reducing device 4, open or close the solenoid valve 25, adjust the operating frequency of the compressor 2, etc. It is configured to be able to control the operating state. Further, the first control unit 50 is configured to have a storage unit (not shown) capable of storing various data such as a control target value. Further, the first control unit 50 receives an electrical signal of temperature information detected by the first temperature sensor 30, and an electrical signal of pressure information detected by the first pressure sensor 40 and the second pressure sensor 45. Configured as.

第2の制御部55aは、第1の負荷側ユニット200aの運転の開始及び停止、第1の負荷側減圧装置5aの開度の調整等の運転状態を制御するように構成される。第2の制御部55aは、第1の負荷側ユニット200aの負荷容量Q1(運転容量)を所定の間隔で(例えば、1分おきに)計測するように構成される。また、第2の制御部55aは、第2の温度センサ35aで検知した温度情報の電気信号を受信するように構成される。   The second control unit 55a is configured to control an operation state such as start and stop of operation of the first load side unit 200a and adjustment of the opening degree of the first load side pressure reducing device 5a. The second control unit 55a is configured to measure the load capacity Q1 (operating capacity) of the first load side unit 200a at predetermined intervals (for example, every one minute). The second control unit 55a is configured to receive an electrical signal of temperature information detected by the second temperature sensor 35a.

第3の制御部55bは、第2の負荷側ユニット200bの運転の開始及び停止、第2の負荷側減圧装置5bの開度の調整等の運転状態を制御するように構成される。第3の制御部55bは、第2の負荷側ユニット200bの負荷容量Q2を所定の間隔で(例えば、1分おきに)計測するように構成され、また、第2の制御部55aは、第3の温度センサ35bで検知した温度情報の電気信号を受信するように構成される。   The third control unit 55b is configured to control an operation state such as start and stop of operation of the second load side unit 200b, adjustment of the opening degree of the second load side pressure reducing device 5b, and the like. The third control unit 55b is configured to measure the load capacity Q2 of the second load-side unit 200b at predetermined intervals (for example, every one minute), and the second control unit 55a It is comprised so that the electrical signal of the temperature information detected by the temperature sensor 35b of 3 may be received.

なお、第2の制御部55aにおいて計測された第1の負荷側ユニット200aの負荷容量Q1及び第3の制御部55bにおいて計測された第2の負荷側ユニット200bの負荷容量Q2は、通信線58を介して第1の制御部50に送信される。第1の制御部50では、第1の負荷側ユニット200a及び第2の負荷側ユニット200bにおける合計負荷容量Qが以下の式(1)で算出され、第1の制御部50の記憶部に記憶される。
Q=Q1+Q2 …(1)
The load capacity Q1 of the first load-side unit 200a measured by the second control unit 55a and the load capacity Q2 of the second load-side unit 200b measured by the third control unit 55b are the communication line 58. To the first control unit 50. In the first control unit 50, the total load capacity Q in the first load unit 200a and the second load unit 200b is calculated by the following equation (1), and stored in the storage unit of the first control unit 50. Be done.
Q = Q1 + Q2 (1)

次に、本実施の形態1に係る空気調和装置1の通常の冷房運転時の動作について説明する。   Next, an operation of the air conditioning apparatus 1 according to Embodiment 1 during normal cooling operation will be described.

圧縮機2から吐出された高温高圧のガス冷媒は、熱源側熱交換器3へ流入する。熱源側熱交換器3に流入した高温高圧のガス冷媒は、室外空気等の低温の媒体に熱を放出することによって熱交換され、高圧の液冷媒となる。高圧の液冷媒は、第1の熱源側冷媒配管10に設けられた熱源側減圧装置4で膨張及び減圧されて、中圧の液冷媒又は二相冷媒となり、第1の延長冷媒配管300を経由して熱源側ユニット100に流入する。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 3. The high-temperature and high-pressure gas refrigerant flowing into the heat source side heat exchanger 3 is subjected to heat exchange by releasing heat to a low-temperature medium such as outdoor air, and becomes a high-pressure liquid refrigerant. The high pressure liquid refrigerant is expanded and decompressed by the heat source side pressure reducing device 4 provided in the first heat source side refrigerant pipe 10 to become a medium pressure liquid refrigerant or a two-phase refrigerant, and passes through the first extension refrigerant pipe 300 Then, it flows into the heat source side unit 100.

熱源側ユニット100に流入した中圧の液冷媒又は二相冷媒は、第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bに流入する。第1の負荷側減圧装置5a及び第2の負荷側減圧装置5bに流入した中圧の液冷媒又は二相冷媒は、更に膨張及び減圧されて低温低圧の二相冷媒となる。低温低圧の二相冷媒は、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bに流入し、室内空気等の高温の媒体から熱を吸収し、蒸発して乾き度の高い二相冷媒又は低温低圧のガス冷媒となる。第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bから流出した乾き度の高い二相冷媒又は低温低圧のガス冷媒は、第2の延長冷媒配管400、第2の熱源側冷媒配管12、冷媒流路切替装置7、及び第3の熱源側冷媒配管14を経由して、アキュムレータ8に流入する。乾き度の高い二相冷媒又は低温低圧のガス冷媒は、アキュムレータ8で液相成分が除去された後に、圧縮機2に吸入される。圧縮機2に吸入された冷媒は圧縮されて、高温高圧のガス冷媒となり、圧縮機2から吐出される。圧縮機2から吐出された高温高圧のガス冷媒は、第4の熱源側冷媒配管16、冷媒流路切替装置7、第5の熱源側冷媒配管18を経由して熱源側熱交換器3へ流入する。空気調和装置1の冷房運転では以上のサイクルが繰り返される。   The medium pressure liquid refrigerant or two-phase refrigerant flowing into the heat source side unit 100 flows into the first load side pressure reducing device 5a and the second load side pressure reducing device 5b. The medium-pressure liquid refrigerant or two-phase refrigerant flowing into the first load-side pressure reducing device 5a and the second load-side pressure reducing device 5b is further expanded and reduced in pressure to become a low-temperature low-pressure two-phase refrigerant. The low-temperature low-pressure two-phase refrigerant flows into the first load-side heat exchanger 6a and the second load-side heat exchanger 6b, absorbs heat from a high-temperature medium such as indoor air, and evaporates to be dry. It becomes a high two-phase refrigerant or a low-temperature low-pressure gas refrigerant. The two-phase refrigerant having a high degree of dryness or the low-temperature low-pressure gas refrigerant flowing out of the first load-side heat exchanger 6a and the second load-side heat exchanger 6b is the second extended refrigerant pipe 400, the second heat source side It flows into the accumulator 8 via the refrigerant pipe 12, the refrigerant flow path switching device 7, and the third heat source side refrigerant pipe 14. The two-phase refrigerant having high dryness or the low-temperature low-pressure gas refrigerant is sucked into the compressor 2 after liquid phase components are removed by the accumulator 8. The refrigerant drawn into the compressor 2 is compressed to be a high-temperature, high-pressure gas refrigerant, and is discharged from the compressor 2. The high temperature / high pressure gas refrigerant discharged from the compressor 2 flows into the heat source side heat exchanger 3 via the fourth heat source side refrigerant piping 16, the refrigerant flow switching device 7, and the fifth heat source side refrigerant piping 18 Do. The above-described cycle is repeated in the cooling operation of the air conditioner 1.

