WO2020066002A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2020066002A1
WO2020066002A1 PCT/JP2018/036527 JP2018036527W WO2020066002A1 WO 2020066002 A1 WO2020066002 A1 WO 2020066002A1 JP 2018036527 W JP2018036527 W JP 2018036527W WO 2020066002 A1 WO2020066002 A1 WO 2020066002A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
dryness
bypass pipe
heat exchanger
Prior art date
Application number
PCT/JP2018/036527
Other languages
French (fr)
Japanese (ja)
Inventor
亮 築山
野本 宗
悟 梁池
智隆 石川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/036527 priority Critical patent/WO2020066002A1/en
Priority to CN201880097615.7A priority patent/CN112714854B/en
Priority to JP2020547865A priority patent/JP6937934B2/en
Publication of WO2020066002A1 publication Critical patent/WO2020066002A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus that can use a pseudo-azeotropic mixed refrigerant and a non-azeotropic mixed refrigerant.
  • a refrigerating apparatus is configured so that optimal control is performed on a designated refrigerant. If the type of the charged refrigerant is different, the saturated liquid temperature is also different, so the pressure in the refrigeration cycle must be changed. Therefore, it is necessary to change the control of the compressor and the like for each type of refrigerant.
  • Patent Document 1 discloses a refrigeration apparatus that automatically identifies an arbitrary refrigerant from a plurality of types of refrigerants and performs efficient operation corresponding to the refrigerant.
  • mixed refrigerants in which the GWP has been reduced by mixing other refrigerants with lower global warming potential (GWP) with a refrigerant consisting of a single component May be used.
  • GWP global warming potential
  • the mixed refrigerants there are a pseudo-azeotropic refrigerant and a non-azeotropic refrigerant.
  • a pseudo-azeotropic refrigerant exhibits a constant boiling point when a plurality of components of a refrigerant are mixed at a certain ratio, has the same composition in a gas phase and a liquid phase, and exhibits a phase change as if it were a single component. .
  • the pseudo-azeotropic refrigerant has the same temperature at the same pressure during the two-phase phase change, while the non-azeotropic refrigerant has the characteristic that the temperature changes during the phase change under the same pressure.
  • the type of refrigerant is determined from the degree of supercooling of the refrigerant at the outlet of the liquid receiver provided downstream of the condenser.
  • the refrigerant composition changes depending on the operation state of the refrigeration system, and the saturated liquid temperature also changes.
  • the temperature of the saturated liquid may be the same as that of another pseudo-azeotropic refrigerant. Therefore, the method of judging from the degree of supercooling disclosed in International Publication WO2017 / 138008 accurately uses non-azeotropic refrigerant. It is difficult to determine the mixed refrigerant.
  • An object of the present invention is to provide a refrigeration cycle apparatus capable of correctly determining a non-azeotropic mixed refrigerant.
  • the present disclosure relates to a refrigeration cycle device.
  • the refrigeration cycle device includes a compressor, a first heat exchanger, a first expansion device, a second heat exchanger, a compressor, a first heat exchanger, a first expansion device, and a second heat exchanger in that order.
  • the refrigeration cycle device of the present disclosure it is possible to detect a change in temperature when the dryness of the refrigerant is changed, so that the non-azeotropic refrigerant and the pseudo-azeotropic refrigerant can be correctly determined.
  • FIG. 2 is a diagram illustrating a configuration of a refrigeration cycle device according to Embodiment 1.
  • FIG. 4 is a ph diagram of a refrigeration cycle apparatus when R410A is used as a refrigerant.
  • FIG. 3 is a ph diagram of a refrigeration cycle apparatus when R463A is used as a refrigerant. It is a figure showing an example of a control value changed according to a refrigerant kind.
  • 4 is a flowchart illustrating a main routine of control of the refrigeration cycle device according to Embodiment 1.
  • 4 is a flowchart illustrating details of a process of a refrigerant type determination operation performed in the first embodiment.
  • FIG. 9 is a diagram illustrating a configuration of a refrigeration cycle device according to Embodiment 2.
  • FIG. 8 is a flowchart illustrating details of a process of a refrigerant type determination operation performed in the second embodiment.
  • FIG. 9 is a diagram illustrating a configuration of a refrigeration cycle device according to Embodiment 3.
  • FIG. 4 is a diagram illustrating a configuration of a first example of a receiver and a suction end of a bypass pipe. It is the figure which showed the some hole provided in the edge part of the bypass pipe of the 1st example. It is a graph which shows the relationship between dryness Q and liquid level height H1.
  • FIG. 13 is a ph diagram of a refrigeration cycle apparatus when R410A is used as a refrigerant in the third embodiment.
  • FIG. 13 is a ph diagram of a refrigeration cycle apparatus when R463A is used as a refrigerant in the third embodiment.
  • 9 is a flowchart illustrating details of a refrigerant type determination operation process executed in a third embodiment. It is a figure which shows the structure of the 2nd example of the suction end part of a bypass piping. It is a figure showing the composition of the 3rd example of the suction end of a bypass pipe. It is a figure showing the composition of the 4th example of the suction end of a bypass pipe. It is a figure which shows the detail of the hole provided in the suction end part of the bypass pipe of the 4th example.
  • Embodiment 1 FIG.
  • the refrigeration cycle apparatus described in Embodiment 1 is configured to be able to use a non-azeotropic refrigerant and an azeotropic refrigerant or a pseudo-azeotropic refrigerant.
  • the type of the refrigerant can be accurately detected by utilizing the characteristics of the non-azeotropic refrigerant.
  • the configuration of the refrigeration cycle device will be described.
  • FIG. 1 is a diagram illustrating a configuration of a refrigeration cycle device according to the first embodiment.
  • the connection relation and arrangement of each device in the refrigeration apparatus are shown functionally, and the arrangement in a physical space is not necessarily shown.
  • refrigeration cycle apparatus 1 includes outdoor unit 2 and indoor unit 3.
  • the outdoor unit 2 includes a compressor 10, a condenser 20, a first fan 22, and pipes 80 to 84.
  • the outdoor unit 2 further includes a bypass channel 111, a dryness changing device 112, a temperature detecting unit 113, a first pressure sensor 90 and a second pressure sensor 92, and a control device 100.
  • the bypass flow passage 111 includes a second expansion device 71, a first bypass pipe 86 on the upstream side of the second expansion device 71, and a second bypass pipe 87 on the downstream side.
  • the second expansion device 71 is, for example, a capillary tube.
  • the heating device 72 is, for example, an electric heater configured to heat the refrigerant flowing through the second bypass pipe 87.
  • the drying degree changing device 112 is the heating device 72.
  • the temperature detection unit 113 is the temperature sensor 73.
  • the indoor unit 3 includes a first expansion device 50, an evaporator 60, a second fan 62, and a pipe 83.
  • the first expansion device 50 is, for example, an electronic expansion valve.
  • the indoor unit 3 is connected to the outdoor unit 2 by pipes 82 and 84.
  • the pipe 80 connects the discharge port of the compressor 10 and the condenser 20.
  • the pipe 81 connects the condenser 20 and the branch point M1.
  • the pipe 82 connects the branch point M1 and the first expansion device 50.
  • the pipe 83 connects the first expansion device 50 and the evaporator 60.
  • the pipe 84 connects the evaporator 60 and the suction port of the compressor 10.
  • the first bypass pipe 86 connects the branch point M1 and the second expansion device 71.
  • the second bypass pipe 87 connects the second expansion device 71 and the pipe 84.
  • the compressor 10 sucks the refrigerant from the pipe 84, compresses the sucked refrigerant, and discharges the compressed refrigerant to the pipe 80.
  • the compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the operating frequency or the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the capacity of the refrigeration cycle apparatus 1 can be adjusted.
  • Various types can be used for the compressor 10, and for example, a scroll type, a rotary type, a screw type, and the like can be used.
  • the condenser 20 condenses the refrigerant discharged from the compressor 10 to the pipe 80.
  • the condensed refrigerant is sent out to the pipe 81.
  • the condenser 20 is configured such that the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 performs heat exchange (radiation) with the outside air. By this heat exchange, the refrigerant is condensed and changes to a liquid phase.
  • the first fan 22 supplies outside air to the condenser 20 where the refrigerant performs heat exchange in the condenser 20. By adjusting the rotation speed of the first fan 22, the refrigerant pressure (high-pressure side pressure) on the discharge side of the compressor 10 can be adjusted.
  • the first expansion device 50 reduces the pressure of the refrigerant sent from the condenser 20 to the pipe 82.
  • the depressurized refrigerant is sent to the pipe 83.
  • the opening degree of the first expansion device 50 is changed in the closing direction, the refrigerant pressure on the low pressure side of the first expansion device 50 decreases and the dryness of the refrigerant increases.
  • the opening degree of the first expansion device 50 is changed in the opening direction, the refrigerant pressure on the low pressure side of the first expansion device 50 increases, and the dryness of the refrigerant decreases.
  • the evaporator 60 evaporates the refrigerant sent from the first expansion device 50 to the pipe 83.
  • the refrigerant having passed through the evaporator 60 flows to the pipe 84.
  • the evaporator 60 is configured such that the refrigerant decompressed by the first expansion device 50 performs heat exchange (heat absorption) with the air in the indoor unit 3.
  • the refrigerant evaporates by passing through the evaporator 60 to become superheated steam.
  • the second fan 62 supplies the air in which the refrigerant performs heat exchange in the evaporator 60 to the evaporator 60.
  • a first bypass pipe 86, a second expansion device 71, a second bypass pipe 87, a heating device 72, and a temperature sensor 73 are provided.
  • the first bypass pipe 86, the second expansion device 71, and the second bypass pipe 87 form a bypass flow path 111 that returns a part of the refrigerant that has passed through the condenser 20 to the compressor 10 without passing through the indoor unit 3.
  • the second expansion device 71 is, for example, a capillary tube.
  • the second expansion device 71 is connected between the first bypass pipe 86 and the second bypass pipe 87 and reduces the pressure of the refrigerant flowing through the bypass flow path 111. As the refrigerant passes through the second expansion device 71, the pressure of the refrigerant decreases.
  • the heating device 72 changes the dryness of the refrigerant flowing through the second bypass pipe 87 under the same pressure.
  • the temperature sensor 73 is provided downstream of the heating device 72 in the second bypass pipe 87.
  • the temperature sensor 73 detects the temperature T1 of the refrigerant that has passed through the second expansion device 71, and outputs the detected value to the control device 100.
  • the temperature sensor 73 may be installed outside the second bypass pipe 87, or may be installed inside the second bypass pipe 87 in order to more reliably detect the temperature of the refrigerant. The principle and method of refrigerant type detection using these will be described later in detail.
  • the first pressure sensor 90 detects the pressure LP of the refrigerant in the pipe 84 and outputs the detected value to the control device 100. That is, the first pressure sensor 90 detects the refrigerant pressure (low pressure side pressure) on the suction side of the compressor 10.
  • the second pressure sensor 92 detects the pressure HP of the refrigerant in the pipe 80 and outputs the detected value to the control device 100. That is, the second pressure sensor 92 detects the refrigerant pressure (high pressure side pressure) on the discharge side of the compressor 10.
  • the control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input / output buffer (not shown) for inputting and outputting various signals. It is comprised including.
  • the CPU 102 executes a program stored in the ROM by expanding the program in the RAM or the like.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is described.
  • the control device 100 controls each device of the refrigeration cycle device 1 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • the refrigeration cycle apparatus 1 is configured to be able to use two types of refrigerant as the enclosed refrigerant.
  • One type is an azeotropic refrigerant or a pseudo-azeotropic refrigerant, for example, R410A.
  • Another type is a non-azeotropic refrigerant, for example, R463A.
  • FIG. 2 is a ph diagram of the refrigeration cycle apparatus when R410A is used as the refrigerant.
  • FIG. 3 is a ph diagram of the refrigeration cycle apparatus when R463A is used as the refrigerant.
  • the isotherm in the two-phase state between the saturated liquid line and the saturated vapor line has no temperature gradient and is horizontal as shown in FIG.
  • the isotherm in the two-phase state between the saturated liquid line and the saturated vapor line has a temperature gradient as shown in FIG.
  • the state of the refrigerant passing through the bypass flow path 111 changes from point A to point B in FIG. 2, and when heated by the heating device 72, changes while keeping the temperature constant as at point C. .
  • the heating device 72 is in the OFF state, the dryness at the point C in FIG. 1 is the same as the dryness at the point B. Therefore, the temperature T1 detected by the temperature sensor 73 is the temperature in the refrigerant state at the point B in FIG. It is. Thereafter, when the heating device is turned on to heat the refrigerant, the dryness of the refrigerant flowing through the second bypass pipe 87 increases, and the temperature T1 detected by the temperature sensor 73 becomes the temperature in the refrigerant state at point C in FIG.
  • the control device 100 is sealed by changing the heating device 72 from the OFF state to the ON state and detecting whether or not the temperature T1 has changed.
  • R463A can be determined whether the refrigerant is R410A.
  • FIG. 4 is a diagram showing an example of a control value changed according to the type of refrigerant.
  • the target pressures of R410A and R463A are lower, and the target pressure of R410A is 0.01 to 0 lower than the target pressure of R463A. .02 MPaA.
  • the target value of the pressure to be controlled is changed as shown in FIG. 4 according to the target refrigerant temperature.
  • the control device 100 controls at least one of the operating frequency of the compressor 10, the opening degree of the first expansion device 50, the rotation speed of the first fan 22, and the rotation speed of the second fan 62. Control one.
  • the target value of the pressure needs to be switched as shown in FIG. 4 depending on whether the sealed refrigerant is R410A or R463A.
  • the control values shown in FIG. 4 are stored in the memory 104 in advance as a map for each type of refrigerant.
  • the control device 100 selects a map corresponding to the refrigerant and applies it to various controls. For example, when it is desired to operate the evaporation temperature at ⁇ 10 ° C. and the refrigerant is R410A, the compressor 10 and the like are controlled with the pressure at 0.57 MPaA as a target value. When the refrigerant is R463A, the compressor 10 and the like are controlled with a pressure of 0.59 MPaA as a target value.
  • FIG. 5 is a flowchart illustrating a main routine of control of the refrigeration cycle device according to the first embodiment.
  • the control device 100 first determines whether or not the type of the enclosed refrigerant is stored in the memory 104 in step S1. If the type of refrigerant is not stored in the memory 104 in step S1, the refrigerant type determination operation of step S2 is performed. On the other hand, if the type of refrigerant is already stored in memory 104, the process proceeds to step S3 without performing step S2.
  • step S2 When the refrigerant type determination operation is performed in step S2, the refrigerant type is stored in the memory 104. Then, in step S3, the control device 100 operates the refrigeration cycle device using the control value corresponding to the refrigerant type stored in the memory 104.
  • FIG. 6 is a flowchart showing details of the processing of the refrigerant type determination operation executed in step S2 in the first embodiment.
  • the control device 100 performs a test operation of the refrigeration cycle device 1.
  • the conditions for this test operation are such that the refrigerant that has passed through the second expansion device 71 in the bypass channel 111 is in a two-phase state, regardless of whether the enclosed refrigerant is R410A or R463A.
  • control device 100 measures temperature T1 by temperature sensor 73 when heating device 72 is in the OFF state, and stores the measurement result in memory 104 as first temperature T1A. Thereafter, in step S13, the control device 100 changes the heating device 72, specifically, the heater from the OFF state to the ON state. Then, in step S14, control device 100 measures temperature T1 again by temperature sensor 73, and stores the measurement result in memory 104 as second temperature T1B.
  • step S15 when ⁇ T> threshold, that is, when the temperature of the two-phase refrigerant increases due to heating, it is determined that the refrigerant sealed in step S16 is R463A, which is a non-azeotropic refrigerant, The control device 100 causes the memory 104 to store the refrigerant type.
  • ⁇ T ⁇ the threshold value in step S15 that is, if the temperature of the two-phase refrigerant does not increase even when heated, the refrigerant sealed in step S17 is R410A, which is a pseudo-azeotropic refrigerant. Then, the control device 100 causes the memory 104 to store the refrigerant type.
  • step S16 or S17 after the refrigerant type is stored in the memory 104, the process proceeds to step S18, and returns to the flowchart in FIG.
  • the refrigeration cycle apparatus 1 includes a compressor 10, a condenser 20, which is a first heat exchanger, a first expansion device 50, an evaporator 60, which is a second heat exchanger, a refrigerant circuit 110, and a bypass flow passage. 111, a dryness changing device 112, a temperature detecting unit 113, and a control device 100.
  • the refrigerant circuit 110 circulates refrigerant in the order of the compressor 10, the first heat exchanger, the first expansion device 50, and the second heat exchanger.
  • the bypass flow path 111 sends the refrigerant from the first heat exchanger to the suction port of the compressor 10 without passing through the first expansion device 50 and the second heat exchanger.
  • the dryness changing device 112 is configured to change the dryness of the refrigerant flowing through the bypass passage 111.
  • the temperature detector 113 is configured to detect a temperature change before and after the dryness is changed by the dryness changing device 112.
  • the control device 100 controls the dryness changing device 112.
  • the control device 100 specifies the type of the refrigerant based on the temperature change detected by the temperature detection unit 113.
  • the bypass flow path 111 includes a second expansion device 71, a first bypass pipe 86 located upstream of the second expansion device 71 in the refrigerant passage direction, and a refrigerant passage direction. And a second bypass pipe 87 located downstream of the second expansion device 71.
  • the dryness changing device 112 includes a heating device 72 that heats the refrigerant flowing through the second bypass pipe 87.
  • the temperature detection unit 113 includes a temperature sensor 73 that detects the temperature of the refrigerant downstream of the heating device 72 in the second bypass pipe 87. As shown in FIG.
  • the control device 100 controls the first temperature T1A detected by the temperature detection unit 113 when the heating by the heating device 72 is performed, and the temperature detection when the heating by the heating device 72 is not performed.
  • the type of the refrigerant is specified based on the second temperature T1B detected by the unit 113.
  • the enclosed refrigerant is determined to be “a pseudo-azeotropic refrigerant or a refrigerant based on whether or not the temperature T1 changes before and after heating by the heating device 72. It is configured to determine whether the refrigerant is a “single refrigerant” or a “non-azeotropic refrigerant”, and operate with a control value according to the refrigerant type stored in the memory 104 in advance.
  • control device 100 determines that the refrigerant is “pseudo-azeotropic refrigerant or single refrigerant”, and the temperature change is smaller than the threshold. When it is larger, it is determined that the refrigerant is a “non-azeotropic refrigerant”. In this way, the refrigeration cycle apparatus 1 can perform an operation suitable for the automatically charged refrigerant.
  • the temperature change of the refrigerant when the heating device 72 is changed from the OFF state to the ON state is monitored, but the temperature of the refrigerant when the heating device 72 is changed from the ON state to the OFF state is monitored. Changes may be monitored.
  • Embodiment 2 FIG.
  • the first embodiment attention is paid to a change in the temperature T1 measured by the temperature sensor 73 when heating is not performed by the heating device 72 and when heating is performed.
  • the second embodiment when another heating is performed by the heating device 72 to add another temperature sensor, a temperature difference before and after passing through the heating device 72 is detected.
  • FIG. 7 is a diagram illustrating a configuration of a refrigeration cycle apparatus according to Embodiment 2.
  • the connection relation and arrangement of each device in the refrigeration apparatus are shown functionally, and the arrangement in a physical space is not necessarily shown.
  • the refrigeration cycle apparatus 1A shown in FIG. 7 includes an outdoor unit 2A and an indoor unit 3.
  • a temperature sensor 74 and a receiver (liquid receiver) 42 are added to the outdoor unit 2 of the refrigeration cycle apparatus 1A shown in FIG.
  • the configuration of the other units of outdoor unit 2A is the same as that of outdoor unit 2, and therefore description thereof will not be repeated.
  • the receiver 42 is disposed at the branch point M1 in FIG. 1 and stores the refrigerant that has passed through the condenser 20. Since the outlet to the first bypass pipe 86 is provided at the bottom of the receiver 42, the liquid refrigerant is sent to the first bypass pipe 86.
  • the temperature sensor 74 detects the temperature T2 when the liquid refrigerant supplied from the first bypass pipe 86 passes through the second expansion device 71 and becomes a two-phase refrigerant.
  • step S2 the control of the flowchart shown in FIG. 5 is performed, but the process of the refrigerant type determination operation performed in step S2 is slightly different.
  • FIG. 8 is a flowchart illustrating details of the processing of the refrigerant type determination operation performed in step S2 in the second embodiment.
  • the control device 100 performs a test operation of the refrigeration cycle device 1A.
  • the conditions for this test operation are such that the refrigerant that has passed through the second expansion device 71 in the bypass flow passage 111 is in a two-phase state regardless of whether the refrigerant is R410A or R463A.
  • control device 100 turns on heating device 72.
  • the temperature T1 is measured by the temperature sensor 73 and the temperature T2 is measured by the temperature sensor 74.
  • control device 100 determines whether or not the amount of change in temperature (T1-T2) before and after heating by heating device 72 is greater than a threshold value.
  • control device 100 determines that the refrigerant enclosed in step S25 is a non-azeotropic refrigerant. It is determined that there is a certain R463A, and the type of the refrigerant is stored in the memory 104.
  • control device 100 determines whether the refrigerant sealed in step S26 is It is determined that the refrigerant is the pseudo azeotropic refrigerant R410A, and the type of the refrigerant is stored in the memory 104.
  • step S25 or S26 after the refrigerant type is stored in the memory 104, the process proceeds to step S27, and returns to the flowchart of FIG.
  • the refrigeration cycle apparatus 1A includes a compressor 10, a condenser 20, which is a first heat exchanger, a first expansion device 50, an evaporator 60, which is a second heat exchanger, a refrigerant circuit 110, and a bypass flow path. 111, a dryness changing device 112, a temperature detecting unit 113A, and a control device 100.
  • the refrigerant circuit 110 circulates refrigerant in the order of the compressor 10, the first heat exchanger, the first expansion device 50, and the second heat exchanger.
  • the bypass flow path 111 sends the refrigerant from the first heat exchanger to the suction port of the compressor 10 without passing through the first expansion device 50 and the second heat exchanger.
  • the dryness changing device 112 is configured to change the dryness of the refrigerant flowing through the bypass passage 111.
  • the temperature detecting unit 113A is configured to detect a temperature change before and after the dryness is changed by the dryness changing device 112.
  • the control device 100 controls the dryness changing device 112. Control device 100 specifies the type of refrigerant based on the temperature change detected by temperature detection unit 113A.
  • the bypass flow path 111 includes a second expansion device 71, a first bypass pipe 86 located upstream of the second expansion device 71 in the refrigerant passage direction, and a refrigerant passage direction. And a second bypass pipe 87 located downstream of the second expansion device 71.
  • the dryness changing device 112 includes a heating device 72 that heats the refrigerant flowing through the second bypass pipe 87.
  • Temperature detector 113A includes a temperature sensor 73 as a first temperature sensor and a temperature sensor 74 as a second temperature sensor. The first temperature sensor detects a first temperature T1 after the refrigerant flowing in the second bypass pipe 87 has been heated by the heating device 72.
  • the second temperature sensor detects a second temperature T2 before the refrigerant flowing through the second bypass pipe 87 reaches the heating device 72. As shown in FIG. 8, the control device 100 specifies the type of the refrigerant based on the first temperature T1 and the second temperature T2.
  • the refrigeration cycle apparatus 1A determines whether the temperature of the two-phase refrigerant changes between the temperature T2 before the heating by the heating device 72 and the temperature T1 after the heating. It is determined whether the enclosed refrigerant is a “pseudo-azeotropic refrigerant or a single refrigerant” or a “non-azeotropic refrigerant”, and the operation is performed with a control value corresponding to the refrigerant type stored in the memory 104 in advance. Configured to do so.
  • control device 100 determines that the refrigerant is “pseudo-azeotropic refrigerant or single refrigerant”, and the temperature change is smaller than the threshold. When it is larger, it is determined that the refrigerant is a “non-azeotropic refrigerant”. In this manner, the refrigeration cycle apparatus 1A can perform an operation suitable for the automatically charged refrigerant.
  • the receiver 42 is provided, but the receiver 42 may not be necessarily provided as shown in FIG. Further, a receiver 42 may be added to FIG. 1 of the first embodiment.
  • FIG. 9 is a diagram illustrating a configuration of a refrigeration cycle apparatus according to Embodiment 3.
  • This refrigeration cycle apparatus is configured to be able to use a pseudo-azeotropic refrigerant and a non-azeotropic refrigerant mixture.
  • the connection relation and the arrangement of each device in the refrigeration apparatus are functionally shown, and the arrangement in a physical space is not necessarily shown.
  • refrigeration cycle apparatus 1B includes outdoor unit 2B and indoor unit 3.
  • the outdoor unit 2 includes a compressor 10, a condenser 20, a first fan 22, a receiver 42, and pipes 80 to 84. Further, the outdoor unit 2 further includes a bypass flow path 111, a second expansion device 71, a temperature sensor 73, a first pressure sensor 90 and a second pressure sensor 92, and a control device 100.
  • the second expansion device 71 is, for example, a capillary tube.
  • the indoor unit 3 includes a first expansion device 50, an evaporator 60, a second fan 62, and a pipe 83.
  • the first expansion device 50 is, for example, an electronic expansion valve.
  • the indoor unit 3 is connected to the outdoor unit 2 through pipes 82 and 84.
  • the dryness changing device 112 includes the receiver 42 and the first fan 22. Further, the temperature detecting section 113 is constituted by a temperature sensor 73.
  • the indoor unit 3 has the same configuration as the first and second embodiments.
  • the outdoor unit 2B has the same configuration as that of the second embodiment except for the portion where the first bypass pipe 86 is attached to the receiver 42. Therefore, detailed description of the same configuration will not be repeated.
  • a first bypass pipe 86 and a second bypass pipe 87, a second expansion device 71 provided between the first bypass pipe 86 and the second bypass pipe 87, and a temperature sensor 73 are provided.
  • the first bypass pipe 86, the second expansion device 71, and the second bypass pipe 87 form a bypass flow path 111 that returns a part of the refrigerant that has passed through the condenser 20 to the compressor 10 without passing through the indoor unit 3.
  • the second expansion device 71 is, for example, a capillary tube.
  • the second expansion device 71 is connected between the first bypass pipe 86 and the second bypass pipe 87, and adjusts the flow rate of the refrigerant flowing through the bypass flow path 111. As the refrigerant passes through the second expansion device 71, the pressure of the refrigerant decreases.
  • the temperature sensor 73 is provided in the second bypass pipe 87.
  • the temperature sensor 73 detects the temperature T1 of the refrigerant that has passed through the second expansion device 71, and outputs the detected value to the control device 100.
  • the temperature sensor 73 may be installed outside the second bypass pipe 87, or may be installed inside the second bypass pipe 87 in order to more reliably detect the temperature of the refrigerant.
  • the second bypass pipe is used by changing the rotation speed of the first fan 22 provided in the condenser 20 to change the temperature and density of the refrigerant inside the condenser 20. Change the dryness flowing through 87.
  • the receiver 42 stores the high-pressure liquid refrigerant condensed by the condenser 20.
  • the rotation speed of the first fan 22 is increased, the amount of heat exchange with the outside air in the condenser 20 increases, so that the temperature of the refrigerant decreases. Then, since the refrigerant density inside the condenser 20 decreases, the amount of surplus refrigerant in the refrigerant circuit increases, and the liquid level of the receiver 42 increases.
  • the rotation speed of the first fan 22 is reduced, the refrigerant density in the condenser 20 increases, so that the mass of the liquid refrigerant in the condenser 20 increases. Then, the amount of surplus refrigerant in the refrigerant circuit decreases, and the liquid level of the receiver 42 drops.
  • the change in the liquid level of the receiver 42 is used to change the dryness of the refrigerant flowing through the second bypass pipe 87.
  • the refrigerant inlet D of the first bypass pipe 86 is configured such that when the liquid level of the receiver 42 changes, the dryness of the sucked refrigerant changes.
  • the dryness of the refrigerant sucked from the receiver 42 into the first bypass pipe 86 changes, the dryness of the refrigerant flowing through the second bypass pipe 87 changes accordingly.
  • FIG. 10 is a diagram showing a first example configuration of the receiver and the suction end of the bypass pipe.
  • gas refrigerant and liquid refrigerant are stored in receiver 42.
  • the refrigerant condensed in the condenser 20 flows.
  • the liquid refrigerant flows out of the pipe 82 from the bottom of the receiver 42.
  • the end opening of the pipe 82 is provided at a position lower than the end opening of the pipe 81 so that the liquid refrigerant preferentially flows out of the receiver 42 even when the refrigerant mixed with the gas flows in from the pipe 81.
  • the first bypass pipe 86 is inserted from above the receiver 42 toward the inside.
  • the first bypass pipe 86 has a plurality of openings on the side surface inside the receiver 42. With such a configuration, the dryness of the refrigerant sucked into the first bypass pipe 86 changes depending on the liquid level of the refrigerant in the receiver 42.
  • the lower end of the first bypass pipe 86 be provided at a position higher than the pipe 82.
  • the first bypass is used to detect a change in the liquid level at a position where the liquid level H1 of the liquid refrigerant is higher than the height Hout1 of the outlet pipe.
  • the height Hout2 of the lower end of the pipe 86 is higher than Hout1.
  • FIG. 11 is a diagram showing a plurality of holes provided at the end of the bypass pipe of the first example.
  • FIG. 12 is a graph showing the relationship between the dryness Q and the liquid level H1. As the liquid level increases, the holes are closed by the liquid refrigerant, so that the gas refrigerant is less likely to be sucked, and the dryness Q decreases. Conversely, as the liquid level becomes lower, the number of holes for sucking the gas refrigerant increases, so that the dryness Q increases.
  • the relationship between the dryness Q and the liquid level H1 as shown in FIG. 12 can be obtained in advance and made into a map.
  • FIG. 13 is a ph diagram of the refrigeration cycle apparatus when R410A is used as the refrigerant in the third embodiment.
  • FIG. 14 is a ph diagram of the refrigeration cycle apparatus when R463A is used as the refrigerant in the third embodiment.
  • the isotherm in the two-phase state between the saturated liquid line and the saturated vapor line has no temperature gradient and is horizontal as shown in FIG.
  • the isotherm in the two-phase state between the saturated liquid line and the saturated vapor line has a temperature gradient as shown in FIG.
  • the dryness of the refrigerant flowing through the bypass flow passage 111 increases, and the state of the refrigerant passing through the second expansion device 71 changes from point A ′ to point B ′ in FIGS. 13 and 14. Therefore, when the rotation speed of the first fan 22 is reduced, the state of the refrigerant changes from the point B to the point B ′.
  • the temperature T1 increases while the azeotropic refrigerant or the pseudo azeotropic refrigerant In the case of a boiling refrigerant, the temperature T1 does not change.
  • step S2 the control of the flowchart shown in FIG. 5 is performed, but the process of the refrigerant type determination operation performed in step S2 is slightly different.
  • FIG. 15 is a flowchart showing details of the processing of the refrigerant type determination operation executed in step S2 in the third embodiment.
  • the control device 100 performs a test operation of the refrigeration cycle device 1B.
  • the conditions for this test operation are such that the refrigerant that has passed through the second expansion device 71 in the bypass flow passage 111 is in a two-phase state regardless of whether the refrigerant is R410A or R463A.
  • the control device 100 measures the temperature T1 with the temperature sensor 73, and stores the measurement result in the memory 104 as the first temperature T1A.
  • control device 100 changes the rotation speed of first fan 22 of condenser 20 from high speed (first rotation speed F1) to low speed (second rotation speed F2). Then, the temperature of the refrigerant in the condenser 20 increases, so that the refrigerant density increases and the required amount of the liquid refrigerant in the condenser 20 increases. Then, since the amount of surplus refrigerant in the receiver 42 decreases, the liquid level of the receiver 42 falls. Along with this, the dryness of the refrigerant in the bypass channel 111 increases.
  • control device 100 measures temperature T1 again by temperature sensor 73, and stores the measurement result in memory 104 as second temperature T1B.
  • step S35 determines whether the refrigerant sealed in step S36 is R463A. If ⁇ T> threshold in step S35, that is, if the temperature of the two-phase refrigerant has increased, it is determined that the refrigerant sealed in step S36 is R463A, and the control device 100 The type of the refrigerant is stored. On the other hand, if ⁇ T ⁇ threshold in step S35, that is, if the temperature of the two-phase refrigerant does not change, it is determined that the refrigerant sealed in step S37 is R410A, and the control device 100 Stores the type of refrigerant.
  • step S36 or S37 after the refrigerant type is stored in the memory 104, the process proceeds to step S38, and returns to the flowchart of FIG.
  • the control device 100 changes the rotation speed of the first fan 22 and detects whether or not the temperature T1 has changed.
  • R463A can be determined whether it is R410A.
  • FIG. 16 is a diagram showing a configuration of a second example of the suction end of the bypass pipe. As shown in FIG. 16, a slit whose height direction is the longitudinal direction may be provided on the side surface of the end of the first bypass pipe 86.
  • FIG. 17 is a diagram showing a configuration of a third example of the suction end of the bypass pipe. As shown in FIG. 17, a plurality of pipes having different suction ports may be provided.
  • FIG. 18 is a diagram showing a configuration of a fourth example of the suction end of the bypass pipe.
  • the end of the first bypass pipe 86 is inserted into the receiver 42 from below.
  • FIG. 19 is a diagram showing details of a hole provided at the suction end of the bypass pipe of the fourth example.
  • a plurality of openings D1 to D5 are provided at the end of the first bypass pipe 86.
  • the openings D1 to D5 are arranged at equal intervals L along the flow direction in which the refrigerant is sucked.
  • the opening D1 is provided on the tip side (upper), and the opening D5 is provided on the lower side away from the tip.
  • a slit may be provided on the side surface as in the second example, or a plurality of suction holes may be provided as in the third example. Branch pipes having different mouth heights may be provided.
  • the refrigeration cycle apparatus 1B includes a compressor 10, a condenser 20, which is a first heat exchanger, a first expansion device 50, an evaporator 60, which is a second heat exchanger, a refrigerant circuit 110, and a bypass flow path. 111, a dryness changing device 112B, a temperature detecting unit 113, and a control device 100.
  • the refrigerant circuit 110 circulates refrigerant in the order of the compressor 10, the first heat exchanger, the first expansion device 50, and the second heat exchanger.
  • the bypass flow path 111 sends the refrigerant from the first heat exchanger to the suction port of the compressor 10 without passing through the first expansion device 50 and the second heat exchanger.
  • the dryness changing device 112B is configured to change the dryness of the refrigerant flowing in the bypass flow path 111.
  • the temperature detector 113 is configured to detect a temperature change before and after the dryness is changed by the dryness changing device 112B.
  • the control device 100 controls the dryness changing device 112B.
  • the control device 100 specifies the type of the refrigerant based on the temperature change detected by the temperature detection unit 113.
  • the dryness changing device 112B includes a receiver 42 disposed between the condenser 20 as the first heat exchanger and the first expansion device 50; A first fan for sending air to the first heat exchanger;
  • the bypass flow path 111 includes a second expansion device 71, a first bypass pipe 86, and a second bypass pipe 87.
  • the first bypass pipe 86 is located upstream of the second expansion device 71 in the direction in which the refrigerant passes, and connects the receiver 42 and the second expansion device 71.
  • the second bypass pipe 87 is located downstream of the second expansion device 71 in the refrigerant passage direction.
  • a refrigerant inlet D is provided at an end of the first bypass pipe 86 inserted into the receiver 42.
  • the refrigerant inlet D is configured such that when the liquid level height H1 of the receiver changes, the opening area for sucking the gaseous refrigerant changes.
  • the temperature detector 113 detects the temperature T1 of the refrigerant flowing through the second bypass pipe 87. As illustrated in FIG. 15, the control device 100 determines whether the first fan 22 has a first temperature T1A detected by the temperature detection unit 113 when the first fan 22 is at the first rotation speed F1 or not.
  • the type of the refrigerant is specified based on the second temperature T1B detected by the temperature detection unit 113 when the second rotation speed F2 is low.
  • the refrigerant inlet D is configured such that, when the liquid level of the receiver 42 changes, the opening area changes in a range from zero to a cross-sectional area of the first bypass pipe 86.
  • the end of the first bypass pipe 86 inserted into the receiver 42 has a liquid level of the receiver 42 as a refrigerant inlet D.
  • a plurality of openings D1 to D5 provided at positions different from each other in the direction of change in height are provided.
  • the end of the first bypass pipe 86 inserted into the receiver 42 has, as a refrigerant inlet D, a slit S in which the direction of change in the liquid level of the receiver 42 is the longitudinal direction. Is provided.
  • the refrigerant is sealed depending on whether or not the temperature T1 of the two-phase refrigerant changes before and after changing the rotation speed of the first fan 22. It is configured to determine whether the refrigerant is a “pseudo-azeotropic refrigerant or a single refrigerant” or a “non-azeotropic refrigerant”, and to operate with a control value corresponding to the refrigerant type stored in the memory 104 in advance. You.
  • control device 100 determines that the refrigerant is “pseudo-azeotropic refrigerant or single refrigerant”, and the temperature change is smaller than the threshold. When it is larger, it is determined that the refrigerant is a “non-azeotropic refrigerant”. In this manner, the refrigeration cycle apparatus 1B can perform an operation suitable for the automatically charged refrigerant.
  • 1, 1A, 1B refrigeration cycle device 2, 2A, 2B outdoor unit, 3 indoor unit, 10 compressor, 20 condenser, 22 first fan, 62 second fan, 42 receiver, 50 first expansion device, 60 evaporation Vessel, 71 second expansion device, 72 heating device, 73, 74 temperature sensor, 80, 81, 82, 83, 84 piping, 86 first bypass piping, 87 second bypass piping, 90 first pressure sensor, 92 second Pressure sensor, 100 control device, 104 memory, 110 refrigerant circuit, 111 flow path, 112, 112B dryness change device, 113, 113A temperature detector, D refrigerant inlet, D1-D5 opening, M1 branch point, S slit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This refrigeration cycle device (1) comprises a refrigerant circuit (110), a bypass passage (111), a dryness alteration device (112), a temperature detection unit (113), and a control device (100). The refrigerant circuit (110) circulates a refrigerant in order through a compressor (10), a first heat exchanger (20), a first expansion device (50), and a second heat exchanger (60). The bypass passage (111) sends the refrigerant to an intake opening of the compressor (10) from the first heat exchanger (20) without passing through the first expansion device (50) and the second heat exchanger (60). The dryness alteration device (112) is configured so as to alter the dryness of the refrigerant flowing through the bypass passage (111). The temperature detection unit (113) is configured so as to detect an alteration in temperature before and after the dryness is altered by the dryness alteration device (112). The control device (100) controls the dryness alteration device (112). The control device (100) specifies a type for the refrigerant on the basis of the alteration in the temperature detected by the temperature detection unit (113).

Description

冷凍サイクル装置Refrigeration cycle device
 この発明は、冷凍サイクル装置に関し、特に疑似共沸混合冷媒と非共沸混合冷媒とを使用可能な冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus that can use a pseudo-azeotropic mixed refrigerant and a non-azeotropic mixed refrigerant.
 近年、地球温暖化防止の流れを受けて、地球温暖化係数の低い新冷媒を封入冷媒する冷凍装置の開発が盛んに進められている。 In recent years, in response to the trend of preventing global warming, the development of refrigeration systems for encapsulating a new refrigerant with a low global warming potential has been actively pursued.
 一般に、冷凍装置は、指定された冷媒に対して最適な制御が行なわれるように構成されている。封入冷媒の種類が異なると、飽和液温度も異なるので、冷凍サイクル中の圧力も変化させる必要がある。このため、冷媒の種類ごとに圧縮機等の制御を変更する必要がある。 Generally, a refrigerating apparatus is configured so that optimal control is performed on a designated refrigerant. If the type of the charged refrigerant is different, the saturated liquid temperature is also different, so the pressure in the refrigeration cycle must be changed. Therefore, it is necessary to change the control of the compressor and the like for each type of refrigerant.
 国際公開WO2017/138058号公報(特許文献1)には、複数種類の冷媒の中から任意の冷媒を自動的に識別し、冷媒に対応した効率の良い運転を行なう冷凍装置が開示されている。 International Publication WO2017 / 138008 (Patent Document 1) discloses a refrigeration apparatus that automatically identifies an arbitrary refrigerant from a plurality of types of refrigerants and performs efficient operation corresponding to the refrigerant.
国際公開WO2017/138058号公報International Publication WO2017 / 138058
 近年、地球温暖化防止の観点から、空気調和装置において、単一の成分からなる冷媒に地球温暖化係数(GWP:Global Warming Potential)がより低い他の冷媒を混ぜてGWPを低下させた混合冷媒が用いられることがある。混合冷媒の中には、疑似共沸冷媒と非共沸冷媒とがある。 In recent years, from the viewpoint of preventing global warming, in air conditioners, mixed refrigerants in which the GWP has been reduced by mixing other refrigerants with lower global warming potential (GWP) with a refrigerant consisting of a single component May be used. Among the mixed refrigerants, there are a pseudo-azeotropic refrigerant and a non-azeotropic refrigerant.
 疑似共沸冷媒は、複数成分の冷媒をある一定の比率で混合すると一定の沸点を示し、気相、液相での組成が同一になり、あたかも一成分であるかのような相変化を示す。疑似共沸冷媒は、二相状態である相変化中は同一圧力では温度が等しいが、非共沸冷媒は、同一圧力下での相変化中に温度が変化するという特性がある。 A pseudo-azeotropic refrigerant exhibits a constant boiling point when a plurality of components of a refrigerant are mixed at a certain ratio, has the same composition in a gas phase and a liquid phase, and exhibits a phase change as if it were a single component. . The pseudo-azeotropic refrigerant has the same temperature at the same pressure during the two-phase phase change, while the non-azeotropic refrigerant has the characteristic that the temperature changes during the phase change under the same pressure.
 国際公開WO2017/138058号公報では、凝縮器の冷媒流下流側に設けられた受液器の出口の冷媒の過冷却度から冷媒種類を判断している。 In International Publication WO2017 / 138008, the type of refrigerant is determined from the degree of supercooling of the refrigerant at the outlet of the liquid receiver provided downstream of the condenser.
 しかし、非共沸冷媒の場合には、冷凍装置の運転状況によって冷媒組成が変化し、飽和液温度も変化する。このため、組成によっては飽和液温度が他の疑似共沸冷媒と同じになることがあるので、国際公開WO2017/138058号公報に開示された過冷却度で判断する方法では、正確に非共沸混合冷媒を判別することは難しい。 However, in the case of a non-azeotropic refrigerant, the refrigerant composition changes depending on the operation state of the refrigeration system, and the saturated liquid temperature also changes. For this reason, depending on the composition, the temperature of the saturated liquid may be the same as that of another pseudo-azeotropic refrigerant. Therefore, the method of judging from the degree of supercooling disclosed in International Publication WO2017 / 138008 accurately uses non-azeotropic refrigerant. It is difficult to determine the mixed refrigerant.
 この発明の目的は、非共沸混合冷媒を正しく判別することができる冷凍サイクル装置を提供することである。 の An object of the present invention is to provide a refrigeration cycle apparatus capable of correctly determining a non-azeotropic mixed refrigerant.
 本開示は、冷凍サイクル装置に関する。冷凍サイクル装置は、圧縮機と、第1熱交換器と、第1膨張装置と、第2熱交換器と、圧縮機、第1熱交換器、第1膨張装置、第2熱交換器の順に冷媒を循環させる冷媒回路と、第1膨張装置および第2熱交換器を経由せずに第1熱交換器から圧縮機の吸入口に冷媒を送るバイパス流路と、バイパス流路に流れる冷媒の乾き度を変化させるように構成される乾き度変更装置と、乾き度変更装置によって乾き度が変更される前後の冷媒の温度変化を検出するように構成される温度検出部と、乾き度変更装置を制御する制御装置とを備える。制御装置は、温度検出部が検出した温度変化に基づいて、冷媒の種類を特定する。 The present disclosure relates to a refrigeration cycle device. The refrigeration cycle device includes a compressor, a first heat exchanger, a first expansion device, a second heat exchanger, a compressor, a first heat exchanger, a first expansion device, and a second heat exchanger in that order. A refrigerant circuit for circulating the refrigerant, a bypass flow path for transmitting the refrigerant from the first heat exchanger to the suction port of the compressor without passing through the first expansion device and the second heat exchanger, A dryness change device configured to change the dryness, a temperature detection unit configured to detect a change in the temperature of the refrigerant before and after the dryness is changed by the dryness change device, and a dryness change device And a control device for controlling the The control device specifies the type of the refrigerant based on the temperature change detected by the temperature detection unit.
 本開示の冷凍サイクル装置によれば、冷媒の乾き度を変更させたときの温度変化を検出することができるので、非共沸冷媒と擬似共沸冷媒とを正しく判別することができる。 According to the refrigeration cycle device of the present disclosure, it is possible to detect a change in temperature when the dryness of the refrigerant is changed, so that the non-azeotropic refrigerant and the pseudo-azeotropic refrigerant can be correctly determined.
実施の形態1の冷凍サイクル装置の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of a refrigeration cycle device according to Embodiment 1. 冷媒としてR410Aを使用する場合の冷凍サイクル装置のp-h線図である。FIG. 4 is a ph diagram of a refrigeration cycle apparatus when R410A is used as a refrigerant. 冷媒としてR463Aを使用する場合の冷凍サイクル装置のp-h線図である。FIG. 3 is a ph diagram of a refrigeration cycle apparatus when R463A is used as a refrigerant. 冷媒種類によって変更する制御値の例を示す図である。It is a figure showing an example of a control value changed according to a refrigerant kind. 実施の形態1の冷凍サイクル装置の制御のメインルーチンを示すフローチャートである。4 is a flowchart illustrating a main routine of control of the refrigeration cycle device according to Embodiment 1. 実施の形態1で実行される冷媒種類判定運転の処理の詳細を示すフローチャートである。4 is a flowchart illustrating details of a process of a refrigerant type determination operation performed in the first embodiment. 実施の形態2の冷凍サイクル装置の構成を示す図である。FIG. 9 is a diagram illustrating a configuration of a refrigeration cycle device according to Embodiment 2. 実施の形態2で実行される冷媒種類判定運転の処理の詳細を示すフローチャートである。8 is a flowchart illustrating details of a process of a refrigerant type determination operation performed in the second embodiment. 実施の形態3の冷凍サイクル装置の構成を示す図である。FIG. 9 is a diagram illustrating a configuration of a refrigeration cycle device according to Embodiment 3. レシーバとバイパス配管の吸入端部の第1例の構成を示す図である。FIG. 4 is a diagram illustrating a configuration of a first example of a receiver and a suction end of a bypass pipe. 第1例のバイパス配管の端部に設けられている複数の穴を示した図である。It is the figure which showed the some hole provided in the edge part of the bypass pipe of the 1st example. 乾き度Qと液面高さH1との関係を示すグラフである。It is a graph which shows the relationship between dryness Q and liquid level height H1. 実施の形態3において冷媒としてR410Aを使用する場合の冷凍サイクル装置のp-h線図である。FIG. 13 is a ph diagram of a refrigeration cycle apparatus when R410A is used as a refrigerant in the third embodiment. 実施の形態3において冷媒としてR463Aを使用する場合の冷凍サイクル装置のp-h線図である。FIG. 13 is a ph diagram of a refrigeration cycle apparatus when R463A is used as a refrigerant in the third embodiment. 実施の形態3で実行される冷媒種類判定運転の処理の詳細を示すフローチャートである。9 is a flowchart illustrating details of a refrigerant type determination operation process executed in a third embodiment. バイパス配管の吸入端部の第2例の構成を示す図である。It is a figure which shows the structure of the 2nd example of the suction end part of a bypass piping. バイパス配管の吸入端部の第3例の構成を示す図である。It is a figure showing the composition of the 3rd example of the suction end of a bypass pipe. バイパス配管の吸入端部の第4例の構成を示す図である。It is a figure showing the composition of the 4th example of the suction end of a bypass pipe. 第4例のバイパス配管の吸入端部に設けられた穴の詳細を示す図である。It is a figure which shows the detail of the hole provided in the suction end part of the bypass pipe of the 4th example.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, a plurality of embodiments will be described. However, it is planned from the beginning of the application to appropriately combine the configurations described in the embodiments. In the drawings, the same or corresponding portions have the same reference characters allotted, and description thereof will not be repeated.
 実施の形態1.
 実施の形態1で示す冷凍サイクル装置は、非共沸冷媒と共沸冷媒または疑似共沸冷媒とを用いることができるように構成される。このような冷凍サイクル装置の場合、非共沸冷媒の特性を利用して冷媒種類を正確に検出することができる。以下に、冷凍サイクル装置の構成について説明する。
Embodiment 1 FIG.
The refrigeration cycle apparatus described in Embodiment 1 is configured to be able to use a non-azeotropic refrigerant and an azeotropic refrigerant or a pseudo-azeotropic refrigerant. In the case of such a refrigeration cycle device, the type of the refrigerant can be accurately detected by utilizing the characteristics of the non-azeotropic refrigerant. Hereinafter, the configuration of the refrigeration cycle device will be described.
 図1は、実施の形態1の冷凍サイクル装置の構成を示す図である。なお、図1においては、冷凍装置における各機器の接続関係および配置構成は機能的に示されており、物理的な空間における配置を必ずしも示さない。 FIG. 1 is a diagram illustrating a configuration of a refrigeration cycle device according to the first embodiment. In FIG. 1, the connection relation and arrangement of each device in the refrigeration apparatus are shown functionally, and the arrangement in a physical space is not necessarily shown.
 図1を参照して、冷凍サイクル装置1は、室外機2と、室内機3とを備える。室外機2は、圧縮機10と、凝縮器20と、第1ファン22と、配管80~84とを含む。また、室外機2は、バイパス流路111と、乾き度変更装置112と、温度検出部113と、第1圧力センサ90および第2圧力センサ92と、制御装置100とをさらに含む。バイパス流路111は、第2膨張装置71と、第2膨張装置71の上流側の第1バイパス配管86と、下流側の第2バイパス配管87とを含む。第2膨張装置71は、たとえばキャピラリチューブである。加熱装置72は、たとえば、第2バイパス配管87を流通する冷媒を加熱するように構成される電気ヒータである。実施の形態1では、乾き度変更装置112は、加熱装置72である。実施の形態1では、温度検出部113は温度センサ73である。 冷凍 Referring to FIG. 1, refrigeration cycle apparatus 1 includes outdoor unit 2 and indoor unit 3. The outdoor unit 2 includes a compressor 10, a condenser 20, a first fan 22, and pipes 80 to 84. The outdoor unit 2 further includes a bypass channel 111, a dryness changing device 112, a temperature detecting unit 113, a first pressure sensor 90 and a second pressure sensor 92, and a control device 100. The bypass flow passage 111 includes a second expansion device 71, a first bypass pipe 86 on the upstream side of the second expansion device 71, and a second bypass pipe 87 on the downstream side. The second expansion device 71 is, for example, a capillary tube. The heating device 72 is, for example, an electric heater configured to heat the refrigerant flowing through the second bypass pipe 87. In the first embodiment, the drying degree changing device 112 is the heating device 72. In the first embodiment, the temperature detection unit 113 is the temperature sensor 73.
 室内機3は、第1膨張装置50と、蒸発器60と、第2ファン62と、配管83とを含む。第1膨張装置50は、たとえば電子膨張弁である。室内機3は、配管82,84によって室外機2に接続されている。 The indoor unit 3 includes a first expansion device 50, an evaporator 60, a second fan 62, and a pipe 83. The first expansion device 50 is, for example, an electronic expansion valve. The indoor unit 3 is connected to the outdoor unit 2 by pipes 82 and 84.
 配管80は、圧縮機10の吐出ポートと凝縮器20とを接続する。配管81は、凝縮器20と分岐点M1とを接続する。配管82は、分岐点M1と第1膨張装置50とを接続する。配管83は、第1膨張装置50と蒸発器60とを接続する。配管84は、蒸発器60と圧縮機10の吸入ポートとを接続する。第1バイパス配管86は、分岐点M1と第2膨張装置71とを接続する。第2バイパス配管87は、第2膨張装置71と配管84とを接続する。 The pipe 80 connects the discharge port of the compressor 10 and the condenser 20. The pipe 81 connects the condenser 20 and the branch point M1. The pipe 82 connects the branch point M1 and the first expansion device 50. The pipe 83 connects the first expansion device 50 and the evaporator 60. The pipe 84 connects the evaporator 60 and the suction port of the compressor 10. The first bypass pipe 86 connects the branch point M1 and the second expansion device 71. The second bypass pipe 87 connects the second expansion device 71 and the pipe 84.
 圧縮機10は、配管84から冷媒を吸入し、吸入した冷媒を圧縮して配管80へ吐出する。圧縮機10は、制御装置100からの制御信号に従って回転速度を調整するように構成される。圧縮機10の運転周波数または回転速度を調整することで冷媒の循環量が調整され、冷凍サイクル装置1の能力を調整することができる。圧縮機10には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。 The compressor 10 sucks the refrigerant from the pipe 84, compresses the sucked refrigerant, and discharges the compressed refrigerant to the pipe 80. The compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the operating frequency or the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the capacity of the refrigeration cycle apparatus 1 can be adjusted. Various types can be used for the compressor 10, and for example, a scroll type, a rotary type, a screw type, and the like can be used.
 凝縮器20は、圧縮機10から配管80に吐出された冷媒を凝縮する。凝縮された冷媒は配管81に送出される。凝縮器20は、圧縮機10から吐出された高温高圧のガス冷媒が外気と熱交換(放熱)を行なうように構成される。この熱交換により、冷媒は凝縮されて液相に変化する。第1ファン22は、凝縮器20において冷媒が熱交換を行なう外気を凝縮器20に供給する。第1ファン22の回転速度を調整することにより、圧縮機10の吐出側の冷媒圧力(高圧側圧力)を調整することができる。 The condenser 20 condenses the refrigerant discharged from the compressor 10 to the pipe 80. The condensed refrigerant is sent out to the pipe 81. The condenser 20 is configured such that the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 performs heat exchange (radiation) with the outside air. By this heat exchange, the refrigerant is condensed and changes to a liquid phase. The first fan 22 supplies outside air to the condenser 20 where the refrigerant performs heat exchange in the condenser 20. By adjusting the rotation speed of the first fan 22, the refrigerant pressure (high-pressure side pressure) on the discharge side of the compressor 10 can be adjusted.
 第1膨張装置50は、凝縮器20から配管82へ送出された冷媒を減圧する。減圧された冷媒は配管83へ送出される。第1膨張装置50の開度を閉方向に変化させると、第1膨張装置50の低圧側の冷媒圧力は低下するとともに、冷媒の乾き度は上昇する。第1膨張装置50の開度を開方向に変化させると、第1膨張装置50の低圧側の冷媒圧力は上昇するとともに、冷媒の乾き度は低下する。 The first expansion device 50 reduces the pressure of the refrigerant sent from the condenser 20 to the pipe 82. The depressurized refrigerant is sent to the pipe 83. When the opening degree of the first expansion device 50 is changed in the closing direction, the refrigerant pressure on the low pressure side of the first expansion device 50 decreases and the dryness of the refrigerant increases. When the opening degree of the first expansion device 50 is changed in the opening direction, the refrigerant pressure on the low pressure side of the first expansion device 50 increases, and the dryness of the refrigerant decreases.
 蒸発器60は、第1膨張装置50から配管83へ送出された冷媒を蒸発させる。蒸発器60を通過した冷媒は配管84へ流通する。蒸発器60は、第1膨張装置50により減圧された冷媒が室内機3内の空気と熱交換(吸熱)を行なうように構成される。冷媒は、蒸発器60を通過することにより蒸発して過熱蒸気となる。第2ファン62は、蒸発器60において冷媒が熱交換を行なう空気を蒸発器60に供給する。 The evaporator 60 evaporates the refrigerant sent from the first expansion device 50 to the pipe 83. The refrigerant having passed through the evaporator 60 flows to the pipe 84. The evaporator 60 is configured such that the refrigerant decompressed by the first expansion device 50 performs heat exchange (heat absorption) with the air in the indoor unit 3. The refrigerant evaporates by passing through the evaporator 60 to become superheated steam. The second fan 62 supplies the air in which the refrigerant performs heat exchange in the evaporator 60 to the evaporator 60.
 冷媒種類を検知する構成として、第1バイパス配管86と、第2膨張装置71と、第2バイパス配管87と、加熱装置72と、温度センサ73とが設けられる。第1バイパス配管86、第2膨張装置71、および第2バイパス配管87は、凝縮器20を通過した冷媒の一部を、室内機3を経由せずに圧縮機10へ戻すバイパス流路111を構成する。第2膨張装置71は、たとえばキャピラリチューブである。第2膨張装置71は、第1バイパス配管86と第2バイパス配管87との間に接続され、バイパス流路111に流れる冷媒を減圧する。冷媒が第2膨張装置71を通過することによって冷媒の圧力は低下する。 構成 As a configuration for detecting the type of refrigerant, a first bypass pipe 86, a second expansion device 71, a second bypass pipe 87, a heating device 72, and a temperature sensor 73 are provided. The first bypass pipe 86, the second expansion device 71, and the second bypass pipe 87 form a bypass flow path 111 that returns a part of the refrigerant that has passed through the condenser 20 to the compressor 10 without passing through the indoor unit 3. Constitute. The second expansion device 71 is, for example, a capillary tube. The second expansion device 71 is connected between the first bypass pipe 86 and the second bypass pipe 87 and reduces the pressure of the refrigerant flowing through the bypass flow path 111. As the refrigerant passes through the second expansion device 71, the pressure of the refrigerant decreases.
 加熱装置72は、同一圧力下で第2バイパス配管87を流れる冷媒の乾き度を変更する。温度センサ73は、第2バイパス配管87において加熱装置72よりも下流側に設けられる。温度センサ73は、第2膨張装置71を通過した冷媒の温度T1を検出し、その検出値を制御装置100へ出力する。温度センサ73は、第2バイパス配管87の外部に設置してもよいし、冷媒の温度をより確実に検出するために第2バイパス配管87の内部に設置してもよい。これらを用いた冷媒種類検知の原理および方法については、後ほど詳しく説明する。 The heating device 72 changes the dryness of the refrigerant flowing through the second bypass pipe 87 under the same pressure. The temperature sensor 73 is provided downstream of the heating device 72 in the second bypass pipe 87. The temperature sensor 73 detects the temperature T1 of the refrigerant that has passed through the second expansion device 71, and outputs the detected value to the control device 100. The temperature sensor 73 may be installed outside the second bypass pipe 87, or may be installed inside the second bypass pipe 87 in order to more reliably detect the temperature of the refrigerant. The principle and method of refrigerant type detection using these will be described later in detail.
 第1圧力センサ90は、配管84内の冷媒の圧力LPを検出し、その検出値を制御装置100へ出力する。すなわち、第1圧力センサ90は、圧縮機10の吸入側の冷媒圧力(低圧側圧力)を検出するものである。第2圧力センサ92は、配管80内の冷媒の圧力HPを検出し、その検出値を制御装置100へ出力する。すなわち、第2圧力センサ92は、圧縮機10の吐出側の冷媒圧力(高圧側圧力)を検出するものである。 The first pressure sensor 90 detects the pressure LP of the refrigerant in the pipe 84 and outputs the detected value to the control device 100. That is, the first pressure sensor 90 detects the refrigerant pressure (low pressure side pressure) on the suction side of the compressor 10. The second pressure sensor 92 detects the pressure HP of the refrigerant in the pipe 80 and outputs the detected value to the control device 100. That is, the second pressure sensor 92 detects the refrigerant pressure (high pressure side pressure) on the discharge side of the compressor 10.
 制御装置100は、CPU(Central Processing Unit)102と、メモリ104(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、冷凍サイクル装置1の各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input / output buffer (not shown) for inputting and outputting various signals. It is comprised including. The CPU 102 executes a program stored in the ROM by expanding the program in the RAM or the like. The program stored in the ROM is a program in which the processing procedure of the control device 100 is described. The control device 100 controls each device of the refrigeration cycle device 1 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
 冷凍サイクル装置1は、封入冷媒として2種類の冷媒を使用することが可能に構成される。1種類は、共沸冷媒または疑似共沸冷媒であり、たとえばR410Aである。また、他の1種類は非共沸冷媒であり、たとえばR463Aである。 The refrigeration cycle apparatus 1 is configured to be able to use two types of refrigerant as the enclosed refrigerant. One type is an azeotropic refrigerant or a pseudo-azeotropic refrigerant, for example, R410A. Another type is a non-azeotropic refrigerant, for example, R463A.
 図2は、冷媒としてR410Aを使用する場合の冷凍サイクル装置のp-h線図である。図3は、冷媒としてR463Aを使用する場合の冷凍サイクル装置のp-h線図である。R410Aの場合、飽和液線と飽和蒸気線との間の二相状態における等温線は、図2に示すように温度勾配がなく、水平である。一方、R410Aの場合、飽和液線と飽和蒸気線との間の二相状態における等温線は、図3に示すように温度勾配があり、右下がりである。これは、疑似共沸冷媒であるR410Aの場合、二相状態において乾き度が変化しても温度は変化しないが、非共沸冷媒であるR463Aの場合、二相状態において乾き度が増加すると温度も上昇することを示す。なお、乾き度は、図2および図3の点Bの位置が飽和液線上であれば0、飽和蒸気線上であれば1であり、飽和液線と飽和蒸気線との間において点Bの位置によって決まる。図2、図3において、BからCのように右方向に冷媒の状態が変化すると乾き度は増加する。 FIG. 2 is a ph diagram of the refrigeration cycle apparatus when R410A is used as the refrigerant. FIG. 3 is a ph diagram of the refrigeration cycle apparatus when R463A is used as the refrigerant. In the case of R410A, the isotherm in the two-phase state between the saturated liquid line and the saturated vapor line has no temperature gradient and is horizontal as shown in FIG. On the other hand, in the case of R410A, the isotherm in the two-phase state between the saturated liquid line and the saturated vapor line has a temperature gradient as shown in FIG. This is because in the case of R410A which is a pseudo-azeotropic refrigerant, the temperature does not change even if the degree of dryness changes in the two-phase state, but in the case of R463A which is a non-azeotropic refrigerant, the temperature increases when the degree of dryness increases in the two-phase state. Also show that it rises. Note that the dryness is 0 when the position of point B in FIGS. 2 and 3 is on the saturated liquid line, and 1 when it is on the saturated vapor line, and the position of point B between the saturated liquid line and the saturated vapor line. Depends on In FIGS. 2 and 3, when the state of the refrigerant changes rightward from B to C, the dryness increases.
 図1において、バイパス流路111を通過する冷媒の状態は、図2の点Aから点Bのように変化し、さらに加熱装置72によって加熱されると点Cのように温度一定のまま変化する。加熱装置72がOFF状態であれば、図1の点Cの乾き度は点Bの乾き度と同じであるので、温度センサ73が検出する温度T1は、図2の点Bの冷媒状態の温度である。その後加熱装置をON状態とし冷媒を加熱すると、第2バイパス配管87を流れる冷媒の乾き度が増加し、温度センサ73が検出する温度T1は、図2の点Cの冷媒状態の温度となる。 In FIG. 1, the state of the refrigerant passing through the bypass flow path 111 changes from point A to point B in FIG. 2, and when heated by the heating device 72, changes while keeping the temperature constant as at point C. . When the heating device 72 is in the OFF state, the dryness at the point C in FIG. 1 is the same as the dryness at the point B. Therefore, the temperature T1 detected by the temperature sensor 73 is the temperature in the refrigerant state at the point B in FIG. It is. Thereafter, when the heating device is turned on to heat the refrigerant, the dryness of the refrigerant flowing through the second bypass pipe 87 increases, and the temperature T1 detected by the temperature sensor 73 becomes the temperature in the refrigerant state at point C in FIG.
 したがって、冷凍サイクル装置を設置し、試運転を行なっているときに、加熱装置72をOFF状態からON状態に変化させ、温度T1の変化の有無を検出することによって、制御装置100は、封入された冷媒がR410AであるのかR463Aを判断することができる。 Therefore, when the refrigeration cycle device is installed and the test operation is being performed, the control device 100 is sealed by changing the heating device 72 from the OFF state to the ON state and detecting whether or not the temperature T1 has changed. R463A can be determined whether the refrigerant is R410A.
 図4は、冷媒種類によって変更する制御値の例を示す図であり、冷媒温度が低くなるほど、R410AとR463Aの目標圧力は低く、R410Aの目標圧力はR463Aの目標圧力よりも0.01~0.02MPaAほど低くなる。目標とする冷媒の温度に合わせて、制御の対象となる圧力の目標値は、図4に示すように変更される。このような目標圧力を達成するように、制御装置100は、圧縮機10の運転周波数、第1膨張装置50の開度、第1ファン22の回転速度,第2ファン62の回転速度の少なくとも一つを制御する。この圧力の目標値は、封入された冷媒がR410AであるのかR463Aであるのかによって図4に示すように切り換える必要がある。図4に示す制御値は、マップとして冷媒種類ごとにメモリ104に予め記憶されている。 FIG. 4 is a diagram showing an example of a control value changed according to the type of refrigerant. As the refrigerant temperature decreases, the target pressures of R410A and R463A are lower, and the target pressure of R410A is 0.01 to 0 lower than the target pressure of R463A. .02 MPaA. The target value of the pressure to be controlled is changed as shown in FIG. 4 according to the target refrigerant temperature. To achieve such a target pressure, the control device 100 controls at least one of the operating frequency of the compressor 10, the opening degree of the first expansion device 50, the rotation speed of the first fan 22, and the rotation speed of the second fan 62. Control one. The target value of the pressure needs to be switched as shown in FIG. 4 depending on whether the sealed refrigerant is R410A or R463A. The control values shown in FIG. 4 are stored in the memory 104 in advance as a map for each type of refrigerant.
 制御装置100は、試運転を行なって封入されている冷媒の種類を判別すると、その冷媒に対応するマップを選択して、各種制御に適用する。例えば、蒸発温度を-10℃とするように運転したいとき、冷媒がR410Aである場合には圧力0.57MPaAを目標値として圧縮機10等が制御される。また冷媒がR463Aである場合には圧力0.59MPaAを目標値として圧縮機10等が制御される。 (4) When the control device 100 performs the test operation and determines the type of the enclosed refrigerant, the control device 100 selects a map corresponding to the refrigerant and applies it to various controls. For example, when it is desired to operate the evaporation temperature at −10 ° C. and the refrigerant is R410A, the compressor 10 and the like are controlled with the pressure at 0.57 MPaA as a target value. When the refrigerant is R463A, the compressor 10 and the like are controlled with a pressure of 0.59 MPaA as a target value.
 図5は、実施の形態1の冷凍サイクル装置の制御のメインルーチンを示すフローチャートである。図1、図5を参照して、冷凍サイクル装置1の運転の開始時に、制御装置100は、まずステップS1において、封入された冷媒の種類がメモリ104に記憶されているか否かを判断する。ステップS1において、メモリ104に冷媒の種類が記憶されていない場合、ステップS2の冷媒種類判定運転が実行される。一方で、メモリ104に冷媒の種類が既に記憶されている場合には、ステップS2の処理は行なわれずステップS3に処理が進められる。 FIG. 5 is a flowchart illustrating a main routine of control of the refrigeration cycle device according to the first embodiment. With reference to FIGS. 1 and 5, at the start of the operation of the refrigeration cycle apparatus 1, the control device 100 first determines whether or not the type of the enclosed refrigerant is stored in the memory 104 in step S1. If the type of refrigerant is not stored in the memory 104 in step S1, the refrigerant type determination operation of step S2 is performed. On the other hand, if the type of refrigerant is already stored in memory 104, the process proceeds to step S3 without performing step S2.
 ステップS2の冷媒種類判定運転が行なわれると、冷媒種類がメモリ104に記憶される。そしてステップS3において、制御装置100は、メモリ104に記憶された冷媒種類に対応する制御値を使用して、冷凍サイクル装置を運転する。 When the refrigerant type determination operation is performed in step S2, the refrigerant type is stored in the memory 104. Then, in step S3, the control device 100 operates the refrigeration cycle device using the control value corresponding to the refrigerant type stored in the memory 104.
 図6は、実施の形態1においてステップS2で実行される冷媒種類判定運転の処理の詳細を示すフローチャートである。まずステップS11において、制御装置100は、冷凍サイクル装置1の試運転を実行する。この試運転の条件は、封入された冷媒がR410A、R463Aのいずれであってもバイパス流路111において第2膨張装置71を通過した冷媒が二相状態となる条件とする。 FIG. 6 is a flowchart showing details of the processing of the refrigerant type determination operation executed in step S2 in the first embodiment. First, in step S11, the control device 100 performs a test operation of the refrigeration cycle device 1. The conditions for this test operation are such that the refrigerant that has passed through the second expansion device 71 in the bypass channel 111 is in a two-phase state, regardless of whether the enclosed refrigerant is R410A or R463A.
 そして、ステップS12においては、制御装置100は、加熱装置72がOFF状態であるときに温度センサ73によって温度T1を測定し、測定結果を第1温度T1Aとしてメモリ104に記憶する。その後ステップS13において制御装置100は、加熱装置72、具体的にはヒータをOFF状態からON状態に変化させる。そして、ステップS14において、制御装置100は、再び温度センサ73によって温度T1を測定し、測定結果を第2温度T1Bとしてメモリ104に記憶する。 Then, in step S12, control device 100 measures temperature T1 by temperature sensor 73 when heating device 72 is in the OFF state, and stores the measurement result in memory 104 as first temperature T1A. Thereafter, in step S13, the control device 100 changes the heating device 72, specifically, the heater from the OFF state to the ON state. Then, in step S14, control device 100 measures temperature T1 again by temperature sensor 73, and stores the measurement result in memory 104 as second temperature T1B.
 そして、ステップS15において、制御装置100は、加熱装置72による加熱前後で生じた温度T1の変化量ΔT(=T1B-T1A)がしきい値より大きいか否かを判断する。 Then, in step S15, control device 100 determines whether or not change amount ΔT (= T1B−T1A) of temperature T1 generated before and after heating by heating device 72 is larger than a threshold value.
 ステップS15において、ΔT>しきい値である場合、すなわち加熱によって二相冷媒の温度が上昇した場合には、ステップS16において封入された冷媒は、非共沸冷媒であるR463Aであると判定し、制御装置100は、メモリ104に冷媒種類を記憶させる。一方ステップS15において、ΔT≦しきい値である場合、すなわち加熱しても二相冷媒の温度が上昇しない場合には、ステップS17において封入された冷媒は、疑似共沸冷媒であるR410Aであると判定し、制御装置100は、メモリ104に冷媒種類を記憶させる。 In step S15, when ΔT> threshold, that is, when the temperature of the two-phase refrigerant increases due to heating, it is determined that the refrigerant sealed in step S16 is R463A, which is a non-azeotropic refrigerant, The control device 100 causes the memory 104 to store the refrigerant type. On the other hand, if ΔT ≦ the threshold value in step S15, that is, if the temperature of the two-phase refrigerant does not increase even when heated, the refrigerant sealed in step S17 is R410A, which is a pseudo-azeotropic refrigerant. Then, the control device 100 causes the memory 104 to store the refrigerant type.
 ステップS16またはS17において、冷媒種類がメモリ104に記憶された後、ステップS18に処理が進められ、図5のフローチャートに処理が戻る。 In step S16 or S17, after the refrigerant type is stored in the memory 104, the process proceeds to step S18, and returns to the flowchart in FIG.
 実施の形態1について、再び図1を参照して総括する。冷凍サイクル装置1は、圧縮機10と、第1熱交換器である凝縮器20と、第1膨張装置50と、第2熱交換器である蒸発器60と、冷媒回路110と、バイパス流路111と、乾き度変更装置112と、温度検出部113と、制御装置100とを備える。冷媒回路110は、圧縮機10、第1熱交換器、第1膨張装置50、第2熱交換器の順に冷媒を循環させる。バイパス流路111は、第1膨張装置50および第2熱交換器を経由せずに第1熱交換器から圧縮機10の吸入口に冷媒を送る。乾き度変更装置112は、バイパス流路111に流れる冷媒の乾き度を変化させるように構成される。温度検出部113は、乾き度変更装置112によって乾き度が変更される前後の温度変化を検出するように構成される。制御装置100は、乾き度変更装置112を制御する。制御装置100は、温度検出部113が検出した温度変化に基づいて、冷媒の種類を特定する。 The first embodiment will be summarized again with reference to FIG. The refrigeration cycle apparatus 1 includes a compressor 10, a condenser 20, which is a first heat exchanger, a first expansion device 50, an evaporator 60, which is a second heat exchanger, a refrigerant circuit 110, and a bypass flow passage. 111, a dryness changing device 112, a temperature detecting unit 113, and a control device 100. The refrigerant circuit 110 circulates refrigerant in the order of the compressor 10, the first heat exchanger, the first expansion device 50, and the second heat exchanger. The bypass flow path 111 sends the refrigerant from the first heat exchanger to the suction port of the compressor 10 without passing through the first expansion device 50 and the second heat exchanger. The dryness changing device 112 is configured to change the dryness of the refrigerant flowing through the bypass passage 111. The temperature detector 113 is configured to detect a temperature change before and after the dryness is changed by the dryness changing device 112. The control device 100 controls the dryness changing device 112. The control device 100 specifies the type of the refrigerant based on the temperature change detected by the temperature detection unit 113.
 好ましくは、図1に示すように、バイパス流路111は、第2膨張装置71と、冷媒の通過方向において、第2膨張装置71の上流に位置する第1バイパス配管86と、冷媒の通過方向において、第2膨張装置71の下流に位置する第2バイパス配管87とを含む。乾き度変更装置112は、第2バイパス配管87を流れる冷媒を加熱する加熱装置72を備える。温度検出部113は、第2バイパス配管87において加熱装置72よりも下流の冷媒の温度を検出する温度センサ73を備える。図6に示すように、制御装置100は、加熱装置72による加熱を実行した場合に温度検出部113で検出された第1温度T1Aと、加熱装置72による加熱を非実行とした場合に温度検出部113で検出された第2温度T1Bとに基づいて、冷媒の種類を特定する。 Preferably, as shown in FIG. 1, the bypass flow path 111 includes a second expansion device 71, a first bypass pipe 86 located upstream of the second expansion device 71 in the refrigerant passage direction, and a refrigerant passage direction. And a second bypass pipe 87 located downstream of the second expansion device 71. The dryness changing device 112 includes a heating device 72 that heats the refrigerant flowing through the second bypass pipe 87. The temperature detection unit 113 includes a temperature sensor 73 that detects the temperature of the refrigerant downstream of the heating device 72 in the second bypass pipe 87. As shown in FIG. 6, the control device 100 controls the first temperature T1A detected by the temperature detection unit 113 when the heating by the heating device 72 is performed, and the temperature detection when the heating by the heating device 72 is not performed. The type of the refrigerant is specified based on the second temperature T1B detected by the unit 113.
 以上説明したように、実施の形態1に係る冷凍サイクル装置1では、加熱装置72による加熱の前後で、温度T1に変化が生じるか否かによって、封入されている冷媒が「疑似共沸冷媒または単一冷媒」であるか「非共沸冷媒」であるかを判定し、予めメモリ104に記憶された冷媒種類に応じた制御値で運転を行なうように構成される。制御装置100は、温度検出部113が検出した温度変化がしきい値よりも小さい時は、冷媒が「擬似共沸冷媒または単一冷媒」であると判定し、温度変化がしきい値よりも大きい時は、冷媒が「非共沸冷媒」であると判定する。冷凍サイクル装置1は、このようにして、自動的に封入された冷媒に適した運転を行なうことができる。 As described above, in the refrigeration cycle apparatus 1 according to Embodiment 1, the enclosed refrigerant is determined to be “a pseudo-azeotropic refrigerant or a refrigerant based on whether or not the temperature T1 changes before and after heating by the heating device 72. It is configured to determine whether the refrigerant is a “single refrigerant” or a “non-azeotropic refrigerant”, and operate with a control value according to the refrigerant type stored in the memory 104 in advance. When the temperature change detected by temperature detecting section 113 is smaller than the threshold, control device 100 determines that the refrigerant is “pseudo-azeotropic refrigerant or single refrigerant”, and the temperature change is smaller than the threshold. When it is larger, it is determined that the refrigerant is a “non-azeotropic refrigerant”. In this way, the refrigeration cycle apparatus 1 can perform an operation suitable for the automatically charged refrigerant.
 なお、図6のフローチャートでは、加熱装置72をOFF状態からON状態に変化させた場合の冷媒の温度変化を監視したが、加熱装置72をON状態からOFF状態に変化させた場合の冷媒の温度変化を監視しても良い。 In the flowchart of FIG. 6, the temperature change of the refrigerant when the heating device 72 is changed from the OFF state to the ON state is monitored, but the temperature of the refrigerant when the heating device 72 is changed from the ON state to the OFF state is monitored. Changes may be monitored.
 実施の形態2.
 実施の形態1では、加熱装置72による加熱を実行しない場合と実行する場合で、温度センサ73で測定する温度T1の変化に注目した。実施の形態2では、温度センサをもう一つ追加して、加熱装置72による加熱を実行する場合において、加熱装置72を通過する前後の温度差を検出する。
Embodiment 2 FIG.
In the first embodiment, attention is paid to a change in the temperature T1 measured by the temperature sensor 73 when heating is not performed by the heating device 72 and when heating is performed. In the second embodiment, when another heating is performed by the heating device 72 to add another temperature sensor, a temperature difference before and after passing through the heating device 72 is detected.
 図7は、実施の形態2の冷凍サイクル装置の構成を示す図である。なお、図1においては、冷凍装置における各機器の接続関係および配置構成は機能的に示されており、物理的な空間における配置を必ずしも示さない。 FIG. 7 is a diagram illustrating a configuration of a refrigeration cycle apparatus according to Embodiment 2. In FIG. 1, the connection relation and arrangement of each device in the refrigeration apparatus are shown functionally, and the arrangement in a physical space is not necessarily shown.
 図7に示す冷凍サイクル装置1Aは、室外機2Aと、室内機3とを備える。室外機2Aは、図1に示す冷凍サイクル装置1Aの室外機2に対して、温度センサ74とレシーバ(受液器)42とが追加されている。室外機2Aの他の部分の構成は、室外機2と同様であるので、説明は繰返さない。 冷凍 The refrigeration cycle apparatus 1A shown in FIG. 7 includes an outdoor unit 2A and an indoor unit 3. In the outdoor unit 2A, a temperature sensor 74 and a receiver (liquid receiver) 42 are added to the outdoor unit 2 of the refrigeration cycle apparatus 1A shown in FIG. The configuration of the other units of outdoor unit 2A is the same as that of outdoor unit 2, and therefore description thereof will not be repeated.
 レシーバ42は、図1の分岐点M1に配置され、凝縮器20を通過した冷媒を貯留する。レシーバ42の底部に第1バイパス配管86への排出口が設けられているので、液冷媒が第1バイパス配管86に送られる。 The receiver 42 is disposed at the branch point M1 in FIG. 1 and stores the refrigerant that has passed through the condenser 20. Since the outlet to the first bypass pipe 86 is provided at the bottom of the receiver 42, the liquid refrigerant is sent to the first bypass pipe 86.
 温度センサ74は、第1バイパス配管86から供給される液冷媒が第2膨張装置71を通過し二相冷媒となった時の温度T2を検出する。 The temperature sensor 74 detects the temperature T2 when the liquid refrigerant supplied from the first bypass pipe 86 passes through the second expansion device 71 and becomes a two-phase refrigerant.
 実施の形態2においても、図5に示すフローチャートの制御が行なわれるが、ステップS2で実行される冷媒種類判定運転の処理が少し異なる。 In the second embodiment as well, the control of the flowchart shown in FIG. 5 is performed, but the process of the refrigerant type determination operation performed in step S2 is slightly different.
 図8は、実施の形態2においてステップS2で実行される冷媒種類判定運転の処理の詳細を示すフローチャートである。まずステップS21において、制御装置100は、冷凍サイクル装置1Aの試運転を実行する。この試運転の条件は、冷媒がR410AであってもR463Aであってもバイパス流路111において第2膨張装置71を通過した冷媒が二相状態となる条件とする。 FIG. 8 is a flowchart illustrating details of the processing of the refrigerant type determination operation performed in step S2 in the second embodiment. First, in step S21, the control device 100 performs a test operation of the refrigeration cycle device 1A. The conditions for this test operation are such that the refrigerant that has passed through the second expansion device 71 in the bypass flow passage 111 is in a two-phase state regardless of whether the refrigerant is R410A or R463A.
 そして、ステップS22においては、制御装置100は、加熱装置72をON状態とする。そしてステップS23において、温度センサ73によって温度T1を測定するとともに、温度センサ74によって温度T2を測定する。 Then, in step S22, control device 100 turns on heating device 72. In step S23, the temperature T1 is measured by the temperature sensor 73 and the temperature T2 is measured by the temperature sensor 74.
 そして、ステップS24において、制御装置100は、加熱装置72による加熱前後で生じた温度の変化量(T1-T2)がしきい値より大きいか否かを判断する。 Then, in step S24, control device 100 determines whether or not the amount of change in temperature (T1-T2) before and after heating by heating device 72 is greater than a threshold value.
 T1-T2>しきい値である場合、すなわち加熱によって二相冷媒の温度が上昇した場合には(ステップS24でYES)、制御装置100は、ステップS25において封入された冷媒が非共沸冷媒であるR463Aであると判定し、メモリ104に冷媒種類を記憶させる。一方、T1-T2≦しきい値である場合、すなわち加熱しても二相冷媒の温度が上昇しない場合には(ステップS24でNO)、制御装置100は、ステップS26において封入された冷媒は、疑似共沸冷媒であるR410Aであると判定し、メモリ104に冷媒種類を記憶させる。 If T1-T2> threshold, that is, if the temperature of the two-phase refrigerant has increased due to heating (YES in step S24), control device 100 determines that the refrigerant enclosed in step S25 is a non-azeotropic refrigerant. It is determined that there is a certain R463A, and the type of the refrigerant is stored in the memory 104. On the other hand, when T1−T2 ≦ threshold, that is, when the temperature of the two-phase refrigerant does not increase even when heated (NO in step S24), control device 100 determines whether the refrigerant sealed in step S26 is It is determined that the refrigerant is the pseudo azeotropic refrigerant R410A, and the type of the refrigerant is stored in the memory 104.
 ステップS25またはS26において、冷媒種類がメモリ104に記憶された後、ステップS27に処理が進められ、図5のフローチャートに処理が戻る。 In step S25 or S26, after the refrigerant type is stored in the memory 104, the process proceeds to step S27, and returns to the flowchart of FIG.
 実施の形態2について、再び図7を参照して総括する。冷凍サイクル装置1Aは、圧縮機10と、第1熱交換器である凝縮器20と、第1膨張装置50と、第2熱交換器である蒸発器60と、冷媒回路110と、バイパス流路111と、乾き度変更装置112と、温度検出部113Aと、制御装置100とを備える。冷媒回路110は、圧縮機10、第1熱交換器、第1膨張装置50、第2熱交換器の順に冷媒を循環させる。バイパス流路111は、第1膨張装置50および第2熱交換器を経由せずに第1熱交換器から圧縮機10の吸入口に冷媒を送る。乾き度変更装置112は、バイパス流路111に流れる冷媒の乾き度を変化させるように構成される。温度検出部113Aは、乾き度変更装置112によって乾き度が変更される前後の温度変化を検出するように構成される。制御装置100は、乾き度変更装置112を制御する。制御装置100は、温度検出部113Aが検出した温度変化に基づいて、冷媒の種類を特定する。 The second embodiment will be summarized again with reference to FIG. The refrigeration cycle apparatus 1A includes a compressor 10, a condenser 20, which is a first heat exchanger, a first expansion device 50, an evaporator 60, which is a second heat exchanger, a refrigerant circuit 110, and a bypass flow path. 111, a dryness changing device 112, a temperature detecting unit 113A, and a control device 100. The refrigerant circuit 110 circulates refrigerant in the order of the compressor 10, the first heat exchanger, the first expansion device 50, and the second heat exchanger. The bypass flow path 111 sends the refrigerant from the first heat exchanger to the suction port of the compressor 10 without passing through the first expansion device 50 and the second heat exchanger. The dryness changing device 112 is configured to change the dryness of the refrigerant flowing through the bypass passage 111. The temperature detecting unit 113A is configured to detect a temperature change before and after the dryness is changed by the dryness changing device 112. The control device 100 controls the dryness changing device 112. Control device 100 specifies the type of refrigerant based on the temperature change detected by temperature detection unit 113A.
 好ましくは、図7に示すように、バイパス流路111は、第2膨張装置71と、冷媒の通過方向において、第2膨張装置71の上流に位置する第1バイパス配管86と、冷媒の通過方向において、第2膨張装置71の下流に位置する第2バイパス配管87とを含む。乾き度変更装置112は、第2バイパス配管87を流れる冷媒を加熱する加熱装置72を備える。温度検出部113Aは、第1温度センサである温度センサ73と、第2温度センサである温度センサ74とを含む。第1温度センサは、第2バイパス配管87に流れる冷媒が加熱装置72で加熱された後の第1温度T1を検出する。第2温度センサは、第2バイパス配管87に流れる冷媒が加熱装置72に至る前の第2温度T2を検出する。図8に示すように、制御装置100は、第1温度T1と、第2温度T2とに基づいて、冷媒の種類を特定する。 Preferably, as shown in FIG. 7, the bypass flow path 111 includes a second expansion device 71, a first bypass pipe 86 located upstream of the second expansion device 71 in the refrigerant passage direction, and a refrigerant passage direction. And a second bypass pipe 87 located downstream of the second expansion device 71. The dryness changing device 112 includes a heating device 72 that heats the refrigerant flowing through the second bypass pipe 87. Temperature detector 113A includes a temperature sensor 73 as a first temperature sensor and a temperature sensor 74 as a second temperature sensor. The first temperature sensor detects a first temperature T1 after the refrigerant flowing in the second bypass pipe 87 has been heated by the heating device 72. The second temperature sensor detects a second temperature T2 before the refrigerant flowing through the second bypass pipe 87 reaches the heating device 72. As shown in FIG. 8, the control device 100 specifies the type of the refrigerant based on the first temperature T1 and the second temperature T2.
 以上説明したように、実施の形態2に係る冷凍サイクル装置1Aでは、加熱装置72による加熱の前の温度T2と加熱の後の温度T1で、二相冷媒の温度に変化が生じるか否かによって、封入されている冷媒が「疑似共沸冷媒または単一冷媒」であるか「非共沸冷媒」であるかを判定し、予めメモリ104に記憶された冷媒種類に応じた制御値で運転を行なうように構成される。制御装置100は、温度検出部113が検出した温度変化がしきい値よりも小さい時は、冷媒が「擬似共沸冷媒または単一冷媒」であると判定し、温度変化がしきい値よりも大きい時は、冷媒が「非共沸冷媒」であると判定する。このようにして、冷凍サイクル装置1Aは、自動的に封入された冷媒に適した運転を行なうことができる。 As described above, in the refrigeration cycle apparatus 1A according to the second embodiment, whether the temperature of the two-phase refrigerant changes between the temperature T2 before the heating by the heating device 72 and the temperature T1 after the heating is determined. It is determined whether the enclosed refrigerant is a “pseudo-azeotropic refrigerant or a single refrigerant” or a “non-azeotropic refrigerant”, and the operation is performed with a control value corresponding to the refrigerant type stored in the memory 104 in advance. Configured to do so. When the temperature change detected by temperature detecting section 113 is smaller than the threshold, control device 100 determines that the refrigerant is “pseudo-azeotropic refrigerant or single refrigerant”, and the temperature change is smaller than the threshold. When it is larger, it is determined that the refrigerant is a “non-azeotropic refrigerant”. In this manner, the refrigeration cycle apparatus 1A can perform an operation suitable for the automatically charged refrigerant.
 なお、図7では、レシーバ42が配置されているが、図1に示すようにレシーバ42は必ずしもなくても良い。また、実施の形態1の図1にレシーバ42を追加しても良い。 In FIG. 7, the receiver 42 is provided, but the receiver 42 may not be necessarily provided as shown in FIG. Further, a receiver 42 may be added to FIG. 1 of the first embodiment.
 実施の形態3.
 図9は、実施の形態3の冷凍サイクル装置の構成を示す図である。この冷凍サイクル装置は、疑似共沸冷媒と非共沸混合冷媒を使用することが可能に構成される。なお、図9においては、冷凍装置における各機器の接続関係および配置構成は機能的に示されており、物理的な空間における配置を必ずしも示さない。
Embodiment 3 FIG.
FIG. 9 is a diagram illustrating a configuration of a refrigeration cycle apparatus according to Embodiment 3. This refrigeration cycle apparatus is configured to be able to use a pseudo-azeotropic refrigerant and a non-azeotropic refrigerant mixture. In FIG. 9, the connection relation and the arrangement of each device in the refrigeration apparatus are functionally shown, and the arrangement in a physical space is not necessarily shown.
 図9を参照して、冷凍サイクル装置1Bは、室外機2Bと、室内機3とを備える。室外機2は、圧縮機10と、凝縮器20と、第1ファン22と、レシーバ42と、配管80~84とを含む。また、室外機2は、バイパス流路111と、第2膨張装置71と、温度センサ73と、第1圧力センサ90および第2圧力センサ92と、制御装置100とをさらに含む。第2膨張装置71は、たとえばキャピラリチューブである。室内機3は、第1膨張装置50と、蒸発器60と、第2ファン62と、配管83とを含む。第1膨張装置50は、たとえば電子膨張弁である。室内機3は、配管82,84を通じて室外機2に接続されている。実施の形態3では、乾き度変更装置112は、レシーバ42と第1ファン22によって構成される。また温度検出部113は、温度センサ73によって構成される。 を Referring to FIG. 9, refrigeration cycle apparatus 1B includes outdoor unit 2B and indoor unit 3. The outdoor unit 2 includes a compressor 10, a condenser 20, a first fan 22, a receiver 42, and pipes 80 to 84. Further, the outdoor unit 2 further includes a bypass flow path 111, a second expansion device 71, a temperature sensor 73, a first pressure sensor 90 and a second pressure sensor 92, and a control device 100. The second expansion device 71 is, for example, a capillary tube. The indoor unit 3 includes a first expansion device 50, an evaporator 60, a second fan 62, and a pipe 83. The first expansion device 50 is, for example, an electronic expansion valve. The indoor unit 3 is connected to the outdoor unit 2 through pipes 82 and 84. In the third embodiment, the dryness changing device 112 includes the receiver 42 and the first fan 22. Further, the temperature detecting section 113 is constituted by a temperature sensor 73.
 室内機3は、実施の形態1,2と同様な構成である。また室外機2Bについては、第1バイパス配管86がレシーバ42に取り付けられている部分以外については、実施の形態2と同様な構成である。したがって、同じ構成についての詳細な説明は繰返さない。 The indoor unit 3 has the same configuration as the first and second embodiments. The outdoor unit 2B has the same configuration as that of the second embodiment except for the portion where the first bypass pipe 86 is attached to the receiver 42. Therefore, detailed description of the same configuration will not be repeated.
 冷媒種類を検知する構成として、第1バイパス配管86および第2バイパス配管87と、第1バイパス配管86および第2バイパス配管87の間に設けられた第2膨張装置71と、温度センサ73とが設けられる。第1バイパス配管86、第2膨張装置71、および第2バイパス配管87は、凝縮器20を通過した冷媒の一部を、室内機3を経由せずに圧縮機10へ戻すバイパス流路111を構成する。第2膨張装置71は、たとえばキャピラリチューブである。第2膨張装置71は、第1バイパス配管86と第2バイパス配管87との間に接続され、バイパス流路111に流れる冷媒の流量を調整する。冷媒が第2膨張装置71を通過することによって冷媒の圧力は低下する。 As a configuration for detecting the refrigerant type, a first bypass pipe 86 and a second bypass pipe 87, a second expansion device 71 provided between the first bypass pipe 86 and the second bypass pipe 87, and a temperature sensor 73 are provided. Provided. The first bypass pipe 86, the second expansion device 71, and the second bypass pipe 87 form a bypass flow path 111 that returns a part of the refrigerant that has passed through the condenser 20 to the compressor 10 without passing through the indoor unit 3. Constitute. The second expansion device 71 is, for example, a capillary tube. The second expansion device 71 is connected between the first bypass pipe 86 and the second bypass pipe 87, and adjusts the flow rate of the refrigerant flowing through the bypass flow path 111. As the refrigerant passes through the second expansion device 71, the pressure of the refrigerant decreases.
 温度センサ73は、第2バイパス配管87に設けられる。温度センサ73は、第2膨張装置71を通過した冷媒の温度T1を検出し、その検出値を制御装置100へ出力する。温度センサ73は、第2バイパス配管87の外部に設置してもよいし、冷媒の温度をより確実に検出するために第2バイパス配管87の内部に設置してもよい。 The temperature sensor 73 is provided in the second bypass pipe 87. The temperature sensor 73 detects the temperature T1 of the refrigerant that has passed through the second expansion device 71, and outputs the detected value to the control device 100. The temperature sensor 73 may be installed outside the second bypass pipe 87, or may be installed inside the second bypass pipe 87 in order to more reliably detect the temperature of the refrigerant.
 実施の形態3では、凝縮器20に設けられた第1ファン22の回転速度を変更することによって、凝縮器20の内部の冷媒の温度および密度が変化することを利用して、第2バイパス配管87を流れる乾き度を変化させる。 In the third embodiment, the second bypass pipe is used by changing the rotation speed of the first fan 22 provided in the condenser 20 to change the temperature and density of the refrigerant inside the condenser 20. Change the dryness flowing through 87.
 レシーバ42は、凝縮器20によって凝縮された高圧の液冷媒を貯留する。第1ファン22の回転速度を増加させると、凝縮器20では外気との熱交換量が増加するので冷媒の温度は低下する。すると、凝縮器20内部の冷媒密度が低下するため、冷媒回路中の余剰冷媒の量が増加し、レシーバ42の液面が上昇する。逆に、第1ファン22の回転速度を低下させると、凝縮器20における冷媒密度が上がるので、凝縮器20中の液冷媒の質量が増加する。すると、冷媒回路中の余剰冷媒の量は減るので、レシーバ42の液面が下がる。 The receiver 42 stores the high-pressure liquid refrigerant condensed by the condenser 20. When the rotation speed of the first fan 22 is increased, the amount of heat exchange with the outside air in the condenser 20 increases, so that the temperature of the refrigerant decreases. Then, since the refrigerant density inside the condenser 20 decreases, the amount of surplus refrigerant in the refrigerant circuit increases, and the liquid level of the receiver 42 increases. Conversely, when the rotation speed of the first fan 22 is reduced, the refrigerant density in the condenser 20 increases, so that the mass of the liquid refrigerant in the condenser 20 increases. Then, the amount of surplus refrigerant in the refrigerant circuit decreases, and the liquid level of the receiver 42 drops.
 実施の形態3では、レシーバ42の液面の変化を、第2バイパス配管87を流れる冷媒の乾き度を変化させることに利用する。実施の形態3では、第1バイパス配管86の冷媒入口Dは、レシーバ42の液面が変化すると吸引する冷媒の乾き度が変化するように構成される。レシーバ42から第1バイパス配管86に吸引される冷媒の乾き度が変化すると、これに応じて第2バイパス配管87を流れる冷媒の乾き度は変化する。 In the third embodiment, the change in the liquid level of the receiver 42 is used to change the dryness of the refrigerant flowing through the second bypass pipe 87. In the third embodiment, the refrigerant inlet D of the first bypass pipe 86 is configured such that when the liquid level of the receiver 42 changes, the dryness of the sucked refrigerant changes. When the dryness of the refrigerant sucked from the receiver 42 into the first bypass pipe 86 changes, the dryness of the refrigerant flowing through the second bypass pipe 87 changes accordingly.
 図10は、レシーバとバイパス配管の吸入端部の第1例の構成を示す図である。図10を参照して、レシーバ42には、ガス冷媒と液冷媒が貯留されている。配管81からは、凝縮器20で凝縮された冷媒が流入する。配管82からは、レシーバ42の底部から液冷媒が流出する。配管81からガスが混合された冷媒が流入してもレシーバ42からは液冷媒が優先して流出するように、配管82の端部開口は、配管81の端部開口よりも低い位置に設けられている。第1バイパス配管86は、レシーバ42の上部から内部に向けて挿入されている。第1バイパス配管86は、レシーバ42の内部において側面に複数の開口が設けられている。このような構成とすることにより、レシーバ42内の冷媒の液面高さによって、第1バイパス配管86に吸引される冷媒の乾き度が変化する。 FIG. 10 is a diagram showing a first example configuration of the receiver and the suction end of the bypass pipe. Referring to FIG. 10, gas refrigerant and liquid refrigerant are stored in receiver 42. From the pipe 81, the refrigerant condensed in the condenser 20 flows. The liquid refrigerant flows out of the pipe 82 from the bottom of the receiver 42. The end opening of the pipe 82 is provided at a position lower than the end opening of the pipe 81 so that the liquid refrigerant preferentially flows out of the receiver 42 even when the refrigerant mixed with the gas flows in from the pipe 81. ing. The first bypass pipe 86 is inserted from above the receiver 42 toward the inside. The first bypass pipe 86 has a plurality of openings on the side surface inside the receiver 42. With such a configuration, the dryness of the refrigerant sucked into the first bypass pipe 86 changes depending on the liquid level of the refrigerant in the receiver 42.
 ただし、第1バイパス配管86の下端は、配管82よりも高い位置に設けることが好ましい。つまり、レシーバ42の底面を基準とした高さを考えた場合、液冷媒の液面高さH1が出口配管の高さHout1より高い位置での液面の変化を検出するために、第1バイパス配管86の下端の高さHout2はHout1よりも高くする。 However, it is preferable that the lower end of the first bypass pipe 86 be provided at a position higher than the pipe 82. In other words, considering the height based on the bottom surface of the receiver 42, the first bypass is used to detect a change in the liquid level at a position where the liquid level H1 of the liquid refrigerant is higher than the height Hout1 of the outlet pipe. The height Hout2 of the lower end of the pipe 86 is higher than Hout1.
 図11は、第1例のバイパス配管の端部に設けられている複数の穴を示した図である。図12は、乾き度Qと液面高さH1との関係を示すグラフである。液面高さが高くなるほど穴が液冷媒で塞がれるので、ガス冷媒が吸引されにくくなり、乾き度Qが小さくなる。逆に、液面高さが低くなるほど、ガス冷媒を吸い込む穴の数が増えるので乾き度Qが大きくなる。図12のような乾き度Qと液面高さH1の関係は、予め求めておきマップにしておくことができる。 FIG. 11 is a diagram showing a plurality of holes provided at the end of the bypass pipe of the first example. FIG. 12 is a graph showing the relationship between the dryness Q and the liquid level H1. As the liquid level increases, the holes are closed by the liquid refrigerant, so that the gas refrigerant is less likely to be sucked, and the dryness Q decreases. Conversely, as the liquid level becomes lower, the number of holes for sucking the gas refrigerant increases, so that the dryness Q increases. The relationship between the dryness Q and the liquid level H1 as shown in FIG. 12 can be obtained in advance and made into a map.
 図13は、実施の形態3において冷媒としてR410Aを使用する場合の冷凍サイクル装置のp-h線図である。図14は、実施の形態3において冷媒としてR463Aを使用する場合の冷凍サイクル装置のp-h線図である。R410Aの場合、飽和液線と飽和蒸気線との間の二相状態における等温線は、図13に示すように温度勾配がなく、水平である。一方、R410Aの場合、飽和液線と飽和蒸気線との間の二相状態における等温線は、図14に示すように温度勾配があり、右下がりである。これは、疑似共沸冷媒であるR410Aの場合、二相状態において乾き度が変化しても温度は変化しないが、非共沸冷媒であるR463Aの場合、二相状態において乾き度が増加すると温度も上昇することを示す。 FIG. 13 is a ph diagram of the refrigeration cycle apparatus when R410A is used as the refrigerant in the third embodiment. FIG. 14 is a ph diagram of the refrigeration cycle apparatus when R463A is used as the refrigerant in the third embodiment. In the case of R410A, the isotherm in the two-phase state between the saturated liquid line and the saturated vapor line has no temperature gradient and is horizontal as shown in FIG. On the other hand, in the case of R410A, the isotherm in the two-phase state between the saturated liquid line and the saturated vapor line has a temperature gradient as shown in FIG. This is because in the case of R410A which is a pseudo-azeotropic refrigerant, the temperature does not change even if the degree of dryness changes in the two-phase state, but in the case of R463A which is a non-azeotropic refrigerant, the temperature increases when the degree of dryness increases in the two-phase state. Also show that it rises.
 図9に示すバイパス流路111の第2膨張装置71を通過する冷媒の状態は、図13、図14において点Aから点Bのように変化する。このときに第1ファン22の回転速度を低下させると、冷凍サイクルはR1に示すサイクルからR2に示すサイクルに変化する。同時に凝縮器20中では温度が上昇し、冷媒の密度が増加する。このため、凝縮器20では冷媒がさらに必要となるので、レシーバ42中の液冷媒は凝縮器20に移動し、レシーバ42の液冷媒の量は減少し、レシーバ42の液面が下がる。するとバイパス流路111を流れる冷媒の乾き度が増えるので、第2膨張装置71を通過する冷媒の状態は、図13、図14において点A´から点B´のように変化する。したがって、第1ファン22の回転速度を低下させると冷媒の状態が点Bから点B´に変化するが、非共沸冷媒の場合には温度T1は上昇する一方で、共沸冷媒または擬似共沸冷媒の場合には温度T1は変化しない。 状態 The state of the refrigerant passing through the second expansion device 71 in the bypass flow path 111 shown in FIG. 9 changes from point A to point B in FIGS. At this time, if the rotation speed of the first fan 22 is reduced, the refrigeration cycle changes from the cycle indicated by R1 to the cycle indicated by R2. At the same time, the temperature rises in the condenser 20 and the density of the refrigerant increases. For this reason, the refrigerant is further required in the condenser 20, so that the liquid refrigerant in the receiver 42 moves to the condenser 20, the amount of the liquid refrigerant in the receiver 42 decreases, and the liquid level of the receiver 42 decreases. Then, the dryness of the refrigerant flowing through the bypass flow passage 111 increases, and the state of the refrigerant passing through the second expansion device 71 changes from point A ′ to point B ′ in FIGS. 13 and 14. Therefore, when the rotation speed of the first fan 22 is reduced, the state of the refrigerant changes from the point B to the point B ′. However, in the case of the non-azeotropic refrigerant, the temperature T1 increases while the azeotropic refrigerant or the pseudo azeotropic refrigerant In the case of a boiling refrigerant, the temperature T1 does not change.
 実施の形態3においても、図5に示すフローチャートの制御が行なわれるが、ステップS2で実行される冷媒種類判定運転の処理が少し異なる。 In the third embodiment as well, the control of the flowchart shown in FIG. 5 is performed, but the process of the refrigerant type determination operation performed in step S2 is slightly different.
 図15は、実施の形態3においてステップS2で実行される冷媒種類判定運転の処理の詳細を示すフローチャートである。まずステップS31において、制御装置100は、冷凍サイクル装置1Bの試運転を実行する。この試運転の条件は、冷媒がR410AであってもR463Aであってもバイパス流路111において第2膨張装置71を通過した冷媒が二相状態となる条件とする。続いてステップS32において、制御装置100は、温度センサ73によって温度T1を測定し、測定結果を第1温度T1Aとしてメモリ104に記憶する。 FIG. 15 is a flowchart showing details of the processing of the refrigerant type determination operation executed in step S2 in the third embodiment. First, in step S31, the control device 100 performs a test operation of the refrigeration cycle device 1B. The conditions for this test operation are such that the refrigerant that has passed through the second expansion device 71 in the bypass flow passage 111 is in a two-phase state regardless of whether the refrigerant is R410A or R463A. Subsequently, in step S32, the control device 100 measures the temperature T1 with the temperature sensor 73, and stores the measurement result in the memory 104 as the first temperature T1A.
 そして、ステップS33においては、制御装置100は、凝縮器20の第1ファン22の回転速度を高速(第1回転速度F1)から低速(第2回転速度F2)に変更する。すると凝縮器20の冷媒の温度が上昇するので、冷媒密度が増加し凝縮器20中の液冷媒の必要量が増加する。するとレシーバ42中の余剰冷媒の量が減少するため、レシーバ42の液面は下降する。これに伴い、バイパス流路111の冷媒の乾き度が増加する。 Then, in step S33, control device 100 changes the rotation speed of first fan 22 of condenser 20 from high speed (first rotation speed F1) to low speed (second rotation speed F2). Then, the temperature of the refrigerant in the condenser 20 increases, so that the refrigerant density increases and the required amount of the liquid refrigerant in the condenser 20 increases. Then, since the amount of surplus refrigerant in the receiver 42 decreases, the liquid level of the receiver 42 falls. Along with this, the dryness of the refrigerant in the bypass channel 111 increases.
 続いて、ステップS34において、制御装置100は、再び温度センサ73によって温度T1を測定し、測定結果を第2温度T1Bとしてメモリ104に記憶する。 Then, in step S34, control device 100 measures temperature T1 again by temperature sensor 73, and stores the measurement result in memory 104 as second temperature T1B.
 そして、ステップS35において、制御装置100は、第1ファン22の回転速度を変化させた前後で生じた温度T1の変化量ΔT(=T1B-T1A)がしきい値より大きいか否かを判断する。 Then, in step S35, control device 100 determines whether or not change amount ΔT (= T1B−T1A) of temperature T1 generated before and after changing the rotation speed of first fan 22 is larger than the threshold value. .
 ステップS35において、ΔT>しきい値である場合、つまり二相冷媒の温度が上昇した場合には、ステップS36において封入された冷媒は、R463Aであると判定し、制御装置100は、メモリ104に冷媒種類を記憶させる。一方ステップS35において、ΔT≦しきい値である場合、すなわち二相冷媒の温度が変化しない場合には、ステップS37において封入された冷媒は、R410Aであると判定し、制御装置100は、メモリ104に冷媒種類を記憶させる。 If ΔT> threshold in step S35, that is, if the temperature of the two-phase refrigerant has increased, it is determined that the refrigerant sealed in step S36 is R463A, and the control device 100 The type of the refrigerant is stored. On the other hand, if ΔT ≦ threshold in step S35, that is, if the temperature of the two-phase refrigerant does not change, it is determined that the refrigerant sealed in step S37 is R410A, and the control device 100 Stores the type of refrigerant.
 ステップS36またはS37において、冷媒種類がメモリ104に記憶された後、ステップS38に処理が進められ、図5のフローチャートに処理が戻る。 {Circle around (5)} In step S36 or S37, after the refrigerant type is stored in the memory 104, the process proceeds to step S38, and returns to the flowchart of FIG.
 したがって、冷凍サイクル装置を設置し、試運転を行なっているときに、第1ファン22の回転速度を変化させ、温度T1の変化の有無を検出することによって、制御装置100は、封入された冷媒がR410AであるのかR463Aを判断することができる。 Therefore, when the refrigeration cycle device is installed and the test operation is being performed, the control device 100 changes the rotation speed of the first fan 22 and detects whether or not the temperature T1 has changed. R463A can be determined whether it is R410A.
 図16は、バイパス配管の吸入端部の第2例の構成を示す図である。図16に示すように、第1バイパス配管86の端部の側面に高さ方向が長手方向となるスリットを設けても良い。 FIG. 16 is a diagram showing a configuration of a second example of the suction end of the bypass pipe. As shown in FIG. 16, a slit whose height direction is the longitudinal direction may be provided on the side surface of the end of the first bypass pipe 86.
 図17は、バイパス配管の吸入端部の第3例の構成を示す図である。図17に示すように、吸引口の高さを変えた配管を複数設けても良い。 FIG. 17 is a diagram showing a configuration of a third example of the suction end of the bypass pipe. As shown in FIG. 17, a plurality of pipes having different suction ports may be provided.
 図18は、バイパス配管の吸入端部の第4例の構成を示す図である。第4例では、第1バイパス配管86の端部は、下方からレシーバ42に挿入されている。図19は、第4例のバイパス配管の吸入端部に設けられた穴の詳細を示す図である。第4例では、第1例と同様、図19に示すように、第1バイパス配管86の端部には、複数の開口D1~D5が設けられる。開口D1~D5は、均等の間隔Lで冷媒が吸引される流れ方向に沿って配置されている。開口D1が先端側(上方)、開口D5は、先端から離れた下方側に設けられている。 FIG. 18 is a diagram showing a configuration of a fourth example of the suction end of the bypass pipe. In the fourth example, the end of the first bypass pipe 86 is inserted into the receiver 42 from below. FIG. 19 is a diagram showing details of a hole provided at the suction end of the bypass pipe of the fourth example. In the fourth example, as in the first example, as shown in FIG. 19, a plurality of openings D1 to D5 are provided at the end of the first bypass pipe 86. The openings D1 to D5 are arranged at equal intervals L along the flow direction in which the refrigerant is sucked. The opening D1 is provided on the tip side (upper), and the opening D5 is provided on the lower side away from the tip.
 なお、第4例に示したようなレシーバ42の下方向から第1バイパス配管86を挿入する構成についても、第2例のように側面にスリットを設けたり、第3例のように複数の吸入口高さが異なる分岐管を設けたりしても良い。 In addition, as for the configuration in which the first bypass pipe 86 is inserted from below the receiver 42 as shown in the fourth example, a slit may be provided on the side surface as in the second example, or a plurality of suction holes may be provided as in the third example. Branch pipes having different mouth heights may be provided.
 実施の形態3について、再び図9を参照して総括する。冷凍サイクル装置1Bは、圧縮機10と、第1熱交換器である凝縮器20と、第1膨張装置50と、第2熱交換器である蒸発器60と、冷媒回路110と、バイパス流路111と、乾き度変更装置112Bと、温度検出部113と、制御装置100とを備える。冷媒回路110は、圧縮機10、第1熱交換器、第1膨張装置50、第2熱交換器の順に冷媒を循環させる。バイパス流路111は、第1膨張装置50および第2熱交換器を経由せずに第1熱交換器から圧縮機10の吸入口に冷媒を送る。乾き度変更装置112Bは、バイパス流路111に流れる冷媒の乾き度を変化させるように構成される。温度検出部113は、乾き度変更装置112Bによって乾き度が変更される前後の温度変化を検出するように構成される。制御装置100は、乾き度変更装置112Bを制御する。制御装置100は、温度検出部113が検出した温度変化に基づいて、冷媒の種類を特定する。 The third embodiment will be summarized again with reference to FIG. The refrigeration cycle apparatus 1B includes a compressor 10, a condenser 20, which is a first heat exchanger, a first expansion device 50, an evaporator 60, which is a second heat exchanger, a refrigerant circuit 110, and a bypass flow path. 111, a dryness changing device 112B, a temperature detecting unit 113, and a control device 100. The refrigerant circuit 110 circulates refrigerant in the order of the compressor 10, the first heat exchanger, the first expansion device 50, and the second heat exchanger. The bypass flow path 111 sends the refrigerant from the first heat exchanger to the suction port of the compressor 10 without passing through the first expansion device 50 and the second heat exchanger. The dryness changing device 112B is configured to change the dryness of the refrigerant flowing in the bypass flow path 111. The temperature detector 113 is configured to detect a temperature change before and after the dryness is changed by the dryness changing device 112B. The control device 100 controls the dryness changing device 112B. The control device 100 specifies the type of the refrigerant based on the temperature change detected by the temperature detection unit 113.
 好ましくは、図9に示すように、乾き度変更装置112Bは、冷媒回路110において、第1熱交換器である凝縮器20と第1膨張装置50との間に配置されたレシーバ42と、第1熱交換器に送風する第1ファン22とをさらに備える。バイパス流路111は、第2膨張装置71と、第1バイパス配管86と、第2バイパス配管87とを含む。第1バイパス配管86は、冷媒の通過方向において、第2膨張装置71の上流に位置し、レシーバ42と第2膨張装置71とを接続する。第2バイパス配管87は、冷媒の通過方向において、第2膨張装置71の下流に位置する。第1バイパス配管86のレシーバ42に挿入された端部には、冷媒入口Dが設けられる。冷媒入口Dは、レシーバの液面高さH1が変化するとガス状態の冷媒を吸引する開口面積が変化するように構成される。温度検出部113は、第2バイパス配管87を流れる冷媒の温度T1を検出する。図15に示すように、制御装置100は、第1ファン22が第1回転速度F1である場合に温度検出部113で検出された第1温度T1Aと、第1ファン22が第1回転速度より低い第2回転速度F2である場合に温度検出部113で検出された第2温度T1Bとに基づいて、冷媒の種類を特定する。 Preferably, as shown in FIG. 9, in the refrigerant circuit 110, the dryness changing device 112B includes a receiver 42 disposed between the condenser 20 as the first heat exchanger and the first expansion device 50; A first fan for sending air to the first heat exchanger; The bypass flow path 111 includes a second expansion device 71, a first bypass pipe 86, and a second bypass pipe 87. The first bypass pipe 86 is located upstream of the second expansion device 71 in the direction in which the refrigerant passes, and connects the receiver 42 and the second expansion device 71. The second bypass pipe 87 is located downstream of the second expansion device 71 in the refrigerant passage direction. A refrigerant inlet D is provided at an end of the first bypass pipe 86 inserted into the receiver 42. The refrigerant inlet D is configured such that when the liquid level height H1 of the receiver changes, the opening area for sucking the gaseous refrigerant changes. The temperature detector 113 detects the temperature T1 of the refrigerant flowing through the second bypass pipe 87. As illustrated in FIG. 15, the control device 100 determines whether the first fan 22 has a first temperature T1A detected by the temperature detection unit 113 when the first fan 22 is at the first rotation speed F1 or not. The type of the refrigerant is specified based on the second temperature T1B detected by the temperature detection unit 113 when the second rotation speed F2 is low.
 冷媒入口Dは、レシーバ42の液面高さが変化すると、ゼロ以上第1バイパス配管86の断面積以下の範囲で開口面積が変化するように構成される。 The refrigerant inlet D is configured such that, when the liquid level of the receiver 42 changes, the opening area changes in a range from zero to a cross-sectional area of the first bypass pipe 86.
 好ましくは、図10、図11、図17、図18、図19に示すように、第1バイパス配管86のレシーバ42に挿入された端部には、冷媒入口Dとして、レシーバ42の液面高さの変化方向に互いに異なる位置に設けられた複数の開口D1~D5が設けられる。 Preferably, as shown in FIGS. 10, 11, 17, 18, and 19, the end of the first bypass pipe 86 inserted into the receiver 42 has a liquid level of the receiver 42 as a refrigerant inlet D. A plurality of openings D1 to D5 provided at positions different from each other in the direction of change in height are provided.
 好ましくは、図16に示すように、第1バイパス配管86のレシーバ42に挿入された端部には、冷媒入口Dとして、レシーバ42の液面高さの変化方向が長手方向とされたスリットSが設けられる。 Preferably, as shown in FIG. 16, the end of the first bypass pipe 86 inserted into the receiver 42 has, as a refrigerant inlet D, a slit S in which the direction of change in the liquid level of the receiver 42 is the longitudinal direction. Is provided.
 以上説明したように、実施の形態3の冷凍サイクル装置1Bでは、第1ファン22の回転速度を変化させた前後で、二相冷媒の温度T1に変化が生じるか否かによって、封入されている冷媒が「疑似共沸冷媒または単一冷媒」であるか「非共沸冷媒」であるかを判定し、予めメモリ104に記憶された冷媒種類に応じた制御値で運転を行なうように構成される。制御装置100は、温度検出部113が検出した温度変化がしきい値よりも小さい時は、冷媒が「擬似共沸冷媒または単一冷媒」であると判定し、温度変化がしきい値よりも大きい時は、冷媒が「非共沸冷媒」であると判定する。このようにして、冷凍サイクル装置1Bは、自動的に封入された冷媒に適した運転を行なうことができる。 As described above, in the refrigeration cycle apparatus 1B of the third embodiment, the refrigerant is sealed depending on whether or not the temperature T1 of the two-phase refrigerant changes before and after changing the rotation speed of the first fan 22. It is configured to determine whether the refrigerant is a “pseudo-azeotropic refrigerant or a single refrigerant” or a “non-azeotropic refrigerant”, and to operate with a control value corresponding to the refrigerant type stored in the memory 104 in advance. You. When the temperature change detected by temperature detecting section 113 is smaller than the threshold, control device 100 determines that the refrigerant is “pseudo-azeotropic refrigerant or single refrigerant”, and the temperature change is smaller than the threshold. When it is larger, it is determined that the refrigerant is a “non-azeotropic refrigerant”. In this manner, the refrigeration cycle apparatus 1B can perform an operation suitable for the automatically charged refrigerant.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 実 施 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description of the embodiments, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,1A,1B 冷凍サイクル装置、2,2A,2B 室外機、3 室内機、10 圧縮機、20 凝縮器、22 第1ファン、62 第2ファン、42 レシーバ、50 第1膨張装置、60 蒸発器、71 第2膨張装置、72 加熱装置、73,74 温度センサ、80,81,82,83,84 配管、86 第1バイパス配管、87 第2バイパス配管、90 第1圧力センサ、92 第2圧力センサ、100 制御装置、104 メモリ、110 冷媒回路、111 流路、112,112B 乾き度変更装置、113,113A 温度検出部、D 冷媒入口、D1~D5 開口、M1 分岐点、S スリット。 1, 1A, 1B refrigeration cycle device, 2, 2A, 2B outdoor unit, 3 indoor unit, 10 compressor, 20 condenser, 22 first fan, 62 second fan, 42 receiver, 50 first expansion device, 60 evaporation Vessel, 71 second expansion device, 72 heating device, 73, 74 temperature sensor, 80, 81, 82, 83, 84 piping, 86 first bypass piping, 87 second bypass piping, 90 first pressure sensor, 92 second Pressure sensor, 100 control device, 104 memory, 110 refrigerant circuit, 111 flow path, 112, 112B dryness change device, 113, 113A temperature detector, D refrigerant inlet, D1-D5 opening, M1 branch point, S slit.

Claims (10)

  1.  冷凍サイクル装置であって、
     圧縮機と、
     第1熱交換器と、
     第1膨張装置と、
     第2熱交換器と、
     前記圧縮機、前記第1熱交換器、前記第1膨張装置、前記第2熱交換器の順に冷媒を循環させる冷媒回路と、
     前記第1膨張装置および前記第2熱交換器を経由せずに前記第1熱交換器から前記圧縮機の吸入口に前記冷媒を送るバイパス流路と、
     前記バイパス流路に流れる前記冷媒の乾き度を変化させるように構成される乾き度変更装置と、
     前記乾き度変更装置によって乾き度が変更される前後の前記冷媒の温度変化を検出するように構成される温度検出部と、
     前記乾き度変更装置を制御する制御装置とを備え、
     前記制御装置は、前記温度検出部が検出した前記温度変化に基づいて、前記冷媒の種類を特定する、冷凍サイクル装置。
    A refrigeration cycle device,
    A compressor,
    A first heat exchanger;
    A first inflation device;
    A second heat exchanger;
    A refrigerant circuit that circulates refrigerant in the order of the compressor, the first heat exchanger, the first expansion device, and the second heat exchanger;
    A bypass passage for sending the refrigerant from the first heat exchanger to the suction port of the compressor without passing through the first expansion device and the second heat exchanger;
    A dryness changing device configured to change the dryness of the refrigerant flowing in the bypass flow path,
    A temperature detector configured to detect a change in the temperature of the refrigerant before and after the dryness is changed by the dryness changing device,
    A control device for controlling the dryness changing device,
    The refrigeration cycle device, wherein the control device specifies the type of the refrigerant based on the temperature change detected by the temperature detection unit.
  2.  冷凍サイクル装置であって、
     圧縮機と、
     第1熱交換器と、
     第1膨張装置と、
     第2熱交換器と、
     前記圧縮機、前記第1熱交換器、前記第1膨張装置、前記第2熱交換器の順に冷媒を循環させる冷媒回路と、
     前記第1膨張装置および前記第2熱交換器を経由せずに前記第1熱交換器から前記圧縮機の吸入口に前記冷媒を送るバイパス流路と、
     前記バイパス流路に流れる前記冷媒の乾き度を変化させるように構成される乾き度変更装置と、
     前記乾き度変更装置によって乾き度が変更される前後の前記冷媒の温度変化を検出するように構成される温度検出部と、
     前記乾き度変更装置を制御する制御装置とを備え、
     前記制御装置は、前記温度検出部が検出した前記温度変化に基づいて、目標圧力を変化させる、冷凍サイクル装置。
    A refrigeration cycle device,
    A compressor,
    A first heat exchanger;
    A first inflation device;
    A second heat exchanger;
    A refrigerant circuit that circulates refrigerant in the order of the compressor, the first heat exchanger, the first expansion device, and the second heat exchanger;
    A bypass passage for sending the refrigerant from the first heat exchanger to the suction port of the compressor without passing through the first expansion device and the second heat exchanger;
    A dryness changing device configured to change the dryness of the refrigerant flowing in the bypass flow path,
    A temperature detector configured to detect a change in the temperature of the refrigerant before and after the dryness is changed by the dryness changing device,
    A control device for controlling the dryness changing device,
    The refrigeration cycle device, wherein the control device changes a target pressure based on the temperature change detected by the temperature detection unit.
  3.  空気を前記第1熱交換器に供給する第1ファンと、
     空気を前記第2熱交換器に供給する第2ファンとをさらに備え、
     前記制御装置は、前記圧縮機の周波数、前記第1膨張装置の開度、前記第1ファンの回転速度、もしくは第2ファンの回転速度の少なくともいずれかを変化させ前記目標圧力を変化させる、請求項2に記載の冷凍サイクル装置。
    A first fan for supplying air to the first heat exchanger;
    A second fan for supplying air to the second heat exchanger,
    The control device changes the target pressure by changing at least one of a frequency of the compressor, an opening degree of the first expansion device, a rotation speed of the first fan, and a rotation speed of a second fan. Item 3. A refrigeration cycle apparatus according to item 2.
  4.  前記バイパス流路は、
     第2膨張装置と、
     前記冷媒の通過方向において、前記第2膨張装置の上流に位置する第1バイパス配管と、
     前記冷媒の通過方向において、前記第2膨張装置の下流に位置する第2バイパス配管とを含み、
     前記乾き度変更装置は、
     前記第2バイパス配管を流れる前記冷媒を加熱する加熱装置を備え、
     前記温度検出部は、前記第2バイパス配管の前記加熱装置よりも下流の前記冷媒の温度を検出し、
     前記制御装置は、前記加熱装置による加熱を実行した場合に前記温度検出部で検出された第1温度と、前記加熱装置による加熱を非実行とした場合に前記温度検出部で検出された第2温度とに基づいて、前記冷媒の種類を特定する、請求項1に記載の冷凍サイクル装置。
    The bypass passage,
    A second inflation device;
    A first bypass pipe located upstream of the second expansion device in a direction in which the refrigerant passes;
    A second bypass pipe located downstream of the second expansion device in a direction in which the refrigerant passes.
    The dryness changing device,
    A heating device for heating the refrigerant flowing through the second bypass pipe,
    The temperature detection unit detects the temperature of the refrigerant downstream of the heating device of the second bypass pipe,
    The control device is configured to control a first temperature detected by the temperature detection unit when heating by the heating device is performed, and a second temperature detected by the temperature detection unit when heating by the heating device is not performed. The refrigeration cycle apparatus according to claim 1, wherein the type of the refrigerant is specified based on the temperature.
  5.  前記バイパス流路は、
     第2膨張装置と、
     前記冷媒の通過方向において、前記第2膨張装置の上流に位置する第1バイパス配管と、
     前記冷媒の通過方向において、前記第2膨張装置の下流に位置する第2バイパス配管とを含み、
     前記乾き度変更装置は、
     前記第2バイパス配管を流れる前記冷媒を加熱する加熱装置を備え、
     前記温度検出部は、
     第1温度センサと、
     第2温度センサとを含み、
     前記第1温度センサは、前記第2バイパス配管に流れる前記冷媒が前記加熱装置で加熱された後の第1温度を検出し、
     前記第2温度センサは、前記第2バイパス配管に流れる前記冷媒が前記加熱装置に至る前の第2温度を検出し、
     前記制御装置は、前記第1温度と、前記第2温度とに基づいて、前記冷媒の種類を特定する、請求項1に記載の冷凍サイクル装置。
    The bypass passage,
    A second inflation device;
    A first bypass pipe located upstream of the second expansion device in a direction in which the refrigerant passes;
    A second bypass pipe located downstream of the second expansion device in a direction in which the refrigerant passes.
    The dryness changing device,
    A heating device for heating the refrigerant flowing through the second bypass pipe,
    The temperature detector,
    A first temperature sensor;
    A second temperature sensor;
    The first temperature sensor detects a first temperature after the refrigerant flowing in the second bypass pipe is heated by the heating device,
    The second temperature sensor detects a second temperature before the refrigerant flowing through the second bypass pipe reaches the heating device,
    The refrigeration cycle device according to claim 1, wherein the control device specifies the type of the refrigerant based on the first temperature and the second temperature.
  6.  前記乾き度変更装置は、
     前記冷媒回路において、前記第1熱交換器と前記第1膨張装置との間に配置されたレシーバと、
     前記第1熱交換器に送風するファンとを含み、
     前記バイパス流路は、
     第2膨張装置と、
     前記冷媒の通過方向において、前記第2膨張装置の上流に位置し、前記レシーバと前記第2膨張装置とを接続する第1バイパス配管と、
     前記冷媒の通過方向において、前記第2膨張装置の下流に位置する第2バイパス配管とを含み、
     前記第1バイパス配管の前記レシーバに挿入された端部には、冷媒入口が設けられ、
     前記冷媒入口は、前記レシーバの液面高さが変化するとガス状態の前記冷媒を吸引する開口面積が変化するように構成され、
     前記温度検出部は、前記第2バイパス配管を流れる前記冷媒の温度を検出し、
     前記制御装置は、前記ファンが第1回転速度である場合に前記温度検出部で検出された第1温度と、前記ファンが前記第1回転速度より高い第2回転速度である場合に前記温度検出部で検出された第2温度とに基づいて、前記冷媒の種類を特定する、請求項1に記載の冷凍サイクル装置。
    The dryness changing device,
    In the refrigerant circuit, a receiver disposed between the first heat exchanger and the first expansion device,
    A fan that blows air to the first heat exchanger,
    The bypass passage,
    A second inflation device;
    A first bypass pipe that is located upstream of the second expansion device and that connects the receiver and the second expansion device in the direction in which the refrigerant passes;
    A second bypass pipe located downstream of the second expansion device in a direction in which the refrigerant passes.
    A refrigerant inlet is provided at an end of the first bypass pipe inserted into the receiver,
    The refrigerant inlet is configured such that, when the liquid level of the receiver changes, an opening area for sucking the refrigerant in a gas state changes,
    The temperature detector detects a temperature of the refrigerant flowing through the second bypass pipe,
    The control device may further include: a first temperature detected by the temperature detection unit when the fan is at a first rotation speed; and a temperature detection when the fan is at a second rotation speed higher than the first rotation speed. The refrigeration cycle apparatus according to claim 1, wherein the type of the refrigerant is specified based on the second temperature detected by the unit.
  7.  前記冷媒入口は、前記レシーバの液面高さが変化すると、ゼロ以上前記第1バイパス配管の断面積以下の範囲で前記開口面積が変化するように構成される、請求項6に記載の冷凍サイクル装置。 The refrigeration cycle according to claim 6, wherein the refrigerant inlet is configured such that, when the liquid level of the receiver changes, the opening area changes in a range from zero to a cross-sectional area of the first bypass pipe. apparatus.
  8.  前記第1バイパス配管の前記レシーバに挿入された端部には、前記冷媒入口として、前記レシーバの液面高さの変化方向に互いに異なる位置に設けられた複数の開口が設けられる、請求項7に記載の冷凍サイクル装置。 8. A plurality of openings provided at positions different from each other in a direction in which the liquid level of the receiver changes in a direction in which the liquid level of the receiver changes, the end of the first bypass pipe inserted into the receiver being provided at the end of the first bypass pipe. 9. A refrigeration cycle apparatus according to item 1.
  9.  前記第1バイパス配管の前記レシーバに挿入された端部には、前記冷媒入口として、前記レシーバの液面高さの変化方向が長手方向とされたスリットが設けられる、請求項7に記載の冷凍サイクル装置。 The refrigeration according to claim 7, wherein a slit having a longitudinal direction in which the liquid level of the receiver changes in a longitudinal direction is provided as an inlet of the refrigerant at an end of the first bypass pipe inserted into the receiver. Cycle equipment.
  10.  前記制御装置は、前記温度検出部が検出した前記温度変化がしきい値よりも小さい時は、前記冷媒が擬似共沸冷媒または単一冷媒であると判定し、前記温度変化が前記しきい値よりも大きい時は、前記冷媒が非共沸冷媒であると判定する、請求項1~9のいずれか1項に記載の冷凍サイクル装置。 When the temperature change detected by the temperature detection unit is smaller than a threshold value, the control device determines that the refrigerant is a pseudo-azeotropic refrigerant or a single refrigerant, and determines that the temperature change is equal to the threshold value. The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein when it is larger than the refrigeration cycle, it is determined that the refrigerant is a non-azeotropic refrigerant.
PCT/JP2018/036527 2018-09-28 2018-09-28 Refrigeration cycle device WO2020066002A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/036527 WO2020066002A1 (en) 2018-09-28 2018-09-28 Refrigeration cycle device
CN201880097615.7A CN112714854B (en) 2018-09-28 2018-09-28 Refrigeration cycle device
JP2020547865A JP6937934B2 (en) 2018-09-28 2018-09-28 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036527 WO2020066002A1 (en) 2018-09-28 2018-09-28 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020066002A1 true WO2020066002A1 (en) 2020-04-02

Family

ID=69949335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036527 WO2020066002A1 (en) 2018-09-28 2018-09-28 Refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP6937934B2 (en)
CN (1) CN112714854B (en)
WO (1) WO2020066002A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101911A (en) * 1992-08-26 1994-04-12 Hitachi Ltd Refrigerating cycle using non-azeotropic mixed refrigerant
JPH0835725A (en) * 1994-07-21 1996-02-06 Mitsubishi Electric Corp Refrigerating air conditioner using non-azeotrope refrigerant
JPH08254363A (en) * 1995-03-15 1996-10-01 Toshiba Corp Air conditioning control device
JPH08261576A (en) * 1995-03-27 1996-10-11 Mitsubishi Electric Corp Freezing device having nonazeotropic mixture refrigerant
JPH10306949A (en) * 1997-05-07 1998-11-17 Mitsubishi Electric Corp Air conditioner
JPH11248267A (en) * 1997-12-19 1999-09-14 Mitsubishi Electric Corp Refrigeration cycle
JP3178192B2 (en) * 1993-10-22 2001-06-18 松下電器産業株式会社 Refrigeration cycle control device
JP2006275438A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Refrigerating device and air conditioner equipped therewith
WO2013027232A1 (en) * 2011-08-19 2013-02-28 三菱電機株式会社 Refrigeration cycle device
WO2017138058A1 (en) * 2016-02-08 2017-08-17 三菱電機株式会社 Refrigeration device
JP2018021730A (en) * 2016-08-05 2018-02-08 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146761A (en) * 1991-06-17 1992-09-15 Carrier Corporation Method and apparatus for recovering refrigerant
JP3178178B2 (en) * 1993-08-26 2001-06-18 松下電器産業株式会社 Refrigeration cycle saturated steam temperature detection circuit
JPH07253250A (en) * 1994-03-15 1995-10-03 Toshiba Corp Control device for refrigerating cycle
CN1135341C (en) * 1994-05-30 2004-01-21 三菱电机株式会社 Refrigerating circulating system and refrigerating air conditioning device
JP3185722B2 (en) * 1997-08-20 2001-07-11 三菱電機株式会社 Refrigeration air conditioner and method for determining refrigerant composition of refrigeration air conditioner
KR100482539B1 (en) * 1999-10-18 2005-04-14 다이킨 고교 가부시키가이샤 Refrigerating device
JP4864110B2 (en) * 2009-03-25 2012-02-01 三菱電機株式会社 Refrigeration air conditioner
JP2012189246A (en) * 2011-03-09 2012-10-04 Hitachi Appliances Inc Refrigerating apparatus
JP5968281B2 (en) * 2013-08-07 2016-08-10 三菱電機株式会社 Outdoor unit and air conditioner
WO2015045452A1 (en) * 2013-09-24 2015-04-02 三菱電機株式会社 Air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101911A (en) * 1992-08-26 1994-04-12 Hitachi Ltd Refrigerating cycle using non-azeotropic mixed refrigerant
JP3178192B2 (en) * 1993-10-22 2001-06-18 松下電器産業株式会社 Refrigeration cycle control device
JPH0835725A (en) * 1994-07-21 1996-02-06 Mitsubishi Electric Corp Refrigerating air conditioner using non-azeotrope refrigerant
JPH08254363A (en) * 1995-03-15 1996-10-01 Toshiba Corp Air conditioning control device
JPH08261576A (en) * 1995-03-27 1996-10-11 Mitsubishi Electric Corp Freezing device having nonazeotropic mixture refrigerant
JPH10306949A (en) * 1997-05-07 1998-11-17 Mitsubishi Electric Corp Air conditioner
JPH11248267A (en) * 1997-12-19 1999-09-14 Mitsubishi Electric Corp Refrigeration cycle
JP2006275438A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Refrigerating device and air conditioner equipped therewith
WO2013027232A1 (en) * 2011-08-19 2013-02-28 三菱電機株式会社 Refrigeration cycle device
WO2017138058A1 (en) * 2016-02-08 2017-08-17 三菱電機株式会社 Refrigeration device
JP2018021730A (en) * 2016-08-05 2018-02-08 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
CN112714854A (en) 2021-04-27
CN112714854B (en) 2022-03-29
JPWO2020066002A1 (en) 2021-08-30
JP6937934B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
US20180100677A1 (en) Refrigeration Cycle Device
JP2006250479A (en) Air conditioner
US20170276391A1 (en) Air-conditioning apparatus
US11280525B2 (en) Refrigeration apparatus
JP6594599B1 (en) Air conditioner
JP6758506B2 (en) Air conditioner
JP7282157B2 (en) Outdoor unit and refrigeration cycle device provided with the same
WO2020066002A1 (en) Refrigeration cycle device
CN112739961B (en) Outdoor unit of refrigeration cycle device, and air conditioning device
JPH0875280A (en) Freezing and air conditioning device with non-azeotropic mixture refrigerant
JP2007093097A (en) Heat pump water heater and control method of the same
WO2020066001A1 (en) Refrigeration cycle device
JP2000283568A (en) Refrigerating device and control method therefor
JP2011163575A (en) Heat pump type hot water supply device
JPH07198235A (en) Air conditioner
WO2021192275A1 (en) Outdoor unit and refrigeration cycle device equipped with same
US20220146165A1 (en) Air conditioning apparatus
WO2020008916A1 (en) Refrigeration cycle device and method for controlling same
JP2883535B2 (en) Refrigeration equipment
JP7341337B2 (en) Cold heat source unit, refrigeration cycle equipment, and refrigerator
JP2572648B2 (en) Overheating prevention device for ice machine compressor
JP7278376B2 (en) Outdoor unit, refrigeration cycle device and refrigerator
WO2023176697A1 (en) Refrigeration cycle device
CN112714852B (en) Outdoor unit of refrigeration cycle device, and air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935404

Country of ref document: EP

Kind code of ref document: A1