JP2005140431A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2005140431A
JP2005140431A JP2003377749A JP2003377749A JP2005140431A JP 2005140431 A JP2005140431 A JP 2005140431A JP 2003377749 A JP2003377749 A JP 2003377749A JP 2003377749 A JP2003377749 A JP 2003377749A JP 2005140431 A JP2005140431 A JP 2005140431A
Authority
JP
Japan
Prior art keywords
refrigerant
electric expansion
temperature
expansion valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003377749A
Other languages
Japanese (ja)
Inventor
Tomomasa Suzuki
伴昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2003377749A priority Critical patent/JP2005140431A/en
Publication of JP2005140431A publication Critical patent/JP2005140431A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve comfortableness in an air conditioner comprising one outdoor unit and a plurality of indoor units connected thereto by sufficiently bringing out the heating capability of an operating-side indoor unit even at the time of low rotation of a compressor. <P>SOLUTION: This air conditioner comprises the plurality of indoor units and the outdoor unit connecting the indoor units in parallel. The outdoor unit comprises an electric expansion valve for independently controlling refrigerant flow rate to the indoor units, a temperature sensor for detecting a supercooling refrigerant temperature, and an electric expansion valve control means for controlling the opening of the electric expansion valve so that an operating-side supercooling refrigerant temperature and a stopping-side supercooling refrigerant temperature have a predetermined temperature difference computed from the rotating speed of the compressor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、空気調和機に係り、特に1台の室外機に対し複数の室内機を並列に接続した空気調和機に好適なものである。   The present invention relates to an air conditioner, and is particularly suitable for an air conditioner in which a plurality of indoor units are connected in parallel to one outdoor unit.

係る空気調和機においては、近年、各々の室内機に対応づけられた電動膨張弁を細径配管側にのみ設けて、太径配管側から電磁弁または電動膨張弁を削除した安価な冷媒回路で空調を行うものが増えてきている。   In such an air conditioner, in recent years, an inexpensive refrigerant circuit in which an electric expansion valve associated with each indoor unit is provided only on a small-diameter pipe side, and an electromagnetic valve or an electric expansion valve is deleted from the large-diameter pipe side. The number of air conditioning is increasing.

係る空気調和機の一例を図5に示して説明する。この例は、2台の室内機A、Bが1台の室外機Cに接続された例である。   An example of such an air conditioner will be described with reference to FIG. In this example, two indoor units A and B are connected to one outdoor unit C.

図5に示すように、2台の室内機A、Bは、太径配管10a、10bと細径配管11a、11bとにより室外機Cに接続されると共に、各々に、室内熱交換器4a、4b及び室内ファン5a、5bを備えている。一方、室外機Cには圧縮機1、四方弁2、室外熱交換器8、室外ファン9が設けられている。室外機C内の細径配管11a、11bには、各々の室内機A、Bに対応した電動膨張弁7a、7bが設けられている。尚、冷媒は暖房運転時に実線矢印方向に流れる。   As shown in FIG. 5, the two indoor units A and B are connected to the outdoor unit C by the large-diameter pipes 10a and 10b and the small-diameter pipes 11a and 11b, and the indoor heat exchanger 4a, 4b and indoor fans 5a and 5b. On the other hand, the outdoor unit C is provided with a compressor 1, a four-way valve 2, an outdoor heat exchanger 8, and an outdoor fan 9. The small-diameter pipes 11a and 11b in the outdoor unit C are provided with electric expansion valves 7a and 7b corresponding to the indoor units A and B, respectively. Note that the refrigerant flows in the direction of the solid arrow during the heating operation.

係る空気調和機において、室内機A、Bを同時に暖房運転する場合には、空調負荷に応じて室内機A側の電動膨張弁7aと室内機B側の電動膨張弁7bを各々個別に制御し室内機A、Bの室内熱交換器4a、4bに対して冷媒を適正量分配することで、冷媒回路を効率良く動作させることができる。   In such an air conditioner, when heating the indoor units A and B simultaneously, the electric expansion valve 7a on the indoor unit A side and the electric expansion valve 7b on the indoor unit B side are individually controlled according to the air conditioning load. By distributing an appropriate amount of refrigerant to the indoor heat exchangers 4a and 4b of the indoor units A and B, the refrigerant circuit can be operated efficiently.

そして、室内機A側のみ暖房運転を行い、室内機B側を停止する場合には、室内機B側の電動膨張弁7bを全閉すると、室内機Bの室内熱交換器4bと細径配管11b内に凝縮した冷媒が滞留し、冷媒回路全体の冷媒循環量不足による暖房能力の低下を招くため、停止側の細径配管11bにある電動膨張弁7bを所定開度で開放し、冷媒を流通させる制御により滞留を防止するようにしている。   When the heating operation is performed only on the indoor unit A side and the indoor unit B side is stopped, when the electric expansion valve 7b on the indoor unit B side is fully closed, the indoor heat exchanger 4b of the indoor unit B and the small diameter pipe Since the condensed refrigerant stays in 11b and the heating capacity is reduced due to insufficient refrigerant circulation in the entire refrigerant circuit, the electric expansion valve 7b in the small-diameter pipe 11b on the stop side is opened at a predetermined opening, Restraining is prevented by controlling the flow.

具体的には、電動膨張弁7a、7bの室内機A、B側の細径配管11a、11bに冷媒温度を検知するための冷媒温度センサー23a、23bを設け、暖房運転時に、運転側の過冷却冷媒温度と停止側の過冷却冷媒温度を検知し、運転側の過冷却冷媒温度と停止側の過冷却冷媒温度が所定の温度差となるよう各々の電動膨張弁7a、7bの所定開度を制御することで、停止側の室内熱交換器4b及び細径配管11bにおける冷媒の滞留を防止するようにしている。   Specifically, refrigerant temperature sensors 23a and 23b for detecting the refrigerant temperature are provided in the small-diameter pipes 11a and 11b on the indoor units A and B side of the electric expansion valves 7a and 7b. A predetermined opening degree of each of the electric expansion valves 7a and 7b is detected so that the cooling refrigerant temperature and the subcooling refrigerant temperature on the stop side are detected and the subcooling refrigerant temperature on the operation side and the subcooling refrigerant temperature on the stop side have a predetermined temperature difference. Is controlled to prevent the refrigerant from staying in the indoor heat exchanger 4b and the small-diameter pipe 11b on the stop side.