なお、暖房運転時においては、冷媒流路切替装置7の内部の流路は、図1に示すように実線の流路から点線の流路に切り替えられる。これによって、第1の負荷側熱交換器6a及び第2の負荷側熱交換器6bに高温高圧のガス冷媒が流入し、室内空気等の低温の媒体に熱を放出し、高圧の液冷媒となる。これによって、室内空気は冷媒の放熱作用によって加熱されることとなる。   In the heating operation, the flow passage inside the refrigerant flow switching device 7 is switched from the solid flow passage to the dotted flow passage as shown in FIG. As a result, the high-temperature high-pressure gas refrigerant flows into the first load-side heat exchanger 6a and the second load-side heat exchanger 6b, and the heat is released to a low-temperature medium such as room air. Become. As a result, the indoor air is heated by the heat radiation of the refrigerant.

次に、本実施の形態1に係る空気調和装置1の制御装置500における制御処理を説明する。   Next, control processing in the control device 500 of the air-conditioning apparatus 1 according to Embodiment 1 will be described.

本実施の形態1に係る空気調和装置1の制御装置500は、冷房運転時に、熱源側熱交換器3に供給される室外空気の外気温度が基準外気温度を超え、かつ、1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)の合計負荷容量Qが経時的に低減した場合において、合計負荷容量Qの変動値に応じて熱源側減圧装置4の開度を調整するように構成される。   The control device 500 of the air conditioner 1 according to the first embodiment is configured such that the outdoor air temperature of the outdoor air supplied to the heat source side heat exchanger 3 exceeds the reference outdoor air temperature during the cooling operation, and one or more load sides When the total load capacity Q of the units (the first load side unit 200a and the second load side unit 200b) decreases with time, the opening degree of the heat source side pressure reducing device 4 according to the fluctuation value of the total load capacity Q Configured to adjust.

図2は、本実施の形態1に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。図2の制御処理は、冷房運転時に常時行うようにしてもよいし、例えば、外気温度Tの変動を検知した際に随時行うようにしてもよい。   FIG. 2 is a flowchart showing an example of control processing during cooling operation in the control device 500 of the air conditioning apparatus 1 according to Embodiment 1. The control process of FIG. 2 may be performed constantly during the cooling operation, or may be performed as needed, for example, when a change in the outside air temperature T is detected.

ステップS11においては、第1の温度センサ30で検知した外気温度Tが、基準外気温度T0より高いか否かが制御装置500において判定される。基準外気温度T0は、高外気温度環境と通常の外気温度環境との間の境界値として設定され、例えば、52℃に設定される。ここで、通常の温度環境とは、合計負荷容量Qの変動によって既設配管を流れる冷媒の圧力が耐圧基準値を超えない外気温度環境をいう。外気温度Tが基準外気温度T0以下である場合、制御処理は終了し、通常の冷房運転が継続される。   In step S11, the control device 500 determines whether the outside air temperature T detected by the first temperature sensor 30 is higher than the reference outside air temperature T0. The reference outside temperature T0 is set as a boundary value between the high outside temperature environment and the normal outside temperature environment, and is set to 52 ° C., for example. Here, the normal temperature environment means an outside air temperature environment in which the pressure of the refrigerant flowing through the existing pipe does not exceed the pressure resistance reference value due to the fluctuation of the total load capacity Q. If the outside air temperature T is less than or equal to the reference outside air temperature T0, the control process ends and the normal cooling operation is continued.

外気温度Tが基準外気温度T0を超える場合、ステップS12において、制御装置500は、第1の負荷側ユニット200aにおける現在の負荷容量Q1now及び第2の負荷側ユニット200bにおける現在の負荷容量Q2nowを計測し、現在の合計負荷容量Qnowを以下の式(2)で演算する。
now=Q1now+Q2now …(2)
If the outside air temperature T is higher than the reference outdoor temperature T0, in step S12, the control device 500, the current in the current load capacity Q1 now and second load-side unit 200b in the first load-side unit 200a load capacity Q2 now Is calculated, and the present total load capacity Q now is calculated by the following equation (2).
Q now = Q1 now + Q2 now (2)

次いで、ステップS13において、現在の合計負荷容量Qnowが、制御装置500の記憶部に記憶されている直近の合計負荷容量Qlast未満であるか否かが制御装置500において判定される。現在の合計負荷容量Qnowが直近の合計負荷容量Qlast以上である場合、制御処理は終了し、通常の冷房運転が継続される。Next, in step S13, the control device 500 determines whether the current total load capacity Q now is less than the latest total load capacity Q last stored in the storage unit of the control device 500. If the current total load capacity Q now is greater than or equal to the latest total load capacity Q last , the control process ends and the normal cooling operation is continued.

