WO2018167961A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2018167961A1
WO2018167961A1 PCT/JP2017/010999 JP2017010999W WO2018167961A1 WO 2018167961 A1 WO2018167961 A1 WO 2018167961A1 JP 2017010999 W JP2017010999 W JP 2017010999W WO 2018167961 A1 WO2018167961 A1 WO 2018167961A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
outdoor
unit
outlet side
heat exchanger
Prior art date
Application number
PCT/JP2017/010999
Other languages
French (fr)
Japanese (ja)
Inventor
和典 是永
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/010999 priority Critical patent/WO2018167961A1/en
Priority to JP2019505659A priority patent/JP6625265B2/en
Publication of WO2018167961A1 publication Critical patent/WO2018167961A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioner including a plurality of indoor units.
  • the multi-type air conditioner includes an outdoor unit and an indoor unit connected to the outdoor unit by an extension pipe.
  • the outdoor unit includes a compressor, a four-way valve that switches the refrigerant flow direction, an outdoor heat exchanger, an outdoor blower, a liquid side extension pipe connection valve, a gas side extension pipe connection valve, and a discharge that is on the high pressure side of the compressor.
  • a pressure sensor arranged in the side pipe, an outdoor outlet side temperature sensor for detecting the temperature of the refrigerant flowing to the outlet side of the outdoor heat exchanger during the cooling operation, and an outdoor control device.
  • the indoor unit includes a plurality of electronic expansion valves that depressurize the condensed refrigerant, a plurality of indoor heat exchangers, a plurality of indoor fans, and an indoor inlet that detects the temperature of the refrigerant flowing to the inlet side of the indoor heat exchanger during cooling operation
  • a side temperature sensor, an indoor outlet side temperature sensor that detects the temperature of the refrigerant that flows to the outlet side of the indoor heat exchanger during cooling operation, and an indoor control device are provided.
  • a refrigerant circuit is configured by connecting a compressor, a four-way valve, an outdoor heat exchanger, an electronic expansion valve, and an indoor heat exchanger by piping.
  • the outdoor control device and the indoor control device operate the electronic expansion valve based on the pressure detected by the pressure sensor, the outdoor outlet side temperature sensor, the indoor inlet side temperature sensor, and the indoor outlet side temperature sensor. Control.
  • the indoor control device stores the indoor unit configuration or capability band, which is information unique to each indoor unit, and the indoor control device uses information on the indoor unit configuration or capability band, etc., using various communication means.
  • the indoor unit and the outdoor unit can share information such as the indoor unit form or the capacity band.
  • the four-way valve is switched so that the discharge side piping of the compressor and the outdoor heat exchanger are connected, and the outdoor heat exchanger acts as a condenser to exchange the indoor heat.
  • the vessel acts as an evaporator.
  • the electronic expansion valve in each indoor unit causes the evaporator overheating derived from the difference between the indoor evaporation temperature detected by the indoor inlet side temperature sensor and the indoor outlet temperature detected by the indoor outlet side temperature sensor.
  • the degree of opening is controlled such that the degree SH_e [deg] approaches the target superheat degree SHm_e [deg].
  • SH_e increases as the opening of the electronic expansion valve decreases
  • SH_e decreases as the opening of the electronic expansion valve increases.
  • a multi-type air conditioner multiple indoor units are connected. And there may be a gap between the indoor temperature and the set temperature of the place where each indoor unit is installed. In the case of a room where the room temperature and the set temperature are substantially equal, the cooling capacity may be small. On the other hand, in a room where there is a gap between the room temperature and the set temperature, it is necessary to increase the cooling capacity. That is, in a room where the room temperature and the set temperature are substantially equal, control is performed to suppress the cooling capacity by increasing the value of SHm_e and reducing the amount of refrigerant flowing by reducing the opening of the electronic expansion valve. desired.
  • the electronic expansion valve in each indoor unit has a supercooling degree SC_hex of the condenser derived from the difference between the high pressure side saturation temperature at which the high pressure detected by the pressure sensor is obtained and the temperature detected by the outdoor outlet side temperature sensor.
  • the degree of opening is controlled so that [deg] approaches the target supercooling degree SCm_hex [deg], and is distributed according to the capacity band of each indoor unit.
  • a part of the indoor heat exchanger may be in a dry state.
  • the air that has passed through the dry part is not cooled and becomes a high-temperature and high-humidity wind.
  • the air that has passed through the portion that is not dry is cooled to become low-temperature and low-humidity wind.
  • the high-temperature, high-humidity wind and the low-temperature, low-humidity wind are mixed, the high-temperature, high-humidity air is cooled, and when it reaches the dew point temperature, it becomes dew and accumulates in the air path.
  • a dew phenomenon occurs in which the accumulated dew pops out from the outlet of the indoor unit by the wind passing through the air passage.
  • the indoor outlet side temperature sensor may be attached at a position slightly shifted to the intermediate side between the inlet and outlet of the indoor heat exchanger.
  • the opening degree of the electronic expansion valve is controlled by deriving SH_e based on the temperature detected by the indoor inlet side temperature sensor and the temperature detected by the indoor outlet side temperature sensor, the derived SH_e
  • the value is smaller than the actual degree of superheat. That is, in the degree of superheat, a flaw occurs between the detected value and the actual value.
  • the optimum value of the degree of superheat on the indoor unit outlet side is about 1 to 5 [deg], and the target superheat degree SHm_e is generally set to about 2 to 4 [deg].
  • the value of the target superheat degree SHm_e of the indoor unit is set.
  • the indoor outlet side temperature sensor may be attached to a position where the degree of superheat cannot be detected at all. In this case, a simple specification change such as changing the target superheat degree cannot cope. In this case, it is necessary to change the installation position of the indoor outlet side temperature sensor to a position where the degree of superheat can be detected appropriately. That is, it involves a change in hardware specifications.
  • Patent Document 1 discloses an air conditioner that stores in advance a target superheat degree of an evaporator according to the model of the indoor unit connected to the outdoor unit. Patent Document 1 thereby performs optimal control individually for each indoor unit.
  • Patent Document 1 does not disclose where the indoor outlet side temperature sensor is provided in the indoor heat exchanger.
  • SH_e is derived based on the temperature detected by the indoor inlet side temperature sensor and the temperature detected by the indoor outlet side temperature sensor, and the opening degree of the electronic expansion valve is adjusted so that SH_e approaches SHm_e. Is controlled.
  • the indoor outlet side temperature sensor is attached between the inlet and the outlet of the indoor heat exchanger, the derived SH_e has a value smaller than the actual degree of superheat.
  • the indoor heat exchanger is in a dry state, and there is a possibility that a dew-off phenomenon occurs.
  • the heat exchange performance may be reduced due to the deterioration of the refrigerant distribution rate inside the indoor heat exchanger.
  • control of the electronic expansion valve corresponding to each indoor unit to control using the degree of supercooling of the condenser.
  • the control of the electronic expansion valve using the degree of supercooling of the condenser is performed by controlling the degree of opening of the electronic expansion valve of each indoor unit so that the degree of supercooling SC_hex [deg] of the condenser approaches the target degree of supercooling SCm_hex [deg]. This is a control that determines the total value of these and distributes them according to the capacity of each indoor unit.
  • the present invention has been made to solve the above-described problems, and does not change the design even when there is an indoor unit in which control based on the degree of superheat is inappropriate while performing control based on the degree of superheat.
  • An air conditioner is provided.
  • An air conditioner includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, a plurality of expansion units, and a plurality of indoor heat exchangers are connected by pipes and through which refrigerant flows, and at least the compressor and the outdoor heat exchanger.
  • the plurality of indoor units respectively accommodating at least a plurality of indoor heat exchangers, and the plurality of expansion sections, the superheat degree on the outlet side of the plurality of indoor heat exchangers during cooling operation
  • a control unit having a superheat control mode for controlling each expansion unit based on the above, and a supercooling control mode for controlling all the expansion units based on the degree of supercooling of the outdoor heat exchanger during cooling operation
  • the control unit determines that there is an indoor unit unsuitable for the overheat control mode by a determination unit that determines whether there is an indoor unit unsuitable for the overheat control mode among the plurality of indoor units. If A switching means for switching from overheating control mode to the subcooling control mode, the.
  • the superheat control mode when there is an indoor unit unsuitable for the superheat control mode, the superheat control mode is switched to the supercooling control mode. For this reason, when there is no indoor unit unsuitable for the superheat control mode, control is performed in the superheat control mode, and only when there is an indoor unit unsuitable for the superheat control mode, control is performed in the supercooling control mode. Therefore, the effect obtained in the overheat control mode is maintained as much as possible, and no design change is involved.
  • FIG. 1 is a circuit diagram showing an air conditioner 100 according to Embodiment 1 of the present invention.
  • the air conditioner 100 is demonstrated based on this FIG.
  • the air conditioner 100 includes, for example, one outdoor unit 7 and n indoor units 13-1 to 13-n.
  • the outdoor unit 7 and the n indoor units 13- 1 to 13-n are connected by a liquid side extension pipe 8 and a gas side extension pipe 9, respectively.
  • the air conditioner 100 is a multi air conditioner that performs air conditioning using, for example, a refrigeration cycle.
  • all of the n indoor units 13-1 to 13-n perform a cooling operation mode
  • all of the n indoor units 133-1 to 13-n perform a heating operation.
  • a heating operation mode in which either one of the modes is selected.
  • there is one outdoor unit 7 is illustrated, two or more outdoor units may be used.
  • two or more indoor units 13 may be used.
  • the indoor units 13-1 to 13-n may be collectively referred to as the indoor unit 13.
  • the outdoor unit 7 is installed outdoors, and includes a compressor 1, a flow path switching device 2, an outdoor heat exchanger 3, an outdoor blower 4, a liquid side extension pipe connection valve 5, and a gas side extension pipe connection valve. 6, a discharge sensor, an outdoor outlet side temperature sensor 15, and an outdoor control device 16.
  • the n indoor units 13-1 to 13-n include expansion units 10-1 to 10-n, indoor heat exchangers 11-1 to 11-n, indoor blowers 12-1 to 12-n, and indoor entrance sides, respectively. It has temperature sensors 18-1 to 18-n, indoor outlet side temperature sensors 19-1 to 19-n, and indoor control devices 17-1 to 17-n.
  • the compressor 1, the flow path switching device 2, the outdoor heat exchanger 3, the n expansion units 10-1 to 10-n, and the n indoor heat exchangers 11-1 to 11-n are connected by piping.
  • a refrigerant circuit 50 through which the refrigerant flows is configured.
  • the inflating portions 10-1 to 10-n are collectively referred to as the inflating portion 10.
  • the indoor heat exchangers 11-1 to 11-n may be collectively referred to as the indoor heat exchanger 11.
  • the indoor fans 12-1 to 12-n may be collectively referred to as the indoor fan 12.
  • the indoor inlet side temperature sensors 18-1 to 18-n may be collectively referred to as indoor inlet side temperature sensors 18.
  • the indoor outlet side temperature sensors 19-1 to 19-n may be collectively referred to as an indoor outlet side temperature sensor 19.
  • the indoor control devices 17-1 to 17-n may be collectively referred to as the indoor control device 17.
  • the compressor 1 is a device that sucks refrigerant in a low-temperature and low-pressure state, compresses the sucked refrigerant, and discharges it as a refrigerant in a high-temperature and high-pressure state.
  • the flow path switching device 2 is a device that switches the direction in which the refrigerant flows in the refrigerant circuit 50, and is, for example, a four-way valve.
  • the outdoor heat exchanger 3 is a device that exchanges heat between, for example, outdoor air and a refrigerant. The outdoor heat exchanger 3 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation.
  • the outdoor blower 4 is a device that is provided in the vicinity of the outdoor heat exchanger 3 and sends outdoor air to the outdoor heat exchanger 3.
  • the expansion unit 10 is a pressure reducing valve or an expansion valve that expands by depressurizing the refrigerant.
  • the expansion part 10 is an electronic expansion valve whose opening degree is adjusted, for example.
  • the indoor heat exchanger 11 is a device that exchanges heat between indoor air and a refrigerant, for example.
  • the indoor heat exchanger 11 acts as an evaporator during cooling operation and acts as a condenser during heating operation.
  • the indoor blower 12 is a device that is provided in the vicinity of the indoor heat exchanger 11 and sends indoor air to the indoor heat exchanger 11.
  • the liquid side extension pipe connection valve 5 is a device provided in the vicinity of the liquid side extension pipe 8 that connects the outdoor unit 7 and the indoor unit 13.
  • the liquid side extension pipe connection valve 5 allows or blocks the flow of refrigerant flowing from one of the outdoor unit 7 and the indoor unit 13 to the other.
  • the gas side extension pipe connection valve 6 is a device provided in the vicinity of the gas side extension pipe 9 that connects the outdoor unit 7 and the indoor unit 13.
  • the gas side extension pipe connection valve 6 allows or blocks the flow of the refrigerant flowing from one of the outdoor unit 7 and the indoor unit 13 to the other.
  • the pressure sensor 14 is a sensor that is provided in the discharge-side piping of the compressor 1 and detects the pressure Pd [kgf / cm 2 G] of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 1. .
  • the outdoor outlet side temperature sensor 15 is a sensor that detects the outdoor outlet side temperature Tcout [° C.] of the refrigerant flowing to the outlet side of the outdoor heat exchanger 3 during the cooling operation.
  • the indoor inlet side temperature sensor 18 is a sensor that detects the indoor inlet side temperature Tein [° C.] of the refrigerant flowing to the inlet side of the indoor heat exchanger 11 during the cooling operation.
  • the indoor inlet side temperature of the refrigerant flowing to the inlet side of the indoor heat exchanger 11-n during the cooling operation of the indoor unit 13-n is referred to as Tein-n [° C.].
  • the indoor outlet side temperature sensor 19 is a sensor that detects the indoor outlet side temperature Teout [° C.] of the refrigerant flowing to the outlet side of the indoor heat exchanger 11 during the cooling operation.
  • Teout-n the indoor outlet side temperature of the refrigerant flowing to the outlet side of the indoor heat exchanger 11-n during the cooling operation of the indoor unit 13-n.
  • the outdoor control device 16 is provided in the outdoor unit 7 and receives information such as the pressure detected by the pressure sensor 14 and the temperature detected by the outdoor outlet side temperature sensor 15, and various kinds of information such as the compressor 1 and the expansion unit 10 are received. It is a device that controls the operation of the actuator.
  • the indoor control device 17 receives information such as the temperature detected by the indoor inlet side temperature sensor 18 and the temperature detected by the indoor outlet side temperature sensor 19.
  • the indoor control device 17 communicates with the outdoor control device 16 and shares each information. And the indoor control apparatus 17 adjusts the opening degree of the expansion
  • the outdoor control device 16 and the indoor control device 17 constitute a control unit 30.
  • FIG. 2 is a block diagram showing the control unit 30 of the air conditioner 100 according to Embodiment 1 of the present invention.