さらには、運転側の過冷却冷媒温度と停止側の過冷却冷媒温度が外気温度から演算する所定の温度差となるよう各々の電動膨張弁7a、7bを制御することで外気温が低い場合の停止側の室内熱交換器4bと細径接続配管11bにおける冷媒の滞留を防止している。   Further, when the outside air temperature is low by controlling each of the electric expansion valves 7a and 7b so that the subcooling refrigerant temperature on the operation side and the subcooling refrigerant temperature on the stop side have a predetermined temperature difference calculated from the outside air temperature. Retention of refrigerant in the indoor heat exchanger 4b on the stop side and the small diameter connecting pipe 11b is prevented.

係る従来技術に関連するものとして、特願2002−056717号公報(特許文献1)が挙げられる。   Japanese Patent Application No. 2002-056717 (Patent Document 1) can be cited as a related art.

特願2002−056717号公報Japanese Patent Application No. 2002-056717

係る従来の空気調和機において、室内機A側のみ暖房運転を行い、室内機B側を停止する場合であって、空調負荷が小さく圧縮機1を低回転で運転して冷媒循環量が少なくなっている状態では、高回転時に比べて室内熱交換器4a、4bの温度が低くなるのに対し、過冷却冷媒温度があまり下がらない。このため、運転側の過冷却冷媒温度と停止側の過冷却冷媒温度との差があまりつかなくなり、冷媒循環量が多い場合と同様の温度差を目標として制御しようとすると、運転側の電動膨張弁7aの流量を極めて少なく制御することになり、逆に運転側の室内熱交換器4aへの冷媒循環量が不足することが判明した。   In such a conventional air conditioner, the heating operation is performed only on the indoor unit A side, and the indoor unit B side is stopped. The air conditioning load is small, and the compressor 1 is operated at a low rotation speed to reduce the refrigerant circulation amount. In this state, the temperature of the indoor heat exchangers 4a and 4b is lower than that at the time of high rotation, whereas the supercooling refrigerant temperature does not drop much. For this reason, the difference between the temperature of the supercooling refrigerant on the operation side and the temperature of the supercooling refrigerant on the stop side is not so large, and if the control is performed with the same temperature difference as when the refrigerant circulation amount is large, It was found that the flow rate of the valve 7a was controlled to be extremely small, and conversely, the refrigerant circulation amount to the indoor heat exchanger 4a on the operation side was insufficient.

本発明の目的は、圧縮機の低回転時においても運転側の室内機の暖房能力を十分に引き出して快適性を向上させることができる空気調和機を提供することにある。   The objective of this invention is providing the air conditioner which can fully draw out the heating capability of the indoor unit by the side of a driving | operation, and can improve comfort also at the time of the low rotation of a compressor.

前記目的を達成するために、本発明は、各々個別に運転、停止できる複数の室内機と、前記複数の室内機を並列に接続する室外機とを備え、前記室外機は、冷媒を圧縮する圧縮機と、前記各々の室内機の配管を接続する細径配管接続バルブ及び太径配管接続バルブと、前記複数の室内機に対し冷媒流量を個別に制御する電動膨張弁と、前記電動膨張弁と前記細径配管接続バルブとの間の過冷却冷媒温度を検知する過冷却冷媒温度センサーと、を備えた空気調和機において、暖房運転時に、前記過冷却冷媒温度センサーで運転側の過冷却冷媒温度及び停止側の過冷却冷媒温度を各々検知して、運転側の過冷却冷媒温度と停止側の過冷却冷媒温度とが前記圧縮機の回転数から演算した所定の温度差となるように前記電動膨張弁の開度を制御する電動膨張弁制御手段を備えた構成にしたことにある。   In order to achieve the object, the present invention includes a plurality of indoor units that can be individually operated and stopped, and an outdoor unit that connects the plurality of indoor units in parallel, and the outdoor unit compresses a refrigerant. A compressor, a small-diameter pipe connection valve and a large-diameter pipe connection valve that connect pipes of each of the indoor units, an electric expansion valve that individually controls a refrigerant flow rate for the plurality of indoor units, and the electric expansion valve And a supercooling refrigerant temperature sensor for detecting a supercooling refrigerant temperature sensor between the small-diameter pipe connection valve and the supercooling refrigerant temperature sensor at the operation side during heating operation. Detecting the temperature and the subcooling refrigerant temperature on the stop side, respectively, so that the supercooling refrigerant temperature on the operation side and the subcooling refrigerant temperature on the stop side have a predetermined temperature difference calculated from the rotational speed of the compressor Electricity that controls the opening of the electric expansion valve In that a configuration with an inflation valve control means.

前記発明において、好ましくは、前記圧縮機から吐出した冷媒の温度を検知するための冷媒吐出温度センサーと外気温度を検出するための外気温度センサーとを備え、前記電動膨張弁制御手段は、前記冷媒吐出温度センサーにより検知した冷媒吐出温度と圧縮機回転数検出手段により検知した圧縮機実回転数と前記過冷却冷媒温度センサーにより検知した過冷却冷媒温度と前記外気温度センサーにより検知した外気温度とに基づいて、前記電動膨張弁の弁開度を制御するものである。   In the present invention, preferably, the apparatus includes a refrigerant discharge temperature sensor for detecting the temperature of the refrigerant discharged from the compressor and an outside air temperature sensor for detecting the outside air temperature, and the electric expansion valve control means includes the refrigerant The refrigerant discharge temperature detected by the discharge temperature sensor, the actual compressor rotation speed detected by the compressor rotation speed detection means, the supercooling refrigerant temperature detected by the supercooling refrigerant temperature sensor, and the outside air temperature detected by the outside air temperature sensor Based on this, the valve opening degree of the electric expansion valve is controlled.