現在の合計負荷容量Qnowが、直近の合計負荷容量Qlast未満である場合、ステップS14において、熱源側減圧装置4の開度調整値ΔDを算出する。開度調整値ΔDは補正係数Kを用いて以下の式(3)から演算される。
ΔD=K×(Qlast−Qnow) …(3)
If the current total load capacity Q now is less than the latest total load capacity Q last , in step S14, the opening degree adjustment value ΔD of the heat source side pressure reducing device 4 is calculated. The opening adjustment value ΔD is calculated using the correction coefficient K from the following equation (3).
ΔD = K × (Q last −Q now ) (3)

ここで、補正係数Kは、例えば、合計負荷容量Qの変動値、第1の圧力センサ40で検知される圧力Pの変動値、及び圧力Pの変動を相殺するための開度調整値ΔDの実測値の相関関係から演算され、決定される定数である。   Here, the correction coefficient K is, for example, the fluctuation value of the total load capacity Q, the fluctuation value of the pressure P detected by the first pressure sensor 40, and the opening adjustment value ΔD for canceling the fluctuation of the pressure P. It is a constant that is calculated and determined from the correlation of measured values.

次いで、ステップS15において、制御装置500は、熱源側減圧装置4の開度Dを開度調整値ΔDだけ開放するように制御し、制御処理は終了する。   Next, in step S15, the control device 500 controls the opening degree D of the heat source side pressure reducing device 4 to open by the opening degree adjustment value ΔD, and the control process ends.

次に、本実施の形態1による本発明の効果を説明する。   Next, the effects of the present invention according to the first embodiment will be described.

上述したとおり、本実施の形態1に係る空気調和装置1は、圧縮機2、熱源側熱交換器3、減圧装置(熱源側減圧装置4)、及び負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)を冷媒配管(例えば、第1の熱源側冷媒配管10、第1の延長冷媒配管300等)を介して接続して冷媒を循環させ、少なくとも、熱源側熱交換器3が放熱器として機能し、負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)が蒸発器として機能する冷房運転を行う冷凍サイクルと、圧縮機2、熱源側熱交換器3、及び減圧装置(熱源側減圧装置4)を収容する熱源側ユニット100と、負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)を収容し、既設の冷媒配管(第1の延長冷媒配管300、第2の延長冷媒配管400)を介して熱源側ユニット100と連結される1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)と、冷凍サイクルを制御する制御装置500とを備え、制御装置500は、冷房運転時に、熱源側熱交換器3に供給される室外空気の外気温度が基準外気温度を超え、かつ、1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)の合計負荷容量が経時的に低減した場合において、合計負荷容量の変動値に応じて減圧装置(熱源側減圧装置4)の開度を調整するものである。   As described above, the air conditioner 1 according to the first embodiment includes the compressor 2, the heat source side heat exchanger 3, the pressure reducing device (the heat source side pressure reducing device 4), and the load side heat exchanger (first load side) Connecting the heat exchanger 6a and the second load-side heat exchanger 6b via a refrigerant pipe (for example, the first heat source side refrigerant pipe 10, the first extension refrigerant pipe 300, etc.) to circulate the refrigerant, At least a cooling operation in which the heat source side heat exchanger 3 functions as a radiator, and the load side heat exchangers (the first load side heat exchanger 6a and the second load side heat exchanger 6b) function as an evaporator. A heat source side unit 100 for accommodating the refrigeration cycle to be performed, the compressor 2, the heat source side heat exchanger 3, and the pressure reducing device (the heat source side pressure reducing device 4), and a load side heat exchanger (first load side heat exchanger 6a , Second load side heat exchanger 6b), existing refrigerant pipe (first extended refrigerant pipe) 00, one or more load side units (the first load side unit 200a, the second load side unit 200b) connected to the heat source side unit 100 via the second extension refrigerant pipe 400), and the refrigeration cycle are controlled Control unit 500, the outdoor temperature of the outdoor air supplied to the heat source side heat exchanger 3 exceeds the standard outside air temperature during the cooling operation, and one or more load side units (first Adjust the degree of opening of the pressure reducing device (heat source side pressure reducing device 4) according to the fluctuation value of the total load capacity when the total load capacity of the load side unit 200a and the second load side unit 200b) is reduced with time It is

また、本実施の形態1に係る運転制御装置(制御装置500)は、熱源側ユニット100に収容される圧縮機2、熱源側熱交換器3、及び減圧装置(熱源側減圧装置4)と、既設の冷媒配管(第1の延長冷媒配管300、第2の延長冷媒配管400)を介して熱源側ユニット100と連結される1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)に収容される負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)とを冷媒配管(例えば、第1の熱源側冷媒配管10、第1の延長冷媒配管300等)を介して接続して冷媒を循環させ、少なくとも、熱源側熱交換器3が放熱器として機能し、負荷側熱交換器(第1の負荷側熱交換器6a、第2の負荷側熱交換器6b)が蒸発器として機能する冷房運転を行う冷凍サイクルを備える空気調和装置1を制御し、冷房運転時に、熱源側熱交換器3に供給される室外空気の外気温度が基準外気温度を超え、かつ、1以上の負荷側ユニット(第1の負荷側ユニット200a、第2の負荷側ユニット200b)の合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて減圧装置(熱源側減圧装置4)の開度を調整するものである。   Further, the operation control apparatus (control apparatus 500) according to the first embodiment includes the compressor 2, the heat source side heat exchanger 3, and the pressure reducing device (the heat source side pressure reducing device 4) accommodated in the heat source side unit 100; One or more load side units (first load side unit 200a, second one) connected with the heat source side unit 100 via the existing refrigerant pipes (first extension refrigerant pipe 300, second extension refrigerant pipe 400) The load side heat exchanger (the first load side heat exchanger 6a, the second load side heat exchanger 6b) housed in the load side unit 200b) and the refrigerant pipe (for example, the first heat source side refrigerant pipe 10) , Through the first extension refrigerant pipe 300) to circulate the refrigerant, at least the heat source side heat exchanger 3 functions as a radiator, and the load side heat exchanger (first load side heat exchanger 6a, the second load side heat exchanger 6b) is an evaporator The air conditioner 1 is provided with a refrigeration cycle that performs a cooling operation that functions, and during the cooling operation, the outside air temperature of the outdoor air supplied to the heat source side heat exchanger 3 exceeds the reference outside air temperature, and one or more loads When the total load capacity of the side units (the first load side unit 200a and the second load side unit 200b) is reduced with time, the pressure reducing device (the heat source side pressure reducing device 4 according to the fluctuation value of the total load capacity To adjust the opening of).

