JP3178178B2 - Refrigeration cycle saturated steam temperature detection circuit - Google Patents

Refrigeration cycle saturated steam temperature detection circuit

Info

Publication number
JP3178178B2
JP3178178B2 JP21123993A JP21123993A JP3178178B2 JP 3178178 B2 JP3178178 B2 JP 3178178B2 JP 21123993 A JP21123993 A JP 21123993A JP 21123993 A JP21123993 A JP 21123993A JP 3178178 B2 JP3178178 B2 JP 3178178B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
outlet
circuit
decompressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21123993A
Other languages
Japanese (ja)
Other versions
JPH0763430A (en
Inventor
宏治 室園
章 藤高
雄一 薬丸
義典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21123993A priority Critical patent/JP3178178B2/en
Publication of JPH0763430A publication Critical patent/JPH0763430A/en
Application granted granted Critical
Publication of JP3178178B2 publication Critical patent/JP3178178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷媒として沸点が異な
る2種類以上の冷媒を所定の比率で混合した非共沸混合
冷媒を用いた冷凍サイクルの飽和蒸気温度検出回路に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit for detecting a saturated vapor temperature of a refrigeration cycle using a non-azeotropic refrigerant mixture in which two or more refrigerants having different boiling points are mixed at a predetermined ratio.

【0002】[0002]

【従来の技術】近年、地球環境保護の立場から、オゾン
層を破壊するフロンに対する規制が強化されてきてお
り、特に破壊力が大きなCFC(クロロフルオロカーボ
ン)については1995年末に全廃が決定しており、ま
た破壊力が比較的小さなHCFC(ハイドロクロロフル
オロカーボン)についても1996年より総量規制が開
始され、将来的には全廃されることが決定している。従
って、冷媒としてフロンを用いた機器について、その代
替冷媒の開発が進められており、オゾン層を破壊しない
HFC(ハイドロフルオロカーボン)が検討されている
が、冷凍機や空調機に用いられているHCFCの代替冷
媒として単独で用いることのできるものはHFCの中に
は見あたらず、従って2種類以上のHFC系冷媒を混合
させた非共沸の混合冷媒が有望視されている。
2. Description of the Related Art In recent years, regulations on chlorofluorocarbons that destroy the ozone layer have been tightened from the standpoint of protecting the global environment. CFCs (chlorofluorocarbons), which have a large destructive power, have been completely abolished at the end of 1995. In addition, HCFCs (hydrochlorofluorocarbons), which have relatively small destructive power, have been regulated in total amount since 1996, and it has been decided that they will be totally abolished in the future. Therefore, for devices using chlorofluorocarbon as a refrigerant, alternative refrigerants are being developed, and HFCs (hydrofluorocarbons) that do not destroy the ozone layer are being studied. However, HCFCs used in refrigerators and air conditioners are being studied. There is no HFC that can be used alone as an alternative refrigerant to HFC. Therefore, a non-azeotropic mixed refrigerant obtained by mixing two or more HFC-based refrigerants is considered promising.

【0003】従来、CFCやHCFC等の単一冷媒を用
いた冷凍機や空気調和機等の冷凍サイクルは、COP
(成績係数)を向上させ、圧縮機の信頼性を確保するた
めにスーパーヒート制御を行っており、そのために飽和
蒸気温度検出回路を設けていた。
Conventionally, a refrigeration cycle such as a refrigerator or an air conditioner using a single refrigerant such as CFC or HCFC has a COP
Superheat control was performed to improve (coefficient of performance) and ensure the reliability of the compressor, and a saturation steam temperature detection circuit was provided for that purpose.

【0004】以下、図面を参照しながら従来の飽和蒸気
温度検出回路について説明する。図9は、従来の冷凍機
や空気調和機等の冷凍サイクル図である。同図におい
て、1は圧縮機、2は凝縮器、3はステッピングモータ
を用いて弁開度をパルス制御可能とした電動膨張弁、4
は蒸発器であり、これらは順に環状に連結されている。
また、5は凝縮器2と電動膨張弁3とを結ぶ管路に一端
を接続し、他端を蒸発器4と圧縮機1とを結ぶ管路に接
続したバイパス回路であり、このバイパス回路5には補
助絞り6が設けられている。さらに、バイパス回路5お
よび圧縮機1の吸入側の管路上にそれぞれ温度センサ
8、9が配設されており、この温度センサ8、9によっ
て検出された温度から弁開度演算回路12にて電動膨張
弁3の弁開度を演算して弁開度信号を送出し、この弁開
度信号を受けて膨張弁駆動回路13にて電動膨張弁3の
弁開度を制御する。
Hereinafter, a conventional saturated steam temperature detecting circuit will be described with reference to the drawings. FIG. 9 is a refrigeration cycle diagram of a conventional refrigerator, an air conditioner, and the like. In the figure, 1 is a compressor, 2 is a condenser, 3 is an electric expansion valve that can control the valve opening by using a stepping motor by pulse, 4
Are evaporators, which are sequentially connected in a ring shape.
A bypass circuit 5 has one end connected to a pipe connecting the condenser 2 and the electric expansion valve 3 and the other end connected to a pipe connecting the evaporator 4 and the compressor 1. Is provided with an auxiliary aperture 6. Further, temperature sensors 8 and 9 are disposed on the bypass circuit 5 and the suction-side pipe line of the compressor 1, respectively. The valve opening of the expansion valve 3 is calculated, a valve opening signal is sent out, and the valve opening of the electric expansion valve 3 is controlled by the expansion valve drive circuit 13 in response to the valve opening signal.

【0005】図10は、この冷凍サイクルをP−h(モ
リエル)線図上にあらわしたもので、同図におけるA、
B、Cの記号のポイントは、図9のA、B、Cの位置の
冷媒の状態を示す。同図から明らかなように、ポイント
Cでは気液2相状態であるため、冷媒の温度はポイント
Bの冷媒の飽和蒸気温度TSである。従って、温度セン
サ8で検出した温度TSと温度センサ9で検出した温度
T2の差(T2−TS)が、圧縮機1に吸入される冷媒
のスーパーヒート量△Tをあらわす。
FIG. 10 shows this refrigeration cycle on a Ph (Mollier) diagram.
The points of the symbols B and C indicate the state of the refrigerant at the positions A, B and C in FIG. As is clear from the figure, since the gas is in a gas-liquid two-phase state at the point C, the temperature of the refrigerant is the saturated vapor temperature TS of the refrigerant at the point B. Therefore, the difference (T2-TS) between the temperature TS detected by the temperature sensor 8 and the temperature T2 detected by the temperature sensor 9 indicates the superheat amount ΔT of the refrigerant drawn into the compressor 1.

【0006】次に、この冷凍サイクルの制御を説明す
る。図11は、スーパーヒート量△Tと電動膨張弁3の
弁開度変更量との関係を示す図であり、温度センサ8と
9で検出した温度信号TS、T2より所定周期毎に弁開
度演算回路12でスーパーヒート量△Tを算出し、図1
1に示す関係に従って(スーパーヒート量△Tが設定値
より大きい場合は弁開度を大きくし、設定値より小さい
場合は弁開度を小さくする)、電動膨張弁3の弁開度信
号を膨張弁駆動回路13に送出し、膨張弁駆動回路13
にて電動膨張弁3の弁開度を制御してスーパーヒート量
△Tを設定値に保つ。
Next, control of the refrigeration cycle will be described. FIG. 11 is a diagram showing the relationship between the superheat amount ΔT and the valve opening change amount of the electric expansion valve 3. The valve opening degree is determined at predetermined intervals from the temperature signals TS and T2 detected by the temperature sensors 8 and 9. The arithmetic circuit 12 calculates the superheat amount ΔT, and FIG.
According to the relationship shown in FIG. 1 (if the superheat amount ΔT is larger than the set value, the valve opening is increased, and if it is smaller than the set value, the valve opening is decreased), the valve opening signal of the electric expansion valve 3 is expanded. Is sent to the valve drive circuit 13 and the expansion valve drive circuit 13
To control the valve opening of the electric expansion valve 3 to maintain the superheat amount ΔT at the set value.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の冷凍サイクルの飽和蒸気温度検出回路には以下のよ
うな課題があった。
However, the above-mentioned conventional saturated steam temperature detecting circuit of the refrigeration cycle has the following problems.