前記発明において、好ましい電動膨張弁制御手段は、前記圧縮機から吐出した冷媒の温度を検知するための冷媒吐出温度センサーと外気温度を検出するための外気温度センサーとを備え、電動膨張弁制御手段は、前記冷媒吐出温度センサーにより検知した冷媒吐出温度と圧縮機回転数検出手段により検知した圧縮機実回転数と前記過冷却冷媒温度センサーにより検知した過冷却冷媒温度と前記外気温度センサーにより検知した外気温度とに基づいて、前記電動膨張弁の弁開度を制御するものである。   In the above invention, the preferred electric expansion valve control means includes a refrigerant discharge temperature sensor for detecting the temperature of the refrigerant discharged from the compressor and an outside air temperature sensor for detecting the outside air temperature, and the electric expansion valve control means. Is detected by the refrigerant discharge temperature detected by the refrigerant discharge temperature sensor, the actual compressor rotation speed detected by the compressor rotation speed detection means, the supercooling refrigerant temperature detected by the supercooling refrigerant temperature sensor, and the outside air temperature sensor. The valve opening degree of the electric expansion valve is controlled based on the outside air temperature.

本発明によれば、暖房運転時に、温度センサーで運転側の過冷却冷媒温度及び停止側の過冷却冷媒温度を各々検知して、運転側の過冷却冷媒温度と停止側の過冷却冷媒温度とが圧縮機の回転数から演算した所定の温度差となるように電動膨張弁の開度を制御する制御手段を備えているので、圧縮機の低回転時においても運転側の室内機の暖房能力を十分に引き出して快適性を向上させることができる。   According to the present invention, during heating operation, the temperature sensor detects the supercooling refrigerant temperature on the operation side and the subcooling refrigerant temperature on the stop side, respectively, and the supercooling refrigerant temperature on the operation side and the subcooling refrigerant temperature on the stop side are detected. Is equipped with a control means for controlling the opening degree of the electric expansion valve so that a predetermined temperature difference calculated from the rotational speed of the compressor is obtained. Can be fully pulled out to improve comfort.

以下、本発明の一実施形態の空気調和機を図1から図4を用いて説明する。なお、図1から図4における図5と同一符号は、同一物または相当物を示す。   Hereinafter, an air conditioner according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4. 1 to 4, the same reference numerals as those in FIG. 5 denote the same or equivalent components.

まず、本実施形態の空気調和機の全体構成に関して図1を参照しながら説明する。図1は本発明の一実施形態に係る空気調和機の構成図である。   First, the overall configuration of the air conditioner of the present embodiment will be described with reference to FIG. FIG. 1 is a configuration diagram of an air conditioner according to an embodiment of the present invention.

本実施形態の空気調和機は、複数の室内機A、Bが1台の室外機Cに接続されたものである。2台の室内機A、Bは、太径配管10a、10bに設けられた太径配管接続バルブ3a、3bと、細径配管11a、11bに設けられた細径配管接続バルブ6a、6bとにより室外機Cに接続されている。各々の室内機A、Bには室内熱交換器4a、4b、室内ファン5a、5b及び室温センサー32a、32bが設けられている。一方、室外機Cには、圧縮機1、四方弁2、室外熱交換器8、室外ファン9、外気温度センサー24、細径配管に各々の室内機A、Bに対応した電動膨張弁7a、7bが設けられている。また、冷媒回路の主要な冷媒温度を検知するために、圧縮機1近傍の吐出配管に冷媒吐出温度センサー22が設けられ、電動膨張弁7a、7bと細径配管接続バルブ6a、6bと間の配管に過冷却冷媒温度センサー23a、23bが設けられている。   In the air conditioner of this embodiment, a plurality of indoor units A and B are connected to one outdoor unit C. The two indoor units A and B include large-diameter pipe connection valves 3a and 3b provided in the large-diameter pipes 10a and 10b, and thin-diameter pipe connection valves 6a and 6b provided in the small-diameter pipes 11a and 11b. It is connected to the outdoor unit C. Each of the indoor units A and B is provided with indoor heat exchangers 4a and 4b, indoor fans 5a and 5b, and room temperature sensors 32a and 32b. On the other hand, the outdoor unit C includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 8, an outdoor fan 9, an outdoor air temperature sensor 24, an electric expansion valve 7 a corresponding to each of the indoor units A and B, and a small-diameter pipe. 7b is provided. In order to detect the main refrigerant temperature of the refrigerant circuit, a refrigerant discharge temperature sensor 22 is provided in the discharge pipe in the vicinity of the compressor 1 between the electric expansion valves 7a and 7b and the small diameter pipe connection valves 6a and 6b. Supercooled refrigerant temperature sensors 23a and 23b are provided in the piping.

次に、本実施形態の空気調和機の制御装置に関して図2を参照しながら説明する。図2は図1の空気調和機の制御構成図である。   Next, the control device for the air conditioner of the present embodiment will be described with reference to FIG. FIG. 2 is a control block diagram of the air conditioner of FIG.

図2において、21が室外機Cに設けられた室外制御装置、31aが室内機Aの室内制御装置、31bが室内機Bの室内制御装置を示す。2つの室内制御装置31a、31bは制御信号の送受信を行うためのデータ伝送線51a、51bにより室外制御装置21と接続されている。各々の室内制御装置31a、31bには、現在の室温を検知するための室温センサー32a、32bと、室内機A、Bの能力クラスや室内熱交換器4a、4bの容積クラス等の補正パラメータを記憶している記憶装置33a、33bとが接続されている。   In FIG. 2, 21 is an outdoor control device provided in the outdoor unit C, 31 a is an indoor control device of the indoor unit A, and 31 b is an indoor control device of the indoor unit B. The two indoor control devices 31a and 31b are connected to the outdoor control device 21 through data transmission lines 51a and 51b for transmitting and receiving control signals. Each of the indoor control devices 31a and 31b has room temperature sensors 32a and 32b for detecting the current room temperature, and correction parameters such as the capacity classes of the indoor units A and B and the volume classes of the indoor heat exchangers 4a and 4b. The stored storage devices 33a and 33b are connected.

一方、室外制御装置21には、圧縮機1から吐出した冷媒の温度を検知するための冷媒吐出温度センサー22と、過冷却冷媒温度を検知するための過冷却冷媒温度センサー23a、23bと、外気温度を検出するための外気温度センサー24とが接続されている。さらに、室外機制御装置21は、図2には明示していないが、圧縮機回転数検出手段と圧縮機回転数制御手段と電動膨張弁制御手段とを有しており、これらの制御手段により圧縮機1と各電動膨張弁7a、7bを制御している。   On the other hand, the outdoor control device 21 includes a refrigerant discharge temperature sensor 22 for detecting the temperature of the refrigerant discharged from the compressor 1, supercooled refrigerant temperature sensors 23a and 23b for detecting the supercooled refrigerant temperature, and outside air. An outside air temperature sensor 24 for detecting the temperature is connected. Further, although not shown in FIG. 2, the outdoor unit control device 21 has a compressor rotation speed detection means, a compressor rotation speed control means, and an electric expansion valve control means. The compressor 1 and the electric expansion valves 7a and 7b are controlled.

このように構成した空気調和機で室内機Aと室内機Bを共に暖房運転した場合の動作について以下に説明する。   An operation when both the indoor unit A and the indoor unit B are heated in the air conditioner configured as described above will be described below.

暖房運転が開始されると、各室内制御装置31a、31bはリモコン41a、41bから受けた設定風速に従い室内ファン5a、5bを制御するとともに、暖房運転開始指令および空調負荷等の制御情報を室外制御装置21に送信する。これらの情報はリモコン41a、41bにより設定された設定温度と室温センサー32a、32bから検知した室温をもとに演算している。   When the heating operation is started, the indoor control devices 31a and 31b control the indoor fans 5a and 5b according to the set wind speed received from the remote controllers 41a and 41b, and control the control information such as the heating operation start command and the air conditioning load. To the device 21. These pieces of information are calculated based on the set temperature set by the remote controllers 41a and 41b and the room temperature detected by the room temperature sensors 32a and 32b.

室外制御装置21は、室内機A、Bから暖房運転の開始命令を受けると、四方弁2を暖房サイクル側に切換え、室外ファン9を所定の回転数で駆動し、各室内機A、Bの補正パラメータにあわせて、各々の電動膨張弁7a、7bを所定の運転用初期開度に絞り込む。さらに、室内機A、Bから受信した圧縮機1の回転数指令値をもとに2台運転に必要な圧縮機回転数を演算により求めて圧縮機1を駆動する。その後、室外制御装置21は圧縮機回転数検出手段により検知した実際の回転数(以下、圧縮機実回転数と称す)と前記演算により求めた回転数目標値とを比較しながら高精度な圧縮機回転数制御を行っている。   When the outdoor control device 21 receives a heating operation start command from the indoor units A and B, the outdoor control device 21 switches the four-way valve 2 to the heating cycle side, drives the outdoor fan 9 at a predetermined rotational speed, and controls the indoor units A and B. In accordance with the correction parameter, each electric expansion valve 7a, 7b is narrowed down to a predetermined initial opening for operation. Further, based on the rotational speed command value of the compressor 1 received from the indoor units A and B, the compressor rotational speed required for the operation of the two units is obtained by calculation to drive the compressor 1. Thereafter, the outdoor control device 21 compares the actual rotational speed detected by the compressor rotational speed detecting means (hereinafter referred to as the actual compressor rotational speed) with the target rotational speed obtained by the above calculation, and performs high-precision compression. The machine speed is controlled.

制御装置31a、31b、21の働きにより冷媒回路内の冷媒は図1に示す矢印の方向に流れる。始めに圧縮機1で加圧された冷媒は過熱蒸気として四方弁2を通過して各室内熱交換器4a、4bに流れ込み、室内ファン5a、5bにより送られた空気に放熱することで過冷却冷媒となる。その後、各電動膨張弁7a、7bを通過することで減圧され、室外熱交換器8で室外ファン9により送られた空気により加熱されて、四方弁2を経由し圧縮機1に戻る。   The refrigerant in the refrigerant circuit flows in the direction of the arrow shown in FIG. 1 by the action of the control devices 31a, 31b, and 21. First, the refrigerant pressurized by the compressor 1 passes through the four-way valve 2 as superheated steam, flows into the indoor heat exchangers 4a and 4b, and dissipates heat to the air sent by the indoor fans 5a and 5b. Becomes a refrigerant. Thereafter, the pressure is reduced by passing through the electric expansion valves 7 a and 7 b, the air is heated by the outdoor fan 9 in the outdoor heat exchanger 8, and returns to the compressor 1 via the four-way valve 2.

次に、冷媒循環量と冷媒温度を調節している電動膨張弁7a、7bの開閉動作について図3を参照しながら説明する。図3は図2の室外制御装置における電動膨張弁制御手段のフローチャートである。   Next, the opening / closing operation of the electric expansion valves 7a and 7b adjusting the refrigerant circulation amount and the refrigerant temperature will be described with reference to FIG. FIG. 3 is a flowchart of the electric expansion valve control means in the outdoor control device of FIG.

電動膨張弁制御手段は、冷媒吐出温度補正制御S1、圧縮機回転数偏差補正制御S2、分配制御S3、開閉制御S4を備えて構成されている。この電動膨張弁制御手段は、冷媒吐出温度センサー22により検知した冷媒吐出温度Tdと圧縮機回転数検出手段により検知した圧縮機実回転数Nと過冷却冷媒温度センサー23a、23bにより検知した過冷却冷媒温度Tsca、Tscbと外気温度センサー24により検知した外気温度Toとに基づいて、各電動膨張弁7a、7bの弁開度を制御するものである。   The electric expansion valve control means includes a refrigerant discharge temperature correction control S1, a compressor rotation speed deviation correction control S2, a distribution control S3, and an opening / closing control S4. The electric expansion valve control means includes the refrigerant discharge temperature Td detected by the refrigerant discharge temperature sensor 22, the compressor actual rotation speed N detected by the compressor rotation speed detection means, and the supercooling detected by the subcooling refrigerant temperature sensors 23a and 23b. Based on the refrigerant temperatures Tsca and Tscb and the outside air temperature To detected by the outside air temperature sensor 24, the valve opening degree of each of the electric expansion valves 7a and 7b is controlled.