従来より、圧縮機、四方弁、室外熱交換器、室外機側絞り装置、及びアキュムレータを含む室外機と、室内側絞り装置、室内熱交換器を含む室内機とを、ガス配管及び液配管で接続して構成した冷凍空調装置がある。また、従来の冷凍空調装置には、冷凍空調装置の更新の際に、室外機及び室内機のみを更新し、ガス配管及び液配管については既設配管を流用し、既設配管(ガス配管及び液配管)を洗浄して再利用する機種(既設配管流用機種)がある。   Conventionally, an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, an outdoor unit-side throttling device, and an accumulator, and an indoor unit including an indoor-side throttling device and an indoor heat exchanger are There is a refrigeration air conditioner which is connected and configured. In addition, in the conventional refrigeration air conditioning system, only the outdoor unit and the indoor unit are renewed at the time of renewal of the refrigeration air conditioning system, existing piping is diverted for gas piping and liquid piping, and existing piping (gas piping and liquid piping There is a model (an existing piping diversion model) that cleans and reuses).

更新前の冷凍空調装置においては、ガス配管及び液配管は。R22又はR407C等の設計圧力が低い冷媒の冷媒特性に合わせて耐圧設計されている場合がある。また、更新後の冷凍空調装置においては、R22又はR407Cと比較して設計圧力が高いR410A等の冷媒が用いられる場合がある。したがって、既設配管を流用する冷凍空調装置は、室外機及び室内機で、既設配管に流入する冷媒の圧力がガス配管及び液配管の耐圧基準値を超えないように制御可能な構成を有している。   In the refrigeration air conditioning system before renewal, gas piping and liquid piping. In some cases, the pressure resistance is designed according to the refrigerant characteristics of the refrigerant having a low design pressure such as R22 or R407C. Moreover, in the refrigeration air conditioning system after updating, a refrigerant such as R410A having a design pressure higher than that of R22 or R407C may be used. Therefore, the refrigeration air conditioning system that diverts the existing piping has a configuration that can be controlled so that the pressure of the refrigerant flowing into the existing piping does not exceed the pressure resistance reference value of the gas piping and the liquid piping in the outdoor unit and the indoor unit. There is.

例えば、既設配管を流用する冷凍空調装置としては、室外機液ラインに圧力センサを取り付け、既設配管に流入する冷媒の圧力(中間圧力)を検知するものがある。圧力センサを用いた冷凍空調装置では、圧縮機の周波数と、室外機液ラインに取り付けられた室外機側絞り装置の開度とを調整することで、圧力センサで検知した冷媒圧力が、目標値(目標中間圧力)になるように制御している。   For example, as a refrigerating air conditioner which diverts existing piping, a pressure sensor is attached to an outdoor unit liquid line, and there are some which detect pressure (intermediate pressure) of a refrigerant which flows into existing piping. In a refrigeration air conditioner using a pressure sensor, the refrigerant pressure detected by the pressure sensor is adjusted to a target value by adjusting the frequency of the compressor and the opening degree of the outdoor unit side throttle device attached to the outdoor unit liquid line. It is controlled to become (target intermediate pressure).

近年、地球温暖化の進行又は都市部のヒートアイランド現象により、冷凍空調装置の室外機が設置される環境温度が上昇する傾向にある。また、室外機の集中設置により吹き出し口及び吸い込み口が遮られ、室外機からの放熱が妨害されるショートサーキットにより、室外機の吸込み空気温度が上昇する場合がある。したがって、冷凍空調装置の室外機においては、室外機で利用可能な外気(室外空気)の温度の広範囲化(例えば、外気温度の許容上限値の上昇)が可能な構成が要求される。   In recent years, the environmental temperature at which the outdoor unit of the refrigeration air conditioner is installed tends to rise due to the progress of global warming or the heat island phenomenon in urban areas. In addition, the suction air temperature of the outdoor unit may rise due to a short circuit in which the blowout port and the suction port are blocked by centralized installation of the outdoor unit and the heat radiation from the outdoor unit is interrupted. Therefore, in the outdoor unit of the refrigeration air conditioning system, a configuration capable of widening the temperature of the outside air (outdoor air) available to the outdoor unit (for example, raising the allowable upper limit of the outside air temperature) is required.

しかしながら、高外気温度環境下の冷房運転時には、高圧圧力及び既設配管に流入する冷媒の圧力が上昇するため、冷凍空調装置の圧力異常の発生頻度が上昇する。一方、冷房運転中に室内機の負荷容量が減少した場合は、圧縮機周波数の減速のタイミングが、室内機の負荷容量の減少のタイミングよりも遅れるため、既設配管に流入する冷媒の圧力が上昇する。したがって、高外気温度環境下の冷房運転時に、室内機の負荷容量が減少した場合は、既設配管に流入する冷媒の圧力が耐圧基準値を超える可能性が高くなるという問題点があった。   However, at the time of cooling operation under a high outside air temperature environment, the high pressure and the pressure of the refrigerant flowing into the existing piping rise, so the occurrence frequency of pressure abnormality of the refrigeration air conditioning system rises. On the other hand, when the load capacity of the indoor unit decreases during the cooling operation, the timing of deceleration of the compressor frequency is later than the timing of the reduction of the load capacity of the indoor unit, so the pressure of the refrigerant flowing into the existing piping rises Do. Therefore, when the load capacity of the indoor unit decreases during the cooling operation under the high outside air temperature environment, there is a problem that the pressure of the refrigerant flowing into the existing pipe is likely to exceed the pressure resistance reference value.