  • the control unit 30 includes a calculation unit 31, a determination unit 32, and a switching unit 33.
  • the calculation means 31 calculates the degree of superheat SH_e-1 to SH_e-n [of each indoor unit 13 based on the difference between the indoor inlet side temperatures Tein-1 to Tein-n and the indoor outlet side temperatures Teout-1 to Teout-n. deg] is calculated.
  • the degree of superheat is also called superheat.
  • the calculation means 31 calculates the high pressure saturation temperature Ct [° C.] based on the saturation temperature corresponding to the pressure Pd [kgf / cm 2 G], and the outdoor outlet side temperature Tcout [° C.] from the high pressure saturation temperature Ct [° C.]. ] Is subtracted to calculate the degree of supercooling SC_hex.
  • the degree of supercooling is also called a subcool.
  • the control unit 30 has a superheat control mode and a supercooling control mode as modes for controlling the operations of the plurality of expansion units 10.
  • the overheat control mode is a mode in which each expansion unit 10 is controlled based on the outlet side superheat degree of the plurality of indoor heat exchangers 11 during the cooling operation.
  • the calculation means 31 calculates the degree of superheat SH_e-1 to SH_e-n [of each indoor unit 13 based on the difference between the indoor inlet side temperatures Tein-1 to Tein-n and the indoor outlet side temperatures Teout-1 to Teout-n. deg] is calculated. Then, the control unit 30 adjusts the corresponding expansion units 10-1 to 10-n so that the superheat degrees SH_e-1 to SH_en [deg] approach the target superheat degrees SHm_e-1 to SHm_en [deg]. Control the opening.
  • FIG. 3 is a Mollier diagram showing the degree of superheat in Embodiment 1 of the present invention.
  • the horizontal axis represents specific enthalpy and the vertical axis represents pressure.
  • the control unit 30 controls the opening degree of the expansion units 10-1 to 10-n to control the degree of superheat.
  • the control unit 30 sets ⁇ S1n to a negative value.
  • the control unit 30 determines that the degree of superheat SH_e ⁇ 1 to SH_e ⁇ n is SHm_e ⁇ 1 to SHm_e ⁇ n ⁇ a1 ⁇ SH_e ⁇ 1 to SH_e ⁇ n ⁇ SHm_e ⁇ 1 to SHm_e ⁇ n + a2 (a1: SH_e ⁇ 1 to SH_e ⁇ n lower limit side stable temperature range [° C.], a2: upper limit side stable temperature range [° C.] of SH_e ⁇ 1 to SH_e ⁇ n) and within the stable opening range, ⁇ S1n is set to zero, The opening degree of the expansion part 10 is maintained.
  • the opening degree of the expansion unit 10 corresponding to the indoor unit 13 can be individually controlled for each indoor unit 13.
  • the cooling capacity may be small.
  • the target superheat degree SHm_e is increased, the amount of refrigerant flowing is suppressed by reducing the opening of the electronic expansion valve, and the cooling capacity is suppressed. Control to do is desired. In that case, since the opening degree of the expansion part 10 corresponding to the indoor unit 13 can be individually controlled in the superheat control mode, it can be controlled to a degree of superheat suitable for each indoor unit 13. Therefore, optimal control can be performed in all the indoor units 13.
  • the supercooling control mode is a mode in which all the expansion units 10 are controlled based on the degree of supercooling of the outdoor heat exchanger 3 during the cooling operation.
  • the calculating means 31 calculates the high-pressure saturation temperature Ct [° C.] based on the saturation temperature corresponding to the pressure Pd [kgf / cm 2 G].
  • the control unit 30 sets all the expansion units 10-1 to 10-n so that the degree of supercooling SC_hex obtained by subtracting the outdoor outlet side temperature Tcout [° C] from the high-pressure saturation temperature Ct [° C] approaches the target degree of supercooling SCm_hex. To control the opening degree.
  • FIG. 4 is a Mollier diagram showing the degree of supercooling in Embodiment 1 of the present invention.
  • the horizontal axis represents specific enthalpy and the vertical axis represents pressure.
  • the control unit 30 controls the opening degree of all the expansion units 10 to control the degree of supercooling.
  • the control unit 30 sets ⁇ S2 to a negative value.
  • the control unit 30 opens the supercooling degree SC_hex satisfying Scm_hex ⁇ b1 ⁇ SC_hex ⁇ Scm_hex + b2 (b1: SC_hex lower limit side stable temperature range [° C.], b2: SC_hex upper limit side stable temperature range [° C.]).
  • ⁇ S2 is set to zero and the opening degree of the expansion portion 10 is maintained.
  • Cn is an evaluation value determined by the capacity band of each indoor unit 13, stored in the indoor control device 17, and information is transmitted from the indoor control device 17 to the outdoor control device 16 at the time of calculation.
  • the determination unit 32 determines whether there is an indoor unit 13 that is inappropriate for the overheat control mode among the plurality of indoor units 13.
  • the indoor unit 13 adapted to the overheat control mode and the indoor unit 13 inappropriate for the overheat control mode will be described.
  • FIG. 5 is a cross-sectional view of the indoor heat exchanger 11 according to Embodiment 1 of the present invention.
  • the indoor heat exchanger 11 has an upper path 11a and a lower path 11b.
  • the upper path 11a is provided above the indoor heat exchanger 11 in the path through which the refrigerant flows.
  • the refrigerant flows in from the first inlet 41 of the upper path 11a and flows out of the first outlet 42.
  • the lower path 11b is provided in the lower part of the indoor heat exchanger 11 among the paths through which the refrigerant flows.
  • the refrigerant flows in from the second inlet 43 of the lower path 11b and flows out of the second outlet 44.
  • the indoor inlet side temperature sensor 18 is provided in the vicinity of the inlet in the cooling operation in the lower path 11b.
  • the indoor outlet side temperature sensor 19 is provided in the lower path 11b in the vicinity of the outlet during the cooling operation.
  • the indoor outlet side temperature sensor 19 is provided in the vicinity of the outlet of the indoor heat exchanger 11 during the cooling operation, the indoor outlet side temperature Tout [° C.] detected by the indoor outlet side temperature sensor 19. Is close to the actual temperature flowing out of the indoor heat exchanger 11 during the cooling operation. For this reason, the value of the superheat degree calculated based on the indoor outlet side temperature is close to the actual value of the superheat degree. Therefore, the indoor unit 13 having the indoor heat exchanger 11 shown in FIG. 5 is adapted to the overheat control mode.
  • FIG. 6 is a cross-sectional view of the indoor heat exchanger 11 according to Embodiment 1 of the present invention.
  • the indoor heat exchanger 11 has an upper path 11a and a lower path 11b.
  • the upper path 11a is provided in the upper part of the heat exchanger among the paths through which the refrigerant flows.
  • the refrigerant flows in from the first inlet 41 of the upper path 11a and flows out of the first outlet 42.
  • the lower path 11b is provided in the lower part of the heat exchanger among the paths through which the refrigerant flows.
  • the refrigerant flows in from the second inlet 43 of the lower path 11b and flows out of the second outlet 44.
  • the indoor inlet side temperature sensor 18 is provided in the vicinity of the inlet in the cooling operation in the lower path 11b.
  • the indoor outlet side temperature sensor 19 is provided not in the vicinity of the outlet during the cooling operation but in the middle between the inlet and the outlet in the lower path 11b.
  • the indoor outlet side temperature Teout [° C.] detected by the indoor outlet side temperature sensor 19 is: The value is lower than the actual temperature flowing out of the indoor heat exchanger 11 during the cooling operation. For this reason, the value of the superheat degree calculated based on the indoor outlet side temperature is lower than the actual superheat degree. Therefore, when the control unit 30 attempts to bring the degree of superheat close to the target degree of superheat, the opening degree of the expansion unit 10 may be excessively reduced, and the degree of superheat may become excessively high. For this reason, the indoor unit 13 having the indoor heat exchanger 11 shown in FIG. 6 may be unsuitable for the overheat control mode.
  • the indoor control device 17 stores information on whether or not its own indoor unit 13 is inappropriate for the overheat control mode.
  • the outdoor control device 16 always transmits and receives information to and from the indoor control device 17 when energized, and immediately recognizes when the indoor unit 13 unsuitable for the overheat control mode is going to perform a cooling operation.
  • the switching means 33 switches from the superheat control mode to the supercooling control mode when the judging means 32 determines that there is an indoor unit 13 unsuitable for the superheat control mode.
  • the supercooling control mode is performed only when there is an indoor unit 13 that is not suitable for the superheat control mode.
  • each indoor unit 13 the refrigerant flows into each expansion section 10, and is expanded and depressurized in the expansion section 10 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 11 acting as an evaporator, and in the indoor heat exchanger 11, heat is exchanged with indoor air sent by the indoor blower 12 to evaporate gas. At this time, the room air is cooled, and the room is cooled. The evaporated refrigerant in a low-temperature and low-pressure gas state passes through the flow path switching device 2 and is sucked into the compressor 1.
  • the heating operation In the heating operation, the refrigerant sucked into the compressor 1 is compressed by the compressor 1 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 passes through the flow path switching device 2 and flows into each indoor unit 13.
  • the refrigerant flows into each indoor heat exchanger 11 acting as a condenser, and in the indoor heat exchanger 11, heat is exchanged with indoor air sent by the indoor blower 12 to condense and liquefy. At this time, indoor air is warmed and heating is performed indoors.
  • the condensed liquid refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 3 acting as an evaporator, and in the outdoor heat exchanger 3, heat is exchanged with outdoor air sent by the outdoor blower 4 to evaporate gas.
  • the evaporated refrigerant in a low-temperature and low-pressure gas state passes through the flow path switching device 2 and is sucked into the compressor 1.
  • FIG. 7 is a flowchart showing the operation of the air conditioner 100 according to Embodiment 1 of the present invention.
  • the control unit 30 controls all the expansion units 10 to the initial opening degree (step ST1).
  • the initial opening is set according to the capacity band of the indoor unit 13 and the conditions of the outside air temperature.
  • Step ST2 is repeated until the fixed time t1 elapses (No in step ST2).
  • step ST4 the information stored as to whether or not the own indoor unit 13 is unsuitable for the overheat control mode is read from the indoor control device 17 by the determination means 32, and whether there is an unsuitable indoor unit 13 for the overheat control mode. It is determined whether or not (step ST4). When it is determined that there is no indoor unit 13 that is not suitable for the overheat control mode (No in step ST4), it is determined whether or not SHm_e ⁇ 1 to na ⁇ a1 ⁇ SH_e ⁇ 1 to n ⁇ SHm_e ⁇ 1 to n + a2 is satisfied. (Step ST5).
  • step ST7 it is determined whether or not the operation command for the indoor unit 13 is continued.
  • the process returns to step ST4 after a predetermined time t2 has elapsed (step ST8).
  • step ST7 when the operation command for the indoor unit 13 is not continued (No in step ST7), the control is terminated.
  • step ST5 when SHm_e-1 to n-a1 ⁇ SH_e-1 to n ⁇ SHm_e-1 to n + a2 are satisfied (Yes in step ST5), the process proceeds to step ST7.
  • step ST4 when it is determined in step ST4 that there is an indoor unit 13 unsuitable for the overheat control mode (Yes in step ST4), it is determined whether or not Scm_hex ⁇ b1 ⁇ SC_hex ⁇ Scm_hex + b2 is satisfied (step ST9).
  • step ST12 it is determined whether or not the operation command for the indoor unit 13 is continued (step ST12).
  • the process returns to step ST4 after a predetermined time t3 has elapsed (step ST13).
  • step ST12 when the operation command for the indoor unit 13 is not continued (No in step ST12), the control is terminated.
  • step ST9 when Scm_hex ⁇ b1 ⁇ SC_hex ⁇ Scm_hex + b2 is satisfied (Yes in step ST9), the process proceeds to step ST12.
  • the superheat control mode when there is an indoor unit 13 unsuitable for the superheat control mode, the superheat control mode is switched to the supercooling control mode. For this reason, when the indoor unit 13 unsuitable for the overheat control mode does not exist, the indoor unit 13 is controlled in the overheat control mode, and is controlled in the supercooling control mode only when the indoor unit 13 unsuitable for the overheat control mode exists. Therefore, the effect obtained in the overheat control mode is maintained as much as possible, and no design change is involved.
  • the effect obtained in the overheat control mode is that the opening degree of the expansion unit 10 corresponding to the indoor unit 13 can be individually controlled as described above, and the degree of superheat suitable for each indoor unit 13 is controlled. It can be done.
  • the indoor outlet side temperature sensor 19 is attached at a position slightly shifted to the intermediate side between the inlet and outlet of the indoor heat exchanger 11 due to various circumstances such as productivity. There is no need to make design changes.
  • the air conditioner 100 further includes an indoor outlet side temperature sensor 19 that detects the temperature of the refrigerant flowing on the outlet side of the indoor heat exchanger 11 during the cooling operation, and the indoor unit 13 that is not suitable for the overheat control mode
  • the outlet side temperature sensor 19 is the indoor unit 13 provided in the middle of the inlet and outlet of the indoor heat exchanger 11.
  • FIG. FIG. 8 is a circuit diagram showing an air conditioner 200 according to Embodiment 2 of the present invention.
  • the second embodiment is different from the first embodiment in that the air conditioner 200 includes a storage kit 20.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on differences from the first embodiment.
  • the storage kit 20 includes a plurality of expansion units 10 and an expansion control device 21. That is, the expansion unit 10 is not provided inside the indoor unit 13.
  • the expansion part 10 of the storage kit 20 is connected to the indoor unit 13 by the indoor unit liquid side extension pipes 23-1 to 23-n, respectively.
  • the expansion control device 21 can communicate with the outdoor control device 16 and the indoor control device 17 to share the operation status of various actuators, information from sensors, and the like. Even if the expansion unit 10 is stored not in the indoor unit 13 but in the storage kit 20 as in the second embodiment, the superheat control mode and the supercooling control mode are the same as in the first embodiment. Is implemented. Therefore, the same effects as those of the first embodiment are obtained.
  • FIG. 9 is a circuit diagram showing an air conditioner 300 according to Embodiment 3 of the present invention.
  • the third embodiment is different from the first embodiment in that a plurality of expansion units 10 are provided in the outdoor unit 7.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
  • a plurality of expansion portions 10 are provided in the outdoor unit 7 at a position downstream of the liquid side extension pipe connection valve 5 during the cooling operation. That is, the expansion unit 10 is not provided inside the indoor unit 13. Further, the gas side extension pipe 9 is branched into n inside the outdoor unit 7 and connected to the indoor unit 13. Even if the expansion unit 10 is stored not in the indoor unit 13 but in the outdoor unit 7 as in the third embodiment, the superheat control mode and the supercooling control mode are the same as in the first embodiment. Is implemented. Therefore, the same effects as those of the first embodiment are obtained.
  • FIG. 10 is a circuit diagram showing an air conditioner 400 according to Embodiment 4 of the present invention.
  • the fourth embodiment is different from the first embodiment in that the air conditioner 100 includes an outdoor intermediate temperature sensor 22.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
  • the outdoor intermediate temperature sensor 22 is a sensor that is provided in the intermediate portion of the outdoor heat exchanger 3 and detects the outdoor intermediate temperature of the refrigerant flowing in the intermediate portion of the outdoor heat exchanger 3.
  • the air conditioner 400 does not have the pressure sensor 14.
  • the calculation means 31 directly calculates the high-pressure saturation temperature Ct [° C.] based on the outdoor intermediate temperature detected by the outdoor intermediate temperature sensor 22. In this case, since the high-pressure saturation temperature can be directly calculated without calculating the saturation temperature from the pressure, the processing speed of the control unit 30 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

An air conditioner comprises: a refrigerant circuit in which a compressor, an outdoor heat exchanger, a plurality of expansion units, and a plurality of indoor heat exchangers are connected by piping and in which refrigerant flows; an outdoor unit that houses at least the compressor and the outdoor heat exchanger; a plurality of indoor units that respectively houses at least the plurality of indoor heat exchangers; and a control unit that has, as modes to control the operation of the plurality of expansion units, an overheating control mode to control each of the expansion units on the basis of the amount of overheating on the outlet side of the plurality of indoor heat exchangers during cooling operation and an overcooling control mode to control all of the expansion units on the basis of the amount of overcooling of the outdoor heat exchanger during cooling operation. The control unit has a determination means for determining whether an indoor unit from the plurality of indoor units is not suitable for overheating control mode, and a switching means for switching from the overheating control mode to the overcooling control mode when the determination means determines that an indoor unit is not suitable for overheating control mode.

Description

空気調和機Air conditioner
 本発明は、複数の室内機を備える空気調和機に関する。 The present invention relates to an air conditioner including a plurality of indoor units.
 従来、複数の室内機を備えるマルチ型の空気調和機が知られている。マルチ型の空気調和機は、室外機と、室外機に延長配管により接続された室内機とを備えている。室外機には、圧縮機、冷媒の流路方向を切り替える四方弁、室外熱交換器、室外送風機、液側延長配管接続用バルブ、ガス側延長配管接続用バルブ、圧縮機の高圧側である吐出側配管に配置される圧力センサ、冷房運転時に室外熱交換器の出口側に流れる冷媒の温度を検出する室外出口側温度センサ及び室外制御装置が設けられている。室内機には、凝縮された冷媒を減圧する複数の電子膨張弁、複数の室内熱交換器、複数の室内送風機、冷房運転時に室内熱交換器の入口側に流れる冷媒の温度を検出する室内入口側温度センサ、冷房運転時に室内熱交換器の出口側に流れる冷媒の温度を検出する室内出口側温度センサ及び室内制御装置が設けられている。圧縮機、四方弁、室外熱交換器、電子膨張弁及び室内熱交換器が配管により接続されることによって、冷媒回路が構成されている。室外制御装置及び室内制御装置は、圧力センサによって検出された圧力、室外出口側温度センサ、室内入口側温度センサ及び室内出口側温度センサによって検出された各温度に基づいて、電子膨張弁の動作を制御する。 Conventionally, a multi-type air conditioner having a plurality of indoor units is known. The multi-type air conditioner includes an outdoor unit and an indoor unit connected to the outdoor unit by an extension pipe. The outdoor unit includes a compressor, a four-way valve that switches the refrigerant flow direction, an outdoor heat exchanger, an outdoor blower, a liquid side extension pipe connection valve, a gas side extension pipe connection valve, and a discharge that is on the high pressure side of the compressor. There are provided a pressure sensor arranged in the side pipe, an outdoor outlet side temperature sensor for detecting the temperature of the refrigerant flowing to the outlet side of the outdoor heat exchanger during the cooling operation, and an outdoor control device. The indoor unit includes a plurality of electronic expansion valves that depressurize the condensed refrigerant, a plurality of indoor heat exchangers, a plurality of indoor fans, and an indoor inlet that detects the temperature of the refrigerant flowing to the inlet side of the indoor heat exchanger during cooling operation A side temperature sensor, an indoor outlet side temperature sensor that detects the temperature of the refrigerant that flows to the outlet side of the indoor heat exchanger during cooling operation, and an indoor control device are provided. A refrigerant circuit is configured by connecting a compressor, a four-way valve, an outdoor heat exchanger, an electronic expansion valve, and an indoor heat exchanger by piping. The outdoor control device and the indoor control device operate the electronic expansion valve based on the pressure detected by the pressure sensor, the outdoor outlet side temperature sensor, the indoor inlet side temperature sensor, and the indoor outlet side temperature sensor. Control.
 また、室内制御装置は、各室内機に固有の情報である室内機形態又は能力帯等を記憶しており、室内制御装置は、室内機形態又は能力帯等の情報を、各種通信手段を用いて室外制御装置に送信する。これにより、室内機と室外機とは、室内機形態又は能力帯等の情報を共有することができる。また、冷媒回路において、冷房運転時、四方弁は、圧縮機の吐出側配管と室外熱交換器とが接続するように切り替えられており、室外熱交換器が凝縮器として作用し、室内熱交換器が蒸発器として作用する。冷房運転時、各室内機内の電子膨張弁は、室内入口側温度センサによって検出された室内蒸発温度と、室内出口側温度センサによって検出された室内出口温度との差分から導出される蒸発器の過熱度SH_e[deg]が、目標過熱度SHm_e[deg]に近づくように、開度が制御される。概して、電子膨張弁の開度が下がるほどSH_eが大きくなり、電子膨張弁の開度が上がるほどSH_eが小さくなる。 In addition, the indoor control device stores the indoor unit configuration or capability band, which is information unique to each indoor unit, and the indoor control device uses information on the indoor unit configuration or capability band, etc., using various communication means. To the outdoor control device. Thereby, the indoor unit and the outdoor unit can share information such as the indoor unit form or the capacity band. In the refrigerant circuit, during the cooling operation, the four-way valve is switched so that the discharge side piping of the compressor and the outdoor heat exchanger are connected, and the outdoor heat exchanger acts as a condenser to exchange the indoor heat. The vessel acts as an evaporator. During the cooling operation, the electronic expansion valve in each indoor unit causes the evaporator overheating derived from the difference between the indoor evaporation temperature detected by the indoor inlet side temperature sensor and the indoor outlet temperature detected by the indoor outlet side temperature sensor. The degree of opening is controlled such that the degree SH_e [deg] approaches the target superheat degree SHm_e [deg]. In general, SH_e increases as the opening of the electronic expansion valve decreases, and SH_e decreases as the opening of the electronic expansion valve increases.
 マルチ型の空気調和機において、室内機は複数台接続されている。そして、各室内機が設置される場所の室内温度と設定温度とには隔たりがある場合がある。室内温度と設定温度とがほぼ同等である部屋の場合、冷房能力が小さくて済む。一方、室内温度と設定温度との間に隔たりがある部屋の場合、冷房能力を大きくする必要がある。即ち、室内温度と設定温度とがほぼ同等である部屋の場合、SHm_eの値を大きくして、電子膨張弁の開度を絞ることによって流れる冷媒の量を抑えて、冷房能力を抑制する制御が望まれる。また、このような蒸発器の過熱度を用いて電子膨張弁の開度を制御するほかに、凝縮器の過冷却度を用いて電子膨張弁の開度を制御することも知られている。各室内機内の電子膨張弁は、圧力センサによって検出された高圧圧力が求められる高圧側飽和温度と、室外出口側温度センサによって検出された温度との差分から導出される凝縮器の過冷却度SC_hex[deg]が、目標過冷却度SCm_hex[deg]に近づくように、開度が制御され、各室内機の能力帯に応じて按分される。 In a multi-type air conditioner, multiple indoor units are connected. And there may be a gap between the indoor temperature and the set temperature of the place where each indoor unit is installed. In the case of a room where the room temperature and the set temperature are substantially equal, the cooling capacity may be small. On the other hand, in a room where there is a gap between the room temperature and the set temperature, it is necessary to increase the cooling capacity. That is, in a room where the room temperature and the set temperature are substantially equal, control is performed to suppress the cooling capacity by increasing the value of SHm_e and reducing the amount of refrigerant flowing by reducing the opening of the electronic expansion valve. desired. In addition to controlling the degree of opening of the electronic expansion valve using the degree of superheat of the evaporator, it is also known to control the degree of opening of the electronic expansion valve using the degree of supercooling of the condenser. The electronic expansion valve in each indoor unit has a supercooling degree SC_hex of the condenser derived from the difference between the high pressure side saturation temperature at which the high pressure detected by the pressure sensor is obtained and the temperature detected by the outdoor outlet side temperature sensor. The degree of opening is controlled so that [deg] approaches the target supercooling degree SCm_hex [deg], and is distributed according to the capacity band of each indoor unit.
 なお、凝縮器の過冷却度を用いて冷房運転時の各室内機の電子膨張弁を制御する場合、各室内機における個別の制御目標値が存在しない。このため、室内温度と設定温度とがほぼ同等である部屋の場合、SHm_eの値を大きくするといった室内毎の制御が困難である。また、室内熱交換器の出口が湿っている可能性があり、必要な冷媒量の増加、圧縮機に吸入される冷媒の乾き度が下がることによる低圧圧力損失の増加、圧縮機への液バック等の懸念がある。このため、マルチ型の空気調和機では、蒸発器の過熱度を用いた電子膨張弁の制御が採用される場合が多い。 In addition, when controlling the electronic expansion valve of each indoor unit during cooling operation using the degree of supercooling of the condenser, there is no individual control target value for each indoor unit. For this reason, in a room where the room temperature and the set temperature are substantially equal, it is difficult to control each room such as increasing the value of SHm_e. In addition, the outlet of the indoor heat exchanger may be wet, increasing the amount of refrigerant required, increasing the low-pressure pressure loss due to the dryness of the refrigerant sucked into the compressor, and liquid back to the compressor There are concerns. For this reason, in a multi-type air conditioner, control of an electronic expansion valve using the degree of superheat of the evaporator is often employed.
 ここで、冷房運転時に、SH_eが過剰となった場合、室内熱交換器の一部が乾き状態となる可能性がある。室内熱交換器の一部が乾き状態になると、乾いている部分を通過した空気は冷却されず、高温高湿のままの風となる。一方、乾いていない部分を通過した空気は冷却され、低温低湿の風となる。高温高湿の風と低温低湿の風とが混合されると、高温高湿の空気が冷却され、露点温度まで達すると、露となって風路内に溜まる。これにより、溜まった露が風路を通過する風によって室内機の吹出し口から飛び出すという露飛び現象が発生するおそれがある。 Here, when SH_e becomes excessive during the cooling operation, a part of the indoor heat exchanger may be in a dry state. When a part of the indoor heat exchanger is in a dry state, the air that has passed through the dry part is not cooled and becomes a high-temperature and high-humidity wind. On the other hand, the air that has passed through the portion that is not dry is cooled to become low-temperature and low-humidity wind. When the high-temperature, high-humidity wind and the low-temperature, low-humidity wind are mixed, the high-temperature, high-humidity air is cooled, and when it reaches the dew point temperature, it becomes dew and accumulates in the air path. As a result, there is a risk that a dew phenomenon occurs in which the accumulated dew pops out from the outlet of the indoor unit by the wind passing through the air passage.
 生産性等の種々の事情によって、室内出口側温度センサが、室内熱交換器の入口と出口との中間側に若干寄った位置に取り付けられている場合がある。この場合、室内入口側温度センサによって検出された温度と、室内出口側温度センサによって検出された温度とに基づいてSH_eを導出して電子膨張弁の開度が制御される際、導出されるSH_eが、実際の過熱度よりも小さい値となる。即ち、過熱度において、検出値と実際値との間に齟齬が生じる。齟齬が生じたまま、SH_eを目標過熱度SHm_eに近づけようとして、各室内機の電子膨張弁の開度の制御が継続されると、実際の過熱度が目標過熱度よりも大きくなってしまい、乾き状態による露飛び等の現象が発生し易くなる。 Depending on various circumstances such as productivity, the indoor outlet side temperature sensor may be attached at a position slightly shifted to the intermediate side between the inlet and outlet of the indoor heat exchanger. In this case, when the opening degree of the electronic expansion valve is controlled by deriving SH_e based on the temperature detected by the indoor inlet side temperature sensor and the temperature detected by the indoor outlet side temperature sensor, the derived SH_e However, the value is smaller than the actual degree of superheat. That is, in the degree of superheat, a flaw occurs between the detected value and the actual value. If the control of the opening degree of the electronic expansion valve of each indoor unit is continued in an attempt to bring SH_e closer to the target superheat degree SHm_e with soot, the actual superheat degree becomes larger than the target superheat degree. Phenomenon such as dew erosion due to dry condition is likely to occur.
 室内機出口側の過熱度の最適値は、1~5[deg]程度であり、概して目標過熱度SHm_eは、2~4[deg]程度に設定される。乾き状態を回避するためには、室内出口側温度センサが、室内熱交換器の入口と出口との中間側に若干寄った位置に取り付けられている場合、室内機の目標過熱度SHm_eの値を故意に小さくする必要があるが、どの程度小さくするかを把握することは容易ではない。また、室内出口側温度センサが、過熱度を全く検出することができない位置に取り付けられている場合もある。この場合、目標過熱度を変更する等の簡易な仕様変更では、対応することができない。この場合、室内出口側温度センサの設置位置を、過熱度が適切に検出することができる位置に変更する必要がある。即ち、ハードウエア仕様の変更を伴う。 The optimum value of the degree of superheat on the indoor unit outlet side is about 1 to 5 [deg], and the target superheat degree SHm_e is generally set to about 2 to 4 [deg]. In order to avoid a dry state, when the indoor outlet side temperature sensor is attached at a position slightly shifted to the intermediate side between the inlet and outlet of the indoor heat exchanger, the value of the target superheat degree SHm_e of the indoor unit is set. Although it is necessary to make it small intentionally, it is not easy to know how small it is. Moreover, the indoor outlet side temperature sensor may be attached to a position where the degree of superheat cannot be detected at all. In this case, a simple specification change such as changing the target superheat degree cannot cope. In this case, it is necessary to change the installation position of the indoor outlet side temperature sensor to a position where the degree of superheat can be detected appropriately. That is, it involves a change in hardware specifications.
 ここで、特許文献1には、室外機に接続される室内機の機種に応じた蒸発器の目標過熱度を予め記憶する空気調和機が開示されている。特許文献1は、これにより、室内機毎に個別に最適な制御を行う。 Here, Patent Document 1 discloses an air conditioner that stores in advance a target superheat degree of an evaporator according to the model of the indoor unit connected to the outdoor unit. Patent Document 1 thereby performs optimal control individually for each indoor unit.
特開2001-263760号公報JP 2001-263760 A
 しかしながら、特許文献1には、室内出口側温度センサが、室内熱交換器のどの位置に設けられているかが開示されていない。特許文献1では、室内入口側温度センサによって検出された温度と、室内出口側温度センサによって検出された温度とに基づいてSH_eを導出して、SH_eがSHm_eに近づくように電子膨張弁の開度が制御される。ここで、室内出口側温度センサが、室内熱交換器の入口と出口との中間に取り付けられている場合、導出されるSH_eが、実際の過熱度よりも小さい値となる。このとき、室内熱交換器が乾いた状態となり、露飛び現象が発生するおそれがある。また、室内熱交換器の内部の冷媒分配率の悪化によって熱交換性能が低下するおそれもある。 However, Patent Document 1 does not disclose where the indoor outlet side temperature sensor is provided in the indoor heat exchanger. In Patent Document 1, SH_e is derived based on the temperature detected by the indoor inlet side temperature sensor and the temperature detected by the indoor outlet side temperature sensor, and the opening degree of the electronic expansion valve is adjusted so that SH_e approaches SHm_e. Is controlled. Here, when the indoor outlet side temperature sensor is attached between the inlet and the outlet of the indoor heat exchanger, the derived SH_e has a value smaller than the actual degree of superheat. At this time, the indoor heat exchanger is in a dry state, and there is a possibility that a dew-off phenomenon occurs. In addition, the heat exchange performance may be reduced due to the deterioration of the refrigerant distribution rate inside the indoor heat exchanger.
 これを回避するために、各室内機に対応する電子膨張弁の制御を、凝縮器の過冷却度を用いた制御に変更することが考えられる。凝縮器の過冷却度を用いた電子膨張弁の制御は、凝縮器の過冷却度SC_hex[deg]が、目標過冷却度SCm_hex[deg]に近づくように各室内機の電子膨張弁の開度の合計値を決定し、各室内機の能力等に応じて按分する制御である。しかし、蒸発器の過熱度を用いた制御に比べて、熱交換能力の適正化、必要冷媒量の低減、低圧圧力損失の回避及び圧縮機への液バック回避等の効果が得られない。また、室内熱交換器の出口側の過熱度に基づく制御のままとすると、室内出口側温度センサの配置変更を実施する必要がある。この場合、そもそも生産性等を考慮して設定された室内出口側温度センサの位置を変更することになるため、結果として生産性の低下を招く。また、位置変更する必要があるため、新たな開発負荷が増大する。このように、従来技術では、過冷却度に基づく制御では、各室内機毎に適切な制御を行うことができず、また、過熱度に基づく制御が不適な室内機が存在する場合、室内出口側温度センサの位置変更を伴ってしまう。 In order to avoid this, it is conceivable to change the control of the electronic expansion valve corresponding to each indoor unit to control using the degree of supercooling of the condenser. The control of the electronic expansion valve using the degree of supercooling of the condenser is performed by controlling the degree of opening of the electronic expansion valve of each indoor unit so that the degree of supercooling SC_hex [deg] of the condenser approaches the target degree of supercooling SCm_hex [deg]. This is a control that determines the total value of these and distributes them according to the capacity of each indoor unit. However, compared with control using the degree of superheat of the evaporator, effects such as optimization of heat exchange capacity, reduction of the necessary refrigerant amount, avoidance of low pressure loss and avoidance of liquid back to the compressor cannot be obtained. Further, if the control based on the degree of superheat on the outlet side of the indoor heat exchanger is kept, it is necessary to change the arrangement of the indoor outlet side temperature sensor. In this case, since the position of the indoor outlet side temperature sensor set in consideration of productivity or the like is changed in the first place, the productivity is lowered as a result. Moreover, since it is necessary to change the position, a new development load increases. Thus, in the conventional technology, in the control based on the degree of supercooling, appropriate control cannot be performed for each indoor unit, and when there is an indoor unit that is inappropriate for control based on the degree of superheat, the indoor outlet This is accompanied by a change in the position of the side temperature sensor.
 本発明は、上記のような課題を解決するためになされたもので、過熱度に基づく制御を行いつつ、過熱度に基づく制御が不適な室内機が存在する場合にも、設計変更を伴わない空気調和機を提供するものである。 The present invention has been made to solve the above-described problems, and does not change the design even when there is an indoor unit in which control based on the degree of superheat is inappropriate while performing control based on the degree of superheat. An air conditioner is provided.
 本発明に係る空気調和機は、圧縮機、室外熱交換器、複数の膨張部及び複数の室内熱交換器が配管により接続され、冷媒が流れる冷媒回路と、少なくとも圧縮機及び室外熱交換器を収容する室外機と、少なくとも複数の室内熱交換器をそれぞれ収容する複数の室内機と、複数の膨張部の動作を制御するモードとして、冷房運転時に複数の室内熱交換器の出口側過熱度に基づいてそれぞれの膨張部を制御する過熱制御モードと、冷房運転時に室外熱交換器の過冷却度に基づいて全ての膨張部を制御する過冷却制御モードと、を有する制御部と、を備え、制御部は、複数の室内機のなかに、過熱制御モードに不適な室内機が存在するか否かを判定する判定手段と、判定手段によって、過熱制御モードに不適な室内機が存在すると判定された場合、過熱制御モードから過冷却制御モードに切り替える切替手段と、を有する。 An air conditioner according to the present invention includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, a plurality of expansion units, and a plurality of indoor heat exchangers are connected by pipes and through which refrigerant flows, and at least the compressor and the outdoor heat exchanger. As a mode for controlling the operation of the outdoor unit to be accommodated, the plurality of indoor units respectively accommodating at least a plurality of indoor heat exchangers, and the plurality of expansion sections, the superheat degree on the outlet side of the plurality of indoor heat exchangers during cooling operation A control unit having a superheat control mode for controlling each expansion unit based on the above, and a supercooling control mode for controlling all the expansion units based on the degree of supercooling of the outdoor heat exchanger during cooling operation, The control unit determines that there is an indoor unit unsuitable for the overheat control mode by a determination unit that determines whether there is an indoor unit unsuitable for the overheat control mode among the plurality of indoor units. If A switching means for switching from overheating control mode to the subcooling control mode, the.
 本発明によれば、過熱制御モードに不適な室内機が存在するとき、過熱制御モードから過冷却制御モードに切り替える。このため、過熱制御モードに不適な室内機が存在しないときは、過熱制御モードで制御され、過熱制御モードに不適な室内機が存在するときに限り、過冷却制御モードで制御される。従って、過熱制御モードで得られる効果を極力維持しつつ、設計変更を伴わない。 According to the present invention, when there is an indoor unit unsuitable for the superheat control mode, the superheat control mode is switched to the supercooling control mode. For this reason, when there is no indoor unit unsuitable for the superheat control mode, control is performed in the superheat control mode, and only when there is an indoor unit unsuitable for the superheat control mode, control is performed in the supercooling control mode. Therefore, the effect obtained in the overheat control mode is maintained as much as possible, and no design change is involved.
本発明の実施の形態1に係る空気調和機100を示す回路図である。It is a circuit diagram which shows the air conditioner 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機100の制御部30を示すブロック図である。It is a block diagram which shows the control part 30 of the air conditioner 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1における過熱度を示すモリエル線図である。It is a Mollier diagram which shows the superheat degree in Embodiment 1 of this invention. 本発明の実施の形態1における過冷却度を示すモリエル線図である。It is a Mollier diagram which shows the degree of supercooling in Embodiment 1 of this invention. 本発明の実施の形態1における室内熱交換器11の断面図である。It is sectional drawing of the indoor heat exchanger 11 in Embodiment 1 of this invention. 本発明の実施の形態1における室内熱交換器11の断面図である。It is sectional drawing of the indoor heat exchanger 11 in Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機100の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioner 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和機200を示す回路図である。It is a circuit diagram which shows the air conditioner 200 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和機300を示す回路図である。It is a circuit diagram which shows the air conditioner 300 which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る空気調和機400を示す回路図である。It is a circuit diagram which shows the air conditioner 400 which concerns on Embodiment 4 of this invention.
実施の形態1.
 以下、本発明に係る空気調和機の実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る空気調和機100を示す回路図である。この図1に基づいて、空気調和機100について説明する。図1に示すように、空気調和機100は、例えば1台の室外機7とn台の室内機13-1~13-nとを備えており、室外機7とn台の室内機13-1~13-nとは、それぞれ液側延長配管8及びガス側延長配管9によって接続されている。
Embodiment 1 FIG.
Hereinafter, embodiments of an air conditioner according to the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an air conditioner 100 according to Embodiment 1 of the present invention. The air conditioner 100 is demonstrated based on this FIG. As shown in FIG. 1, the air conditioner 100 includes, for example, one outdoor unit 7 and n indoor units 13-1 to 13-n. The outdoor unit 7 and the n indoor units 13- 1 to 13-n are connected by a liquid side extension pipe 8 and a gas side extension pipe 9, respectively.
 空気調和機100は、例えば冷凍サイクルを利用して空気の調和を行うマルチエアコンである。空気調和機100は、例えばn台の室内機13-1~13-nのいずれもが冷房運転を行う冷房運転モードと、n台の室内機133-1~13-nのいずれもが暖房運転を行う暖房運転モードとを有し、いずれか一方のモードが選択される。なお、室外機7は、1台である場合について例示しているが、2台以上でもよい。また、室内機13は、n台である場合について例示しているが、2台以上であればよい。なお、室内機13-1~13-nを総称して室内機13と呼称する場合がある。 The air conditioner 100 is a multi air conditioner that performs air conditioning using, for example, a refrigeration cycle. In the air conditioner 100, for example, all of the n indoor units 13-1 to 13-n perform a cooling operation mode, and all of the n indoor units 133-1 to 13-n perform a heating operation. A heating operation mode in which either one of the modes is selected. In addition, although the case where there is one outdoor unit 7 is illustrated, two or more outdoor units may be used. Moreover, although the case where there are n indoor units 13 is illustrated, two or more indoor units 13 may be used. The indoor units 13-1 to 13-n may be collectively referred to as the indoor unit 13.
 (室外機7,室内機13)
 室外機7は、室外に設置されるものであり、圧縮機1、流路切替装置2、室外熱交換器3、室外送風機4、液側延長配管接続用バルブ5、ガス側延長配管接続用バルブ6、吐出センサ、室外出口側温度センサ15及び室外制御装置16を有している。n台の室内機13-1~13-nは、それぞれ膨張部10-1~10-n、室内熱交換器11-1~11-n、室内送風機12-1~12-n、室内入口側温度センサ18-1~18-n、室内出口側温度センサ19-1~19-n及び室内制御装置17-1~17-nを有している。ここで、圧縮機1、流路切替装置2、室外熱交換器3、n個の膨張部10-1~10-n及びn個の室内熱交換器11-1~11-nが配管により接続されて冷媒が流れる冷媒回路50が構成されている。
(Outdoor unit 7, indoor unit 13)
The outdoor unit 7 is installed outdoors, and includes a compressor 1, a flow path switching device 2, an outdoor heat exchanger 3, an outdoor blower 4, a liquid side extension pipe connection valve 5, and a gas side extension pipe connection valve. 6, a discharge sensor, an outdoor outlet side temperature sensor 15, and an outdoor control device 16. The n indoor units 13-1 to 13-n include expansion units 10-1 to 10-n, indoor heat exchangers 11-1 to 11-n, indoor blowers 12-1 to 12-n, and indoor entrance sides, respectively. It has temperature sensors 18-1 to 18-n, indoor outlet side temperature sensors 19-1 to 19-n, and indoor control devices 17-1 to 17-n. Here, the compressor 1, the flow path switching device 2, the outdoor heat exchanger 3, the n expansion units 10-1 to 10-n, and the n indoor heat exchangers 11-1 to 11-n are connected by piping. Thus, a refrigerant circuit 50 through which the refrigerant flows is configured.
 なお、膨張部10-1~10-nを総称して膨張部10と呼称する場合がある。また、室内熱交換器11-1~11-nを総称して室内熱交換器11と呼称する場合がある。更に、室内送風機12-1~12-nを総称して室内送風機12と呼称する場合がある。更にまた、室内入口側温度センサ18-1~18-nを総称して室内入口側温度センサ18と呼称する場合がある。また、室内出口側温度センサ19-1~19-nを総称して室内出口側温度センサ19と呼称する場合がある。更に、室内制御装置17-1~17-nを総称して室内制御装置17と呼称する場合がある。 In some cases, the inflating portions 10-1 to 10-n are collectively referred to as the inflating portion 10. Also, the indoor heat exchangers 11-1 to 11-n may be collectively referred to as the indoor heat exchanger 11. Furthermore, the indoor fans 12-1 to 12-n may be collectively referred to as the indoor fan 12. Furthermore, the indoor inlet side temperature sensors 18-1 to 18-n may be collectively referred to as indoor inlet side temperature sensors 18. The indoor outlet side temperature sensors 19-1 to 19-n may be collectively referred to as an indoor outlet side temperature sensor 19. Furthermore, the indoor control devices 17-1 to 17-n may be collectively referred to as the indoor control device 17.
 (冷媒回路50)
 圧縮機1は、低温低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温高圧の状態の冷媒にして吐出する機器である。流路切替装置2は、冷媒回路50において冷媒が流れる方向を切り替える機器であり、例えば四方弁である。室外熱交換器3は、例えば室外空気と冷媒との間で熱交換させる機器である。室外熱交換器3は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。室外送風機4は、室外熱交換器3の近傍に設けられ、室外熱交換器3に室外空気を送る機器である。膨張部10は、冷媒を減圧して膨張する減圧弁又は膨張弁である。膨張部10は、例えば開度が調整される電子式膨張弁である。室内熱交換器11は、例えば室内空気と冷媒との間で熱交換させる機器である。室内熱交換器11は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機12は、室内熱交換器11の近傍に設けられ、室内熱交換器11に室内空気を送る機器である。
(Refrigerant circuit 50)
The compressor 1 is a device that sucks refrigerant in a low-temperature and low-pressure state, compresses the sucked refrigerant, and discharges it as a refrigerant in a high-temperature and high-pressure state. The flow path switching device 2 is a device that switches the direction in which the refrigerant flows in the refrigerant circuit 50, and is, for example, a four-way valve. The outdoor heat exchanger 3 is a device that exchanges heat between, for example, outdoor air and a refrigerant. The outdoor heat exchanger 3 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation. The outdoor blower 4 is a device that is provided in the vicinity of the outdoor heat exchanger 3 and sends outdoor air to the outdoor heat exchanger 3. The expansion unit 10 is a pressure reducing valve or an expansion valve that expands by depressurizing the refrigerant. The expansion part 10 is an electronic expansion valve whose opening degree is adjusted, for example. The indoor heat exchanger 11 is a device that exchanges heat between indoor air and a refrigerant, for example. The indoor heat exchanger 11 acts as an evaporator during cooling operation and acts as a condenser during heating operation. The indoor blower 12 is a device that is provided in the vicinity of the indoor heat exchanger 11 and sends indoor air to the indoor heat exchanger 11.
 液側延長配管接続用バルブ5は、室外機7と室内機13とを接続する液側延長配管8の近傍に設けられる機器である。液側延長配管接続用バルブ5は、室外機7と室内機13とのうち一方から他方に流れる冷媒の流れを許容又は遮断する。ガス側延長配管接続用バルブ6は、室外機7と室内機13とを接続するガス側延長配管9の近傍に設けられる機器である。ガス側延長配管接続用バルブ6は、室外機7と室内機13とのうち一方から他方に流れる冷媒の流れを許容又は遮断する。 The liquid side extension pipe connection valve 5 is a device provided in the vicinity of the liquid side extension pipe 8 that connects the outdoor unit 7 and the indoor unit 13. The liquid side extension pipe connection valve 5 allows or blocks the flow of refrigerant flowing from one of the outdoor unit 7 and the indoor unit 13 to the other. The gas side extension pipe connection valve 6 is a device provided in the vicinity of the gas side extension pipe 9 that connects the outdoor unit 7 and the indoor unit 13. The gas side extension pipe connection valve 6 allows or blocks the flow of the refrigerant flowing from one of the outdoor unit 7 and the indoor unit 13 to the other.
 圧力センサ14は、圧縮機1の吐出側の配管に設けられており、圧縮機1によって圧縮されて吐出される高温高圧状態の冷媒の圧力Pd[kgf/cmG]を検出するセンサである。室外出口側温度センサ15は、冷房運転時における室外熱交換器3の出口側に流れる冷媒の室外出口側温度Tcout[℃]を検出するセンサである。室内入口側温度センサ18は、冷房運転時における室内熱交換器11の入口側に流れる冷媒の室内入口側温度Tein[℃]を検出するセンサである。ここで、室内機13-nの冷房運転時における室内熱交換器11-nの入口側に流れる冷媒の室内入口側温度をTein-n[℃]と呼称する。室内出口側温度センサ19は、冷房運転時における室内熱交換器11の出口側に流れる冷媒の室内出口側温度Teout[℃]を検出するセンサである。ここで、室内機13-nの冷房運転時における室内熱交換器11-nの出口側に流れる冷媒の室内出口側温度をTeout-n[℃]と呼称する。 The pressure sensor 14 is a sensor that is provided in the discharge-side piping of the compressor 1 and detects the pressure Pd [kgf / cm 2 G] of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 1. . The outdoor outlet side temperature sensor 15 is a sensor that detects the outdoor outlet side temperature Tcout [° C.] of the refrigerant flowing to the outlet side of the outdoor heat exchanger 3 during the cooling operation. The indoor inlet side temperature sensor 18 is a sensor that detects the indoor inlet side temperature Tein [° C.] of the refrigerant flowing to the inlet side of the indoor heat exchanger 11 during the cooling operation. Here, the indoor inlet side temperature of the refrigerant flowing to the inlet side of the indoor heat exchanger 11-n during the cooling operation of the indoor unit 13-n is referred to as Tein-n [° C.]. The indoor outlet side temperature sensor 19 is a sensor that detects the indoor outlet side temperature Teout [° C.] of the refrigerant flowing to the outlet side of the indoor heat exchanger 11 during the cooling operation. Here, the indoor outlet side temperature of the refrigerant flowing to the outlet side of the indoor heat exchanger 11-n during the cooling operation of the indoor unit 13-n is referred to as Teout-n [° C.].
 (制御部30)
 室外制御装置16は、室外機7に設けられ、圧力センサ14によって検出された圧力及び室外出口側温度センサ15によって検出された温度等の情報を受信し、圧縮機1及び膨張部10等の各種アクチュエータの動作を制御する装置である。室内制御装置17は、室内入口側温度センサ18によって検出された温度及び室内出口側温度センサ19によって検出された温度等の情報を受信する。また、室内制御装置17は、室外制御装置16と通信し、各情報を共有する。そして、室内制御装置17は、膨張部10の開度及び室内送風機12の回転数等を調整する。なお、室外制御装置16及び室内制御装置17によって、制御部30が構成されている。
(Control unit 30)
The outdoor control device 16 is provided in the outdoor unit 7 and receives information such as the pressure detected by the pressure sensor 14 and the temperature detected by the outdoor outlet side temperature sensor 15, and various kinds of information such as the compressor 1 and the expansion unit 10 are received. It is a device that controls the operation of the actuator. The indoor control device 17 receives information such as the temperature detected by the indoor inlet side temperature sensor 18 and the temperature detected by the indoor outlet side temperature sensor 19. The indoor control device 17 communicates with the outdoor control device 16 and shares each information. And the indoor control apparatus 17 adjusts the opening degree of the expansion | swelling part 10, the rotation speed of the indoor air blower 12, etc. FIG. The outdoor control device 16 and the indoor control device 17 constitute a control unit 30.
 (制御部30,算出手段31)
 図2は、本発明の実施の形態1に係る空気調和機100の制御部30を示すブロック図である。図2に示すように、制御部30は、算出手段31と、判定手段32と、切替手段33とを有している。算出手段31は、室内入口側温度Tein-1~Tein-nと、室内出口側温度Teout-1~Teout-nとの差分に基づいて各室内機13の過熱度SH_e-1~SH_e-n[deg]を算出するものである。過熱度は、スーパーヒートとも呼称される。また、算出手段31は、圧力Pd[kgf/cmG]に対応する飽和温度に基づいて高圧飽和温度Ct[℃]を算出し、高圧飽和温度Ct[℃]から室外出口側温度Tcout[℃]を減算して過冷却度SC_hexを算出するものである。過冷却度は、サブクールとも呼称される。
(Control unit 30, calculation means 31)
FIG. 2 is a block diagram showing the control unit 30 of the air conditioner 100 according to Embodiment 1 of the present invention. As illustrated in FIG. 2, the control unit 30 includes a calculation unit 31, a determination unit 32, and a switching unit 33. The calculation means 31 calculates the degree of superheat SH_e-1 to SH_e-n [of each indoor unit 13 based on the difference between the indoor inlet side temperatures Tein-1 to Tein-n and the indoor outlet side temperatures Teout-1 to Teout-n. deg] is calculated. The degree of superheat is also called superheat. Further, the calculation means 31 calculates the high pressure saturation temperature Ct [° C.] based on the saturation temperature corresponding to the pressure Pd [kgf / cm 2 G], and the outdoor outlet side temperature Tcout [° C.] from the high pressure saturation temperature Ct [° C.]. ] Is subtracted to calculate the degree of supercooling SC_hex. The degree of supercooling is also called a subcool.
 (過熱制御モード)
 制御部30は、複数の膨張部10の動作を制御するモードとして、過熱制御モードと過冷却制御モードとを有している。過熱制御モードは、冷房運転時に複数の室内熱交換器11の出口側過熱度に基づいてそれぞれの膨張部10を制御するモードである。算出手段31は、室内入口側温度Tein-1~Tein-nと、室内出口側温度Teout-1~Teout-nとの差分に基づいて各室内機13の過熱度SH_e-1~SH_e-n[deg]を算出する。そして、制御部30は、過熱度SH_e-1~SH_e-n[deg]が目標過熱度SHm_e-1~SHm_e-n[deg]に近づくように、対応する膨張部10-1~10-nの開度を制御する。
(Overheat control mode)
The control unit 30 has a superheat control mode and a supercooling control mode as modes for controlling the operations of the plurality of expansion units 10. The overheat control mode is a mode in which each expansion unit 10 is controlled based on the outlet side superheat degree of the plurality of indoor heat exchangers 11 during the cooling operation. The calculation means 31 calculates the degree of superheat SH_e-1 to SH_e-n [of each indoor unit 13 based on the difference between the indoor inlet side temperatures Tein-1 to Tein-n and the indoor outlet side temperatures Teout-1 to Teout-n. deg] is calculated. Then, the control unit 30 adjusts the corresponding expansion units 10-1 to 10-n so that the superheat degrees SH_e-1 to SH_en [deg] approach the target superheat degrees SHm_e-1 to SHm_en [deg]. Control the opening.
 図3は、本発明の実施の形態1における過熱度を示すモリエル線図である。図3において、横軸は比エンタルピ、縦軸は圧力である。図3に示すように、制御部30が膨張部10-1~10-nの開度を制御することによって、所望の過熱度となるように制御される。過熱度SH_e-1~SH_e-nが目標過熱度SHm_e-1~SHm_e-nより大きい場合、制御部30は、膨張部10の目標開度An=Anf+ΔS1n(Anf:現在時刻の膨張部10の開度、ΔS1n:過熱度制御による補正開度、n=1,2,・・・,n)のΔS1nを正の値に設定する。 FIG. 3 is a Mollier diagram showing the degree of superheat in Embodiment 1 of the present invention. In FIG. 3, the horizontal axis represents specific enthalpy and the vertical axis represents pressure. As shown in FIG. 3, the control unit 30 controls the opening degree of the expansion units 10-1 to 10-n to control the degree of superheat. When the superheat degree SH_e-1 to SH_en is larger than the target superheat degree SHm_e-1 to SHm_en, the control unit 30 sets the target opening degree An = Anf + ΔS1n of the expansion unit 10 (Anf: opening of the expansion unit 10 at the current time). Degree, ΔS1n: correction opening degree by superheat degree control, ΔS1n of n = 1, 2,..., N) is set to a positive value.
 また、制御部30は、過熱度SH_e-1~SH_e-nが目標過熱度SHm_e-1~SHm_e-nより小さい場合、ΔS1nを負の値に設定する。制御部30は、過熱度SH_e-1~SH_e-nが、SHm_e-1~SHm_e-n-a1≦SH_e-1~SH_e-n≦SHm_e-1~SHm_e-n+a2(a1:SH_e-1~SH_e-nの下限側安定温度範囲[℃]、a2:SH_e-1~SH_e-nの上限側安定温度範囲[℃])を満たして開度安定域に収まっている場合、ΔS1nを零に設定し、膨張部10の開度を維持する。 Further, when the superheat degree SH_e-1 to SH_en is smaller than the target superheat degree SHm_e-1 to SHm_en, the control unit 30 sets ΔS1n to a negative value. The control unit 30 determines that the degree of superheat SH_e−1 to SH_e−n is SHm_e−1 to SHm_e−n−a1 ≦ SH_e−1 to SH_e−n ≦ SHm_e−1 to SHm_e−n + a2 (a1: SH_e−1 to SH_e− n lower limit side stable temperature range [° C.], a2: upper limit side stable temperature range [° C.] of SH_e−1 to SH_e−n) and within the stable opening range, ΔS1n is set to zero, The opening degree of the expansion part 10 is maintained.
 このように、過熱制御モードは、室内機13毎に、室内機13に対応する膨張部10の開度を個別に制御することができる。ここで、各室内機13が設置される場所の室内温度と設定温度とには隔たりがある場合がある。室内温度と設定温度とがほぼ同等である部屋の場合、冷房能力が小さくて済むが、室内温度と設定温度との間に隔たりがある部屋の場合、冷房能力を大きくする必要がある。即ち、室内温度と設定温度とがほぼ同等である部屋の場合、目標過熱度SHm_eの値を大きくして、電子膨張弁の開度を絞ることによって流れる冷媒の量を抑えて、冷房能力を抑制する制御が望まれる。その際、過熱制御モードは、室内機13に対応する膨張部10の開度を個別に制御することができるため、各室内機13に適した過熱度に制御することができる。従って、全ての室内機13において、最適な制御を行うことができる。 Thus, in the overheat control mode, the opening degree of the expansion unit 10 corresponding to the indoor unit 13 can be individually controlled for each indoor unit 13. Here, there may be a difference between the indoor temperature and the set temperature of the place where each indoor unit 13 is installed. In a room where the room temperature and the set temperature are substantially equal, the cooling capacity may be small. However, in a room where there is a gap between the room temperature and the set temperature, it is necessary to increase the cooling capacity. In other words, in a room where the room temperature and the set temperature are almost the same, the target superheat degree SHm_e is increased, the amount of refrigerant flowing is suppressed by reducing the opening of the electronic expansion valve, and the cooling capacity is suppressed. Control to do is desired. In that case, since the opening degree of the expansion part 10 corresponding to the indoor unit 13 can be individually controlled in the superheat control mode, it can be controlled to a degree of superheat suitable for each indoor unit 13. Therefore, optimal control can be performed in all the indoor units 13.
 (過冷却制御モード)
 過冷却制御モードは、冷房運転時に室外熱交換器3の過冷却度に基づいて全ての膨張部10を制御するモードである。算出手段31は、圧力Pd[kgf/cmG]に対応する飽和温度に基づいて高圧飽和温度Ct[℃]を算出する。制御部30は、高圧飽和温度Ct[℃]から室外出口側温度Tcout[℃]を減算した過冷却度SC_hexが目標過冷却度SCm_hexに近づくように、全ての膨張部10-1~10-nの開度を制御する。
(Supercooling control mode)
The supercooling control mode is a mode in which all the expansion units 10 are controlled based on the degree of supercooling of the outdoor heat exchanger 3 during the cooling operation. The calculating means 31 calculates the high-pressure saturation temperature Ct [° C.] based on the saturation temperature corresponding to the pressure Pd [kgf / cm 2 G]. The control unit 30 sets all the expansion units 10-1 to 10-n so that the degree of supercooling SC_hex obtained by subtracting the outdoor outlet side temperature Tcout [° C] from the high-pressure saturation temperature Ct [° C] approaches the target degree of supercooling SCm_hex. To control the opening degree.
 図4は、本発明の実施の形態1における過冷却度を示すモリエル線図である。図4において、横軸は比エンタルピ、縦軸は圧力である。図4に示すように、制御部30が全ての膨張部10の開度を制御することによって、所望の過冷却度となるように制御される。過冷却度SC_hexが目標過冷却度SCm_hexより大きい場合、制御部30は、全ての膨張部10の合計の目標開度ΣA=ΣAf+ΔS2(ΣAf:現在時刻の膨張部10の開度の合計、ΔS2:過冷却度制御による補正開度)のΔS2を正の値に設定する。また、制御部30は、過冷却度SC_hexが目標過冷却度SCm_hexより小さい場合、ΔS2を負の値に設定する。 FIG. 4 is a Mollier diagram showing the degree of supercooling in Embodiment 1 of the present invention. In FIG. 4, the horizontal axis represents specific enthalpy and the vertical axis represents pressure. As shown in FIG. 4, the control unit 30 controls the opening degree of all the expansion units 10 to control the degree of supercooling. When the degree of supercooling SC_hex is larger than the target degree of supercooling SCm_hex, the control unit 30 calculates the total target opening ΣA = ΣAf + ΔS2 of all the expansion units 10 (ΣAf: the total opening of the expansion unit 10 at the current time, ΔS2: ΔS2 of the correction opening degree by supercooling degree control) is set to a positive value. In addition, when the degree of supercooling SC_hex is smaller than the target degree of supercooling SCm_hex, the control unit 30 sets ΔS2 to a negative value.
 制御部30は、過冷却度SC_hexが、Scm_hex-b1≦SC_hex≦Scm_hex+b2(b1:SC_hexの下限側安定温度範囲[℃]、b2:SC_hexの上限側安定温度範囲[℃])を満たして開度安定域に収まっている場合、ΔS2を零に設定し、膨張部10の開度を維持する。各室内機13-1~13-nの開度A1~Anは、ΣAが算出された後、An=ΣA×Cnという式から求められる。ここで、Cnは、各室内機13の能力帯によって決定される評価値であり、室内制御装置17に記憶され、算出時に室内制御装置17から室外制御装置16に情報が送信される。 The control unit 30 opens the supercooling degree SC_hex satisfying Scm_hex−b1 ≦ SC_hex ≦ Scm_hex + b2 (b1: SC_hex lower limit side stable temperature range [° C.], b2: SC_hex upper limit side stable temperature range [° C.]). When it is within the stable range, ΔS2 is set to zero and the opening degree of the expansion portion 10 is maintained. The opening degrees A1 to An of the indoor units 13-1 to 13-n are obtained from the equation: An = ΣA × Cn after ΣA is calculated. Here, Cn is an evaluation value determined by the capacity band of each indoor unit 13, stored in the indoor control device 17, and information is transmitted from the indoor control device 17 to the outdoor control device 16 at the time of calculation.
 (判定手段32)
 図2に示すように、判定手段32は、複数の室内機13のなかに、過熱制御モードに不適な室内機13が存在するか否かを判定するものである。ここで、過熱制御モードに適合する室内機13と、過熱制御モードに不適な室内機13とについて説明する。
(Determination means 32)
As shown in FIG. 2, the determination unit 32 determines whether there is an indoor unit 13 that is inappropriate for the overheat control mode among the plurality of indoor units 13. Here, the indoor unit 13 adapted to the overheat control mode and the indoor unit 13 inappropriate for the overheat control mode will be described.
 (過熱制御モードに適合する室内機13)
 図5は、本発明の実施の形態1における室内熱交換器11の断面図である。図5に示すように、室内熱交換器11は、上部パス11aと下部パス11bとを有している。上部パス11aは、冷媒が流れるパスのうち、室内熱交換器11の上部に設けられている。冷房運転時において、冷媒は、上部パス11aの第1の入口41から流入して、第1の出口42から流出する。下部パス11bは、冷媒が流れるパスのうち、室内熱交換器11の下部に設けられている。冷房運転時において、冷媒は、下部パス11bの第2の入口43から流入して、第2の出口44から流出する。ここで、室内入口側温度センサ18は、下部パス11bにおいて、冷房運転時における入口の近傍に設けられている。また、室内出口側温度センサ19は、下部パス11bにおいて、冷房運転時における出口の近傍に設けられている。
(Indoor unit 13 suitable for overheat control mode)
FIG. 5 is a cross-sectional view of the indoor heat exchanger 11 according to Embodiment 1 of the present invention. As shown in FIG. 5, the indoor heat exchanger 11 has an upper path 11a and a lower path 11b. The upper path 11a is provided above the indoor heat exchanger 11 in the path through which the refrigerant flows. During the cooling operation, the refrigerant flows in from the first inlet 41 of the upper path 11a and flows out of the first outlet 42. The lower path 11b is provided in the lower part of the indoor heat exchanger 11 among the paths through which the refrigerant flows. During the cooling operation, the refrigerant flows in from the second inlet 43 of the lower path 11b and flows out of the second outlet 44. Here, the indoor inlet side temperature sensor 18 is provided in the vicinity of the inlet in the cooling operation in the lower path 11b. The indoor outlet side temperature sensor 19 is provided in the lower path 11b in the vicinity of the outlet during the cooling operation.
 このように、室内出口側温度センサ19は、冷房運転時における室内熱交換器11の出口の近傍に設けられているため、室内出口側温度センサ19によって検出された室内出口側温度Teout[℃]は、冷房運転時に室内熱交換器11から流出する実際の温度に近い。このため、室内出口側温度に基づいて算出される過熱度の値は、実際の過熱度の値に近い。よって、図5に示す室内熱交換器11を有する室内機13は、過熱制御モードに適合する。 Thus, since the indoor outlet side temperature sensor 19 is provided in the vicinity of the outlet of the indoor heat exchanger 11 during the cooling operation, the indoor outlet side temperature Tout [° C.] detected by the indoor outlet side temperature sensor 19. Is close to the actual temperature flowing out of the indoor heat exchanger 11 during the cooling operation. For this reason, the value of the superheat degree calculated based on the indoor outlet side temperature is close to the actual value of the superheat degree. Therefore, the indoor unit 13 having the indoor heat exchanger 11 shown in FIG. 5 is adapted to the overheat control mode.
 (過熱制御モードに不適な室内機13)
 図6は、本発明の実施の形態1における室内熱交換器11の断面図である。図6に示すように、室内熱交換器11は、上部パス11aと下部パス11bとを有している。上部パス11aは、冷媒が流れるパスのうち、熱交換器の上部に設けられている。冷房運転時において、冷媒は、上部パス11aの第1の入口41から流入して、第1の出口42から流出する。下部パス11bは、冷媒が流れるパスのうち、熱交換器の下部に設けられている。冷房運転時において、冷媒は、下部パス11bの第2の入口43から流入して、第2の出口44から流出する。ここで、室内入口側温度センサ18は、下部パス11bにおいて、冷房運転時における入口の近傍に設けられている。また、室内出口側温度センサ19は、下部パス11bにおいて、冷房運転時における出口の近傍ではなく、入口と出口との中間に設けられている。
(Indoor unit 13 not suitable for overheat control mode)
FIG. 6 is a cross-sectional view of the indoor heat exchanger 11 according to Embodiment 1 of the present invention. As shown in FIG. 6, the indoor heat exchanger 11 has an upper path 11a and a lower path 11b. The upper path 11a is provided in the upper part of the heat exchanger among the paths through which the refrigerant flows. During the cooling operation, the refrigerant flows in from the first inlet 41 of the upper path 11a and flows out of the first outlet 42. The lower path 11b is provided in the lower part of the heat exchanger among the paths through which the refrigerant flows. During the cooling operation, the refrigerant flows in from the second inlet 43 of the lower path 11b and flows out of the second outlet 44. Here, the indoor inlet side temperature sensor 18 is provided in the vicinity of the inlet in the cooling operation in the lower path 11b. In addition, the indoor outlet side temperature sensor 19 is provided not in the vicinity of the outlet during the cooling operation but in the middle between the inlet and the outlet in the lower path 11b.
 このように、室内出口側温度センサ19は、冷房運転時における室内熱交換器11の中間に設けられているため、室内出口側温度センサ19によって検出された室内出口側温度Teout[℃]は、冷房運転時に室内熱交換器11から流出する実際の温度よりも低い値となる。このため、室内出口側温度に基づいて算出される過熱度の値は、実際の過熱度よりも低い。よって、制御部30は、過熱度を目標過熱度に近づけようとする際、膨張部10の開度を過剰に絞り、過熱度が過剰に高くなるおそれがある。このため、図6に示す室内熱交換器11を有する室内機13は、過熱制御モードに不適である可能性がある。 Thus, since the indoor outlet side temperature sensor 19 is provided in the middle of the indoor heat exchanger 11 during the cooling operation, the indoor outlet side temperature Teout [° C.] detected by the indoor outlet side temperature sensor 19 is: The value is lower than the actual temperature flowing out of the indoor heat exchanger 11 during the cooling operation. For this reason, the value of the superheat degree calculated based on the indoor outlet side temperature is lower than the actual superheat degree. Therefore, when the control unit 30 attempts to bring the degree of superheat close to the target degree of superheat, the opening degree of the expansion unit 10 may be excessively reduced, and the degree of superheat may become excessively high. For this reason, the indoor unit 13 having the indoor heat exchanger 11 shown in FIG. 6 may be unsuitable for the overheat control mode.
 ここで、室内制御装置17は、自身の室内機13が過熱制御モードに不適か否かの情報を記憶している。室外制御装置16は、通電時において、室内制御装置17と常に情報の送受信を行っており、過熱制御モードに不適な室内機13が冷房運転を行おうとする場合、直ちに認識する。 Here, the indoor control device 17 stores information on whether or not its own indoor unit 13 is inappropriate for the overheat control mode. The outdoor control device 16 always transmits and receives information to and from the indoor control device 17 when energized, and immediately recognizes when the indoor unit 13 unsuitable for the overheat control mode is going to perform a cooling operation.
 図2に示すように、切替手段33は、判定手段32によって、過熱制御モードに不適な室内機13が存在すると判定された場合、過熱制御モードから過冷却制御モードに切り替えるものである。過熱制御モードに不適な室内機13が存在する場合にのみ、過冷却制御モードが実施される。 As shown in FIG. 2, the switching means 33 switches from the superheat control mode to the supercooling control mode when the judging means 32 determines that there is an indoor unit 13 unsuitable for the superheat control mode. The supercooling control mode is performed only when there is an indoor unit 13 that is not suitable for the superheat control mode.
 (運転モード、冷房運転)
 次に、空気調和機100の運転モードについて図1を用いて説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機1に吸入された冷媒は、圧縮機1によって圧縮されて高温高圧のガス状態で吐出する。圧縮機1から吐出された高温高圧のガス状態の冷媒は、流路切替装置2を通過して、凝縮器として作用する室外熱交換器3に流入し、室外熱交換器3において、室外送風機4によって送られる室外空気と熱交換されて凝縮液化する。凝縮された液状態の冷媒は、各室内機13に流入する。
(Operation mode, cooling operation)
Next, the operation mode of the air conditioner 100 will be described with reference to FIG. First, the cooling operation will be described. In the cooling operation, the refrigerant sucked into the compressor 1 is compressed by the compressor 1 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 passes through the flow path switching device 2 and flows into the outdoor heat exchanger 3 that acts as a condenser. Heat exchanges with the outdoor air sent by the liquefaction and condensates. The condensed refrigerant in the liquid state flows into each indoor unit 13.
 各室内機13において、冷媒は、それぞれの膨張部10に流入し、膨張部10において膨張及び減圧されて低温低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて蒸発ガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温低圧のガス状態の冷媒は、流路切替装置2を通過して、圧縮機1に吸入される。 In each indoor unit 13, the refrigerant flows into each expansion section 10, and is expanded and depressurized in the expansion section 10 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 11 acting as an evaporator, and in the indoor heat exchanger 11, heat is exchanged with indoor air sent by the indoor blower 12 to evaporate gas. At this time, the room air is cooled, and the room is cooled. The evaporated refrigerant in a low-temperature and low-pressure gas state passes through the flow path switching device 2 and is sucked into the compressor 1.
 (運転モード、暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機1に吸入された冷媒は、圧縮機1によって圧縮されて高温高圧のガス状態で吐出する。圧縮機1から吐出された高温高圧のガス状態の冷媒は、流路切替装置2を通過して、各室内機13に流入する。冷媒は、凝縮器として作用するそれぞれの室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて凝縮液化する。このとき、室内空気が暖められ、室内において暖房が実施される。
(Operation mode, heating operation)
Next, the heating operation will be described. In the heating operation, the refrigerant sucked into the compressor 1 is compressed by the compressor 1 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 passes through the flow path switching device 2 and flows into each indoor unit 13. The refrigerant flows into each indoor heat exchanger 11 acting as a condenser, and in the indoor heat exchanger 11, heat is exchanged with indoor air sent by the indoor blower 12 to condense and liquefy. At this time, indoor air is warmed and heating is performed indoors.
 凝縮された液状態の冷媒は、膨張部10に流入し、膨張部10において膨張及び減圧されて低温低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室外熱交換器3に流入し、室外熱交換器3において、室外送風機4によって送られる室外空気と熱交換されて蒸発ガス化する。蒸発した低温低圧のガス状態の冷媒は、流路切替装置2を通過して、圧縮機1に吸入される。 The condensed liquid refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The refrigerant in the gas-liquid two-phase state flows into the outdoor heat exchanger 3 acting as an evaporator, and in the outdoor heat exchanger 3, heat is exchanged with outdoor air sent by the outdoor blower 4 to evaporate gas. The evaporated refrigerant in a low-temperature and low-pressure gas state passes through the flow path switching device 2 and is sucked into the compressor 1.
 (制御部30の動作)
 図7は、本発明の実施の形態1に係る空気調和機100の動作を示すフローチャートである。次に、制御部30の動作について説明する。室内機13から冷房運転開始の指令が送信されて圧縮機1の運転が開始されると、制御部30は、全ての膨張部10を初期開度に制御する(ステップST1)。初期開度は、室内機13の能力帯及び外気温度の条件等に応じて設定される。そして、固定時間t1が経過するか否かが判断される(ステップST2)。固定時間t1が経過するまで、ステップST2が繰り返される(ステップST2のNo)。固定時間t1が経過すると(ステップST2のYes)、起動直後から安定したとされ、過熱制御モードに移行する(ステップST3)。
(Operation of control unit 30)
FIG. 7 is a flowchart showing the operation of the air conditioner 100 according to Embodiment 1 of the present invention. Next, the operation of the control unit 30 will be described. When a command for starting the cooling operation is transmitted from the indoor unit 13 and the operation of the compressor 1 is started, the control unit 30 controls all the expansion units 10 to the initial opening degree (step ST1). The initial opening is set according to the capacity band of the indoor unit 13 and the conditions of the outside air temperature. And it is judged whether fixed time t1 passes (step ST2). Step ST2 is repeated until the fixed time t1 elapses (No in step ST2). When the fixed time t1 elapses (Yes in step ST2), it is assumed that the operation is stable immediately after the start-up, and the process shifts to the overheat control mode (step ST3).
 そして、判定手段32によって、自身の室内機13が過熱制御モードに不適か否かが記憶された情報が室内制御装置17から読み出されて、過熱制御モードに不適な室内機13が存在するか否かが判定される(ステップST4)。過熱制御モードに不適な室内機13が存在しないと判定された場合(ステップST4のNo)、SHm_e-1~n-a1≦SH_e-1~n≦SHm_e-1~n+a2を満たすか否かが判断される(ステップST5)。SHm_e-1~n-a1≦SH_e-1~n≦SHm_e-1~n+a2を満たさない場合(ステップST5のNo)、An=Anf+ΔS1nの数式を用いて過熱度が制御される(ステップST6)。 Then, the information stored as to whether or not the own indoor unit 13 is unsuitable for the overheat control mode is read from the indoor control device 17 by the determination means 32, and whether there is an unsuitable indoor unit 13 for the overheat control mode. It is determined whether or not (step ST4). When it is determined that there is no indoor unit 13 that is not suitable for the overheat control mode (No in step ST4), it is determined whether or not SHm_e−1 to na−a1 ≦ SH_e−1 to n ≦ SHm_e−1 to n + a2 is satisfied. (Step ST5). When SHm_e−1 to n−a1 ≦ SH_e−1 to n ≦ SHm_e−1 to n + a2 is not satisfied (No in step ST5), the degree of superheat is controlled using an equation of An = Anf + ΔS1n (step ST6).
 そして、室内機13の運転指令が継続されているか否かが判断される(ステップST7)。室内機13の運転指令が継続される場合(ステップST7のYes)、所定時間t2が経過した後(ステップST8)、ステップST4に戻る。また、ステップST7において、室内機13の運転指令が継続されない場合(ステップST7のNo)、制御が終了する。ここで、ステップST5において、SHm_e-1~n-a1≦SH_e-1~n≦SHm_e-1~n+a2を満たす場合(ステップST5のYes)、ステップST7に進む。 Then, it is determined whether or not the operation command for the indoor unit 13 is continued (step ST7). When the operation command for the indoor unit 13 is continued (Yes in step ST7), the process returns to step ST4 after a predetermined time t2 has elapsed (step ST8). In step ST7, when the operation command for the indoor unit 13 is not continued (No in step ST7), the control is terminated. Here, in step ST5, when SHm_e-1 to n-a1≤SH_e-1 to n≤SHm_e-1 to n + a2 are satisfied (Yes in step ST5), the process proceeds to step ST7.
 一方、ステップST4において、過熱制御モードに不適な室内機13が存在すると判定された場合(ステップST4のYes)、Scm_hex-b1≦SC_hex≦Scm_hex+b2を満たすか否かが判断される(ステップST9)。Scm_hex-b1≦SC_hex≦Scm_hex+b2を満たさない場合(ステップST9のNo)、ΣA=ΣAf+ΔS2の数式及びAn=ΣA×Cnの数式を用いて過冷却度が制御される(ステップST10及びステップST11)。 On the other hand, when it is determined in step ST4 that there is an indoor unit 13 unsuitable for the overheat control mode (Yes in step ST4), it is determined whether or not Scm_hex−b1 ≦ SC_hex ≦ Scm_hex + b2 is satisfied (step ST9). When Scm_hex−b1 ≦ SC_hex ≦ Scm_hex + b2 is not satisfied (No in step ST9), the degree of supercooling is controlled using the formula of ΣA = ΣAf + ΔS2 and the formula of An = ΣA × Cn (step ST10 and step ST11).
 そして、室内機13の運転指令が継続されているか否かが判断される(ステップST12)。室内機13の運転指令が継続される場合(ステップST12のYes)、所定時間t3が経過した後(ステップST13)、ステップST4に戻る。また、ステップST12において、室内機13の運転指令が継続されない場合(ステップST12のNo)、制御が終了する。ここで、ステップST9において、Scm_hex-b1≦SC_hex≦Scm_hex+b2を満たす場合(ステップST9のYes)、ステップST12に進む。 Then, it is determined whether or not the operation command for the indoor unit 13 is continued (step ST12). When the operation command for the indoor unit 13 is continued (Yes in step ST12), the process returns to step ST4 after a predetermined time t3 has elapsed (step ST13). In step ST12, when the operation command for the indoor unit 13 is not continued (No in step ST12), the control is terminated. Here, in step ST9, when Scm_hex−b1 ≦ SC_hex ≦ Scm_hex + b2 is satisfied (Yes in step ST9), the process proceeds to step ST12.
 本実施の形態1によれば、過熱制御モードに不適な室内機13が存在するとき、過熱制御モードから過冷却制御モードに切り替える。このため、過熱制御モードに不適な室内機13が存在しないときは、過熱制御モードで制御され、過熱制御モードに不適な室内機13が存在するときに限り、過冷却制御モードで制御される。従って、過熱制御モードで得られる効果を極力維持しつつ、設計変更を伴わない。 According to the first embodiment, when there is an indoor unit 13 unsuitable for the superheat control mode, the superheat control mode is switched to the supercooling control mode. For this reason, when the indoor unit 13 unsuitable for the overheat control mode does not exist, the indoor unit 13 is controlled in the overheat control mode, and is controlled in the supercooling control mode only when the indoor unit 13 unsuitable for the overheat control mode exists. Therefore, the effect obtained in the overheat control mode is maintained as much as possible, and no design change is involved.
 ここで、過熱制御モードで得られる効果とは、前述の如く、室内機13に対応する膨張部10の開度を個別に制御することができ、各室内機13に適した過熱度に制御することができることをいう。生産性等の種々の事情によって、室内出口側温度センサ19が、室内熱交換器11の入口と出口との中間側に若干寄った位置に取り付けられている場合でも、過冷却モードに変更するため、わざわざ設計変更をする必要がない。 Here, the effect obtained in the overheat control mode is that the opening degree of the expansion unit 10 corresponding to the indoor unit 13 can be individually controlled as described above, and the degree of superheat suitable for each indoor unit 13 is controlled. It can be done. In order to change to the supercooling mode even when the indoor outlet side temperature sensor 19 is attached at a position slightly shifted to the intermediate side between the inlet and outlet of the indoor heat exchanger 11 due to various circumstances such as productivity. There is no need to make design changes.
 また、空気調和機100は、冷房運転時における室内熱交換器11の出口側に流れる冷媒の温度を検出する室内出口側温度センサ19を更に備え、過熱制御モードに不適な室内機13は、室内出口側温度センサ19が、室内熱交換器11の入口と出口との中間に設けられている室内機13である。このように、過熱制御モードに不適な室内機13が存在しても、過熱制御モードで得られる効果を極力維持しつつ、設計変更を伴わない。 The air conditioner 100 further includes an indoor outlet side temperature sensor 19 that detects the temperature of the refrigerant flowing on the outlet side of the indoor heat exchanger 11 during the cooling operation, and the indoor unit 13 that is not suitable for the overheat control mode The outlet side temperature sensor 19 is the indoor unit 13 provided in the middle of the inlet and outlet of the indoor heat exchanger 11. As described above, even if there is an indoor unit 13 that is inappropriate for the overheat control mode, the effect obtained in the overheat control mode is maintained as much as possible, and the design is not changed.
実施の形態2.
 図8は、本発明の実施の形態2に係る空気調和機200を示す回路図である。本実施の形態2は、空気調和機200が格納キット20を備えている点で、実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2. FIG.
FIG. 8 is a circuit diagram showing an air conditioner 200 according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment in that the air conditioner 200 includes a storage kit 20. In the second embodiment, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on differences from the first embodiment.
 図8に示すように、格納キット20は、複数の膨張部10及び膨張制御装置21を有している。即ち、膨張部10は、室内機13の内部に設けられていない。格納キット20の膨張部10は、それぞれ室内機液側延長配管23-1~23-nによって、室内機13に接続されている。膨張制御装置21は、室外制御装置16及び室内制御装置17と通信を行い、各種アクチュエータの動作状況及びセンサからの情報等を共有することができる。本実施の形態2のように、膨張部10が、室内機13の内部ではなく、格納キット20の内部に格納されていても、実施の形態1と同様に、過熱制御モード及び過冷却制御モードが実施される。従って、実施の形態1と同様の効果を奏する。 As shown in FIG. 8, the storage kit 20 includes a plurality of expansion units 10 and an expansion control device 21. That is, the expansion unit 10 is not provided inside the indoor unit 13. The expansion part 10 of the storage kit 20 is connected to the indoor unit 13 by the indoor unit liquid side extension pipes 23-1 to 23-n, respectively. The expansion control device 21 can communicate with the outdoor control device 16 and the indoor control device 17 to share the operation status of various actuators, information from sensors, and the like. Even if the expansion unit 10 is stored not in the indoor unit 13 but in the storage kit 20 as in the second embodiment, the superheat control mode and the supercooling control mode are the same as in the first embodiment. Is implemented. Therefore, the same effects as those of the first embodiment are obtained.
実施の形態3.
 図9は、本発明の実施の形態3に係る空気調和機300を示す回路図である。本実施の形態3は、複数の膨張部10が室外機7に設けられている点で、実施の形態1と相違する。本実施の形態3では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 3 FIG.
FIG. 9 is a circuit diagram showing an air conditioner 300 according to Embodiment 3 of the present invention. The third embodiment is different from the first embodiment in that a plurality of expansion units 10 are provided in the outdoor unit 7. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
 図9に示すように、複数の膨張部10が、室外機7の内部において、冷房運転時に液側延長配管接続用バルブ5の下流となる位置に設けられている。即ち、膨張部10は、室内機13の内部に設けられていない。また、ガス側延長配管9は、室外機7の内部においてn本に分岐して、室内機13に接続されている。本実施の形態3のように、膨張部10が、室内機13の内部ではなく、室外機7の内部に格納されていても、実施の形態1と同様に、過熱制御モード及び過冷却制御モードが実施される。従って、実施の形態1と同様の効果を奏する。 As shown in FIG. 9, a plurality of expansion portions 10 are provided in the outdoor unit 7 at a position downstream of the liquid side extension pipe connection valve 5 during the cooling operation. That is, the expansion unit 10 is not provided inside the indoor unit 13. Further, the gas side extension pipe 9 is branched into n inside the outdoor unit 7 and connected to the indoor unit 13. Even if the expansion unit 10 is stored not in the indoor unit 13 but in the outdoor unit 7 as in the third embodiment, the superheat control mode and the supercooling control mode are the same as in the first embodiment. Is implemented. Therefore, the same effects as those of the first embodiment are obtained.
実施の形態4.
 図10は、本発明の実施の形態4に係る空気調和機400を示す回路図である。本実施の形態4は、空気調和機100が室外中間温度センサ22を備えている点で、実施の形態1と相違する。本実施の形態4では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 4 FIG.
FIG. 10 is a circuit diagram showing an air conditioner 400 according to Embodiment 4 of the present invention. The fourth embodiment is different from the first embodiment in that the air conditioner 100 includes an outdoor intermediate temperature sensor 22. In the fourth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
 図10に示すように、室外中間温度センサ22は、室外熱交換器3の中間部に設けられ、室外熱交換器3の中間部に流れる冷媒の室外中間温度を検出するセンサである。なお、空気調和機400は、圧力センサ14を有していない。算出手段31は、室外中間温度センサ22によって検出された室外中間温度に基づいて、高圧飽和温度Ct[℃]を直接算出する。この場合、圧力から一旦飽和温度を算出することなく、直接高圧飽和温度を算出することができるため、制御部30の処理速度を向上させることができる。 As shown in FIG. 10, the outdoor intermediate temperature sensor 22 is a sensor that is provided in the intermediate portion of the outdoor heat exchanger 3 and detects the outdoor intermediate temperature of the refrigerant flowing in the intermediate portion of the outdoor heat exchanger 3. The air conditioner 400 does not have the pressure sensor 14. The calculation means 31 directly calculates the high-pressure saturation temperature Ct [° C.] based on the outdoor intermediate temperature detected by the outdoor intermediate temperature sensor 22. In this case, since the high-pressure saturation temperature can be directly calculated without calculating the saturation temperature from the pressure, the processing speed of the control unit 30 can be improved.
 1 圧縮機、2 流路切替装置、3 室外熱交換器、4 室外送風機、5 液側延長配管接続用バルブ、6 ガス側延長配管接続用バルブ、7 室外機、8,8-1,8-2,8-n 液側延長配管、9,9-1,9-2,9-n ガス側延長配管、10,10-1,10-2,10-n 膨張部、11,11-1,11-2,11-n 室内熱交換器、11a 上部パス、11b 下部パス、12,12-1,12-2,12-n 室内送風機、13,13-1,13-2,13-n 室内機、14 圧力センサ、15 室外出口側温度センサ、16 室外制御装置、17,17-1,17-2,17-n 室内制御装置、18,18-1,18-2,18-n 室内入口側温度センサ、19,19-1,19-2,19-n 室内出口側温度センサ、20 格納キット、21 膨張制御装置、22 室外中間温度センサ、23,23-1,23-2,23-n 室内機液側延長配管、50 冷媒回路、30 制御部、31 算出手段、32 判定手段、 33 切替手段、41 第1の入口、42 第1の出口、43 第2の入口、44 第2の出口、100,200,300,400 空気調和機。 1 compressor, 2 flow switching device, 3 outdoor heat exchanger, 4 outdoor fan, 5 liquid side extension pipe connection valve, 6 gas side extension pipe connection valve, 7 outdoor unit, 8, 8-1, 8- 2,8-n liquid side extension pipe, 9, 9-1, 9-2, 9-n gas side extension pipe, 10, 10-1, 10-2, 10-n expansion part, 11, 11-1, 11-2, 11-n indoor heat exchanger, 11a upper path, 11b lower path, 12, 12-1, 12-2, 12-n indoor blower, 13, 13-1, 13-2, 13-n indoor Machine, 14 pressure sensor, 15 outdoor outlet temperature sensor, 16 outdoor control device, 17, 17-1, 17-2, 17-n indoor control device, 18, 18-1, 18-2, 18-n indoor entrance Side temperature sensor 19, 19-1, 19-2, 19-n Indoor outlet Temperature sensor, 20 containment kit, 21 expansion control device, 22 outdoor intermediate temperature sensor, 23, 23-1, 23-2, 23-n indoor unit liquid side extension piping, 50 refrigerant circuit, 30 control unit, 31 calculation means, 32 determination means, 33 switching means, 41 first inlet, 42 first outlet, 43 second inlet, 44 second outlet, 100, 200, 300, 400 air conditioner.

Claims (6)

  1.  圧縮機、室外熱交換器、複数の膨張部及び複数の室内熱交換器が配管により接続され、冷媒が流れる冷媒回路と、
     少なくとも前記圧縮機及び前記室外熱交換器を収容する室外機と、
     少なくとも複数の前記室内熱交換器をそれぞれ収容する複数の室内機と、
     複数の前記膨張部の動作を制御するモードとして、冷房運転時に複数の前記室内熱交換器の出口側過熱度に基づいてそれぞれの前記膨張部を制御する過熱制御モードと、冷房運転時に前記室外熱交換器の過冷却度に基づいて全ての前記膨張部を制御する過冷却制御モードと、を有する制御部と、を備え、
     前記制御部は、
     複数の前記室内機のなかに、前記過熱制御モードに不適な室内機が存在するか否かを判定する判定手段と、
     前記判定手段によって、前記過熱制御モードに不適な室内機が存在すると判定された場合、前記過熱制御モードから前記過冷却制御モードに切り替える切替手段と、を有する
     空気調和機。
    A refrigerant circuit in which a compressor, an outdoor heat exchanger, a plurality of expansion sections, and a plurality of indoor heat exchangers are connected by piping, and a refrigerant flows;
    An outdoor unit that houses at least the compressor and the outdoor heat exchanger;
    A plurality of indoor units respectively accommodating at least a plurality of the indoor heat exchangers;
    As a mode for controlling the operation of the plurality of expansion units, an overheat control mode for controlling each expansion unit based on the outlet side superheat degree of the plurality of indoor heat exchangers during cooling operation, and the outdoor heat during cooling operation A supercooling control mode for controlling all the expansion portions based on the degree of supercooling of the exchanger, and a control unit,
    The controller is
    Determining means for determining whether or not there is an indoor unit unsuitable for the overheat control mode among the plurality of indoor units;
    An air conditioner, comprising: switching means for switching from the superheat control mode to the supercooling control mode when it is determined by the determination means that there is an indoor unit unsuitable for the superheat control mode.
  2.  冷房運転時における前記室内熱交換器の出口側に流れる冷媒の室内出口側温度を検出する室内出口側温度センサを更に備え、
     前記過熱制御モードに不適な室内機は、
     前記室内出口側温度センサが、前記室内熱交換器の入口と出口との中間に設けられている室内機であり、
     前記制御部は、
     前記室内機が前記過熱制御モードに不適か否かの情報を記憶している
     請求項1記載の空気調和機。
    An indoor outlet side temperature sensor for detecting the indoor outlet side temperature of the refrigerant flowing to the outlet side of the indoor heat exchanger during cooling operation;
    Indoor units that are not suitable for the overheat control mode are:
    The indoor outlet side temperature sensor is an indoor unit provided between an inlet and an outlet of the indoor heat exchanger;
    The controller is
    The air conditioner according to claim 1, wherein information on whether or not the indoor unit is inappropriate for the overheat control mode is stored.
  3.  複数の前記膨張部を格納する格納キットを更に備える
     請求項1又は2記載の空気調和機。
    The air conditioner according to claim 1, further comprising a storage kit that stores a plurality of the inflating portions.
  4.  複数の前記膨張部は、前記室外機に収容されている
     請求項1又は2記載の空気調和機。
    The air conditioner according to claim 1 or 2, wherein the plurality of expansion portions are accommodated in the outdoor unit.
  5.  前記圧縮機の吐出側に流れる冷媒の圧力を検出する圧力センサと、
     冷房運転時における前記室外熱交換器の出口側に流れる冷媒の室外出口側温度を検出する室外出口側温度センサと、を更に備え、
     前記制御部は、
     前記圧力センサによって検出された圧力と前記室外出口側温度センサによって検出された温度とに基づいて前記過冷却度を算出する算出手段を更に有する
     請求項1~4のいずれか1項に記載の空気調和機。
    A pressure sensor for detecting the pressure of the refrigerant flowing on the discharge side of the compressor;
    An outdoor outlet side temperature sensor that detects an outdoor outlet side temperature of the refrigerant flowing to the outlet side of the outdoor heat exchanger during cooling operation, and
    The controller is
    The air according to any one of claims 1 to 4, further comprising calculation means for calculating the degree of supercooling based on a pressure detected by the pressure sensor and a temperature detected by the outdoor outlet side temperature sensor. Harmony machine.
  6.  前記室外熱交換器の中間部に流れる冷媒の室外中間温度を検出する中間温度センサと、
     冷房運転時における前記室外熱交換器の出口側に流れる冷媒の室外出口側温度を検出する室外出口側温度センサと、を更に備え、
     前記制御部は、
     前記中間温度センサによって検出された室外中間温度と前記室外出口側温度センサによって検出された温度とに基づいて前記過冷却度を算出する算出手段を更に有する
     請求項1~5のいずれか1項に記載の空気調和機。
    An intermediate temperature sensor for detecting an outdoor intermediate temperature of the refrigerant flowing in the intermediate part of the outdoor heat exchanger;
    An outdoor outlet side temperature sensor that detects an outdoor outlet side temperature of the refrigerant flowing to the outlet side of the outdoor heat exchanger during cooling operation, and
    The controller is
    The calculation unit for calculating the degree of supercooling based on an outdoor intermediate temperature detected by the intermediate temperature sensor and a temperature detected by the outdoor outlet side temperature sensor. The air conditioner described.
PCT/JP2017/010999 2017-03-17 2017-03-17 Air conditioner WO2018167961A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/010999 WO2018167961A1 (en) 2017-03-17 2017-03-17 Air conditioner
JP2019505659A JP6625265B2 (en) 2017-03-17 2017-03-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/010999 WO2018167961A1 (en) 2017-03-17 2017-03-17 Air conditioner

Publications (1)

Publication Number Publication Date
WO2018167961A1 true WO2018167961A1 (en) 2018-09-20

Family

ID=63521997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010999 WO2018167961A1 (en) 2017-03-17 2017-03-17 Air conditioner

Country Status (2)

Country Link
JP (1) JP6625265B2 (en)
WO (1) WO2018167961A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966784A (en) * 2019-12-23 2020-04-07 江苏苏净集团有限公司 Two-stage throttling multi-temperature carbon dioxide heat pump unit and control method thereof
CN113587485A (en) * 2021-07-30 2021-11-02 美的集团武汉暖通设备有限公司 Method for acquiring installation position of temperature detection device, air conditioner and storage medium
US20210381714A1 (en) * 2018-10-15 2021-12-09 Gd Midea Air-Conditioning Equipment Co., Ltd. Control terminal, control method and device for multi-split air conditioner, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471139B2 (en) * 1983-12-21 1992-11-12 Daikin Ind Ltd
JP2001263760A (en) * 2000-03-22 2001-09-26 Mitsubishi Electric Corp Air-conditioner
JP2013139924A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Refrigeration device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471139B2 (en) * 1983-12-21 1992-11-12 Daikin Ind Ltd
JP2001263760A (en) * 2000-03-22 2001-09-26 Mitsubishi Electric Corp Air-conditioner
JP2013139924A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Refrigeration device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210381714A1 (en) * 2018-10-15 2021-12-09 Gd Midea Air-Conditioning Equipment Co., Ltd. Control terminal, control method and device for multi-split air conditioner, and storage medium
US11821644B2 (en) * 2018-10-15 2023-11-21 Gd Midea Air-Conditioning Equipment Co., Ltd. Control terminal, control method and device for multi-split air conditioner, and storage medium
CN110966784A (en) * 2019-12-23 2020-04-07 江苏苏净集团有限公司 Two-stage throttling multi-temperature carbon dioxide heat pump unit and control method thereof
CN110966784B (en) * 2019-12-23 2024-04-02 江苏苏净集团有限公司 Double-stage throttling multi-temperature carbon dioxide heat pump unit and control method thereof
CN113587485A (en) * 2021-07-30 2021-11-02 美的集团武汉暖通设备有限公司 Method for acquiring installation position of temperature detection device, air conditioner and storage medium

Also Published As

Publication number Publication date
JPWO2018167961A1 (en) 2019-06-27
JP6625265B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
KR100540808B1 (en) Control method for Superheating of heat pump system
EP1659348B1 (en) Freezing apparatus
AU2007218821B2 (en) Air conditioner and heat source unit
JP5132708B2 (en) Refrigeration air conditioner
US20080092572A1 (en) Simultaneous cooling-heating multiple type air conditioner
WO2006013938A1 (en) Freezing apparatus
WO2016194098A1 (en) Air-conditioning device and operation control device
JP6878612B2 (en) Refrigeration cycle equipment
JP2008157557A (en) Air-conditioning system
WO2018167961A1 (en) Air conditioner
JP5320280B2 (en) Air conditioner
JP2018132217A (en) Air conditioning equipment
KR101336720B1 (en) Air conditioning system
JP2008039233A (en) Refrigerating device
JP6758506B2 (en) Air conditioner
JP6400223B2 (en) Air conditioner and control method of air conditioner
JP2011007482A (en) Air conditioner
JP2004286266A (en) Refrigeration device and heat pump type cooling and heating machine
JP2010054118A (en) Air conditioner
JP2018132218A (en) Air conditioning device
JPH1089779A (en) Air conditioner
WO2021192074A1 (en) Air conditioner
JP7258129B2 (en) air conditioner
JP3661014B2 (en) Refrigeration equipment
JP5424705B2 (en) Refrigeration air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900584

Country of ref document: EP

Kind code of ref document: A1