【0008】図12は、冷媒として非共沸混合冷媒を用
いた場合の冷凍サイクルをP−h(モリエル)線図上に
あらわしたもので、同図におけるA、B、Cの記号のポ
イントは、図9のA、B、Cの位置の冷媒の状態を示
す。ここで、ポイントBにおけるスーパーヒート量は、
ポイントBの温度とその飽和蒸気温度(ポイントE)と
の差で求めることができる。ここで、単一冷媒の場合は
図10に示すようにポイントCの温度は飽和蒸気温度と
同じであるが、非共沸混合冷媒の場合は図12に示すよ
うに、2相域での等温線は右下がりの線となっているた
め、ポイントCの温度は飽和蒸気温度(ポイントE)の
温度よりも低い。従って、温度センサ8と9で検出した
温度信号T1、T2から算出した△Tは真のスーパーヒ
ート量よりも大きな値となってしまい、この状態で設定
値に保つ制御を行うために冷媒は、実際のスーパーヒー
ト量が設定値よりも低い状態か若しくは湿り蒸気の状態
で圧縮機に吸入される。
FIG. 12 shows a refrigeration cycle in which a non-azeotropic mixed refrigerant is used as a refrigerant on a Ph (Mollier) diagram. In FIG. 10 shows the state of the refrigerant at positions A, B, and C in FIG. Here, the amount of superheat at point B is
It can be obtained from the difference between the temperature at point B and its saturated steam temperature (point E). Here, in the case of the single refrigerant, the temperature at the point C is the same as the saturated vapor temperature as shown in FIG. 10, but in the case of the non-azeotropic refrigerant mixture, as shown in FIG. Since the line is a downward-sloping line, the temperature at point C is lower than the temperature of the saturated steam temperature (point E). Therefore, ΔT calculated from the temperature signals T1 and T2 detected by the temperature sensors 8 and 9 becomes a value larger than the true superheat amount, and in order to perform control to maintain the set value in this state, the refrigerant is: The actual superheat amount is sucked into the compressor in a state lower than the set value or in a state of wet steam.

【0009】このため、液圧縮による圧縮機信頼性の低
下やCOPの低下を招くおそれがあった。
For this reason, there is a possibility that the reliability of the compressor and the COP may be reduced due to the liquid compression.

【0010】本発明の冷凍サイクルの飽和蒸気温度検出
回路は上記課題に鑑み、非共沸混合冷媒を用いた冷凍サ
イクルにおいて、冷凍サイクルの構成を複雑にすること
なく圧縮機吸入冷媒の飽和蒸気温度を精度よく検出する
ことを目的とし、これにより最適な冷凍サイクル制御の
実現を図るものである。
In view of the above problems, a saturated vapor temperature detecting circuit for a refrigeration cycle according to the present invention has a saturation vapor temperature of refrigerant sucked into a compressor in a refrigeration cycle using a non-azeotropic mixed refrigerant without complicating the structure of the refrigeration cycle. The aim is to realize optimum refrigeration cycle control.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明の冷凍サイクルの飽和蒸気温度検出回路は、冷
媒として沸点が異なる2種類以上の冷媒を所定の比率で
混合した非共沸混合冷媒を用い、圧縮機、凝縮器、減圧
器、蒸発器を順に配管にて環状に連結して冷媒回路を構
成し、凝縮器出口から減圧器出口に至る管路に一端を接
続し、他端を蒸発器出口から圧縮機入口に至る管路に接
続したバイパス回路を配設し、このバイパス回路に上流
側から順に補助減圧器、冷媒加熱手段、冷媒温度検出手
段を設け、冷媒加熱手段の加熱量を制御する加熱量制御
手段、冷媒温度検出手段により冷媒温度を所定周期で検
出してその変化量より飽和蒸気温度を判別する判別手段
を有するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a circuit for detecting a saturated vapor temperature of a refrigeration cycle according to the present invention comprises a non-azeotropic mixture in which two or more refrigerants having different boiling points are mixed at a predetermined ratio. Using a refrigerant, a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in a loop with a pipe to form a refrigerant circuit, and one end is connected to a conduit from the condenser outlet to the decompressor outlet, and the other end is connected. Is provided with a bypass circuit connected to a pipe line from an evaporator outlet to a compressor inlet, and an auxiliary decompressor, a refrigerant heating unit, and a refrigerant temperature detecting unit are provided in this bypass circuit in order from the upstream side to heat the refrigerant heating unit. It has a heating amount control means for controlling the amount, and a discriminating means for detecting the refrigerant temperature at a predetermined cycle by the refrigerant temperature detecting means and discriminating the saturated steam temperature from the change amount.

【0012】また、本発明の他の冷凍サイクルの飽和蒸
気温度検出回路は、冷媒として沸点が異なる2種類以上
の冷媒を所定の比率で混合した非共沸混合冷媒を用い、
圧縮機、凝縮器、減圧器、蒸発器を順に配管にて環状に
連結して冷媒回路を構成し、凝縮器出口から減圧器出口
に至る管路に一端を接続し、他端を蒸発器出口から圧縮
機入口に至る管路に接続したバイパス回路を配設し、こ
のバイパス回路に上流側から順に減圧量可変の補助減圧
器、冷媒温度検出手段を設け、補助減圧器出口から冷媒
温度検出手段設置位置に至る管路の一部と前記圧縮機出
口から前記凝縮器入口に至る管路の一部とを熱交換的に
接続し、前記補助減圧器の減圧量を制御する減圧量制御
手段、冷媒温度検出手段により冷媒温度を所定周期で検
出してその変化量より飽和蒸気温度を判別する判別手段
を有するものである。
Further, another circuit for detecting a saturated vapor temperature of a refrigeration cycle according to the present invention uses a non-azeotropic mixed refrigerant in which two or more refrigerants having different boiling points are mixed at a predetermined ratio.
A compressor, a condenser, a decompressor, and an evaporator are connected in order in a ring to form a refrigerant circuit, and one end is connected to a conduit from the condenser outlet to the decompressor outlet, and the other end is connected to the evaporator outlet. A bypass circuit connected to a pipe line from the compressor to the compressor inlet is provided, and an auxiliary pressure reducer and a refrigerant temperature detecting means are provided in this bypass circuit in order from the upstream side, and the refrigerant temperature detecting means is provided from the auxiliary pressure reducer outlet. A depressurization amount control means for connecting a part of the line leading to the installation position and a part of the line leading from the compressor outlet to the condenser inlet in a heat-exchange manner, and controlling the depressurization amount of the auxiliary decompressor; The refrigerant temperature detecting means detects the refrigerant temperature at a predetermined cycle, and has a determining means for determining the saturated steam temperature from the amount of change.