例えば、室内機の接続台数が5台であり、5台とも負荷容量が同一の室内機を有する冷凍空調装置を考える。ここでは、5台全ての室内機を運転している状態の合計負荷容量を100%とする。高外気温度環境下の冷房運転時に、5台全ての室内機を運転している状態から4台の室内機が停止した場合、室内機の合計負荷容量は20%となる。また、5台全ての室内機が運転している状態から4台の室内機が停止した場合、停止した4台の室内機の電子膨張弁は閉止状態となる。よって、5台全ての室内機を運転している状態での冷媒循環量を100%とすると、4台の室内機が停止した場合は、既設配管に流入する冷媒の圧力を維持するため、冷媒循環量が20%となるように圧縮機周波数を減速させる必要がある。しかしながら、圧縮機周波数の減速のタイミングが、室内機の負荷容量の減少のタイミングよりも遅れるため、既設配管に流入する冷媒の圧力が一時的に上昇し、既設配管の耐圧基準値を超え、圧力異常が生じることとなる。   For example, consider a refrigeration air conditioning system having five indoor units and five indoor units having the same load capacity. Here, the total load capacity in a state where all five indoor units are operating is assumed to be 100%. When the four indoor units are stopped from operating all five indoor units in the cooling operation under a high outside temperature environment, the total load capacity of the indoor units is 20%. In addition, when the four indoor units are stopped from the state where all the five indoor units are in operation, the electronic expansion valves of the stopped four indoor units are closed. Therefore, assuming that the refrigerant circulation amount in a state where all the five indoor units are operating is 100%, when the four indoor units are stopped, the refrigerant is maintained in order to maintain the pressure of the refrigerant flowing into the existing piping. It is necessary to slow down the compressor frequency so that the circulation rate is 20%. However, since the timing of deceleration of the compressor frequency is later than the timing of reduction of the load capacity of the indoor unit, the pressure of the refrigerant flowing into the existing pipe temporarily rises, and exceeds the pressure resistance reference value of the existing pipe. An anomaly will occur.

これに対し、本実施の形態1の構成によれば、負荷容量の減少を検知したタイミングで、熱源側減圧装置4の開度を制御できる。すなわち、本実施の形態1の構成によれば、1以上の負荷側ユニットの合計負荷容量の低減に応じて、熱源側減圧装置4の開度を調整できる。よって、本実施の形態1の構成によれば、高外気温度環境下の冷房運転時に、負荷容量の減少により既設配管を流れる冷媒の圧力が上昇するのを抑制でき、既設配管を流れる冷媒の圧力が耐圧基準値P0(例えば、29kg/cm)以下となるように制御できる。したがって、本実施の形態1の構成によれば、圧力異常により空気調和装置1が異常停止する頻度を低減可能な、信頼性の高い空気調和装置1及び制御装置500(運転制御装置)を提供することができる。On the other hand, according to the configuration of the first embodiment, the opening degree of the heat source side pressure reducing device 4 can be controlled at the timing when the decrease of the load capacity is detected. That is, according to the configuration of the first embodiment, the opening degree of the heat source side pressure reducing device 4 can be adjusted according to the reduction of the total load capacity of one or more load side units. Therefore, according to the configuration of the first embodiment, it is possible to suppress the pressure of the refrigerant flowing through the existing pipe rising due to the reduction of the load capacity during the cooling operation under the high outside air temperature environment, and the pressure of the refrigerant flowing through the existing pipe There withstand reference value P0 (e.g., 29kg / cm 2) can be controlled to be less. Therefore, according to the configuration of the first embodiment, the highly reliable air conditioner 1 and the control device 500 (operation control device) capable of reducing the frequency at which the air conditioner 1 abnormally stops due to pressure abnormality can be provided. be able to.

実施の形態2.
本発明の実施の形態2では、上述の実施の形態1に係る制御装置500の電磁弁25の制御処理の一例を示す。図3は、本実施の形態2に係る空気調和装置1の制御装置500における、冷房運転時の制御処理の一例を示すフローチャートである。
Second Embodiment
In the second embodiment of the present invention, an example of control processing of the solenoid valve 25 of the control device 500 according to the above-described first embodiment will be shown. FIG. 3 is a flowchart showing an example of control processing during cooling operation in the control device 500 of the air conditioning apparatus 1 according to the second embodiment.

本実施の形態2の空気調和装置1では、制御装置500は、冷房運転時に、熱源側減圧装置4の冷媒流出口側の第1の熱源側冷媒配管10を流れる冷媒の圧力が、既設配管である第1の延長冷媒配管300の耐圧基準値を超えた場合において、電磁弁25を一定の時間、開放するように構成される。   In the air conditioner 1 of the second embodiment, the control device 500 causes the pressure of the refrigerant flowing through the first heat source side refrigerant pipe 10 on the refrigerant outlet side of the heat source side pressure reducing device 4 to be the existing pipe during the cooling operation. When the pressure resistance reference value of the first extended refrigerant pipe 300 is exceeded, the solenoid valve 25 is configured to be opened for a certain period of time.

ステップS21においては、制御装置500では、第1の圧力センサ40で検知された、熱源側減圧装置4の冷媒流出口側の第1の熱源側冷媒配管10を流れる冷媒の圧力Pが、第1の延長冷媒配管300の耐圧基準値P0を超えるか否かが判定される。耐圧基準値P0は、例えば29kg/cmに設定される。In step S21, in the control device 500, the pressure P of the refrigerant flowing through the first heat source side refrigerant pipe 10 on the refrigerant outlet side of the heat source side pressure reducing device 4 detected by the first pressure sensor 40 is the first It is determined whether the pressure resistance reference value P0 of the extended refrigerant piping 300 is exceeded. The pressure resistance reference value P0 is set to, for example, 29 kg / cm 2 .

圧力Pが耐圧基準値P0を超える場合、ステップS22において、制御装置500は電磁弁25を開放する。   If the pressure P exceeds the pressure reference value P0, the controller 500 opens the solenoid valve 25 in step S22.

次いで、ステップS23において、制御装置500では、電磁弁25が開放されている時間Mがカウントされ、一定の時間M0を経過したか否かが判定される。一定の時間M0を経過していない場合は、電磁弁25の開放状態を維持する。   Next, in step S23, the control device 500 counts the time M during which the solenoid valve 25 is open, and determines whether a predetermined time M0 has elapsed. When the fixed time M0 has not passed, the open state of the solenoid valve 25 is maintained.