まず、冷媒吐出温度補正制御S1では、圧縮機1により加圧された冷媒の温度、すなわち冷媒吐出温度Tdが圧縮機実回転数Nに対応した所定の温度となるよう電動膨張弁7a、7bの開度を補正するための演算を行っている。この演算には冷媒吐出温度補正用ファジー演算が用いられており、この冷媒吐出温度補正用ファジー演算に冷媒吐出温度Tdと圧縮機実回転数Nとを代入すると、電動膨張弁7a、7bの補正開度を符号付きで求めることができる。ここでの演算結果を以下、冷媒吐出温度補正開度ΔPtdと称する。   First, in the refrigerant discharge temperature correction control S1, the temperature of the refrigerant pressurized by the compressor 1, that is, the refrigerant discharge temperature Td is adjusted so that the electric expansion valves 7a and 7b have a predetermined temperature corresponding to the actual compressor speed N. Calculations are performed to correct the opening. This calculation uses a fuzzy calculation for correcting the refrigerant discharge temperature. When the refrigerant discharge temperature Td and the actual compressor speed N are substituted for the fuzzy calculation for correcting the refrigerant discharge temperature, correction of the electric expansion valves 7a and 7b is performed. The opening can be obtained with a sign. Hereinafter, the calculation result is referred to as a refrigerant discharge temperature correction opening degree ΔPtd.

次いで、圧縮機回転数偏差補正制御S2では、冷媒回路の負荷変動により圧縮機1の回転数が変動した場合の補正開度ΔPnを求めている。この演算には圧縮機実回転数Nを代入し所定定数Knmを掛け合わせ、補正係数を加算することで、符号付き補正開度ΔPnを求めている。ここでの演算結果を以下、圧縮機回転数変動補正開度ΔPnと称する。   Next, in the compressor rotation speed deviation correction control S2, a correction opening degree ΔPn when the rotation speed of the compressor 1 fluctuates due to load fluctuation of the refrigerant circuit is obtained. For this calculation, the compressor actual rotational speed N is substituted, multiplied by a predetermined constant Knm, and a correction coefficient is added to obtain a signed correction opening degree ΔPn. Hereinafter, the calculation result is referred to as a compressor rotation speed fluctuation correction opening degree ΔPn.

次いで、分配制御S3では、ステップS30により室内機A、Bの運転台数を判定し、ステップS33による2台運転中の処理と、ステップS31、S32による1台運転中の処理とに分けて温度差Tscの算出を行い、これに基づいて補正開度ΔPtscを求めている。   Next, in the distribution control S3, the number of operating indoor units A and B is determined in step S30, and the temperature difference is divided into processing during operation of two units in step S33 and processing during operation of one unit in steps S31 and S32. Tsc is calculated, and based on this, the corrected opening degree ΔPtsc is obtained.

ここで、2台運転中の演算は、各室内機A、Bに適正な冷媒循環量を供給するための分配制御として行っている。すなわち、2台運転中の分配制御は、室内機Aの過冷却冷媒温度Tscaと室内機Bの過冷却冷媒温度Tscbが同一温度となるよう各電動膨張弁7a、7bの補正開度を演算するものであり、現在の温度差Tscを分配制御用のファジー演算に代入して補正開度ΔPtscを符号付きで求めている。ここで求められた結果を以下、過冷却冷媒温度補正開度ΔPtscと称する。なお、1台運転中の演算については、別途、後述する。   Here, the calculation during the operation of the two units is performed as distribution control for supplying an appropriate refrigerant circulation amount to each of the indoor units A and B. That is, the distribution control during the operation of the two units calculates the corrected opening degrees of the electric expansion valves 7a and 7b so that the supercooling refrigerant temperature Tsca of the indoor unit A and the supercooling refrigerant temperature Tscb of the indoor unit B become the same temperature. Therefore, the current temperature difference Tsc is substituted into the distribution control fuzzy calculation to obtain the corrected opening ΔPtsc with a sign. Hereinafter, the obtained result is referred to as a supercooled refrigerant temperature correction opening degree ΔPtsc. Note that the calculation during the operation of one unit will be separately described later.

次いで、開閉制御S4では、各電動膨張弁7a、7bの現在開度に対して前記3つの補正開度ΔPtd、ΔPn、ΔPtscを総計して目標開度Pa(n)、Pb(n)を求め、各々の電動膨張弁7a、7bを目標開度Pa(n)、Pb(n)に合わせて開閉している。   Next, in the opening / closing control S4, the target opening degrees Pa (n) and Pb (n) are obtained by adding the three corrected opening degrees ΔPtd, ΔPn, and ΔPtsc to the current opening degree of each of the electric expansion valves 7a and 7b. The electric expansion valves 7a and 7b are opened and closed in accordance with the target openings Pa (n) and Pb (n).

この電動膨張弁7a、7bの制御を所定周期ごとに実施し、2台運転における冷媒回路内の冷媒循環量と冷媒温度を継続的に最適な状態に維持している。   The electric expansion valves 7a and 7b are controlled at predetermined intervals, and the refrigerant circulation amount and the refrigerant temperature in the refrigerant circuit in the two-unit operation are continuously maintained in an optimum state.

次に、暖房運転において室内機Aを運転し室内機Bを停止させた場合の1台運転について、図1から図4を参照しながら説明する。図4は図3の制御に用いる圧縮機実回転数と温度差補正定数の説明図である。   Next, single operation when the indoor unit A is operated and the indoor unit B is stopped in the heating operation will be described with reference to FIGS. 1 to 4. FIG. 4 is an explanatory diagram of the actual compressor speed and temperature difference correction constant used in the control of FIG.

