JPH11248294A - Refrigerating machine - Google Patents

Refrigerating machine

Info

Publication number
JPH11248294A
JPH11248294A JP4685398A JP4685398A JPH11248294A JP H11248294 A JPH11248294 A JP H11248294A JP 4685398 A JP4685398 A JP 4685398A JP 4685398 A JP4685398 A JP 4685398A JP H11248294 A JPH11248294 A JP H11248294A
Authority
JP
Japan
Prior art keywords
temperature
low
refrigerant
pressure
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4685398A
Other languages
Japanese (ja)
Inventor
Keiji Yamazaki
啓司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Can Corp
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP4685398A priority Critical patent/JPH11248294A/en
Publication of JPH11248294A publication Critical patent/JPH11248294A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the burden of power side and improve the coefficient of performance as well as improve the cooling performance without giving a large change to the conventional refrigerating machine. SOLUTION: A low-temperature low-pressure refrigerant which passes through a compressor 11, a condenser 12, a liquid receiver 13, an expansion valve 14, and an evaporator 15 in this order, is heat-exchanged with a high-temperature high-pressure refrigerant in the liquid receiver 13, and the low-temperature low-pressure refrigerant are returned to the compressor 11. A heat exchanging means 17 having such a function is provided within the liquid receiver 13. A temperature sensor 16 is provided between the liquid receiver 13 and compressor 11, and it detects the temperature of a refrigerant which is heat-exchanged in the liquid receiver 13 and returns to the compressor 11 and controls an opening of the expansion valve 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷凍装置に関す
る。
The present invention relates to a refrigeration system.

【0002】[0002]

【従来の技術】従来、冷凍装置としては、圧縮器、凝縮
器、受液器、膨脹弁および蒸発器をこの順に通過した冷
媒が、圧縮器に戻るようになされているものが知られて
いる。
2. Description of the Related Art Conventionally, as a refrigerating apparatus, there has been known a refrigerating apparatus in which a refrigerant which has passed through a compressor, a condenser, a liquid receiver, an expansion valve and an evaporator in this order returns to the compressor. .

【0003】従来の冷凍装置における圧縮、凝縮、膨脹
および蒸発のサイクルのエンタルピー圧力曲線を、図5
に示す。同図において、B' −Bで示す部分は、凝縮器
内の最終部分であって、液相の冷媒を飽和温度以下に冷
却する過冷却部として機能しており、また、D' −Dで
示す部分は、蒸発器内の最終部分であって、気相の冷媒
を飽和温度以上に加熱する過熱部として機能している。
FIG. 5 shows an enthalpy pressure curve of a cycle of compression, condensation, expansion and evaporation in a conventional refrigeration system.
Shown in In the figure, the part indicated by B'-B is the last part in the condenser, and functions as a supercooling unit for cooling the liquid-phase refrigerant to a temperature below the saturation temperature. The part shown is the last part in the evaporator and functions as a superheater for heating the gas-phase refrigerant to the saturation temperature or higher.

【0004】[0004]

【発明が解決しようとする課題】上記従来の冷凍装置で
は、蒸発器に過熱部を設けるために、冷房性能が犠牲に
なるという問題があり、また、凝縮器の過冷却部におい
ては、凝縮作用は行われておらず、実質的に凝縮部の面
積が減少し、凝縮圧力の上昇分による動力側の負担増と
なるという問題があった。
In the above-mentioned conventional refrigeration system, there is a problem that the cooling performance is sacrificed because the evaporator is provided with a superheated portion. However, there has been a problem that the area of the condensing section is substantially reduced, and the load on the power side is increased due to an increase in the condensing pressure.

【0005】過冷却部を提供する冷凍装置には、上記凝
縮器の問題を解決するため、凝縮器と受液器を結合さ
せ、受液器部の凝縮液を過冷却部へ供給することが行わ
れているが、装置全体が複雑化し、実用的に十分なもの
は得られていない。
[0005] In order to solve the above-mentioned problem of the condenser, the refrigerating apparatus which provides the supercooling section is required to connect the condenser and the liquid receiver and supply the condensed liquid in the liquid receiver to the supercooling section. However, the whole apparatus is complicated, and a practically sufficient one has not been obtained.

【0006】この発明の目的は、従来の冷凍装置に大幅
な変更を与えずに、冷房性能を向上するとともに、動力
側の負担を軽減し、成績係数を向上させることができる
冷凍装置を提供することにある。
An object of the present invention is to provide a refrigeration apparatus which can improve the cooling performance, reduce the load on the power side, and improve the coefficient of performance without making significant changes to the conventional refrigeration apparatus. It is in.

【0007】[0007]

【課題を解決するための手段】この発明による冷凍装置
は、圧縮器、凝縮器、受液器、膨脹弁および蒸発器を備
えている冷凍装置において、圧縮器、凝縮器、受液器、
膨脹弁および蒸発器をこの順に通過した低温低圧冷媒と
受液器内の高温高圧冷媒とを熱交換し、低温低圧冷媒を
圧縮器に戻す熱交換手段が受液器内に設けられているこ
とを特徴とするものである。
A refrigerating apparatus according to the present invention is a refrigerating apparatus having a compressor, a condenser, a liquid receiver, an expansion valve, and an evaporator.
Heat exchange means for exchanging heat between the low-temperature low-pressure refrigerant passing through the expansion valve and the evaporator and the high-temperature high-pressure refrigerant in the receiver and returning the low-temperature low-pressure refrigerant to the compressor is provided in the receiver. It is characterized by the following.

【0008】受液器内の熱交換手段は、たとえば、受液
器内の下部に設けられた螺旋状熱交換管からなるものと
され、熱交換管の入口部と蒸発器出口部とが低温低圧冷
媒導入管により接続され、熱交換管の出口部と圧縮器入
口部とが低温低圧冷媒排出管により接続される。熱交換
手段は、単独配管により構成されてもよく、複数の配管
群から構成されてもよく、また、受液器内に熱交換用の
室を設けてもよい。もちろん、熱交換管の形状は種々変
更可能である。
[0008] The heat exchange means in the liquid receiver comprises, for example, a helical heat exchange tube provided at a lower portion in the liquid receiver, and the inlet of the heat exchange tube and the outlet of the evaporator have a low temperature. The outlet of the heat exchange tube and the inlet of the compressor are connected by a low-temperature and low-pressure refrigerant discharge tube. The heat exchange means may be constituted by a single pipe, a plurality of pipe groups, or a heat exchange chamber may be provided in the liquid receiver. Of course, the shape of the heat exchange tube can be variously changed.

【0009】この発明の冷凍装置によると、受液器内の
熱交換により、蒸発器を通過してほとんどまたはすべて
が気相となっている低温低圧冷媒と、凝縮器を通過して
ほとんどまたはすべてが液相となっている高温高圧冷媒
とが熱交換し、低温低圧冷媒は、加熱されて過熱気相冷
媒に、高温高圧冷媒は、冷却されて過冷却液相冷媒とな
る。したがって、従来必要とされていた蒸発器の過熱部
および凝縮器の過冷却部を設ける必要がない。
According to the refrigerating apparatus of the present invention, the heat exchange in the receiver causes the low-temperature low-pressure refrigerant, which is almost or entirely in the gas phase, to pass through the evaporator, and almost or all to pass through the condenser. Exchanges heat with the high-temperature, high-pressure refrigerant in the liquid phase, the low-temperature, low-pressure refrigerant is heated to a superheated gas-phase refrigerant, and the high-temperature, high-pressure refrigerant is cooled to a supercooled liquid-phase refrigerant. Therefore, it is not necessary to provide the superheater of the evaporator and the supercooler of the condenser, which are conventionally required.

【0010】また、本方式によれば、低圧部と高圧部の
冷媒温度差が大き過ぎ、低圧側の過熱度が大きくなり過
ぎる場合がある。この場合、低圧側と高圧側の温度差を
小さくする手段として、凝縮器と受液器との間に減圧器
を設けるようにしてもよい。
[0010] Further, according to this method, the refrigerant temperature difference between the low-pressure section and the high-pressure section may be too large, and the degree of superheat on the low-pressure side may be too large. In this case, as a means for reducing the temperature difference between the low pressure side and the high pressure side, a decompressor may be provided between the condenser and the liquid receiver.

【0011】減圧器は、凝縮器を通過して高温高圧の液
相となっている冷媒圧力を受液器に導入する前に減ずる
ものであり、これにより、高温高圧冷媒の温度が低下
し、高温冷媒と低温冷媒との温度差が小さくなる。
The decompressor reduces the pressure of the refrigerant that has passed through the condenser and is in a high-temperature and high-pressure liquid phase before being introduced into the receiver, thereby lowering the temperature of the high-temperature and high-pressure refrigerant, The temperature difference between the high-temperature refrigerant and the low-temperature refrigerant is reduced.

【0012】受液器と圧縮器との間に、受液器内で熱交
換して圧縮器に戻る冷媒の温度を検知して膨脹弁の開度
を制御する感温センサが設けられていることが好まし
い。
A temperature sensor is provided between the liquid receiver and the compressor to detect the temperature of the refrigerant returning to the compressor after heat exchange in the liquid receiver and to control the opening of the expansion valve. Is preferred.

【0013】このようにすると、受液器内の熱交換によ
り低温低圧の過熱気相となっている冷媒の温度が、感温
センサにより自動的に検出され、これにより、膨脹弁の
開度が制御されて、冷凍装置内を循環する冷媒量が調整
される。
[0013] In this case, the temperature of the refrigerant in a low-temperature, low-pressure superheated gas phase due to heat exchange in the liquid receiver is automatically detected by the temperature-sensitive sensor, whereby the opening of the expansion valve is determined. Under the control, the amount of the refrigerant circulating in the refrigeration apparatus is adjusted.

【0014】[0014]

【発明の実施の形態】この発明の実施の形態を、以下図
面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は、この発明の冷凍装置(1) の第1実
施形態を示し、図2は、これを使用したときの冷凍サイ
クルのエンタルピー圧力曲線を示している。
FIG. 1 shows a first embodiment of a refrigeration system (1) of the present invention, and FIG. 2 shows an enthalpy pressure curve of a refrigeration cycle when the refrigeration system is used.

【0016】冷凍装置(1) は、圧縮器(11)、凝縮器(1
2)、受液器(13)、膨脹弁(14)、蒸発器(15)を備えてい
る。そして、受液器(13)内に、圧縮器(11)、凝縮器(1
2)、受液器(13)、膨脹弁(14)および蒸発器(15)をこの順
に通過した低温低圧冷媒と受液器(13)内の高温高圧冷媒
とを熱交換し、低温低圧冷媒を圧縮器(11)に戻す熱交換
手段(17)が設けられている。また、受液器(13)と圧縮器
(11)との間には、受液器(13)内で熱交換して圧縮器(11)
に戻る冷媒の温度を検知して膨脹弁(14)の開度を制御す
る感温センサ(16)が設けられている。
The refrigerating apparatus (1) includes a compressor (11) and a condenser (1).
2), a liquid receiver (13), an expansion valve (14), and an evaporator (15). And, in the liquid receiver (13), the compressor (11) and the condenser (1
2), heat exchange between the low-temperature low-pressure refrigerant passing through the liquid receiver (13), the expansion valve (14), and the evaporator (15) in this order and the high-temperature high-pressure refrigerant in the liquid receiver (13). Heat exchange means (17) for returning the pressure to the compressor (11). Also, the receiver (13) and the compressor
(11), heat exchange in the receiver (13) and the compressor (11)
A temperature sensor (16) is provided for controlling the opening of the expansion valve (14) by detecting the temperature of the refrigerant returning to.

【0017】受液器(13)は、密閉円筒状であり、その頂
部と凝縮器(12)の出口部とが接続されており、その底部
から液相冷媒が抜き出されて膨脹弁(14)へ送るようにな
されている。熱交換手段(17)は、受液器(13)内の下部に
設けられた螺旋状熱交換管からなり、熱交換管(17)の入
口部と蒸発器(15)の出口部とが低温低圧冷媒導入管(18)
により接続され、熱交換管(17)の出口部と圧縮器(11)の
入口部とが低温低圧冷媒排出管(19)により接続されてい
る。感温センサ(16)は、低温低圧冷媒排出管(19)の受液
器(13)側の端部に設けられている。
The liquid receiver (13) has a closed cylindrical shape, the top of which is connected to the outlet of the condenser (12). The liquid-phase refrigerant is extracted from the bottom of the liquid receiver (13), and the expansion valve (14) is opened. ). The heat exchange means (17) comprises a spiral heat exchange tube provided at the lower part in the liquid receiver (13), and the inlet of the heat exchange tube (17) and the outlet of the evaporator (15) have a low temperature. Low pressure refrigerant introduction pipe (18)
The outlet of the heat exchange pipe (17) and the inlet of the compressor (11) are connected by a low-temperature low-pressure refrigerant discharge pipe (19). The temperature sensor (16) is provided at an end of the low-temperature and low-pressure refrigerant discharge pipe (19) on the side of the liquid receiver (13).

【0018】この冷凍装置(1) の冷凍サイクルについ
て、図1および図2を参照して説明する。なお、図1お
よび図2に示すA〜Iは、互いに対応している。
The refrigeration cycle of the refrigeration system (1) will be described with reference to FIGS. A to I shown in FIGS. 1 and 2 correspond to each other.

【0019】気相の冷媒Iは、圧縮器(11)によって圧縮
されて高温高圧の気相冷媒Aとなり、凝縮器(12)に送ら
れる。高温高圧の気相冷媒Bは、凝縮器(12)において走
行風やファンによって冷却されて高温高圧の液相冷媒C
となり、受液器(13)に送られる。高温(50℃程度)高
圧の液相冷媒Dは、受液器(13)の出口部から膨脹弁(14)
に送られ、ここで急激に膨脹して低温低圧の液相冷媒F
となる。そして、蒸発器(15)に導入され、ここで、周囲
の熱を奪って冷房作用を果たして低温(0℃程度)低圧
の気液混合相の冷媒Gになる。蒸発器(15)を通過した冷
媒Gは、蒸発器(15)の出口部から低温低圧冷媒導入管(1
8)によって熱交換管(17)に導入され、熱交換管(17)を通
る間に受液器(13)内下部に溜まっている液相冷媒と熱交
換する。すなわち、蒸発器(15)を通過した低温低圧の気
液混合相冷媒Gと、凝縮器(12)を通過した高温高圧の液
相冷媒(一部が気相でも可)Dとが熱交換し、低温低圧
冷媒Gは、加熱されて過熱気相冷媒Hに、高温高圧冷媒
Dは、冷却されて過冷却液相冷媒Eとなる。過熱気相冷
媒Hは、低温低圧冷媒排出管(19)を通って気相の冷媒I
として圧縮器(11)に戻される。上記の受液器(13)に送ら
れた高温高圧の液相冷媒Dは、そのまま膨脹弁(14)に送
られるのではなく、受液器(13)内の熱交換により過冷却
液相冷媒Eとなってから膨脹弁(14)に送られることにな
る。
The gas-phase refrigerant I is compressed by the compressor (11) to become a high-temperature and high-pressure gas-phase refrigerant A and sent to the condenser (12). The high-temperature and high-pressure gas-phase refrigerant B is cooled by running air or a fan in the condenser (12), and
And sent to the receiver (13). The high-temperature (about 50 ° C.) high-pressure liquid-phase refrigerant D is supplied from the outlet of the receiver (13) to the expansion valve (14).
Where the liquid refrigerant F expands rapidly and has a low temperature and low pressure.
Becomes Then, the refrigerant is introduced into the evaporator (15), where the refrigerant removes ambient heat and performs a cooling function to become a low-temperature (about 0 ° C.) low-pressure low-pressure gas-liquid mixed-phase refrigerant G. The refrigerant G that has passed through the evaporator (15) flows from the outlet of the evaporator (15) to the low-temperature low-pressure refrigerant introduction pipe (1).
It is introduced into the heat exchange pipe (17) by 8) and exchanges heat with the liquid-phase refrigerant stored in the lower part of the receiver (13) while passing through the heat exchange pipe (17). That is, the low-temperature and low-pressure gas-liquid mixed-phase refrigerant G that has passed through the evaporator 15 and the high-temperature and high-pressure liquid-phase refrigerant D that has passed through the condenser 12 (some of which may be in gas phase) undergo heat exchange. The low-temperature and low-pressure refrigerant G is heated to become a superheated gas-phase refrigerant H, and the high-temperature and high-pressure refrigerant D is cooled to become a supercooled liquid-phase refrigerant E. The superheated gas-phase refrigerant H passes through the low-temperature low-pressure refrigerant discharge pipe (19),
Is returned to the compressor (11). The high-temperature and high-pressure liquid-phase refrigerant D sent to the receiver (13) is not directly sent to the expansion valve (14), but is supercooled by the heat exchange in the receiver (13). After reaching E, it is sent to the expansion valve (14).

【0020】したがって、過冷却部D−Eは、凝縮器(1
2)内ではなく、受液器(13)内にあり、また、過熱部G−
Hは、蒸発器(15)内ではなく、受液器(13)内にある。こ
れにより、従来必要とされていた蒸発器の過熱部および
凝縮器の過冷却部を設ける必要がなくなり、蒸発器(15)
に過熱部が存在することによる冷房性能低下が解消され
るとともに、凝縮器(12)において過冷却部状態を保つた
めの動力側の負担が軽減される。
Therefore, the supercooling section DE is provided with the condenser (1
It is not in 2), but in the receiver (13).
H is not in the evaporator (15) but in the receiver (13). This eliminates the need for a conventionally required evaporator superheater and condenser supercooler, and the evaporator (15)
The deterioration of the cooling performance due to the presence of the superheated portion is eliminated, and the burden on the power side for maintaining the supercooled portion state in the condenser (12) is reduced.

【0021】なお、過熱気相冷媒Hの温度は、感温セン
サ(16)により検出され、この温度に基づいて膨脹弁(14)
の開度が制御され、冷凍装置(1) 内を循環する冷媒量が
調整される。蒸発器(15)出口部の冷媒Gは過熱気相では
ないので、感温センサ(16)を蒸発器(15)出口部に設ける
と、冷媒の温度変化が現れないため、膨脹弁(14)の開度
制御が難しくなるが、感温センサ(16)を低温低圧冷媒排
出管(19)に設けることにより、過熱部の温度に基づいて
循環冷媒量が調整され、冷凍装置(1) を構成する各機器
の能力が最大限に発揮される。
The temperature of the superheated gas-phase refrigerant H is detected by a temperature sensor (16), and based on this temperature, the expansion valve (14)
Is controlled, and the amount of refrigerant circulating in the refrigeration system (1) is adjusted. Since the refrigerant G at the outlet of the evaporator (15) is not in the superheated gas phase, if the temperature-sensitive sensor (16) is provided at the outlet of the evaporator (15), the temperature of the refrigerant does not change, so the expansion valve (14) Although it is difficult to control the degree of opening of the refrigeration system, the temperature sensor (16) is provided in the low-temperature low-pressure refrigerant discharge pipe (19), so that the amount of circulating refrigerant is adjusted based on the temperature of the superheated part. The ability of each device to perform is maximized.

【0022】図3は、この発明の冷凍装置(10)の第2実
施形態を示し、図4は、これを使用したときの冷凍サイ
クルのエンタルピー圧力曲線を示している。
FIG. 3 shows a refrigeration apparatus (10) according to a second embodiment of the present invention, and FIG. 4 shows an enthalpy pressure curve of a refrigeration cycle when the refrigeration apparatus is used.

【0023】第2実施形態の冷凍装置(10)は、第1実施
形態のものに比べて、凝縮器(12)と受液器(13)との間
に、減圧器(21)が設けられている点だけが異なってい
る。その他の構成については、第1実施形態のものと同
じであり、同じ符号を付して説明を省略する。
The refrigerating apparatus (10) of the second embodiment is different from that of the first embodiment in that a decompressor (21) is provided between a condenser (12) and a receiver (13). The only difference is that Other configurations are the same as those of the first embodiment, and the same reference numerals are given and the description is omitted.

【0024】この冷凍装置(10)の冷凍サイクルについ
て、図3および図4を参照して説明する。なお、図3お
よび図4に示すA〜Jは、互いに対応している。
The refrigeration cycle of the refrigeration system (10) will be described with reference to FIGS. A to J shown in FIGS. 3 and 4 correspond to each other.

【0025】気相の冷媒Jは、圧縮器(11)によって圧縮
されて高温高圧の気相冷媒Aとなり、凝縮器(12)に送ら
れる。高温高圧の気相冷媒Bは、凝縮器(12)において走
行風やファンによって冷却されて高温高圧の液相冷媒C
となり、減圧器(21)に送られる。高温高圧の液相冷媒D
は、減圧器(21)通過に伴う圧力減少により、その温度も
低下させられ、中温(20〜30℃程度)中圧(凝縮器
(12)出口の冷媒Cに比べると低温低圧であるが、蒸発器
(15)出口の冷媒Hに比べると高温高圧)の気液混合相冷
媒Eとなって、受液器(13)に送られる。中温中圧の気液
混合相冷媒Eは、受液器(13)の出口部から膨脹弁(14)に
送られ、ここで急激に膨脹して低温低圧の液相冷媒Gと
なる。そして、蒸発器(15)に導入され、ここで、周囲の
熱を奪って冷房作用を果たして低温低圧の気液混合相の
冷媒Hになる。蒸発器(15)を通過した冷媒Hは、蒸発器
(15)の出口部から低温低圧冷媒導入管(18)によって熱交
換管(17)に導入され、熱交換管(17)を通る間に受液器(1
3)内下部に溜まっている液相冷媒と熱交換する。すなわ
ち、蒸発器(15)を通過した低温(0℃程度)低圧の気液
混合相冷媒Hと、凝縮器(12)を通過しさらに減圧器(21)
を通過した中温中圧で一部が気相の液相冷媒Eとが熱交
換し、低温低圧冷媒Hは、加熱されて過熱気相冷媒I
に、中温中圧冷媒Eは、冷却されてすべてが液相の中温
中圧冷媒Fとなる。過熱気相冷媒Iは、低温低圧冷媒排
出管(19)を通って気相の冷媒Jとして圧縮器(11)に戻さ
れる。上記の受液器(13)に送られた中温中圧の気液混合
相冷媒Eは、そのまま膨脹弁(14)に送られるのではな
く、受液器(13)内の熱交換によりすべてが液相の冷媒F
となってから膨脹弁(14)に送られることになる。
The gas-phase refrigerant J is compressed by the compressor (11) to become a high-temperature and high-pressure gas-phase refrigerant A and sent to the condenser (12). The high-temperature and high-pressure gas-phase refrigerant B is cooled by running air or a fan in the condenser (12), and
And sent to the pressure reducer (21). High-temperature and high-pressure liquid-phase refrigerant D
The temperature is also reduced by the pressure decrease accompanying the passage through the pressure reducer (21), and the medium temperature (about 20 to 30 ° C.)
(12) Low temperature and low pressure compared to refrigerant C at outlet, but evaporator
(15) A gas-liquid mixed phase refrigerant E having a higher temperature and a higher pressure than the refrigerant H at the outlet is sent to the receiver (13). The medium-temperature and medium-pressure gas-liquid mixed-phase refrigerant E is sent from the outlet of the liquid receiver (13) to the expansion valve (14), where it is rapidly expanded to become a low-temperature and low-pressure liquid-phase refrigerant G. Then, the refrigerant is introduced into the evaporator (15), where it takes off the surrounding heat and performs a cooling action to become a low-temperature low-pressure gas-liquid mixed-phase refrigerant H. The refrigerant H that has passed through the evaporator (15)
(15) is introduced into the heat exchange pipe (17) by the low-temperature and low-pressure refrigerant introduction pipe (18) and passes through the heat exchange pipe (17).
3) Heat exchange with the liquid refrigerant stored in the lower part. That is, the low-temperature (about 0 ° C.) and low-pressure gas-liquid mixed-phase refrigerant H that has passed through the evaporator (15), passes through the condenser (12), and further passes through the depressurizer (21)
Heat exchanges with the liquid-phase refrigerant E, which is partially at gaseous phase at medium temperature and medium pressure, and the low-temperature low-pressure refrigerant H is heated and superheated gas-phase refrigerant I
Further, the medium-temperature medium-pressure refrigerant E is cooled and becomes all the liquid-phase medium-temperature medium-pressure refrigerant F. The superheated gas-phase refrigerant I is returned to the compressor (11) as a gas-phase refrigerant J through a low-temperature low-pressure refrigerant discharge pipe (19). The medium-temperature and medium-pressure gas-liquid mixed phase refrigerant E sent to the receiver (13) is not sent to the expansion valve (14) as it is, but is entirely exchanged by heat exchange in the receiver (13). Liquid phase refrigerant F
Then, it is sent to the expansion valve (14).

【0026】したがって、過熱部H−Iは、蒸発器(15)
内ではなく、受液器(13)内にあり、これにより、従来必
要とされていた蒸発器の過熱部を設ける必要がなくな
り、蒸発器(15)に過熱部が存在することによる冷房性能
低下が解消される。
Therefore, the superheated section HI is connected to the evaporator (15).
Inside the receiver (13), which eliminates the need for a conventionally required evaporator superheated section, and reduces the cooling performance due to the presence of the superheated section in the evaporator (15). Is eliminated.

【0027】なお、過熱気相冷媒Iの温度は、感温セン
サ(16)により検出され、この温度に基づいて膨脹弁(14)
の開度が制御され、冷凍装置(1) 内を循環する冷媒量が
調整される。蒸発器(15)出口部の冷媒Hは過熱気相では
ないので、感温センサ(16)を蒸発器(15)出口部に設ける
と、膨脹弁(14)の開度制御が難しくなるが、感温センサ
(16)を低温低圧冷媒排出管(19)に設けることにより、過
熱部の温度に基づいて循環冷媒量が調整され、冷凍装置
(1) を構成する各機器の能力が最大限に発揮される。
The temperature of the superheated gas-phase refrigerant I is detected by a temperature sensor (16), and based on this temperature, the expansion valve (14)
Is controlled, and the amount of refrigerant circulating in the refrigeration system (1) is adjusted. Since the refrigerant H at the outlet of the evaporator (15) is not in a superheated gas phase, if the temperature sensor (16) is provided at the outlet of the evaporator (15), it becomes difficult to control the opening of the expansion valve (14). Temperature sensor
By providing (16) in the low-temperature low-pressure refrigerant discharge pipe (19), the amount of circulating refrigerant is adjusted based on the temperature of the superheated section, and the refrigeration system
The capabilities of each device constituting (1) are maximized.

【0028】また、凝縮器(12)を通過した高温高圧の液
相冷媒Dの温度を減圧器(21)によって下げることによ
り、低温側と高温側との温度差が大となって膨脹弁の制
御幅が大きくなり過ぎるという問題が防止され、温度効
率は若干低下するが、制御応答性に優れた冷凍装置(10)
が得られる。
Also, by lowering the temperature of the high-temperature and high-pressure liquid-phase refrigerant D passing through the condenser (12) by the pressure reducer (21), the temperature difference between the low-temperature side and the high-temperature side becomes large, and the expansion valve The refrigeration system (10), which prevents the problem of the control width becoming too large and slightly reduces the temperature efficiency, but has excellent control responsiveness
Is obtained.

【0029】[0029]

【発明の効果】この発明の冷凍装置によると、従来必要
とされていた蒸発器の過熱部および凝縮器の過冷却部を
設ける必要がなくなるので、蒸発器に過熱部が存在する
ことによる冷房性能低下が解消されるとともに、凝縮器
において過冷却部状態を保つための動力側の負担が軽減
される。これにより、従来の冷凍装置に大幅な変更を与
えずに、しかも、成績係数が向上した冷凍装置が得られ
る。
According to the refrigerating apparatus of the present invention, it is not necessary to provide the superheated portion of the evaporator and the supercooled portion of the condenser, which are required in the past, so that the cooling performance due to the presence of the superheated portion in the evaporator is eliminated. The drop is eliminated, and the load on the power side for maintaining the supercooling unit state in the condenser is reduced. As a result, a refrigeration apparatus having an improved coefficient of performance without significantly changing the conventional refrigeration apparatus can be obtained.

【0030】凝縮器と受液器との間に減圧器が設けられ
ているものでは、低温冷媒と高温冷媒との温度差が小さ
くなり、膨脹弁による制御がしやすくなり、制御応答性
が向上する。
In the case where a decompressor is provided between the condenser and the liquid receiver, the temperature difference between the low-temperature refrigerant and the high-temperature refrigerant becomes small, the control by the expansion valve becomes easy, and the control response is improved. I do.

【0031】受液器と圧縮器との間に膨脹弁開度制御用
感温センサが設けられているものでは、過熱部の温度に
基づいて膨脹弁の開度が制御されることにより、冷凍装
置内を循環する冷媒量が調整され、冷凍装置を構成する
各機器の能力が最大限に発揮される。
In the case where a temperature sensor for controlling the opening of the expansion valve is provided between the liquid receiver and the compressor, the opening of the expansion valve is controlled on the basis of the temperature of the superheated portion, so that the refrigeration is performed. The amount of the refrigerant circulating in the apparatus is adjusted, and the performance of each device constituting the refrigeration apparatus is maximized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による冷凍装置の第1実施形態を示す
ブロック図である。
FIG. 1 is a block diagram showing a first embodiment of a refrigeration apparatus according to the present invention.

【図2】第1実施形態の冷凍サイクルのエンタルピー圧
力曲線を示す図である。
FIG. 2 is a diagram showing an enthalpy pressure curve of the refrigeration cycle of the first embodiment.

【図3】この発明による冷凍装置の第2実施形態を示す
ブロック図である。
FIG. 3 is a block diagram showing a refrigeration apparatus according to a second embodiment of the present invention.

【図4】第2実施形態の冷凍サイクルのエンタルピー圧
力曲線を示す図である。
FIG. 4 is a diagram illustrating an enthalpy pressure curve of a refrigeration cycle according to a second embodiment.

【図5】従来の冷凍サイクルのエンタルピー圧力曲線を
示す図である。
FIG. 5 is a diagram showing an enthalpy pressure curve of a conventional refrigeration cycle.

【符号の説明】[Explanation of symbols]

(1)(10) 冷凍装置 (11) 圧縮器 (12) 凝縮器 (13) 受液器 (14) 膨脹弁 (15) 蒸発器 (16) 感温センサ (17) 熱交換管(熱交換手段) (21) 減圧器 (1) (10) Refrigeration unit (11) Compressor (12) Condenser (13) Liquid receiver (14) Expansion valve (15) Evaporator (16) Temperature sensor (17) Heat exchange tube (heat exchange means) (21) Pressure reducer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮器(11)、凝縮器(12)、受液器(13)、
膨脹弁(14)および蒸発器(15)を備えている冷凍装置にお
いて、圧縮器(11)、凝縮器(12)、受液器(13)、膨脹弁(1
4)および蒸発器(15)をこの順に通過した低温低圧冷媒と
受液器(13)内の高温高圧冷媒とを熱交換し、低温低圧冷
媒を圧縮器(11)に戻す熱交換手段(17)が受液器(13)内に
設けられていることを特徴とする冷凍装置。
1. A compressor (11), a condenser (12), a receiver (13),
In a refrigerating apparatus provided with an expansion valve (14) and an evaporator (15), a compressor (11), a condenser (12), a receiver (13), an expansion valve (1).
4) and the heat exchange means (17) for exchanging heat between the low-temperature and low-pressure refrigerant passing through the evaporator (15) and the high-temperature and high-pressure refrigerant in the receiver (13) and returning the low-temperature and low-pressure refrigerant to the compressor (11). ) Is provided in the liquid receiver (13).
【請求項2】 凝縮器(12)と受液器(13)との間に、減圧
器(21)が設けられている請求項1記載の冷凍装置。
2. The refrigerating apparatus according to claim 1, wherein a pressure reducer (21) is provided between the condenser (12) and the liquid receiver (13).
【請求項3】 受液器(13)と圧縮器(11)との間に、受液
器(13)内で熱交換して圧縮器(11)に戻る冷媒の温度を検
知して膨脹弁(14)の開度を制御する感温センサ(16)が設
けられている請求項1または2記載の冷凍装置。
3. An expansion valve for detecting the temperature of a refrigerant that returns heat to the compressor (11) by exchanging heat in the receiver (13) between the receiver (13) and the compressor (11). 3. The refrigeration system according to claim 1, further comprising a temperature sensor (16) for controlling the opening of (14).
JP4685398A 1998-02-27 1998-02-27 Refrigerating machine Withdrawn JPH11248294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4685398A JPH11248294A (en) 1998-02-27 1998-02-27 Refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4685398A JPH11248294A (en) 1998-02-27 1998-02-27 Refrigerating machine

Publications (1)

Publication Number Publication Date
JPH11248294A true JPH11248294A (en) 1999-09-14

Family

ID=12758911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4685398A Withdrawn JPH11248294A (en) 1998-02-27 1998-02-27 Refrigerating machine

Country Status (1)

Country Link
JP (1) JPH11248294A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364534B1 (en) * 1999-10-27 2002-12-16 엘지전자 주식회사 Multi air conditioner
EP1647783A2 (en) * 2004-10-18 2006-04-19 Mitsubishi Denki Kabushiki Kaisha Refrigeration/air conditioning equipment
EP1795835A2 (en) * 2005-12-12 2007-06-13 Sanden Corporation Vapor compression refrigerating system
FR2940421A1 (en) * 2008-12-22 2010-06-25 Valeo Systemes Thermiques Combined device for air-conditioning loop of motor vehicle, has conduit interposed between outlet of low pressure branch and exit of enclosure, where conduit is extended partially inside accumulation zone
ITBO20090195A1 (en) * 2009-03-27 2010-09-28 Hiref S P A REFRIGERANT SYSTEM INCLUDING AN EVAPORATED PLATE EVAPORATOR
US7900467B2 (en) 2007-07-23 2011-03-08 Hussmann Corporation Combined receiver and heat exchanger for a secondary refrigerant
EP2530409A2 (en) * 2011-06-03 2012-12-05 Glen Dimplex Deutschland GmbH Heat pump assembly and method for operating same
EP2689202A2 (en) * 2011-03-24 2014-01-29 Airbus Operations GmbH Multifunctional refrigerant container and method of operating such a refrigerant container

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364534B1 (en) * 1999-10-27 2002-12-16 엘지전자 주식회사 Multi air conditioner
USRE43805E1 (en) 2004-10-18 2012-11-20 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
EP1647783A3 (en) * 2004-10-18 2007-12-26 Mitsubishi Denki Kabushiki Kaisha Refrigeration/air conditioning equipment
EP1647783A2 (en) * 2004-10-18 2006-04-19 Mitsubishi Denki Kabushiki Kaisha Refrigeration/air conditioning equipment
USRE43998E1 (en) 2004-10-18 2013-02-19 Mitsubishi Electric Corporation Refrigeration/air conditioning equipment
EP1795835A2 (en) * 2005-12-12 2007-06-13 Sanden Corporation Vapor compression refrigerating system
EP1795835A3 (en) * 2005-12-12 2008-10-08 Sanden Corp Vapor compression refrigerating system
US7900467B2 (en) 2007-07-23 2011-03-08 Hussmann Corporation Combined receiver and heat exchanger for a secondary refrigerant
FR2940421A1 (en) * 2008-12-22 2010-06-25 Valeo Systemes Thermiques Combined device for air-conditioning loop of motor vehicle, has conduit interposed between outlet of low pressure branch and exit of enclosure, where conduit is extended partially inside accumulation zone
ITBO20090195A1 (en) * 2009-03-27 2010-09-28 Hiref S P A REFRIGERANT SYSTEM INCLUDING AN EVAPORATED PLATE EVAPORATOR
EP2233866A1 (en) * 2009-03-27 2010-09-29 Hiref S.p.A. A refrigerating plant comprising a plate-type flooded evaporator
EP2689202A2 (en) * 2011-03-24 2014-01-29 Airbus Operations GmbH Multifunctional refrigerant container and method of operating such a refrigerant container
EP2530409A2 (en) * 2011-06-03 2012-12-05 Glen Dimplex Deutschland GmbH Heat pump assembly and method for operating same
EP2530409A3 (en) * 2011-06-03 2013-09-04 Glen Dimplex Deutschland GmbH Heat pump assembly and method for operating same

Similar Documents

Publication Publication Date Title
JP2865844B2 (en) Refrigeration system
EP1631773B1 (en) Supercritical pressure regulation of economized refrigeration system
KR100360006B1 (en) Transcritical vapor compression cycle
US4910972A (en) Refrigerator system with dual evaporators for household refrigerators
WO2007110908A9 (en) Refrigeration air conditioning device
WO1990007683A1 (en) Trans-critical vapour compression cycle device
NO335736B1 (en) Procedure for operating a transcritical freezing and cooling system
JPH1163694A (en) Refrigeration cycle
JP2006112708A (en) Refrigerating air conditioner
JPH1163686A (en) Refrigeration cycle
KR101909531B1 (en) Outdoor unit and Controlling method therefor
KR102049426B1 (en) Cooler using hot gas injection effect and defrost system including thereof
JPH11248294A (en) Refrigerating machine
JP2005214444A (en) Refrigerator
JP2007093097A (en) Heat pump water heater and control method of the same
WO2002025178A1 (en) Refrigeration cycle
US20100131115A1 (en) Controlling method of air conditioner
JP2008196826A (en) Refrigerating cycle apparatus
JPH02195162A (en) Binary heat pump for simultaneously pumping cold water and vapor
JPH04263746A (en) Refrigerator
JP2002327969A (en) Refrigerating system
JP3256856B2 (en) Refrigeration system
EP0374688A2 (en) Refrigerator system with dual evaporators for household refrigerators
KR101541961B1 (en) Heat pump system
JP2003121012A (en) Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510