ここで、一定の時間M0は、例えば制御装置500が圧縮機2の運転周波数を低減する制御を行い、圧力Pを耐圧基準値P0に抑制する場合、低減した圧縮機2の運転周波数が安定状態となるまでの時間とすることができる。例えば、一定の時間M0は60秒とすることができる。   Here, for example, when the control device 500 performs control to reduce the operating frequency of the compressor 2 to suppress the pressure P to the pressure reference value P0, the operating frequency of the reduced compressor 2 is stable. It can be time to become. For example, the fixed time M0 can be 60 seconds.

一定の時間M0を経過した後、ステップS24において、制御装置500は、電磁弁25を閉止し、制御処理を終了する。   After the predetermined time M0 has elapsed, in step S24, the control device 500 closes the solenoid valve 25 and ends the control process.

上述したとおり、本実施の形態2に係る空気調和装置1は、熱源側ユニット100が、圧縮機2の吸入管側に配置されたアキュムレータ8と、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)と、アキュムレータ8の冷媒流入口側に連結された冷媒配管(第3の熱源側冷媒配管14)との間をバイパスするバイパス冷媒配管20と、バイパス冷媒配管20に設けられた電磁弁25とを更に備え、制御装置500は、冷房運転時に、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)を流れる冷媒の圧力が、既設の冷媒配管(第1の延長冷媒配管300)の耐圧基準値を超えた場合において、電磁弁25を一定の時間、開放するものである。   As described above, in the air conditioner 1 according to the second embodiment, the heat source side unit 100 includes the accumulator 8 in which the heat source side unit 100 is disposed on the suction pipe side of the compressor 2 and the refrigerant flow of the pressure reducing device (the heat source side pressure reducing device 4). A bypass refrigerant pipe 20 for bypassing between the refrigerant pipe (first heat source side refrigerant pipe 10) on the outlet side and the refrigerant pipe (third heat source side refrigerant pipe 14) connected to the refrigerant inlet side of the accumulator 8 And the solenoid valve 25 provided in the bypass refrigerant pipe 20. The controller 500 controls the refrigerant pipe (first heat source side) of the refrigerant outlet side of the pressure reducing device (the heat source side pressure reducing device 4) during the cooling operation. When the pressure of the refrigerant flowing through the refrigerant pipe 10) exceeds the pressure reference value of the existing refrigerant pipe (the first extended refrigerant pipe 300), the solenoid valve 25 is opened for a certain period of time.

また、本実施の形態2に係る運転制御装置(制御装置500)は、圧縮機2の吸入管側に配置されたアキュムレータ8と、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)と、アキュムレータ8の冷媒流入口側に連結された冷媒配管(第3の熱源側冷媒配管14)との間をバイパスするバイパス冷媒配管20と、バイパス冷媒配管20に設けられた電磁弁25とを熱源側ユニット100に更に収容した空気調和装置1を制御し、冷房運転時に、減圧装置(熱源側減圧装置4)の冷媒流出口側の冷媒配管(第1の熱源側冷媒配管10)を流れる冷媒の圧力が、既設の冷媒配管(第1の延長冷媒配管300)の耐圧基準値を超えた場合において、電磁弁25を一定の時間、開放するものである。   The operation control apparatus (control apparatus 500) according to the second embodiment includes the accumulator 8 disposed on the suction pipe side of the compressor 2, and the refrigerant on the refrigerant outlet side of the pressure reducing device (the heat source side pressure reducing device 4). Bypass refrigerant piping 20 for bypassing between the piping (first heat source side refrigerant piping 10) and the refrigerant piping (third heat source side refrigerant piping 14) connected to the refrigerant inlet side of the accumulator 8 and bypass refrigerant The air conditioner 1 in which the heat source side unit 100 further accommodates the solenoid valve 25 provided in the pipe 20 is controlled, and the refrigerant pipe on the refrigerant outlet side of the pressure reducing device (the heat source side pressure reducing device 4) In the case where the pressure of the refrigerant flowing through the heat source side refrigerant pipe 10) in 1 exceeds the pressure resistance reference value of the existing refrigerant pipe (the first extended refrigerant pipe 300), the solenoid valve 25 is opened for a certain time. is there.

本実施の形態2の構成によれば、第1の延長冷媒配管300に流れる冷媒の圧力を電磁弁25の開放により即時に低下させることができるため、更に信頼性の高い空気調和装置1及び制御装置500(運転制御装置)を提供することができる。   According to the configuration of the second embodiment, the pressure of the refrigerant flowing through the first extended refrigerant pipe 300 can be reduced immediately by opening the solenoid valve 25, so that the air conditioner 1 and control with higher reliability can be achieved. A device 500 (operation control device) can be provided.

その他の実施の形態.
上述の実施の形態に限らず種々の変形が可能である。例えば、上述の実施の形態は、空気調和装置1のみに限られず、給湯器等にも用いることができる。
Other Embodiments
The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the above-described embodiment is not limited to the air conditioner 1 but can be used for a water heater or the like.

また、上述の実施の形態は互いに組み合わせて用いることが可能である。   Further, the above-described embodiments can be used in combination with each other.

1 空気調和装置、2 圧縮機、3 熱源側熱交換器、4 熱源側減圧装置、5a 第1の負荷側減圧装置、5b 第2の負荷側減圧装置、6a 第1の負荷側熱交換器、6b 第2の負荷側熱交換器、7 冷媒流路切替装置、8 アキュムレータ、9a 第1の延長冷媒配管接続バルブ、9b 第2の延長冷媒配管接続バルブ、10 第1の熱源側冷媒配管、12 第2の熱源側冷媒配管、14 第3の熱源側冷媒配管、16 第4の熱源側冷媒配管、18 第5の熱源側冷媒配管、20 バイパス冷媒配管、25 電磁弁、30 第1の温度センサ、35a 第2の温度センサ、35b 第3の温度センサ、40 第1の圧力センサ、45 第2の圧力センサ、50 第1の制御部、55a 第2の制御部、55b 第3の制御部、58 通信線、100 熱源側ユニット、200a 第1の負荷側ユニット、200b 第2の負荷側ユニット、300 第1の延長冷媒配管、400 第2の延長冷媒配管、500 制御装置。   REFERENCE SIGNS LIST 1 air conditioner, 2 compressor, 3 heat source side heat exchanger, 4 heat source side pressure reducing device, 5 a first load side pressure reducing device, 5 b second load side pressure reducing device, 6 a first load side heat exchanger, 6b second load side heat exchanger, 7 refrigerant flow path switching device, 8 accumulator, 9a first extension refrigerant pipe connection valve, 9b second extension refrigerant pipe connection valve, 10 first heat source side refrigerant pipe, 12 Second heat source side refrigerant piping, 14 third heat source side refrigerant piping, 16 fourth heat source side refrigerant piping, 18 fifth heat source side refrigerant piping, 20 bypass refrigerant piping, 25 solenoid valve, 30 first temperature sensor , 35a second temperature sensor, 35b third temperature sensor, 40 first pressure sensor, 45 second pressure sensor, 50 first control unit, 55a second control unit, 55b third control unit, 58 communication lines, 100 heat Source side unit, 200a 1st load side unit, 200b 2nd load side unit, 300 1st extension refrigerant piping, 400 2nd extension refrigerant piping, 500 controller.

Claims (5)

圧縮機、熱源側熱交換器、減圧装置、及び負荷側熱交換器を冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルと、
前記圧縮機、前記熱源側熱交換器、及び前記減圧装置を収容する熱源側ユニットと、
前記負荷側熱交換器を収容し、既設の冷媒配管を介して前記熱源側ユニットと連結される複数の負荷側ユニットと、
前記冷凍サイクルを制御する制御装置と
を備え、
前記制御装置は、
冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記複数の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整するものである
空気調和装置。
A compressor, a heat source side heat exchanger, a pressure reducing device, and a load side heat exchanger are connected via a refrigerant pipe to circulate a refrigerant, and at least the heat source side heat exchanger functions as a radiator, the load side A refrigeration cycle for performing a cooling operation in which the heat exchanger functions as an evaporator;
A heat source side unit that accommodates the compressor, the heat source side heat exchanger, and the pressure reducing device;
Accommodating the load-side heat exchanger, a plurality of load-side units which are connected to the heat source unit via the existing refrigerant piping,
A controller for controlling the refrigeration cycle;
The controller is
When the outside air temperature of the outdoor air supplied to the heat source side heat exchanger exceeds the reference outside air temperature during the cooling operation, and the total load capacity of the plurality of load side units decreases with time, the total load An air conditioner, which adjusts an opening degree of the pressure reducing device according to a fluctuation value of a capacity.
前記熱源側ユニットが、
前記圧縮機の吸入管側に配置されたアキュムレータと、
前記減圧装置の冷媒流出口側の冷媒配管と、前記アキュムレータの冷媒流入口側に連結された冷媒配管との間をバイパスするバイパス冷媒配管と、
前記バイパス冷媒配管に設けられた電磁弁と
を更に備え、
前記制御装置は、
冷房運転時に、前記減圧装置の冷媒流出口側の冷媒配管を流れる冷媒の圧力が、既設の冷媒配管の耐圧基準値を超えた場合において、前記電磁弁を一定の時間、開放するものである
請求項1に記載の空気調和装置。
The heat source unit is
An accumulator disposed on the suction pipe side of the compressor;
A bypass refrigerant pipe that bypasses between a refrigerant pipe on a refrigerant outlet side of the pressure reducing device and a refrigerant pipe connected to the refrigerant inlet side of the accumulator;
And a solenoid valve provided on the bypass refrigerant pipe.
The controller is
In the cooling operation, when the pressure of the refrigerant flowing through the refrigerant pipe on the refrigerant outlet side of the pressure reducing device exceeds the pressure resistance reference value of the existing refrigerant pipe, the solenoid valve is opened for a certain period of time. The air conditioning apparatus according to Item 1.
前記一定の時間は、
前記制御装置が、前記圧縮機の運転周波数を低減する制御を行い、前記冷媒の圧力を前記耐圧基準値に抑制する場合に、低減した前記圧縮機の運転周波数が安定状態となるまでの時間である
請求項2に記載の空気調和装置。
The fixed time is
When the control device performs control to reduce the operating frequency of the compressor and suppresses the pressure of the refrigerant to the pressure resistance reference value, the time until the reduced operating frequency of the compressor becomes stable state The air conditioner according to claim 2.
熱源側ユニットに収容される圧縮機、熱源側熱交換器、及び減圧装置と、既設の冷媒配管を介して前記熱源側ユニットと連結される複数の負荷側ユニットに収容される負荷側熱交換器とを冷媒配管を介して接続して冷媒を循環させ、少なくとも、前記熱源側熱交換器が放熱器として機能し、前記負荷側熱交換器が蒸発器として機能する冷房運転を行う冷凍サイクルを備える空気調和装置を制御し、
冷房運転時に、前記熱源側熱交換器に供給される室外空気の外気温度が基準外気温度を超え、かつ、前記複数の負荷側ユニットの合計負荷容量が経時的に低減した場合において、前記合計負荷容量の変動値に応じて前記減圧装置の開度を調整する
運転制御装置。
Load-side heat exchangers accommodated in a plurality of load-side units connected to the heat source side unit through the compressor, the heat source side heat exchanger, the pressure reducing device, and the existing heat source side unit accommodated in the heat source side unit And a refrigerant pipe to circulate the refrigerant, and at least the heat source side heat exchanger functions as a radiator, and the load side heat exchanger functions as an evaporator. Control the air conditioner,
When the outside air temperature of the outdoor air supplied to the heat source side heat exchanger exceeds the reference outside air temperature during the cooling operation, and the total load capacity of the plurality of load side units decreases with time, the total load The operation control apparatus which adjusts the opening degree of the said pressure-reduction device according to the fluctuation value of a capacity | capacitance.
前記圧縮機の吸入管側に配置されたアキュムレータと、
前記減圧装置の冷媒流出口側の冷媒配管と、前記アキュムレータの冷媒流入口側に連結された冷媒配管との間をバイパスするバイパス冷媒配管と、
前記バイパス冷媒配管に設けられた電磁弁と
を前記熱源側ユニットに更に収容した空気調和装置を制御し、
冷房運転時に、前記減圧装置の冷媒流出口側の冷媒配管を流れる冷媒の圧力が、既設の冷媒配管の耐圧基準値を超えた場合において、前記電磁弁を一定の時間、開放する
請求項4に記載の運転制御装置。
An accumulator disposed on the suction pipe side of the compressor;
A bypass refrigerant pipe that bypasses between a refrigerant pipe on a refrigerant outlet side of the pressure reducing device and a refrigerant pipe connected to the refrigerant inlet side of the accumulator;
Controlling an air conditioner further including a solenoid valve provided in the bypass refrigerant pipe and the heat source unit;
The electromagnetic valve is opened for a certain period of time when the pressure of the refrigerant flowing through the refrigerant pipe on the refrigerant outlet side of the pressure reducing device exceeds the withstand pressure reference value of the existing refrigerant pipe during cooling operation. The operation control device described.
JP2017521358A 2015-06-01 2015-06-01 Air conditioner and operation control device Expired - Fee Related JP6501878B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065730 WO2016194098A1 (en) 2015-06-01 2015-06-01 Air-conditioning device and operation control device