図2に示す室外制御装置21は、データ伝送線51a、51bを通して受信した暖房運転開始指令により室内機Aの1台だけが暖房運転を開始したと確認すると、図1に示すように、四方弁2を暖房サイクル側に切換え、室外ファン32aを所定の回転数で駆動して、室内機Aの電動膨張弁7aを所定の運転用初期開度に絞り込むと共に、室内機Bの電動膨張弁7bを所定の停止用初期開度に絞り込む。さらに、室外制御装置21は、室内機Aから受信した圧縮機1の指令回転数をもとに1台運転に必要な圧縮機回転数を求めて圧縮機1を駆動する。その後、停止している室内機Bへの冷媒滞留を防止し、冷媒回路全体の冷媒循環量と冷媒温度を継続定期に最適な状態に維持するために、電動膨張弁制御手段により各々の電動膨張弁7a、7bを所定の開度に制御する。   When the outdoor control device 21 shown in FIG. 2 confirms that only one of the indoor units A has started the heating operation based on the heating operation start command received through the data transmission lines 51a and 51b, as shown in FIG. 2 is switched to the heating cycle side, the outdoor fan 32a is driven at a predetermined rotational speed, the electric expansion valve 7a of the indoor unit A is narrowed to a predetermined initial opening for operation, and the electric expansion valve 7b of the indoor unit B is Narrow down to a predetermined initial opening for stopping. Furthermore, the outdoor control device 21 drives the compressor 1 by obtaining the compressor rotational speed necessary for one unit operation based on the command rotational speed of the compressor 1 received from the indoor unit A. Thereafter, in order to prevent the refrigerant from staying in the stopped indoor unit B and maintain the refrigerant circulation amount and the refrigerant temperature in the entire refrigerant circuit in an optimum state continuously, each electric expansion valve control means performs each electric expansion. The valves 7a and 7b are controlled to a predetermined opening degree.

1台運転における電動膨張弁7a、7bの開閉動作について具体的に説明する。各々の電動膨張弁開度は、電動膨張弁制御手投によって補正が行なわれる。図3に示す1台運転時の分配制御S3については、運転している室内機Aの空調負荷と停止している室内機Bの熱漏洩量とを考慮して補正開度を求める必要があるため、2台運転時と同じ演算で単純に補正開度を求めることができない。そこで、室外制御装置21に記憶しているパラメータと圧縮機実回転数Nに基づいて、運転している室内機Aの空調負荷と停止している室内機Bの熱漏洩量とを判断し、運転側と停止側の過冷却冷媒に所定の温度差がつくように分配制御S3を実施している。   The opening and closing operation of the electric expansion valves 7a and 7b in the single unit operation will be specifically described. Each opening degree of the electric expansion valve is corrected by electric expansion valve control. As for the distribution control S3 at the time of single-unit operation shown in FIG. 3, it is necessary to obtain the correction opening degree in consideration of the air conditioning load of the operating indoor unit A and the heat leak amount of the stopped indoor unit B. Therefore, it is not possible to simply obtain the corrected opening degree by the same calculation as when two units are operating. Therefore, based on the parameters stored in the outdoor control device 21 and the actual compressor rotation speed N, the air conditioning load of the operating indoor unit A and the amount of heat leakage of the stopped indoor unit B are determined, The distribution control S3 is performed so that a predetermined temperature difference is generated between the operation side and the stop side supercooled refrigerant.

この1台運転における分配制御S3は、まず図3のステップS31に示すように、室外制御装置21に記憶しているパラメータと圧縮機実回転数Nにより温度差補正定数Ksoを演算により求める。その温度差補正定数Ksoは、図4に示すように、補正下限圧縮機実回転数から補正上限圧縮機実回転数までが比例的に増加し、それ以外は一定である。上限は圧縮機実回転数Nが高回転時に起こる停止側の冷媒の滞留を抑える値を基準にしており、下限は低回転時に起こる冷媒循環量の低下を補正するものである。   In the distribution control S3 in this single-unit operation, first, as shown in step S31 of FIG. As shown in FIG. 4, the temperature difference correction constant Kso increases proportionally from the corrected lower limit compressor actual rotational speed to the corrected upper limit compressor actual rotational speed, and is constant otherwise. The upper limit is based on a value that suppresses stagnation of the refrigerant on the stop side that occurs when the actual compressor speed N is high, and the lower limit corrects a decrease in the refrigerant circulation rate that occurs during low rotation.

このように圧縮機実回転数Nが低回転の場合の温度差を高回転の場合よりも低く設定することは、低回転時の運転側室内熱交換器4aの過冷却冷媒温度Tscaを高くし、運転側の電動膨張弁7aの流量が不足することなく、適正な冷媒循環量を得ることを目的とするものである。   In this way, setting the temperature difference when the actual compressor speed N is low to be lower than that when the compressor is high causes the supercooled refrigerant temperature Tsca of the operation-side indoor heat exchanger 4a to be increased at the time of low rotation. An object of the present invention is to obtain an appropriate refrigerant circulation amount without a shortage of the flow rate of the electric expansion valve 7a on the operation side.

次いで、図3のステップS32に示すように、現在の温度差を演算する時に温度差補正定数Ksoを加算する。その結果をステップS34に示すように分配制御用ファジー演算に代入し、補正開度ΔPstcを符号付きで求める。また、ステップS31では温度差補正定数Ksoを符号付きで求めることで、室内機A、室内機Bの何れか1台運転を行っても、場合分けせずにステップS32の演算式を利用可能にしている。   Next, as shown in step S32 of FIG. 3, a temperature difference correction constant Kso is added when calculating the current temperature difference. The result is substituted into the distribution control fuzzy calculation as shown in step S34, and the corrected opening ΔPstc is obtained with a sign. In step S31, the temperature difference correction constant Kso is obtained with a sign so that even if one of the indoor unit A and the indoor unit B is operated, the arithmetic expression in step S32 can be used without dividing the case. ing.

この電動膨張弁7a、7bの制御を所定周期ごとに実施することで、1台運転で圧縮機低回転時における運転側の室内熱交換器4aへの冷媒循環不足を防止し、運転側、停止側における冷媒回路内の冷媒循環量と冷媒温度を継続的に最適な状態に維持している。   By controlling the electric expansion valves 7a and 7b at predetermined intervals, it is possible to prevent the refrigerant from being insufficiently circulated to the indoor heat exchanger 4a on the operation side when the compressor is operating at a low speed in one unit operation. The refrigerant circulation amount and the refrigerant temperature in the refrigerant circuit on the side are continuously maintained in an optimum state.

本実施形態によれば、複数の室内機A、Bに対し冷媒流量を個別に制御できる電動膨張弁7a、7bを細径配管11a、11bに複数備えた空気調和機において、電動膨張弁7a、7bと細径配管接続バルブ6a、6bとの間に冷媒温度を検知するための冷媒温度センサー23a、23bを設け、暖房運転時に運転側の過冷却冷媒温度Tscaと停止側の過冷却冷媒温度Tscbを検知して運転側の過冷却冷媒温度Tscaと停止側の過冷却冷媒温度Tscbが圧縮機回転数から演算する所定の温度差となるよう各々の電動膨張弁7a、7bを制御することで、暖房1台運転の低循環量時に運転側の室内熱交換器4aへの冷媒循環量不足を防止することができ、低循環量時においても暖房能力を十分に引き出し、快適性を向上させることができる。   According to this embodiment, in the air conditioner having a plurality of electric expansion valves 7a, 7b that can individually control the refrigerant flow rates for the plurality of indoor units A, B in the small-diameter pipes 11a, 11b, the electric expansion valves 7a, The refrigerant temperature sensors 23a and 23b for detecting the refrigerant temperature are provided between the 7b and the small-diameter pipe connection valves 6a and 6b. And controlling each of the electric expansion valves 7a and 7b such that the operation-side subcooling refrigerant temperature Tsca and the stop-side subcooling refrigerant temperature Tscb have a predetermined temperature difference calculated from the compressor rotational speed, It is possible to prevent the refrigerant circulation shortage to the indoor heat exchanger 4a on the operation side at the time of low circulation amount of single heating operation, and to sufficiently draw out the heating capacity and improve comfort even at the time of low circulation amount. so That.

以上、2台の室内機A、Bを1台の室外機Cに接続した空気調和機について説明してきたが、3台以上の室内機を1台の室外機に接続した空気調和機においても本発明を適用することが可能である。   The air conditioner in which two indoor units A and B are connected to one outdoor unit C has been described above, but the present invention is also applicable to an air conditioner in which three or more indoor units are connected to one outdoor unit. The invention can be applied.

3台以上の室内機を1台の室外機に接続したマルチ式空気調和機で、全ての室内機を暖房運転した場合には各々の室内機に対応した過冷却冷媒温度センサーから最高温度と最低温度を検知して、この温度差を同一温度とするよう電動膨張弁を制御することで各々の室内機における冷媒回路内の冷媒循環量と冷媒温度を継続的に最適な状態に維持することが可能である。   In a multi-type air conditioner in which three or more indoor units are connected to one outdoor unit. When all indoor units are heated, the maximum and minimum temperatures are determined from the supercooled refrigerant temperature sensor corresponding to each indoor unit. By detecting the temperature and controlling the electric expansion valve so that this temperature difference is the same temperature, the refrigerant circulation amount and the refrigerant temperature in the refrigerant circuit in each indoor unit can be continuously maintained in an optimum state. Is possible.

さらに、停止している室内機を含む暖房運転を実施した場合には運転側の過冷却冷媒温度の平均値と停止側の過冷却冷媒温度の平均値を求め、この温度差が所定の温度差となるように制御することで、同様に運転側、停止側における冷媒回路内の冷媒循環量と冷媒温度を継続的に最適な状態に維持することが可能である。   Further, when the heating operation including the stopped indoor unit is performed, the average value of the supercooling refrigerant temperature on the operation side and the average value of the supercooling refrigerant temperature on the stop side are obtained, and this temperature difference is a predetermined temperature difference. Similarly, the refrigerant circulation amount and the refrigerant temperature in the refrigerant circuit on the operation side and the stop side can be continuously maintained in an optimal state.

本発明の一実施形態に係る空気調和機の構成図である。It is a block diagram of the air conditioner which concerns on one Embodiment of this invention. 図1の空気調和機の制御構成図である。It is a control block diagram of the air conditioner of FIG. 図2の室外制御装置における電動膨張弁制御手段のフローチャートである。It is a flowchart of the electric expansion valve control means in the outdoor control apparatus of FIG. 図3の制御に用いる圧縮機実回転数と温度差補正定数の説明図である。It is explanatory drawing of the compressor real rotation speed and temperature difference correction constant used for control of FIG. 従来の空気調和機の構成図である。It is a block diagram of the conventional air conditioner.

符号の説明Explanation of symbols

A…室内機、B…室内機、C…室外機、1…圧縮機、2…四方弁、3a、3b…太径配管接続バルブ、4a、4b…室内熱交換器、5a、5b…室内ファン、6a、6b…細径配管接続バルブ、7a、7b…電動膨張弁、8…室外熱交換器、9…室外ファン、10a、10b…太径配管、11a、11b…細径配管、21…室外制御装置、22…冷媒吐出温度センサー、23a、23b…過冷却冷媒温度センサー、24…外気温度センサー、31a、31b…室内制御装置、32a、32b…室温センサー、33a、33b…記憶装置、41a、41b…リモコン、51a、51b…データ伝送線。
A ... indoor unit, B ... indoor unit, C ... outdoor unit, 1 ... compressor, 2 ... four-way valve, 3a, 3b ... large diameter pipe connection valve, 4a, 4b ... indoor heat exchanger, 5a, 5b ... indoor fan 6a, 6b ... Small diameter pipe connection valve, 7a, 7b ... Electric expansion valve, 8 ... Outdoor heat exchanger, 9 ... Outdoor fan, 10a, 10b ... Large diameter pipe, 11a, 11b ... Small diameter pipe, 21 ... Outdoor Control device, 22 ... refrigerant discharge temperature sensor, 23a, 23b ... supercooled refrigerant temperature sensor, 24 ... outside air temperature sensor, 31a, 31b ... indoor control device, 32a, 32b ... room temperature sensor, 33a, 33b ... storage device, 41a, 41b ... remote control, 51a, 51b ... data transmission line.

Claims (3)

各々個別に運転、停止できる複数の室内機と、前記複数の室内機を並列に接続する室外機とを備え、前記室外機は、冷媒を圧縮する圧縮機と、前記各々の室内機の配管を接続する細径配管接続バルブ及び太径配管接続バルブと、前記複数の室内機に対し冷媒流量を個別に制御する電動膨張弁と、前記電動膨張弁と前記細径配管接続バルブとの間の過冷却冷媒温度を検知する過冷却冷媒温度センサーと、を備えた空気調和機において、
暖房運転時に、前記過冷却冷媒温度センサーで運転側の過冷却冷媒温度及び停止側の過冷却冷媒温度を各々検知して、運転側の過冷却冷媒温度と停止側の過冷却冷媒温度とが前記圧縮機の回転数から演算した所定の温度差となるように前記電動膨張弁の開度を制御する電動膨張弁制御手段を備えた
ことを特徴とする空気調和機。
A plurality of indoor units that can be individually operated and stopped; and an outdoor unit that connects the plurality of indoor units in parallel. The outdoor unit includes a compressor that compresses refrigerant, and a pipe for each of the indoor units. A small-diameter pipe connection valve and a large-diameter pipe connection valve to be connected; an electric expansion valve that individually controls the refrigerant flow rate for the plurality of indoor units; and an excess between the electric expansion valve and the small-diameter pipe connection valve. In an air conditioner equipped with a supercooled refrigerant temperature sensor that detects a refrigerant temperature,
During heating operation, the supercooling refrigerant temperature sensor detects the operation-side supercooling refrigerant temperature and the stop-side supercooling refrigerant temperature, respectively, and the operation-side supercooling refrigerant temperature and the stop-side supercooling refrigerant temperature are An air conditioner comprising an electric expansion valve control means for controlling an opening degree of the electric expansion valve so as to obtain a predetermined temperature difference calculated from the rotation speed of the compressor.
請求項1に記載の空気調和機において、電動膨張弁制御手段は、暖房運転を開始する際に運転側の前記電動膨張弁を運転用初期開度に絞り込むと共に停止側の前記電動膨張弁を停止用初期開度に絞り込み、定期的に運転側の過冷却冷媒温度と停止側の過冷却冷媒温度を検知して、この温度差が圧縮機回転数から演算する所定の温度差になるよう各々の前記電動膨張弁を制御するものであることを特徴とする空気調和機。   2. The air conditioner according to claim 1, wherein when the heating operation is started, the electric expansion valve control means narrows the electric expansion valve on the operation side to an initial opening for operation and stops the electric expansion valve on the stop side. The initial opening degree is narrowed down, and the supercooling refrigerant temperature on the operation side and the supercooling refrigerant temperature on the stop side are periodically detected, and each temperature difference becomes a predetermined temperature difference calculated from the compressor rotational speed. An air conditioner that controls the electric expansion valve. 請求項1に記載の空気調和機において、前記圧縮機から吐出した冷媒の温度を検知するための冷媒吐出温度センサーと外気温度を検出するための外気温度センサーとを備え、前記電動膨張弁制御手段は、前記冷媒吐出温度センサーにより検知した冷媒吐出温度と圧縮機回転数検出手段により検知した圧縮機実回転数と前記過冷却冷媒温度センサーにより検知した過冷却冷媒温度と前記外気温度センサーにより検知した外気温度とに基づいて、前記電動膨張弁の弁開度を制御するものであることを特徴とする空気調和機。
The air conditioner according to claim 1, comprising a refrigerant discharge temperature sensor for detecting the temperature of the refrigerant discharged from the compressor and an outside air temperature sensor for detecting the outside air temperature, and the electric expansion valve control means Is detected by the refrigerant discharge temperature detected by the refrigerant discharge temperature sensor, the actual compressor rotation speed detected by the compressor rotation speed detection means, the supercooling refrigerant temperature detected by the supercooling refrigerant temperature sensor, and the outside air temperature sensor. An air conditioner that controls a valve opening degree of the electric expansion valve based on an outside air temperature.
JP2003377749A 2003-11-07 2003-11-07 Air conditioner Pending JP2005140431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377749A JP2005140431A (en) 2003-11-07 2003-11-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003377749A JP2005140431A (en) 2003-11-07 2003-11-07 Air conditioner

Publications (1)

Publication Number Publication Date
JP2005140431A true JP2005140431A (en) 2005-06-02

Family

ID=34688343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377749A Pending JP2005140431A (en) 2003-11-07 2003-11-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP2005140431A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247947A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Control method of air conditioner
JP2008121970A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Multi-type air conditioner
JP2009014268A (en) * 2007-07-04 2009-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2011069570A (en) * 2009-09-28 2011-04-07 Fujitsu General Ltd Heat pump cycle device
WO2016194098A1 (en) * 2015-06-01 2016-12-08 三菱電機株式会社 Air-conditioning device and operation control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247947A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Control method of air conditioner
JP2008121970A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Multi-type air conditioner
JP2009014268A (en) * 2007-07-04 2009-01-22 Mitsubishi Heavy Ind Ltd Air conditioner
JP2011069570A (en) * 2009-09-28 2011-04-07 Fujitsu General Ltd Heat pump cycle device
US8978402B2 (en) 2009-09-28 2015-03-17 Fujitsu General Limited Heat pump apparatus
WO2016194098A1 (en) * 2015-06-01 2016-12-08 三菱電機株式会社 Air-conditioning device and operation control device
JPWO2016194098A1 (en) * 2015-06-01 2017-12-28 三菱電機株式会社 Air conditioning apparatus and operation control apparatus

Similar Documents

Publication Publication Date Title
JP4134069B2 (en) Multi air conditioner system and valve opening control method of multi air conditioner system
JP5182358B2 (en) Refrigeration equipment
EP2270405B1 (en) Refrigerating device
EP2148147B1 (en) Method of controlling air conditioner
US20100218527A1 (en) Operation controller for compressor and air conditioner having the same
CN109945564A (en) The oil return method and oil return apparatus of multi-line system and its compressor
EP2428740A2 (en) Air conditioner and control method thereof
JP2008064439A (en) Air conditioner
JP2008039388A (en) Multi-type air conditioner
WO2008069265A1 (en) Air-conditioner
JP2005140431A (en) Air conditioner
JP2006234295A (en) Multiple air conditioner
JP4105413B2 (en) Multi-type air conditioner
JP3835310B2 (en) Air conditioner
JP6785980B2 (en) Air conditioner
JP2005315477A (en) Multi-chamber type air conditioner
KR102558826B1 (en) Air conditioner system and control method
JP3558788B2 (en) Air conditioner and control method thereof
JPH07151419A (en) Heat pump
KR101229345B1 (en) Controlling method of multi type air conditioning
JP7086276B2 (en) Air conditioner
KR20080013033A (en) Air-conditioner and controlling method for the same
KR100286545B1 (en) Method for controlling operation of compressor for air conditioner
JPH11108421A (en) Air conditioner
JP2001208441A (en) Air conditioning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211