【0013】また、本発明の他の冷凍サイクルの飽和蒸
気温度検出回路は、冷媒として沸点が異なる2種類以上
の冷媒を所定の比率で混合した非共沸混合冷媒を用い、
圧縮機、凝縮器、減圧器、蒸発器を順に配管にて環状に
連結して冷媒回路を構成し、凝縮器出口から減圧器出口
に至る管路に一端を接続し、他端を蒸発器出口から圧縮
機入口に至る管路に接続したバイパス回路を配設し、こ
のバイパス回路に上流側から順に減圧量可変の補助減圧
器、冷媒温度検出手段を設け、補助減圧器出口から冷媒
温度検出手段設置位置に至る管路の一部を前記蒸発器内
に配設し、前記補助減圧器の減圧量を制御する減圧量制
御手段、冷媒温度検出手段により冷媒温度を所定周期で
検出してその変化量より飽和蒸気温度を判別する判別手
段を有するものである。
Further, another saturated vapor temperature detecting circuit of the refrigeration cycle of the present invention uses a non-azeotropic mixed refrigerant in which two or more types of refrigerants having different boiling points are mixed at a predetermined ratio.
A compressor, a condenser, a decompressor, and an evaporator are connected in order in a ring to form a refrigerant circuit, and one end is connected to a conduit from the condenser outlet to the decompressor outlet, and the other end is connected to the evaporator outlet. A bypass circuit connected to a pipe line from the compressor to the compressor inlet is provided, and an auxiliary pressure reducer and a refrigerant temperature detecting means are provided in this bypass circuit in order from the upstream side, and the refrigerant temperature detecting means is provided from the auxiliary pressure reducer outlet. A part of the pipeline leading to the installation position is disposed in the evaporator, and the temperature of the refrigerant is detected at a predetermined cycle by a decompression amount control means for controlling the decompression amount of the auxiliary decompressor and a refrigerant temperature detection means, and the change is detected. It has a determining means for determining the saturated steam temperature from the amount.

【0014】[0014]

【作用】本発明は、上記手段により次のような作用を有
する。
The present invention has the following functions by the above means.

【0015】すなわち、凝縮器出口から減圧器出口に至
る管路に一端を接続し、他端を蒸発器出口から圧縮機入
口に至る管路に接続したバイパス回路を配設し、このバ
イパス回路に上流側から順に補助減圧器、冷媒加熱手
段、冷媒温度検出手段を設け、冷媒加熱手段の加熱量を
制御する加熱量制御手段、冷媒温度検出手段により冷媒
温度を所定周期で検出してその変化量より飽和蒸気温度
を判別する判別手段を有することで、非共沸混合冷媒を
用いた冷凍サイクルにおいて、冷凍サイクルの構成を複
雑にすることなく圧縮機吸入冷媒の飽和蒸気温度を精度
よく検出することができ、これにより最適な冷凍サイク
ル制御の実現を図ることができる。
That is, a bypass circuit having one end connected to a conduit from the condenser outlet to the decompressor outlet and the other end connected to a conduit from the evaporator outlet to the compressor inlet is provided. An auxiliary decompressor, a refrigerant heating unit, and a refrigerant temperature detection unit are provided in order from the upstream side, and the amount of change is detected by detecting the refrigerant temperature at a predetermined cycle by the heating amount control unit for controlling the heating amount of the refrigerant heating unit and the refrigerant temperature detection unit. By having a discriminating means for discriminating the saturated vapor temperature more accurately, in a refrigeration cycle using a non-azeotropic refrigerant mixture, the saturated vapor temperature of the refrigerant sucked into the compressor can be accurately detected without complicating the configuration of the refrigeration cycle. Thus, optimal refrigeration cycle control can be realized.

【0016】また、凝縮器出口から減圧器出口に至る管
路に一端を接続し、他端を蒸発器出口から圧縮機入口に
至る管路に接続したバイパス回路を配設し、このバイパ
ス回路に上流側から順に減圧量可変の補助減圧器、冷媒
温度検出手段を設け、補助減圧器出口から冷媒温度検出
手段設置位置に至る管路の一部と前記圧縮機出口から前
記凝縮器入口に至る管路の一部とを熱交換的に接続し、
前記補助減圧器の減圧量を制御する減圧量制御手段、冷
媒温度検出手段により冷媒温度を所定周期で検出してそ
の変化量より飽和蒸気温度を判別する判別手段を有する
ことで、冷凍サイクル中の熱を利用することができるの
で新たに加熱手段を付加することなく圧縮機吸入冷媒の
飽和蒸気温度を精度よく検出することができ、これによ
り最適な冷凍サイクル制御の実現を図ることができる。
A bypass circuit having one end connected to a conduit from the condenser outlet to the decompressor outlet and the other end connected to a conduit from the evaporator outlet to the compressor inlet is provided. An auxiliary decompressor with a variable decompression amount and a refrigerant temperature detecting means are provided in order from the upstream side, and a part of a pipeline from an auxiliary decompressor outlet to a refrigerant temperature detecting means installation position and a pipe from the compressor outlet to the condenser inlet. Heat exchange with a part of the road,
A pressure reduction amount control means for controlling the pressure reduction amount of the auxiliary pressure reducer, and a determination means for detecting the refrigerant temperature at a predetermined cycle by the refrigerant temperature detection means and determining the saturated steam temperature from the change amount, so that the temperature during the refrigeration cycle can be reduced. Since heat can be used, the saturated vapor temperature of the refrigerant drawn into the compressor can be accurately detected without newly adding a heating means, thereby realizing optimal refrigeration cycle control.

【0017】また、凝縮器出口から減圧器出口に至る管
路に一端を接続し、他端を蒸発器出口から圧縮機入口に
至る管路に接続したバイパス回路を配設し、このバイパ
ス回路に上流側から順に減圧量可変の補助減圧器、冷媒
温度検出手段を設け、補助減圧器出口から冷媒温度検出
手段設置位置に至る管路の一部を前記蒸発器内に配設
し、前記補助減圧器の減圧量を制御する減圧量制御手
段、冷媒温度検出手段により冷媒温度を所定周期で検出
してその変化量より飽和蒸気温度を判別する判別手段を
有することで、高温の加熱源と熱交換せずにバイパス回
路の冷媒を過熱蒸気にすることができるので、短時間で
圧縮機吸入冷媒の飽和蒸気温度を精度よく検出すること
ができ、これにより最適な冷凍サイクル制御の実現を図
ることができる。
Further, a bypass circuit having one end connected to a pipeline from the condenser outlet to the decompressor outlet and the other end connected to a pipeline from the evaporator outlet to the compressor inlet is provided. An auxiliary pressure reducer and a refrigerant temperature detecting means are provided in order from the upstream side, and a part of a pipeline from an auxiliary pressure reducer outlet to a refrigerant temperature detecting means installation position is provided in the evaporator, and the auxiliary pressure reducing means is provided. A pressure-reducing amount control means for controlling a pressure-reducing amount of the vessel, and a discriminating means for detecting a refrigerant temperature at a predetermined cycle by a refrigerant temperature detecting means and discriminating a saturated steam temperature from a change amount thereof, thereby allowing heat exchange with a high-temperature heating source. Since the refrigerant in the bypass circuit can be turned into superheated steam without the need, the saturated vapor temperature of the refrigerant drawn into the compressor can be accurately detected in a short time, thereby realizing optimal refrigeration cycle control. it can.

【0018】[0018]

【実施例】以下、本発明の実施例について、図面を参考
に説明する。なお、従来の技術の項で説明したものと同
一の機能を有するものには同一の番号を付して詳細な説
明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. Note that components having the same functions as those described in the section of the related art are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0019】図1は、本発明の第1の実施例における冷
凍サイクル図である。同図において、1は圧縮機、2は
凝縮器、3は電動膨張弁、4は蒸発器であり、これらは
順に環状に連結されており、冷媒として非共沸混合冷媒
を用いている。また、5は凝縮器2と電動膨張弁3とを
結ぶ管路に一端を接続し、他端を蒸発器4と圧縮機1と
を結ぶ管路に接続したバイパス回路であり、このバイパ
ス回路5には補助絞り6が設けられている。また、補助
絞り6の下流側には冷媒を加熱する加熱ヒータ7が取り
付けられている。さらに、バイパス回路5および圧縮機
1の吸入側の管路上にそれぞれ温度センサ8、9が配設
されている。10は、加熱ヒータのオン、オフを制御す
る加熱ヒータ制御回路であり、11は加熱ヒータ制御回
路10へ制御信号を送出し、温度センサ8で検出した温
度T1より飽和蒸気温度TSを算出する飽和蒸気温度算
出回路である。飽和蒸気温度算出回路11で算出された
TSと温度センサ9によって検出された温度T2とを弁
開度演算回路12に送出し、従来の技術の項で説明した
ように、ここで電動膨張弁3の開度を演算して弁開度信
号を送出し、この弁開度信号を受けて膨張弁駆動回路1
3にて電動膨張弁3の弁開度を制御する。
FIG. 1 is a refrigeration cycle diagram in the first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a compressor, 2 denotes a condenser, 3 denotes an electric expansion valve, and 4 denotes an evaporator, which are sequentially connected in a ring shape, and use a non-azeotropic mixed refrigerant as a refrigerant. A bypass circuit 5 has one end connected to a pipe connecting the condenser 2 and the electric expansion valve 3 and the other end connected to a pipe connecting the evaporator 4 and the compressor 1. Is provided with an auxiliary aperture 6. Further, a heater 7 for heating the refrigerant is mounted downstream of the auxiliary throttle 6. Further, temperature sensors 8 and 9 are provided on the bypass circuit 5 and the pipeline on the suction side of the compressor 1, respectively. Reference numeral 10 denotes a heater control circuit for controlling ON / OFF of the heater. Reference numeral 11 denotes a saturation signal for sending a control signal to the heater control circuit 10 and calculating a saturated steam temperature TS from the temperature T1 detected by the temperature sensor 8. 3 is a steam temperature calculation circuit. The TS calculated by the saturated steam temperature calculating circuit 11 and the temperature T2 detected by the temperature sensor 9 are sent to the valve opening calculating circuit 12, and as described in the section of the prior art, the electric expansion valve 3 is used here. , And sends a valve opening signal, and receives the valve opening signal to receive the expansion valve driving circuit 1.
At 3, the valve opening of the electric expansion valve 3 is controlled.

【0020】次に、この飽和蒸気温度検出回路での飽和
蒸気温度算出の方法について説明する。図2は、この冷
凍サイクルをP−h(モリエル)線図上にあらわしたも
ので、同図におけるA、Bの記号のポイントは、図1の
A、Bの位置の冷媒の状態を示す。ここで、加熱ヒータ
7がオフの場合、温度センサ8近傍の冷媒は図2のポイ
ントCの状態である。加熱ヒータ7をオンにすると、冷
媒は加熱されて冷媒の状態は矢印aの方向に移動し、ポ
イントDの状態となる。ここで再び加熱ヒータ7をオフ
にすると冷媒の状態は矢印bの方向に移動し、再びポイ
ントCの状態となる。この時、図2に示す等温線より明
らかなように、加熱域を移動するときは温度低下の速度
が大きく、2相域に入ると温度低下の速度が急に緩やか
になる。図3は、温度センサ8で検出した冷媒温度T1
の時間変化を示す。同図のTC、TDは、図2のC、D
のポイントの状態の冷媒温度である。同図から明らかな
ように、加熱ヒータ7がオフになると冷媒温度は急激に
低下するが、2相域に入ると温度低下が急に緩やかにな
る。この傾きが変化する時刻tsaの温度が飽和蒸気温
度TSである。従って、加熱ヒータ7がオフになってか
ら所定周期毎に温度センサ8で冷媒温度T1を検出し、
前回検出した冷媒温度T1との差の絶対値が所定値以下
になったときの温度を飽和蒸気温度とすることで検出可
能である。
Next, a method of calculating the saturated steam temperature in the saturated steam temperature detection circuit will be described. FIG. 2 shows this refrigeration cycle on a Ph (Mollier) diagram. In FIG. 2, points indicated by symbols A and B indicate the state of the refrigerant at positions A and B in FIG. Here, when the heater 7 is turned off, the refrigerant near the temperature sensor 8 is in a state of a point C in FIG. When the heater 7 is turned on, the refrigerant is heated, and the state of the refrigerant moves in the direction of arrow a, and the state of point D is reached. Here, when the heater 7 is turned off again, the state of the refrigerant moves in the direction of arrow b, and returns to the state at point C. At this time, as is clear from the isotherm shown in FIG. 2, the speed of the temperature drop is large when moving in the heating zone, and the speed of the temperature drop becomes abruptly slow when entering the two-phase zone. FIG. 3 shows the refrigerant temperature T1 detected by the temperature sensor 8.
Of FIG. TC and TD in the same figure are C and D in FIG.
Is the refrigerant temperature in the state of the point. As is clear from the figure, when the heater 7 is turned off, the temperature of the refrigerant rapidly decreases, but when the temperature enters the two-phase region, the temperature decreases rapidly and gradually. The temperature at the time tsa at which this inclination changes is the saturated steam temperature TS. Therefore, the coolant temperature T1 is detected by the temperature sensor 8 at predetermined intervals after the heater 7 is turned off.
The temperature can be detected by setting the temperature when the absolute value of the difference from the refrigerant temperature T1 detected last time becomes equal to or less than a predetermined value as the saturated steam temperature.

【0021】次に、この飽和蒸気温度検出回路の具体的
な制御について説明する。図4は、飽和蒸気温度算出回
路11での制御のフロー図である。まず、弁開度演算回
路12より所定周期毎にTS送出の要求を受けると、加
熱ヒータ7をオンとする。そして、温度センサ8で検出
した温度T1が図2に示すTDまで上昇すると、加熱ヒ
ータ7をオフとして所定周期t1毎にT1を検出し、直
前に検出した温度Tmとの差(変化量)の絶対値|T1
−Tm|が所定値Kより小さくなると、この時の冷媒温
度T1が飽和蒸気温度TSであると判断してTS=T1
とし、TSの温度信号を弁開度演算回路12に送出す
る。
Next, a specific control of the saturated steam temperature detecting circuit will be described. FIG. 4 is a flowchart of the control in the saturated steam temperature calculation circuit 11. First, upon receiving a request for TS transmission at predetermined intervals from the valve opening calculation circuit 12, the heater 7 is turned on. Then, when the temperature T1 detected by the temperature sensor 8 rises to TD shown in FIG. 2, the heater 7 is turned off, T1 is detected every predetermined period t1, and the difference (change amount) from the temperature Tm detected immediately before is detected. Absolute value | T1
−Tm | is smaller than the predetermined value K, it is determined that the refrigerant temperature T1 at this time is the saturated vapor temperature TS, and TS = T1
And sends the TS temperature signal to the valve opening calculation circuit 12.

【0022】このように、冷媒として非共沸混合冷媒を
用いた場合でも、冷凍サイクルの構成を複雑にすること
なく圧縮機吸入冷媒の飽和蒸気温度を精度よく検出する
ことができ、これにより最適な冷凍サイクル制御の実現
を図ることができる。
As described above, even when a non-azeotropic mixed refrigerant is used as the refrigerant, the saturated vapor temperature of the refrigerant drawn into the compressor can be accurately detected without complicating the structure of the refrigeration cycle. A refrigeration cycle control can be realized.

【0023】次に、本発明の第2の実施例について、図
面を参照しながら説明する。図5は、本発明の第2の実
施例における冷凍サイクル図である。第1の実施例と異
なる点は、バイパス回路5上の補助絞り6、加熱ヒータ
7および加熱ヒータ制御回路10をなくし、バイパス回
路5上に膨張弁駆動回路13によって弁開度を制御可能
な電動膨張弁14を設け、その下流側の管路の一部を圧
縮機1と凝縮器2とを結ぶ管路と熱交換可能な熱交換部
15を設けたものである。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a refrigeration cycle diagram in the second embodiment of the present invention. The difference from the first embodiment is that the auxiliary throttle 6, the heater 7 and the heater control circuit 10 on the bypass circuit 5 are eliminated, and the valve opening can be controlled by the expansion valve drive circuit 13 on the bypass circuit 5. An expansion valve 14 is provided, and a part of a pipe downstream of the expansion valve 14 is provided with a heat exchange part 15 capable of exchanging heat with a pipe connecting the compressor 1 and the condenser 2.

【0024】この飽和蒸気温度検出回路での温度飽和蒸
気温度算出の方法について説明する。本実施例では、圧
縮機1から吐出された高温の冷媒ガスによりバイパス回
路5の冷媒を加熱するため、加熱量の制御はできない。
従って、電動膨張弁14の弁開度を制御してバイパス回
路5を流れる冷媒の循環量を制御して第1の実施例と同
様に飽和蒸気温度を算出する。すなわち、最初に電動膨
張弁14の弁開度を小さくして、冷媒温度T1を図3に
おけるTDまで上昇させる。T1がTDまで上昇した
ら、次に所定周期毎に電動膨張弁14の弁開度を所定量
ずつ大きくし、冷媒温度T1を検出する。そうすると、
第1の実施例と同様に冷媒温度は急激に低下するが、2
相域に入ると温度低下が急に緩やかになる。この傾きが
変化する時刻tsaの温度が飽和蒸気温度TSである。
従って、冷媒温度T1がTDまで到達した後、所定周期
毎に温度センサ8で冷媒温度T1を検出し、前回検出し
た冷媒温度T1との差の絶対値が所定値以下になったと
きの温度を飽和蒸気温度とすることで検出可能である。
A method for calculating the temperature saturated steam temperature in the saturated steam temperature detecting circuit will be described. In this embodiment, since the refrigerant in the bypass circuit 5 is heated by the high-temperature refrigerant gas discharged from the compressor 1, the heating amount cannot be controlled.
Therefore, the saturated steam temperature is calculated in the same manner as in the first embodiment by controlling the valve opening of the electric expansion valve 14 to control the circulation amount of the refrigerant flowing through the bypass circuit 5. That is, first, the valve opening of the electric expansion valve 14 is reduced, and the refrigerant temperature T1 is increased to TD in FIG. When T1 rises to TD, the valve opening of the electric expansion valve 14 is increased by a predetermined amount at predetermined intervals, and the refrigerant temperature T1 is detected. Then,
As in the first embodiment, the refrigerant temperature drops rapidly,
When entering the phase region, the temperature drop suddenly slows down. The temperature at the time tsa at which this inclination changes is the saturated steam temperature TS.
Therefore, after the coolant temperature T1 reaches TD, the coolant temperature T1 is detected by the temperature sensor 8 at predetermined intervals, and the temperature when the absolute value of the difference from the previously detected coolant temperature T1 becomes equal to or less than the predetermined value is determined. It can be detected by setting the saturated vapor temperature.

【0025】次に、この飽和蒸気温度検出回路の具体的
な制御について説明する。図6は、飽和蒸気温度算出回
路11での制御のフロー図である。まず、弁開度演算回
路12より所定周期毎にTS送出の要求を受けると、温
度センサ8で検出した温度T1が図2に示すTDに上昇
するまで所定周期t2毎に膨張弁駆動回路13に信号を
発して電動膨張弁14の弁開度をK2パルスずつ絞って
いく。そして、冷媒温度T1が図2に示すTDまで上昇
すると、所定周期t3毎に膨張弁駆動回路13に信号を
発して電動膨張弁14の弁開度を大きくしていくと共に
T1を検出し、直前に検出した温度Tmとの差(変化
量)の絶対値|T1−Tm|が所定値Kより小さくなる
と、この時の冷媒温度T1が飽和蒸気温度TSであると
判断してTS=T1とし、TSの温度信号を弁開度演算
回路12に送出する。
Next, a specific control of the saturated steam temperature detecting circuit will be described. FIG. 6 is a flowchart of the control in the saturated steam temperature calculation circuit 11. First, when a request for TS transmission is received at predetermined intervals from the valve opening calculation circuit 12, the expansion valve drive circuit 13 is activated at predetermined intervals t2 until the temperature T1 detected by the temperature sensor 8 rises to TD shown in FIG. A signal is issued to narrow the valve opening of the electric expansion valve 14 by K2 pulses. Then, when the refrigerant temperature T1 rises to TD shown in FIG. 2, a signal is sent to the expansion valve drive circuit 13 every predetermined period t3 to increase the valve opening of the electric expansion valve 14 and detect T1. When the absolute value | T1-Tm | of the difference (change amount) from the detected temperature Tm becomes smaller than the predetermined value K, it is determined that the refrigerant temperature T1 at this time is the saturated steam temperature TS, and TS = T1. The temperature signal of the TS is sent to the valve opening calculation circuit 12.

【0026】このように、冷媒として非共沸混合冷媒を
用いた場合でも、冷凍サイクル中の熱を利用することが
できるので新たに加熱手段を付加することなく圧縮機吸
入冷媒の飽和蒸気温度を精度よく検出することができ、
これにより最適な冷凍サイクル制御の実現を図ることが
できる。
As described above, even when a non-azeotropic refrigerant mixture is used as the refrigerant, the heat in the refrigeration cycle can be used, so that the saturated vapor temperature of the refrigerant drawn into the compressor can be reduced without adding a new heating means. Can be detected with high accuracy,
This makes it possible to achieve optimal refrigeration cycle control.

【0027】次に、本発明の第3の実施例について、図
面を参照しながら説明する。図7は、本発明の第3の実
施例における冷凍サイクル図である。第2の実施例と異
なる点は、バイパス回路5上の電動膨張弁14の下流側
の管路の一部を蒸発器4内を通過させて冷媒を蒸発させ
る補助蒸発器16を設けたことである。
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a refrigeration cycle diagram in the third embodiment of the present invention. The difference from the second embodiment is that an auxiliary evaporator 16 for evaporating the refrigerant by passing a part of the pipeline on the bypass circuit 5 downstream of the electric expansion valve 14 through the evaporator 4 is provided. is there.

【0028】この飽和蒸気温度検出回路での温度飽和蒸
気温度算出の方法について説明すると、まず最初に電動
膨張弁14の弁開度を小さくして、冷媒温度T1を図3
におけるTDまで上昇させる。T1がTDまで上昇した
ら、次に所定周期毎に電動膨張弁14の弁開度を所定量
ずつ大きくし、冷媒温度T1を検出し、以下第2の実施
例と同様にしてTSを求めることができる。なお、具体
的な制御については図6に示す第2の実施例の制御のフ
ロー図と同じであるため説明は省略する。
The method of calculating the temperature of the saturated steam temperature in the saturated steam temperature detection circuit will be described. First, the opening degree of the electric expansion valve 14 is reduced, and the refrigerant temperature T1 is reduced as shown in FIG.
To the TD at When T1 rises to TD, the valve opening of the electric expansion valve 14 is increased by a predetermined amount at predetermined intervals, the refrigerant temperature T1 is detected, and the TS is calculated in the same manner as in the second embodiment. it can. The specific control is the same as the control flowchart of the second embodiment shown in FIG.

【0029】第2の実施例においては、バイパス回路5
の冷媒は圧縮機1から吐出された高温の冷媒ガスにより
加熱されるため、図3に示すTDはかなり高温となるの
に対し、本実施例では冷媒を蒸発させるため、過熱域に
入っても雰囲気温度以上にはならず、従って比較的低温
で安定する。そのため、冷媒温度がTDからTSに到達
するまでの時間が短く、短時間で飽和蒸気温度TSを求
めることができる。
In the second embodiment, the bypass circuit 5
3 is heated by the high-temperature refrigerant gas discharged from the compressor 1, the TD shown in FIG. 3 becomes considerably high. It does not rise above ambient temperature and is therefore stable at relatively low temperatures. Therefore, the time required for the refrigerant temperature to reach TS from TD is short, and the saturated steam temperature TS can be obtained in a short time.

【0030】このように、冷媒として非共沸混合冷媒を
用いた場合でも、冷凍サイクル中の熱を利用することが
できるので新たに加熱手段を付加することなく圧縮機吸
入冷媒の飽和蒸気温度を精度よく、しかも短時間で検出
することができ、これにより最適な冷凍サイクル制御の
実現を図ることができる。
As described above, even when a non-azeotropic mixed refrigerant is used as the refrigerant, the heat in the refrigeration cycle can be used, and the saturated vapor temperature of the refrigerant drawn into the compressor can be reduced without adding a new heating means. Detection can be performed accurately and in a short time, thereby realizing optimal refrigeration cycle control.

【0031】なお、上記第1〜第3の実施例において
は、本発明の飽和蒸気温度検出回路で検出した飽和蒸気
温度をスーパーヒート制御に利用した場合について説明
したがそれに限定されるものではなく、例えば検出した
飽和蒸気温度より蒸発器の氷結を推定したり、飽和圧力
への換算式を作成しておき、検出した飽和蒸気温度より
圧縮機吸入圧力を算出して保護制御に利用する等、他の
制御にも利用可能である。
In the first to third embodiments, the case where the saturated steam temperature detected by the saturated steam temperature detecting circuit of the present invention is used for superheat control has been described. However, the present invention is not limited to this. For example, estimating the freezing of the evaporator from the detected saturated steam temperature, creating a conversion formula to the saturated pressure, calculating the compressor suction pressure from the detected saturated steam temperature and using it for protection control, etc. It can be used for other controls.

【0032】また、上記第1〜第3の実施例において
は、バイパス回路5の一端を凝縮器2の出口から減圧器
(電動膨張弁3)との入口に至る管路の一部に接続した
がこれに限定されるものではなく、液冷媒の割合が多く
て圧縮機1の吸入側より高圧となるところに接続すれ
ば、バイパス回路5の機能を有することができる。例え
ば減圧器が2つに分割されている場合はバイパス回路5
の一端を2つの減圧器間の管路の一部に接続してもよ
く、また減圧器がキャピラリチューブの場合ならば、キ
ャピラリチューブの入口から出口までの管路上のいずれ
かの位置へ接続してもよい。すなわち、バイパス回路の
一端を、凝縮器出口から減圧器出口に至る管路に接続す
ることで、本発明のバイパス回路の機能を有することが
できる。
In the first to third embodiments, one end of the bypass circuit 5 is connected to the outlet of the condenser 2 through the pressure reducing device.
Not to have been connected to a part of the conduit leading to the inlet of the (electric expansion valve 3) is not limited to this, by connecting at the higher pressure than the proportion most suction side of the compressor 1 of the liquid refrigerant
For example, the function of the bypass circuit 5 can be provided. For example, if the pressure reducer is divided into two, the bypass circuit 5
May be connected to a part of the conduit between the two decompressors, and if the decompressor is a capillary tube, connected to any position on the conduit from the inlet to the outlet of the capillary tube. You may. That is, the bypass circuit
Connect one end to the conduit from the condenser outlet to the pressure reducer outlet
With this, it is possible to have the function of the bypass circuit of the present invention.
it can.

【0033】また、ヒートポンプサイクルの場合は、四
方弁を切り換えて蒸発器と凝縮器が入れ替わっても、バ
イパス回路の一端を常に凝縮器出口から減圧器出口に至
る管路に接続するようにしておけば、本発明の飽和蒸気
温度検出回路を構成することが可能である。例えば、減
圧器を2つに分割して2つの減圧器間へバイパス回路の
一端を接続しておけば、凝縮器と蒸発器が入れ替わって
も常に中間圧の冷媒をバイパス回路に流すことができ
る。また、図8は、本発明の飽和蒸気温度検出回路をヒ
ートポンプサイクルに適用した場合の冷凍サイクル図の
一例を示す。同図において17、18は逆止弁であり、
19は四方弁である。このような冷媒回路を組めば、熱
交換器2aが凝縮器の時は冷媒は実線のように流れ、ま
た熱交換器4aが凝縮器の時は冷媒は破線のように流れ
る。従って、常に高圧の液冷媒をバイパス回路に流すこ
とができ、本発明の飽和蒸気温度検出回路を構成するこ
とが可能である。
In the case of the heat pump cycle, one end of the bypass circuit is always connected to the conduit from the outlet of the condenser to the outlet of the pressure reducer, even if the four-way valve is switched to switch the evaporator and the condenser. If so, it is possible to configure the saturated steam temperature detection circuit of the present invention. For example, if the pressure reducer is divided into two and one end of the bypass circuit is connected between the two pressure reducers, even if the condenser and the evaporator are exchanged, the intermediate-pressure refrigerant can always flow through the bypass circuit. . FIG. 8 shows an example of a refrigeration cycle diagram when the saturated steam temperature detection circuit of the present invention is applied to a heat pump cycle. In the figure, reference numerals 17 and 18 denote check valves,
19 is a four-way valve. With such a refrigerant circuit, when the heat exchanger 2a is a condenser, the refrigerant flows as a solid line, and when the heat exchanger 4a is a condenser, the refrigerant flows as a broken line. Therefore, high-pressure liquid refrigerant can always flow through the bypass circuit, and the saturated vapor temperature detection circuit of the present invention can be configured.

【0034】また、上記第2および第3の実施例におい
ては、減圧量可変の補助減圧器については、電動膨張弁
を用いて説明したが、これに限定されるものではなく、
減圧量を制御できるものであれば、他の方式のものを用
いてもよい。
Further, in the second and third embodiments, the auxiliary pressure reducer having a variable pressure reduction amount has been described using the electric expansion valve. However, the present invention is not limited to this.
Other types may be used as long as the amount of reduced pressure can be controlled.

【0035】また、本発明の飽和蒸気温度検出回路は、
フロン系冷媒に限らず非共沸混合冷媒であれば、他の冷
媒にも適用可能である。
Further, the saturated steam temperature detecting circuit of the present invention comprises:
The present invention is not limited to a chlorofluorocarbon-based refrigerant, and can be applied to other refrigerants as long as they are non-azeotropic mixed refrigerants.

【0036】[0036]

【発明の効果】上記実施例より明らかなように本発明の
冷凍サイクルの飽和蒸気温度検出回路は、凝縮器出口か
ら減圧器出口に至る管路に一端を接続し、他端を蒸発器
出口から圧縮機入口に至る管路に接続したバイパス回路
を配設し、このバイパス回路に上流側から順に補助減圧
器、冷媒加熱手段、冷媒温度検出手段を設け、冷媒加熱
手段の加熱量を制御する加熱量制御手段、冷媒温度検出
手段により冷媒温度を所定周期で検出してその変化量よ
り飽和蒸気温度を判別する判別手段を有することで、非
共沸混合冷媒を用いた冷凍サイクルにおいて、冷凍サイ
クルの構成を複雑にすることなく圧縮機吸入冷媒の飽和
蒸気温度を精度よく検出することができ、これにより最
適な冷凍サイクル制御の実現を図ることができる。
As is clear from the above embodiment, the circuit for detecting the saturated steam temperature of the refrigeration cycle of the present invention has one end connected to the pipe from the condenser outlet to the pressure reducer outlet, and the other end connected to the evaporator outlet. A bypass circuit connected to a pipeline leading to the compressor inlet is provided, and an auxiliary pressure reducer, a refrigerant heating unit, and a refrigerant temperature detection unit are provided in this bypass circuit in order from the upstream side, and heating for controlling a heating amount of the refrigerant heating unit is provided. In the refrigerating cycle using the non-azeotropic mixed refrigerant, the amount controlling means, the refrigerant temperature detecting means having a judging means for detecting the refrigerant temperature at a predetermined cycle and judging the saturated vapor temperature from the change amount thereof, The saturated vapor temperature of the refrigerant drawn into the compressor can be accurately detected without complicating the configuration, thereby realizing optimal refrigeration cycle control.

【0037】また、凝縮器出口から減圧器出口に至る管
路に一端を接続し、他端を蒸発器出口から圧縮機入口に
至る管路に接続したバイパス回路を配設し、このバイパ
ス回路に上流側から順に減圧量可変の補助減圧器、冷媒
温度検出手段を設け、補助減圧器出口から冷媒温度検出
手段設置位置に至る管路の一部と前記圧縮機出口から前
記凝縮器入口に至る管路の一部とを熱交換的に接続し、
前記補助減圧器の減圧量を制御する減圧量制御手段、冷
媒温度検出手段により冷媒温度を所定周期で検出してそ
の変化量より飽和蒸気温度を判別する判別手段を有する
ことで、冷凍サイクル中の熱を利用することができるの
で新たに加熱手段を付加することなく圧縮機吸入冷媒の
飽和蒸気温度を精度よく検出することができ、これによ
り最適な冷凍サイクル制御の実現を図ることができる。
Further, a bypass circuit having one end connected to a conduit from the condenser outlet to the decompressor outlet and the other end connected to a conduit from the evaporator outlet to the compressor inlet is provided. An auxiliary decompressor with a variable decompression amount and a refrigerant temperature detecting means are provided in order from the upstream side, and a part of a pipeline from an auxiliary decompressor outlet to a refrigerant temperature detecting means installation position and a pipe from the compressor outlet to the condenser inlet. Heat exchange with a part of the road,
A pressure reduction amount control means for controlling the pressure reduction amount of the auxiliary pressure reducer, and a determination means for detecting the refrigerant temperature at a predetermined cycle by the refrigerant temperature detection means and determining the saturated steam temperature from the change amount, so that the temperature during the refrigeration cycle can be reduced. Since heat can be used, the saturated vapor temperature of the refrigerant drawn into the compressor can be accurately detected without newly adding a heating means, thereby realizing optimal refrigeration cycle control.

【0038】また、凝縮器出口から減圧器出口に至る管
路に一端を接続し、他端を蒸発器出口から圧縮機入口に
至る管路に接続したバイパス回路を配設し、このバイパ
ス回路に上流側から順に減圧量可変の補助減圧器、冷媒
温度検出手段を設け、補助減圧器出口から冷媒温度検出
手段設置位置に至る管路の一部を前記蒸発器内に配設
し、前記補助減圧器の減圧量を制御する減圧量制御手
段、冷媒温度検出手段により冷媒温度を所定周期で検出
してその変化量より飽和蒸気温度を判別する判別手段を
有することで、高温の加熱源と熱交換せずにバイパス回
路の冷媒を過熱蒸気にすることができるので、短時間で
圧縮機吸入冷媒の飽和蒸気温度を精度よく検出すること
ができ、これにより最適な冷凍サイクル制御の実現を図
ることができる。
A bypass circuit having one end connected to a conduit from the condenser outlet to the decompressor outlet and the other end connected to a conduit from the evaporator outlet to the compressor inlet is provided. An auxiliary pressure reducer and a refrigerant temperature detecting means are provided in order from the upstream side, and a part of a pipeline from an auxiliary pressure reducer outlet to a refrigerant temperature detecting means installation position is provided in the evaporator, and the auxiliary pressure reducing means is provided. A pressure-reducing amount control means for controlling a pressure-reducing amount of the vessel, and a discriminating means for detecting a refrigerant temperature at a predetermined cycle by a refrigerant temperature detecting means and discriminating a saturated steam temperature from a change amount thereof, thereby allowing heat exchange with a high-temperature heating source. Since the refrigerant in the bypass circuit can be turned into superheated steam without the need, the saturated vapor temperature of the refrigerant drawn into the compressor can be accurately detected in a short time, thereby realizing optimal refrigeration cycle control. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の飽和蒸気温度検出回路の第1の実施例
における冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram of a first embodiment of a saturated steam temperature detection circuit according to the present invention.

【図2】同実施例におけるP−h線図上の冷凍サイクル
FIG. 2 is a refrigeration cycle diagram on a Ph diagram in the embodiment.

【図3】同実施例における冷媒温度の時間変化を示す特
性図
FIG. 3 is a characteristic diagram showing a temporal change of a refrigerant temperature in the embodiment.

【図4】同実施例における制御のフロー図FIG. 4 is a flowchart of control in the embodiment.

【図5】本発明の飽和蒸気温度検出回路の第2の実施例
における冷凍サイクル図
FIG. 5 is a refrigeration cycle diagram in a second embodiment of the saturated steam temperature detection circuit of the present invention.

【図6】同実施例における制御のフロー図FIG. 6 is a flowchart of control in the embodiment.

【図7】本発明の飽和蒸気温度検出回路の第3の実施例
における冷凍サイクル図
FIG. 7 is a refrigeration cycle diagram in a third embodiment of the saturated steam temperature detection circuit of the present invention.

【図8】本発明の飽和蒸気温度検出回路をヒートポンプ
サイクルに適用した場合の冷凍サイクル図
FIG. 8 is a refrigeration cycle diagram when the saturated steam temperature detection circuit of the present invention is applied to a heat pump cycle.

【図9】従来の飽和蒸気温度検出回路の冷凍サイクル図FIG. 9 is a refrigeration cycle diagram of a conventional saturated steam temperature detection circuit.

【図10】同飽和蒸気温度検出回路におけるP−h線図
上の冷凍サイクル図
FIG. 10 is a refrigeration cycle diagram on a Ph diagram in the saturated steam temperature detection circuit.

【図11】スーパーヒート量と電動膨張弁の弁開度変更
量との関係図
FIG. 11 is a diagram illustrating a relationship between a superheat amount and a valve opening change amount of an electric expansion valve.