Publications (2)

Publication Number Publication Date
JPWO2016194098A1 JPWO2016194098A1 (en) 2017-12-28
JP6501878B2 true JP6501878B2 (en) 2019-04-17

Family

ID=57440909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017521358A Expired - Fee Related JP6501878B2 (en) 2015-06-01 2015-06-01 Air conditioner and operation control device

Country Status (4)

Country Link
EP (1) EP3306214B1 (en)
JP (1) JP6501878B2 (en)
CN (1) CN107709887B (en)
WO (1) WO2016194098A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639411A (en) * 2021-07-15 2021-11-12 青岛海尔空调器有限总公司 Method for controlling external self-cleaning of outdoor heat exchanger

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110691948B (en) 2017-07-20 2021-08-17 大金工业株式会社 Air conditioning system
CN110671847B (en) * 2018-07-02 2021-12-21 艾默生环境优化技术(苏州)有限公司 Variable-speed condensing unit, capacity self-adaptive adjusting method, storage medium and controller
FR3097807B1 (en) * 2019-06-28 2021-07-09 Valeo Systemes Thermiques Method for managing a thermal management device for a motor vehicle
JP6835185B1 (en) * 2019-09-30 2021-02-24 ダイキン工業株式会社 Heat source unit and refrigeration equipment
JP6835184B1 (en) * 2019-11-18 2021-02-24 ダイキン工業株式会社 Intermediate unit and refrigeration equipment for refrigeration equipment
CN111076279A (en) * 2020-01-08 2020-04-28 珠海格力电器股份有限公司 Control method for updating multi-split air conditioning system and multi-split air conditioning system updating method
CN113639412B (en) * 2021-07-15 2023-03-24 青岛海尔空调器有限总公司 Method for controlling self-cleaning outside pipe of indoor heat exchanger
CN115751663A (en) * 2022-11-28 2023-03-07 贵州电网有限责任公司 Automatic regulating device and method for heat dissipation load of central air conditioner external unit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182670U (en) * 1984-05-15 1985-12-04 株式会社富士通ゼネラル air conditioner
JPH0769087B2 (en) * 1988-07-11 1995-07-26 ダイキン工業株式会社 Operation control device for air conditioner
JP2909187B2 (en) * 1990-10-26 1999-06-23 株式会社東芝 Air conditioner
JPH1114177A (en) * 1997-06-26 1999-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP4437868B2 (en) * 2000-11-28 2010-03-24 東芝キヤリア株式会社 Air conditioner
JP2005140431A (en) * 2003-11-07 2005-06-02 Hitachi Home & Life Solutions Inc Air conditioner
JP2005147541A (en) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner
CN101382353A (en) * 2008-10-30 2009-03-11 广东志高空调有限公司 Frequency constant heat pump energy-conserving air conditioning system
KR101237216B1 (en) * 2011-10-24 2013-02-26 엘지전자 주식회사 An air condtioner and a control method the same
JP5855312B2 (en) * 2013-03-12 2016-02-09 三菱電機株式会社 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639411A (en) * 2021-07-15 2021-11-12 青岛海尔空调器有限总公司 Method for controlling external self-cleaning of outdoor heat exchanger

Also Published As

Publication number Publication date
EP3306214A4 (en) 2018-06-06
JPWO2016194098A1 (en) 2017-12-28
WO2016194098A1 (en) 2016-12-08
CN107709887B (en) 2020-03-03
CN107709887A (en) 2018-02-16
EP3306214A1 (en) 2018-04-11
EP3306214B1 (en) 2023-10-18

Similar Documents

Publication Publication Date Title
JP6501878B2 (en) Air conditioner and operation control device
EP3467406B1 (en) Air conditioner
EP2375188B1 (en) Air conditioner
WO2018123361A1 (en) Multi-split air conditioner control device, multi-split air conditioner, multi-split air conditioner control method, and multi-split air conditioner control program
JP6223469B2 (en) Air conditioner
JP6138711B2 (en) Air conditioner
WO2017203655A1 (en) Heat pump type air conditioning and hot water supplying device
JP4462435B2 (en) Refrigeration equipment
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
EP2420765A1 (en) Heat source unit
JPWO2019082372A1 (en) Refrigeration cycle equipment
JPWO2019053876A1 (en) Air conditioner
JP6415701B2 (en) Refrigeration cycle equipment
EP3236168B1 (en) Air conditioning device
WO2016166801A1 (en) Air conditioning device
JP2018204898A (en) Control device of multiple air conditioner, multiple air conditioner, control method of multiple air conditioner, and control program of multiple air conditioner
JP2009139012A (en) Refrigeration air conditioning apparatus
JP7097989B2 (en) Air conditioner
JP6081283B2 (en) Air conditioner
JP6573723B2 (en) Air conditioner
JP7055239B2 (en) Air conditioner
JP2018146169A (en) air conditioner
JPWO2017094172A1 (en) Air conditioner
KR20090107310A (en) Air conditioner
JP6203230B2 (en) Air conditioner, control method of air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R150 Certificate of patent or registration of utility model

Ref document number: 6501878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees