JP2003121012A - Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner - Google Patents

Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner

Info

Publication number
JP2003121012A
JP2003121012A JP2001315322A JP2001315322A JP2003121012A JP 2003121012 A JP2003121012 A JP 2003121012A JP 2001315322 A JP2001315322 A JP 2001315322A JP 2001315322 A JP2001315322 A JP 2001315322A JP 2003121012 A JP2003121012 A JP 2003121012A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
intercooler
vapor compression
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001315322A
Other languages
Japanese (ja)
Inventor
Tomoyasu Adachi
知康 足立
Kiyoto Yasui
清登 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001315322A priority Critical patent/JP2003121012A/en
Publication of JP2003121012A publication Critical patent/JP2003121012A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling vapor compression type refrigerating cycle for an automotive air-conditioner, which ensures intercooler performance even during the operation at a low outdoor temperature and utilizes supercritical cycle enabling the degree of superheat of refrigerant at the inlet side of a compressor to be large. SOLUTION: At least a compressor 1, a gas cooler 2, an intercooler 3, a first expansion valve 4, a receiver 5, a second expansion valve 61 and an evaporator 7 are connected with a piping 8 to form a closed circuit. The vapor compression type refrigerating cycle for an automotive air-conditioner comprises the closed circuit, through which refrigerant is circulated. The refrigerant pressure of an inlet of the first expansion valve is controlled so as to become a designated pressure determined based on the outlet refrigerant temperature of the gas cooler by the first expansion valve provided between the intercooler and receiver. At the same time the second expansion valve provided between the receiver and evaporator adjusts the refrigerant volume so that the refrigerant superheat degree 11 in an intermediate part at a low pressure side of the intercooler becomes a designated value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界サイクルを
利用した自動車用空調装置の蒸気圧縮式冷凍サイクルの
制御方法及び蒸気圧縮式冷凍回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression refrigeration cycle control method and a vapor compression refrigeration circuit for a vehicle air conditioner using a supercritical cycle.

【0002】[0002]

【従来の技術】図2及び図3を参照しながら、二酸化炭
素(CO2)等の冷媒(以下、「冷媒」と称する)を使
用した自動車用空調装置(以下、「空調装置」と称す
る)の従来の蒸気圧縮式冷凍サイクルの制御を説明す
る。ここで、図2は、従来の蒸気圧縮式冷凍サイクルの
制御を示す冷媒回路の概略図、図3は、冷媒(CO2
のモリエール線図である。
2. Description of the Related Art With reference to FIGS. 2 and 3, an automobile air conditioner (hereinafter referred to as "air conditioner") using a refrigerant such as carbon dioxide (CO 2 ) (hereinafter referred to as "refrigerant"). The control of the conventional vapor compression refrigeration cycle will be described. Here, FIG. 2 is a schematic diagram of a refrigerant circuit showing control of a conventional vapor compression refrigeration cycle, and FIG. 3 is a refrigerant (CO 2 ).
It is a Moliere diagram of.

【0003】図2に示す蒸気圧縮式冷凍サイクルにおい
て、符号1は冷媒を圧縮する圧縮機、符号2は圧縮機1
で圧縮された冷媒を外気等と熱交換して冷却するガス冷
却器、符号3は圧縮機1で圧縮された高温高圧の冷媒と
圧縮機1に戻る低圧低温の冷媒との熱交換を行なうイン
タクーラ、そして、符号4は第一膨張弁で、ガス冷却器
2の出口側の冷媒温度に応じて、このガス冷却器2の出
口側(すなわち、第一膨張弁4の入口側)の圧力を制御
する圧力制御弁として機能する。
In the vapor compression refrigeration cycle shown in FIG. 2, reference numeral 1 is a compressor for compressing a refrigerant, and reference numeral 2 is a compressor 1.
A gas cooler for cooling the refrigerant compressed by the heat exchange with the outside air or the like, and an intercooler 3 for exchanging heat between the high-temperature high-pressure refrigerant compressed by the compressor 1 and the low-pressure low-temperature refrigerant returned to the compressor 1. Reference numeral 4 is a first expansion valve, which controls the pressure on the outlet side of the gas cooler 2 (that is, the inlet side of the first expansion valve 4) according to the refrigerant temperature on the outlet side of the gas cooler 2. Function as a pressure control valve.

【0004】また、符号5は受液器で、第一膨張弁4か
ら流出した冷媒を液相冷媒と気相冷媒とに分離して蓄え
るタンク手段として機能する。6は第二膨張弁で、受液
器5から流出した冷媒を減圧すると共に、圧縮機1の入
口側での冷媒の過熱度、又は蒸発器7の出口側での冷媒
の過熱度を一定の値になるよう冷媒の流量を調節する制
御弁として機能する。そして、これらの圧縮機1、ガス
冷却器2、インタクーラ3、第一膨張弁4、受液器5、
第二膨張弁6及び蒸発器7は、配管8によって接続さ
れ、閉回路を形成している。
Further, reference numeral 5 is a liquid receiver, which functions as tank means for separating and storing the refrigerant flowing out from the first expansion valve 4 into a liquid phase refrigerant and a gas phase refrigerant. A second expansion valve 6 decompresses the refrigerant flowing out of the liquid receiver 5 and keeps the degree of superheat of the refrigerant at the inlet side of the compressor 1 or the degree of superheat of the refrigerant at the outlet side of the evaporator 7 constant. It functions as a control valve that adjusts the flow rate of the refrigerant so that the value becomes a value. Then, these compressor 1, gas cooler 2, intercooler 3, first expansion valve 4, liquid receiver 5,
The second expansion valve 6 and the evaporator 7 are connected by a pipe 8 to form a closed circuit.

【0005】このような冷媒(CO2)を用いた空調装
置の蒸気圧縮式冷凍サイクルは、図3のCO2のモリエ
ール線図におけるA−B−C’−C−D−E−Aで示さ
れるようなサイクルを形成する。すなわち、圧縮機1で
冷媒を圧縮して高温高圧の超臨界状態まで昇圧させ(A
−B)、この超臨界状態まで昇圧された冷媒をガス冷却
器2にて冷却し(B−C’)、さらに、インタクーラ3
で低温低圧冷媒によって冷却する(C’−C)。
A vapor compression refrigeration cycle of an air conditioner using such a refrigerant (CO 2 ) is shown by A-B-C'-C-D-E-A in the CO 2 Moliere diagram of FIG. 3. Form a cycle that That is, the compressor 1 compresses the refrigerant to raise the pressure to a supercritical state of high temperature and high pressure (A
-B), the refrigerant whose pressure has been increased to the supercritical state is cooled by the gas cooler 2 (BC '), and further, the intercooler 3
And cooled by a low temperature low pressure refrigerant (C'-C).

【0006】その後、第一膨張弁4により減圧して気液
2相状態となった冷媒を、受液器5で蓄え、この気液2
相冷媒を第二膨張弁6により減圧し(C−D)、蒸発器
7で蒸発させる(D−E)。さらに、その後、インタク
ーラ3で高圧側冷媒と熱交換して加熱し、過熱ガスとし
て圧縮機1に戻すようになっている(E−A)。
After that, the refrigerant, which has been reduced to a gas-liquid two-phase state by depressurizing it by the first expansion valve 4, is stored in the liquid receiver 5, and this gas-liquid 2 is stored.
The phase refrigerant is decompressed by the second expansion valve 6 (C-D) and evaporated by the evaporator 7 (D-E). Furthermore, after that, the intercooler 3 heats the high-pressure side refrigerant by exchanging heat with it, and returns it to the compressor 1 as an overheated gas (EA).

【0007】このように高圧側が超臨界領域で運転され
る空調装置の蒸気圧縮式冷凍サイクルにおいては、高圧
圧力により運転効率(冷凍能力や成績係数)が変動す
る。そのため、ガス冷却器2の出口側の冷媒温度9に基
いて、ガス冷却器2の出口側圧力(すなわち、第一膨張
弁4の入口側圧力)を制御すべく第一膨張弁4の開度を
調整することにより、冷凍サイクルの運転効率が最も良
くなるように高圧圧力を最適に保つ手段がとられてい
る。
As described above, in the vapor compression refrigeration cycle of the air conditioner in which the high-pressure side is operated in the supercritical region, the operating efficiency (refrigerating capacity and coefficient of performance) varies depending on the high pressure. Therefore, based on the refrigerant temperature 9 on the outlet side of the gas cooler 2, the opening degree of the first expansion valve 4 so as to control the outlet side pressure of the gas cooler 2 (that is, the inlet side pressure of the first expansion valve 4). Is adjusted so that the high pressure is kept optimal so that the operation efficiency of the refrigeration cycle is maximized.

【0008】また、第一膨張弁4の制御によって、蒸発
器7の出口側もしくは圧縮機1の入口側における冷媒の
過熱度が不十分になるのを防止するため、冷媒の過熱度
を一定に維持する温度式制御弁である第二膨張弁6が、
受液器5と蒸発器7との間に装備されている。
In order to prevent the superheat degree of the refrigerant at the outlet side of the evaporator 7 or the inlet side of the compressor 1 from becoming insufficient by controlling the first expansion valve 4, the superheat degree of the refrigerant is kept constant. The second expansion valve 6, which is a temperature control valve to maintain,
It is provided between the liquid receiver 5 and the evaporator 7.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、第二膨
張弁6により蒸発器7の出口側における冷媒の過熱度1
0bを制御する場合には、蒸発器7の出口が過熱域とな
るため、蒸発器7の能力を最大限生かすことができない
という欠点があった。
However, the degree of superheat 1 of the refrigerant at the outlet side of the evaporator 7 by the second expansion valve 6
In the case of controlling 0b, the outlet of the evaporator 7 is in the overheated region, so that there is a drawback that the capacity of the evaporator 7 cannot be maximized.

【0010】一方、第二膨張弁6により圧縮機1の入口
側(すなわち、インタクーラ3の出口側)の冷媒の過熱
度10aを所定値に制御する場合には、過熱度を大きく
とることにより、ガス冷却器2を有効に使用することが
できる。しかしながら、低外気温度における運転時に
は、インタクーラ3の高圧側の冷媒温度が低いため、十
分な過熱度が得られず、圧縮機1の入口側冷媒の過熱度
を大きく設定できないという欠点があった。すなわち、
インタクーラ3において十分な過熱ガスが得られず、圧
縮機1において液冷媒を圧縮してしまうという不具合が
発生することが知られていた。
On the other hand, when the superheat degree 10a of the refrigerant on the inlet side of the compressor 1 (that is, the outlet side of the intercooler 3) is controlled to a predetermined value by the second expansion valve 6, the superheat degree is set to be large. The gas cooler 2 can be effectively used. However, during operation at a low outside air temperature, the refrigerant temperature on the high pressure side of the intercooler 3 is low, so that a sufficient degree of superheat cannot be obtained, and there is a drawback that the degree of superheat of the refrigerant on the inlet side of the compressor 1 cannot be set to a large value. That is,
It has been known that a sufficient superheated gas cannot be obtained in the intercooler 3 and the liquid refrigerant is compressed in the compressor 1.

【0011】従って、本発明は、上述した従来の技術の
問題を解決するためになされたもので、低外気温度の運
転時においてもインタクーラの性能を確保して、圧縮機
の入口側冷媒の過熱度を大きく設定できるようにした自
動車用空調装置の蒸気圧縮式冷凍サイクルの制御方法を
提供することを主な目的とするものである。
Therefore, the present invention has been made in order to solve the above-mentioned problems of the prior art, and ensures the performance of the intercooler even during operation at a low outside air temperature, thereby overheating the refrigerant on the inlet side of the compressor. The main object of the present invention is to provide a method for controlling a vapor compression refrigeration cycle of an automobile air conditioner in which the degree can be set large.

【0012】[0012]

【課題を解決するための手段】上述の目的を達成するた
め、請求項1に記載の本発明に係る自動車用空調装置の
蒸気圧縮式冷凍サイクルの制御方法は、少なくとも圧縮
機、ガス冷却器、インタクーラ、第一膨張弁、受液器、
第二膨張弁及び蒸発器を配管で接続した閉回路内に冷媒
を循環させる、超臨界サイクルを利用した自動車用空調
装置の蒸気圧縮式冷凍サイクルにおいて、(1)前記イ
ンタクーラと前記受液器との間に第一膨張弁を準備する
と共に、前記受液器と前記蒸発器との間に第二膨張弁を
準備し、(2)前記第一膨張弁により、該第一膨張弁の
入口冷媒圧力が前記ガス冷却器の出口冷媒温度に基いて
決定される所定圧力となるように圧力を制御し、(3)
前記第二膨張弁により、前記インタクーラの低圧側中間
部での冷媒過熱度が所定値となるように冷媒量を調整す
ることを特徴とする。
In order to achieve the above object, a method for controlling a vapor compression refrigeration cycle for an automobile air conditioner according to the present invention according to claim 1 is at least a compressor, a gas cooler, Intercooler, first expansion valve, liquid receiver,
In a vapor compression refrigeration cycle for a vehicle air conditioner using a supercritical cycle, in which a refrigerant is circulated in a closed circuit in which a second expansion valve and an evaporator are connected by piping, (1) the intercooler and the liquid receiver And a second expansion valve between the liquid receiver and the evaporator, and (2) the first expansion valve causes an inlet refrigerant of the first expansion valve. (3) controlling the pressure so that the pressure becomes a predetermined pressure determined based on the refrigerant temperature at the outlet of the gas cooler;
The amount of the refrigerant is adjusted by the second expansion valve so that the degree of superheat of the refrigerant in the low pressure side intermediate portion of the intercooler becomes a predetermined value.

【0013】前記第二膨張弁により、前記蒸発器の出口
冷媒が気液2相域となるように、前記インタクーラの前
記低圧側中間部の前記冷媒過熱度を調整することが好ま
しい。また、前記第二膨張弁による前記インタクーラの
前記低圧側中間部の前記冷媒過熱度が10〜30°Cに
なるように調整することが望ましい。
It is preferable that the second expansion valve adjusts the degree of refrigerant superheat of the low pressure side intermediate portion of the intercooler so that the refrigerant at the outlet of the evaporator is in a gas-liquid two-phase region. Further, it is preferable that the refrigerant superheat degree of the low pressure side intermediate portion of the intercooler by the second expansion valve is adjusted to be 10 to 30 ° C.

【0014】請求項4に記載の本発明に係る自動車用空
調装置の蒸気圧縮式冷凍回路は、少なくとも圧縮機、ガ
ス冷却器、インタクーラ、第一膨張弁、受液器、第二膨
張弁及び蒸発器を配管で接続して閉回路を形成してな
る、超臨界サイクルを利用した自動車用空調装置の蒸気
圧縮式冷凍回路において、(1)前記インタクーラと前
記受液器との間に配設された第一膨張弁であって、該第
一膨張弁の入口冷媒圧力が前記ガス冷却器の出口冷媒温
度に基いて決定される所定圧力となるように圧力制御を
行なう該第一膨張弁と、(2)前記受液器と前記蒸発器
との間に配設された第二膨張弁であって、前記インタク
ーラの低圧側中間部での冷媒過熱度が所定値となるよう
に冷媒量を調整する該第二膨張弁と、を備えることを特
徴とする。
A vapor compression refrigeration circuit for an automobile air conditioner according to a fourth aspect of the present invention includes at least a compressor, a gas cooler, an intercooler, a first expansion valve, a liquid receiver, a second expansion valve and an evaporator. In a vapor compression refrigeration circuit for a vehicle air conditioner utilizing a supercritical cycle, which is formed by connecting a gas cooler with a pipe to form a closed circuit, (1) is disposed between the intercooler and the liquid receiver. A first expansion valve, wherein the first expansion valve performs pressure control so that the inlet refrigerant pressure of the first expansion valve becomes a predetermined pressure determined based on the outlet refrigerant temperature of the gas cooler, (2) A second expansion valve disposed between the liquid receiver and the evaporator, the amount of refrigerant being adjusted so that the degree of refrigerant superheat in the low pressure side intermediate portion of the intercooler becomes a predetermined value. And a second expansion valve that does this.

【0015】[0015]

【発明の実施の形態】次に、図1を参照しながら、本発
明の好適な実施の形態を説明する。図1は、本発明に係
る超臨界サイクルを利用した自動車用空調装置の蒸気圧
縮式冷凍サイクルの制御を示す冷媒回路図である。この
図において、冷媒(CO2)を利用した空調装置の冷媒
回路は、圧縮機1、ガス冷却器2、インタクーラ3、第
一膨張弁4、受液器5、第二膨張弁61及び蒸発器7が
配管8により順に接続され、閉回路を構成している。な
お、従来技術において説明した図2の参照符号と同一の
符号は、同一又は同様な構成要素であるので、その詳細
な説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, referring to FIG. 1, a preferred embodiment of the present invention will be described. FIG. 1 is a refrigerant circuit diagram showing control of a vapor compression refrigeration cycle of an automobile air conditioner using a supercritical cycle according to the present invention. In this figure, a refrigerant circuit of an air conditioner using a refrigerant (CO 2 ) includes a compressor 1, a gas cooler 2, an intercooler 3, a first expansion valve 4, a liquid receiver 5, a second expansion valve 61 and an evaporator. 7 are sequentially connected by a pipe 8 to form a closed circuit. Note that the same reference numerals as those in FIG. 2 described in the related art are the same or similar components, and thus detailed description thereof will be omitted.

【0016】第一膨張弁4は、インタクーラ3と受液器
5との間に配設されている。この第一膨張弁4は、ガス
冷却器2の出口側の冷媒温度9に基いて、この第一膨張
弁4の入口側の冷媒圧力が所定圧力になるよう弁開度を
調整し、圧力制御を行うようになっており、圧力制御弁
として機能する。従って、冷房運転時にインタクーラ3
の高圧側が超臨界状態となる冷凍サイクルにおいて、本
冷凍サイクルの冷凍能力や成績係数が最も良くなるよ
う、ガス冷却器2の出口側の冷媒温度9に対応して、第
一膨張弁4の入口側の冷媒圧力を最適圧力に制御するこ
とが可能となる。
The first expansion valve 4 is arranged between the intercooler 3 and the liquid receiver 5. The first expansion valve 4 adjusts the valve opening so that the refrigerant pressure on the inlet side of the first expansion valve 4 becomes a predetermined pressure based on the refrigerant temperature 9 on the outlet side of the gas cooler 2 to control the pressure. It functions as a pressure control valve. Therefore, the intercooler 3 during cooling operation
In a refrigeration cycle in which the high pressure side of the gas is in a supercritical state, the inlet of the first expansion valve 4 is corresponding to the refrigerant temperature 9 on the outlet side of the gas cooler 2 so that the refrigerating capacity and the coefficient of performance of this refrigeration cycle are the best. It is possible to control the refrigerant pressure on the side to the optimum pressure.

【0017】一方、第二膨張弁61は、受液器5と蒸発
器7との間に配設されている。この第二膨張弁61は、
インタクーラ3の低圧側中間部における冷媒の過熱度1
1が所定値となるように冷媒量を調整するようになって
おり、機械式制御弁として機能する。従って、この第二
膨張弁61によって蒸発器7の出口側と圧縮機1の入口
側の中間部となるインタクーラ3の低圧側中間部の過熱
度11が適正値に制御されるので、低外気温度の運転に
おいてもインタクーラ3の能力が確保されて十分な圧縮
機1入口側冷媒の過熱度を適正に維持することができ
る。その結果、圧縮機1の液冷媒圧縮による不具合の発
生を防止することができる。
On the other hand, the second expansion valve 61 is arranged between the liquid receiver 5 and the evaporator 7. This second expansion valve 61 is
Degree of superheat of refrigerant in low pressure side intermediate part of intercooler 3 1
The amount of refrigerant is adjusted so that 1 becomes a predetermined value, and it functions as a mechanical control valve. Therefore, since the second expansion valve 61 controls the superheat degree 11 of the low pressure side intermediate portion of the intercooler 3 which is an intermediate portion between the outlet side of the evaporator 7 and the inlet side of the compressor 1, the low outside air temperature Even in the operation of 1, the capacity of the intercooler 3 is secured and a sufficient superheat degree of the refrigerant on the inlet side of the compressor 1 can be appropriately maintained. As a result, it is possible to prevent a malfunction due to the liquid refrigerant compression of the compressor 1.

【0018】また、蒸発器7出口側の冷媒が気液2相状
態を維持するように、第二膨張弁61によって、インタ
クーラ3の低圧側中間部における冷媒の過熱度11を制
御することができる。これにより、第一膨張弁4により
本冷凍サイクルが最高効率で運転できることに加えて、
蒸発器7を有効に使用することが可能となるため、蒸発
器7の体積を相対的に小形化することができる。その結
果、空調装置の重量及びコストの低減を図ることができ
Further, the second expansion valve 61 can control the degree of superheat 11 of the refrigerant in the low pressure side intermediate portion of the intercooler 3 so that the refrigerant on the outlet side of the evaporator 7 maintains the gas-liquid two-phase state. . This allows the first expansion valve 4 to operate the refrigeration cycle at the highest efficiency,
Since the evaporator 7 can be effectively used, the volume of the evaporator 7 can be relatively reduced. As a result, the weight and cost of the air conditioner can be reduced.

【0019】さらに、第二膨張弁61のインタクーラ3
の低圧側中間部における冷媒の過熱度11が10〜30
°Cになるように設定制御することができる。これによ
り、第一膨張弁4の制御により本冷凍サイクルが最高効
率で運転できることに加えて、圧縮機1の入口側に必要
な最低の過熱度10°C、及びインタクーラ3の交換熱
量の確保と、圧縮機1の冷媒吐出温度の過大化防止に必
要な最高の過熱度30°Cの範囲に過熱度を維持するこ
とができる。その結果、蒸発器7の過熱度を大きく設定
できるようになり、冷房能力の増大、圧縮機1の保護、
そして圧縮機1の冷媒吐出温度が過大化を防止できる利
点がある。
Further, the intercooler 3 of the second expansion valve 61
Superheat degree 11 of the refrigerant in the low pressure side intermediate part of
The setting can be controlled so that the temperature becomes ° C. As a result, the main refrigeration cycle can be operated at the highest efficiency by controlling the first expansion valve 4, and the minimum superheat degree of 10 ° C. necessary for the inlet side of the compressor 1 and the exchange heat amount of the intercooler 3 can be secured. It is possible to maintain the superheat degree within the range of the maximum superheat degree of 30 ° C. necessary to prevent the refrigerant discharge temperature of the compressor 1 from becoming excessive. As a result, the degree of superheat of the evaporator 7 can be set to be large, the cooling capacity is increased, the compressor 1 is protected,
There is an advantage that the refrigerant discharge temperature of the compressor 1 can be prevented from becoming excessive.

【0020】[0020]

【発明の効果】請求項1に記載の本願発明によれば、蒸
気圧縮式冷凍サイクルにおいて、インタクーラと受液器
との間に配設した第一膨張弁により、該第一膨張弁の入
口冷媒圧力がガス冷却器の出口冷媒温度に基いて決定さ
れる所定圧力となるように圧力を制御すると共に、受液
器と蒸発器との間に配設された第二膨張弁により、イン
タクーラの低圧側中間部での冷媒過熱度が所定値となる
ように冷媒量を調整するので、第一膨張弁の制御により
本冷凍サイクルが最高効率で運転できることに加えて、
第二制御弁の制御により低外気温度の運転においてもイ
ンタクーラの能力が確保されて十分な圧縮機の入口側冷
媒の過熱度が維持でき、圧縮機の液冷媒圧縮による不具
合の発生を防止することができる。
According to the present invention described in claim 1, in the vapor compression refrigeration cycle, the inlet refrigerant of the first expansion valve is provided by the first expansion valve disposed between the intercooler and the liquid receiver. The pressure is controlled so that the pressure becomes a predetermined pressure determined based on the outlet refrigerant temperature of the gas cooler, and the low pressure of the intercooler is reduced by the second expansion valve arranged between the liquid receiver and the evaporator. Since the refrigerant amount is adjusted so that the refrigerant superheat degree at the side intermediate portion becomes a predetermined value, in addition to the fact that the present refrigeration cycle can be operated at the highest efficiency by controlling the first expansion valve,
By controlling the second control valve, the ability of the intercooler is secured even during operation at low outside air temperature, and the sufficient degree of superheat of the refrigerant on the inlet side of the compressor can be maintained, preventing the occurrence of problems due to compression of the liquid refrigerant of the compressor. You can

【0021】請求項2に記載の本願発明によれば、第二
膨張弁により、蒸発器の出口冷媒が気液2相域となるよ
うに、インタクーラの低圧側中間部の冷媒過熱度を設定
制御するので、蒸発器を有効に使用することが可能とな
るため、蒸発器の体積を相対的に小形化することがで
き、空調装置の重量及びコストの低減が図られる。
According to the invention of claim 2, the second expansion valve sets and controls the refrigerant superheat degree in the low pressure side intermediate portion of the intercooler so that the outlet refrigerant of the evaporator is in the gas-liquid two-phase region. Therefore, since the evaporator can be effectively used, the volume of the evaporator can be relatively reduced, and the weight and cost of the air conditioner can be reduced.

【0022】請求項3に記載の本願発明によれば、第二
膨張弁によるインタクーラの低圧側中間部の冷媒過熱度
が、圧縮機の入口側に必要な最低の過熱度10°C、及
びインタクーラの交換熱量の確保と、圧縮機の冷媒吐出
温度の過大化防止に必要な最高の過熱度30°Cの範囲
に維持されるので、蒸発器の過熱度を大きく設定できる
ようになり冷房能力の増大、圧縮機の保護、そして圧縮
機の冷媒吐出温度が過大化を防止できる利点がある。
According to the third aspect of the present invention, the refrigerant superheat degree at the low pressure side intermediate portion of the intercooler by the second expansion valve is 10 ° C, which is the minimum superheat degree required at the inlet side of the compressor, and the intercooler. Since the maximum amount of superheat required for exchanging the heat of exchange of the refrigerant and preventing the refrigerant discharge temperature of the compressor from being overheated is maintained in the range of 30 ° C, the degree of superheat of the evaporator can be set to a large value and the cooling capacity can be improved. There are advantages of increasing the temperature, protecting the compressor, and preventing the refrigerant discharge temperature of the compressor from becoming excessive.

【0023】請求項4に記載の本願発明によれば、蒸気
圧縮式冷凍回路において、第一膨張弁の入口冷媒圧力が
ガス冷却器の出口冷媒温度に基いて決定される所定圧力
となるように圧力制御を行なう第一膨張弁と、インタク
ーラの低圧側中間部での冷媒過熱度が所定値となるよう
に冷媒量を調整する第二膨張弁と、を備えているので、
請求項1に記載の発明と同様に、第一膨張弁の制御によ
り本冷凍サイクルが最高効率で運転できることに加え
て、第二制御弁の制御により低外気温度の運転において
もインタクーラの能力が確保されて十分な圧縮機の入口
側冷媒の過熱度が維持できる。
According to the invention of claim 4, in the vapor compression refrigeration circuit, the inlet refrigerant pressure of the first expansion valve is set to a predetermined pressure determined based on the outlet refrigerant temperature of the gas cooler. Since the first expansion valve that performs pressure control and the second expansion valve that adjusts the refrigerant amount so that the refrigerant superheat degree in the low-pressure side intermediate portion of the intercooler has a predetermined value,
Similarly to the invention described in claim 1, in addition to the operation of the present refrigeration cycle having the highest efficiency by controlling the first expansion valve, the ability of the intercooler is secured even by the operation of the low outside air temperature by controlling the second control valve. As a result, a sufficient degree of superheat of the refrigerant on the inlet side of the compressor can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態に係る二酸化炭素(CO
2)等の冷媒を使用した自動車用空調装置の蒸気圧縮式
冷凍サイクルの制御を示す冷媒回路図である。
FIG. 1 is a schematic diagram illustrating a carbon dioxide (CO
FIG. 2 is a refrigerant circuit diagram showing control of a vapor compression refrigeration cycle of an automobile air conditioner using a refrigerant such as 2 ).

【図2】 従来の蒸気圧縮式冷凍サイクルの制御を示す
冷媒回路の概略図である。
FIG. 2 is a schematic diagram of a refrigerant circuit showing control of a conventional vapor compression refrigeration cycle.

【図3】 冷媒(CO2)のモリエール線図である。FIG. 3 is a Mollier diagram of a refrigerant (CO 2 ).

【符号の説明】[Explanation of symbols]

1…圧縮機、2…ガス冷却器、3…インタクーラ、4…
第一膨張弁、5…受液器(タンク手段)、6…第二膨張
弁、7…蒸発器、8…配管、9…冷媒温度(ガス冷却器
の出口側)、10a…過熱度(圧縮機の入口側)、10
b…過熱度(蒸発器の出口側)、11…過熱度(インタ
クーラの低圧中間部)、61…第二膨張弁。
1 ... Compressor, 2 ... Gas cooler, 3 ... Intercooler, 4 ...
1st expansion valve, 5 ... Liquid receiver (tank means), 6 ... 2nd expansion valve, 7 ... Evaporator, 8 ... Piping, 9 ... Refrigerant temperature (outlet side of gas cooler), 10a ... Superheat degree (compression) Machine entrance side), 10
b ... Superheat degree (outlet side of evaporator), 11 ... Superheat degree (low pressure intermediate portion of intercooler), 61 ... Second expansion valve.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも圧縮機、ガス冷却器、インタ
クーラ、第一膨張弁、受液器、第二膨張弁及び蒸発器を
配管で接続した閉回路内に冷媒を循環させる、超臨界サ
イクルを利用した自動車用空調装置の蒸気圧縮式冷凍サ
イクルにおいて、 前記インタクーラと前記受液器との間に第一膨張弁を準
備すると共に、前記受液器と前記蒸発器との間に第二膨
張弁を準備し、 前記第一膨張弁により、該第一膨張弁の入口冷媒圧力が
前記ガス冷却器の出口冷媒温度に基いて決定される所定
圧力となるように圧力を制御すると共に、 前記第二膨張弁により、前記インタクーラの低圧側中間
部での冷媒過熱度が所定値となるように冷媒量を調整す
ることを特徴とする自動車用空調装置の蒸気圧縮式冷凍
サイクルの制御方法。
1. A supercritical cycle is used in which a refrigerant is circulated in a closed circuit in which at least a compressor, a gas cooler, an intercooler, a first expansion valve, a liquid receiver, a second expansion valve and an evaporator are connected by piping. In the vapor compression refrigeration cycle of the automobile air conditioner, a first expansion valve is provided between the intercooler and the liquid receiver, and a second expansion valve is provided between the liquid receiver and the evaporator. Prepared, by the first expansion valve, while controlling the pressure so that the inlet refrigerant pressure of the first expansion valve is a predetermined pressure determined based on the outlet refrigerant temperature of the gas cooler, the second expansion A method for controlling a vapor compression refrigeration cycle of an air conditioner for an automobile, characterized in that the amount of the refrigerant is adjusted by a valve such that the degree of superheat of the refrigerant in the low pressure side intermediate portion of the intercooler becomes a predetermined value.
【請求項2】 前記第二膨張弁により、前記蒸発器の出
口冷媒が気液2相域となるように、前記インタクーラの
前記低圧側中間部の前記冷媒過熱度を調整することを特
徴とする請求項1記載の自動車用空調装置の蒸気圧縮式
冷凍サイクルの制御方法。
2. The second expansion valve adjusts the degree of refrigerant superheat in the low-pressure side intermediate portion of the intercooler so that the outlet refrigerant of the evaporator is in a gas-liquid two-phase region. A method for controlling a vapor compression refrigeration cycle for an automobile air conditioner according to claim 1.
【請求項3】 前記第二膨張弁による前記インタクーラ
の前記低圧側中間部の前記冷媒過熱度が10〜30°C
になるように調整することを特徴とする請求項1記載の
自動車用空調装置の蒸気圧縮式冷凍サイクルの制御方
法。
3. The refrigerant superheat degree of the intermediate portion of the low pressure side of the intercooler by the second expansion valve is 10 to 30 ° C.
The method for controlling a vapor compression refrigeration cycle of an automobile air conditioner according to claim 1, wherein the method is adjusted so that
【請求項4】 少なくとも圧縮機、ガス冷却器、インタ
クーラ、第一膨張弁、受液器、第二膨張弁及び蒸発器を
配管で接続して閉回路を形成してなる、超臨界サイクル
を利用した自動車用空調装置の蒸気圧縮式冷凍回路にお
いて、 前記インタクーラと前記受液器との間に配設された第一
膨張弁であって、該第一膨張弁の入口冷媒圧力が前記ガ
ス冷却器の出口冷媒温度に基いて決定される所定圧力と
なるように圧力制御を行なう該第一膨張弁と、 前記受液器と前記蒸発器との間に配設された第二膨張弁
であって、前記インタクーラの低圧側中間部での冷媒過
熱度が所定値となるように冷媒量を調整する該第二膨張
弁と、を備えることを特徴とする自動車用空調装置の蒸
気圧縮式冷凍回路。
4. A supercritical cycle is used in which at least a compressor, a gas cooler, an intercooler, a first expansion valve, a liquid receiver, a second expansion valve and an evaporator are connected by piping to form a closed circuit. In a vapor compression refrigeration circuit for an automobile air conditioner, the first expansion valve is disposed between the intercooler and the liquid receiver, and the inlet refrigerant pressure of the first expansion valve is the gas cooler. And a second expansion valve disposed between the liquid receiver and the evaporator, the first expansion valve performing pressure control to a predetermined pressure determined based on the outlet refrigerant temperature of A second expansion valve that adjusts the amount of refrigerant so that the refrigerant superheat degree at the low-pressure side intermediate portion of the intercooler becomes a predetermined value, and a vapor compression refrigeration circuit for an air conditioner for an automobile.
JP2001315322A 2001-10-12 2001-10-12 Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner Withdrawn JP2003121012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315322A JP2003121012A (en) 2001-10-12 2001-10-12 Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315322A JP2003121012A (en) 2001-10-12 2001-10-12 Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner

Publications (1)

Publication Number Publication Date
JP2003121012A true JP2003121012A (en) 2003-04-23

Family

ID=19133508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315322A Withdrawn JP2003121012A (en) 2001-10-12 2001-10-12 Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner

Country Status (1)

Country Link
JP (1) JP2003121012A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087004A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Control of a refrigeration circuit with an internal heat exchanger
US8141381B2 (en) * 2006-03-27 2012-03-27 Mayekawa Mfg. Co., Ltd. Vapor compression refrigerating cycle, control method thereof, and refrigerating apparatus to which the cycle and the control method are applied
WO2014073150A1 (en) * 2012-11-07 2014-05-15 株式会社デンソー Cooling device
WO2018164032A1 (en) * 2017-03-08 2018-09-13 株式会社ヴァレオジャパン Vehicular heat management system and control method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087004A1 (en) * 2005-02-18 2006-08-24 Carrier Corporation Control of a refrigeration circuit with an internal heat exchanger
US8141381B2 (en) * 2006-03-27 2012-03-27 Mayekawa Mfg. Co., Ltd. Vapor compression refrigerating cycle, control method thereof, and refrigerating apparatus to which the cycle and the control method are applied
WO2014073150A1 (en) * 2012-11-07 2014-05-15 株式会社デンソー Cooling device
JP2014095484A (en) * 2012-11-07 2014-05-22 Denso Corp Cooling apparatus
WO2018164032A1 (en) * 2017-03-08 2018-09-13 株式会社ヴァレオジャパン Vehicular heat management system and control method therefor
JP2018144728A (en) * 2017-03-08 2018-09-20 株式会社ヴァレオジャパン Heat control system for vehicle and control method thereof

Similar Documents

Publication Publication Date Title
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
KR100360006B1 (en) Transcritical vapor compression cycle
JP3365273B2 (en) Refrigeration cycle
JP3897681B2 (en) Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
US20060277932A1 (en) Refrigerating machine having intermediate-pressure receiver
JP4776438B2 (en) Refrigeration cycle
JP2000234814A (en) Vapor compressed refrigerating device
EP1538405A2 (en) Refrigeration cycle apparatus
EP2568232B1 (en) Air conditioner
JP2006078087A (en) Refrigeration unit
CN103597296A (en) Freezing cycle
US8171747B2 (en) Refrigeration device
JP2002081767A (en) Air conditioner
JP3983520B2 (en) Supercritical vapor compression system and suction line heat exchanger for adjusting the pressure of the high pressure component of the refrigerant circulating in the supercritical vapor compression system
JP2005147456A (en) Air conditioner
KR101252173B1 (en) Heat pump and control method of the heat pump
JP2000146322A (en) Refrigerating cycle
JP2003130481A (en) Vapor compression type refrigerating cycle of air conditioner for automobile
JP4622193B2 (en) Refrigeration equipment
JP4716935B2 (en) Refrigeration cycle apparatus and heat pump water heater
JP5659909B2 (en) Heat pump equipment
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP2008096072A (en) Refrigerating cycle device
JP2003121012A (en) Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner
JP4326004B2 (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104