【図12】従来の飽和蒸気温度検出回路における非共沸
混合冷媒を用いた場合のP−h線図上の冷凍サイクル図
FIG. 12 is a refrigeration cycle diagram on a Ph diagram when a non-azeotropic mixed refrigerant is used in a conventional saturated vapor temperature detection circuit.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 2a 熱交換器 3 電動膨張弁(減圧器) 4 蒸発器 4a 熱交換器 5 バイパス回路 6 補助絞り(補助減圧器) 7 加熱ヒータ(冷媒加熱手段) 8 温度センサ(冷媒温度検出手段) 10 加熱ヒータ制御回路(加熱量制御手段) 11 飽和蒸気温度算出回路(判別手段) 13 膨張弁駆動回路(減圧量制御手段) 14 電動膨張弁(減圧量可変の補助減圧器) 15 熱交換部 16 補助蒸発器 Reference Signs List 1 compressor 2 condenser 2a heat exchanger 3 electric expansion valve (decompressor) 4 evaporator 4a heat exchanger 5 bypass circuit 6 auxiliary throttle (auxiliary decompressor) 7 heater (refrigerant heating means) 8 temperature sensor (refrigerant temperature) (Detection means) 10 Heater control circuit (heating amount control means) 11 Saturated steam temperature calculation circuit (determination means) 13 Expansion valve drive circuit (decompression amount control means) 14 Electric expansion valve (auxiliary decompressor with variable decompression amount) 15 Heat Exchange section 16 auxiliary evaporator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 義典 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−101911(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshinori Kobayashi 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-6-101911 (JP, A) (58) Field (Int.Cl. 7 , DB name) F25B 1/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷媒として沸点が異なる2種類以上の冷媒
を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機、凝縮器、減圧器、蒸発器を順に配管にて環状に連結
して冷媒回路を構成し、凝縮器出口から減圧器出口に至
る管路に一端を接続し、他端を蒸発器出口から圧縮機入
口に至る管路に接続したバイパス回路を配設し、このバ
イパス回路に上流側から順に補助減圧器、冷媒加熱手
段、冷媒温度検出手段を設け、前記冷媒加熱手段の加熱
量を制御する加熱量制御手段、前記冷媒温度検出手段に
より冷媒温度を所定周期で検出してその変化量より飽和
蒸気温度を判別する判別手段を有する冷凍サイクルの飽
和蒸気温度検出回路。
1. A non-azeotropic mixed refrigerant in which two or more refrigerants having different boiling points are mixed at a predetermined ratio as a refrigerant, and a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in a ring by piping. A bypass circuit having one end connected to a conduit from the condenser outlet to the decompressor outlet and the other end connected to a conduit from the evaporator outlet to the compressor inlet. An auxiliary decompressor, a refrigerant heating unit, and a refrigerant temperature detection unit are provided in order from the upstream side in the circuit, and a heating amount control unit that controls a heating amount of the refrigerant heating unit, and a refrigerant temperature is detected at a predetermined cycle by the refrigerant temperature detection unit. And a saturated steam temperature detecting circuit of the refrigeration cycle having a judging means for judging the saturated steam temperature from the change amount.
【請求項2】冷媒として沸点が異なる2種類以上の冷媒
を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機、凝縮器、減圧器、蒸発器を順に配管にて環状に連結
して冷媒回路を構成し、凝縮器出口から減圧器出口に至
る管路に一端を接続し、他端を蒸発器出口から圧縮機入
口に至る管路に接続したバイパス回路を配設し、このバ
イパス回路に上流側から順に減圧量可変の補助減圧器、
冷媒温度検出手段を設け、前記補助減圧器出口から前記
冷媒温度検出手段設置位置に至る管路の一部と前記圧縮
機出口から前記凝縮器入口に至る管路の一部とを熱交換
的に接続し、前記補助減圧器の減圧量を制御する減圧量
制御手段、前記冷媒温度検出手段により冷媒温度を所定
周期で検出してその変化量より飽和蒸気温度を判別する
判別手段を有する冷凍サイクルの飽和蒸気温度検出回
路。
2. A non-azeotropic mixed refrigerant in which two or more refrigerants having different boiling points are mixed at a predetermined ratio as a refrigerant, and a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in a ring by piping. A bypass circuit having one end connected to a conduit from the condenser outlet to the decompressor outlet and the other end connected to a conduit from the evaporator outlet to the compressor inlet. Auxiliary pressure reducer with variable pressure reduction in order from the upstream to the circuit,
A refrigerant temperature detecting means is provided, and a part of a conduit from the auxiliary decompressor outlet to the refrigerant temperature detecting means installation position and a part of a conduit from the compressor outlet to the condenser inlet are heat-exchanged. A refrigeration cycle having a pressure reduction amount control means for controlling a pressure reduction amount of the auxiliary pressure reducer, a determination means for detecting a refrigerant temperature at a predetermined cycle by the refrigerant temperature detection means and determining a saturated steam temperature from a change amount thereof. Saturated steam temperature detection circuit.
【請求項3】冷媒として沸点が異なる2種類以上の冷媒
を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機、凝縮器、減圧器、蒸発器を順に配管にて環状に連結
して冷媒回路を構成し、凝縮器出口から減圧器出口に至
る管路に一端を接続し、他端を蒸発器出口から圧縮機入
口に至る管路に接続したバイパス回路を配設し、このバ
イパス回路に上流側から順に減圧量可変の補助減圧器、
冷媒温度検出手段を設け、前記補助減圧器出口から前記
冷媒温度検出手段設置位置に至る管路の一部を前記蒸発
器内に配設し、前記補助減圧器の減圧量を制御する減圧
量制御手段、冷媒温度検出手段により冷媒温度を所定周
期で検出してその変化量より飽和蒸気温度を判別する判
別手段を有する冷凍サイクルの飽和蒸気温度検出回路。
3. A non-azeotropic mixed refrigerant in which two or more refrigerants having different boiling points are mixed at a predetermined ratio as a refrigerant, and a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in a ring by piping. A bypass circuit having one end connected to a conduit from the condenser outlet to the decompressor outlet and the other end connected to a conduit from the evaporator outlet to the compressor inlet. Auxiliary pressure reducer with variable pressure reduction in order from the upstream to the circuit,
A pressure reducing amount control for providing a refrigerant temperature detecting means, arranging a part of a pipeline from an outlet of the auxiliary decompressor to a position where the refrigerant temperature detecting means is installed in the evaporator, and controlling a depressurizing amount of the auxiliary decompressor. A saturated steam temperature detection circuit for a refrigeration cycle, comprising: means for detecting a refrigerant temperature at a predetermined cycle by means of refrigerant temperature detecting means, and judging saturated steam temperature from an amount of change.
JP21123993A 1993-08-26 1993-08-26 Refrigeration cycle saturated steam temperature detection circuit Expired - Fee Related JP3178178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21123993A JP3178178B2 (en) 1993-08-26 1993-08-26 Refrigeration cycle saturated steam temperature detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21123993A JP3178178B2 (en) 1993-08-26 1993-08-26 Refrigeration cycle saturated steam temperature detection circuit

Publications (2)

Publication Number Publication Date
JPH0763430A JPH0763430A (en) 1995-03-10
JP3178178B2 true JP3178178B2 (en) 2001-06-18

Family

ID=16602597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21123993A Expired - Fee Related JP3178178B2 (en) 1993-08-26 1993-08-26 Refrigeration cycle saturated steam temperature detection circuit

Country Status (1)

Country Link
JP (1) JP3178178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620459A (en) * 2011-01-27 2012-08-01 松下电器产业株式会社 Refrigeration cycle apparatus and hydronic heater using the refrigeration cycle apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205079B2 (en) * 2008-02-28 2013-06-05 三洋電機株式会社 Heat pump water heater / heater
WO2020066002A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Refrigeration cycle device
EP3951288A4 (en) * 2019-03-26 2022-03-23 Mitsubishi Electric Corporation Outdoor unit and refrigeration cycle device equipped with same
WO2020217423A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Heat-source-side unit and refrigeration cycle apparatus comprising same
JP7066053B2 (en) * 2019-04-25 2022-05-12 三菱電機株式会社 Heat source side unit and refrigeration cycle device equipped with it
JP7278376B2 (en) * 2019-06-20 2023-05-19 三菱電機株式会社 Outdoor unit, refrigeration cycle device and refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620459A (en) * 2011-01-27 2012-08-01 松下电器产业株式会社 Refrigeration cycle apparatus and hydronic heater using the refrigeration cycle apparatus
CN102620459B (en) * 2011-01-27 2015-09-16 松下电器产业株式会社 The hot-water central heating system of refrigerating circulatory device and this refrigerating circulatory device of use

Also Published As

Publication number Publication date
JPH0763430A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
US7856836B2 (en) Refrigerating air conditioning system
JP4462435B2 (en) Refrigeration equipment
JP2010506132A (en) Method and apparatus for controlling stop operation of air conditioner
JP3178178B2 (en) Refrigeration cycle saturated steam temperature detection circuit
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP3351076B2 (en) Refrigeration cycle saturated steam temperature detector
JP2948105B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP3178192B2 (en) Refrigeration cycle control device
JP2000283568A (en) Refrigerating device and control method therefor
JPH06101911A (en) Refrigerating cycle using non-azeotropic mixed refrigerant
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
JPH07198235A (en) Air conditioner
JP3188989B2 (en) Air conditioner
JP3479747B2 (en) Cooling cycle controller
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JPH07190526A (en) Refrigerating cycle equipment using nonazeotropic mixture refrigerant
JP2002081771A (en) Heat pump
JPH10160273A (en) Air conditioner
JP4179365B2 (en) Air conditioner
JP3296646B2 (en) Simple pressure detection method for refrigeration equipment
JPH1047794A (en) Freezer
JPH10332211A (en) Air conditioner
JPH0328270Y2 (en)
JP3231393B2 (en) Air conditioning
JPH10332232A (en) Heat pump type air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees