JPH0763430A - Saturated vapor temperature detection circuit of refrigeration cycle - Google Patents
Saturated vapor temperature detection circuit of refrigeration cycleInfo
- Publication number
- JPH0763430A JPH0763430A JP21123993A JP21123993A JPH0763430A JP H0763430 A JPH0763430 A JP H0763430A JP 21123993 A JP21123993 A JP 21123993A JP 21123993 A JP21123993 A JP 21123993A JP H0763430 A JPH0763430 A JP H0763430A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- temperature
- outlet
- circuit
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、冷媒として沸点が異な
る2種類以上の冷媒を所定の比率で混合した非共沸混合
冷媒を用いた冷凍サイクルの飽和蒸気温度検出回路に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a saturated vapor temperature detection circuit for a refrigeration cycle using a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio.
【0002】[0002]
【従来の技術】近年、地球環境保護の立場から、オゾン
層を破壊するフロンに対する規制が強化されてきてお
り、特に破壊力が大きなCFC(クロロフルオロカーボ
ン)については1995年末に全廃が決定しており、ま
た破壊力が比較的小さなHCFC(ハイドロクロロフル
オロカーボン)についても1996年より総量規制が開
始され、将来的には全廃されることが決定している。従
って、冷媒としてフロンを用いた機器について、その代
替冷媒の開発が進められており、オゾン層を破壊しない
HFC(ハイドロフルオロカーボン)が検討されている
が、冷凍機や空調機に用いられているHCFCの代替冷
媒として単独で用いることのできるものはHFCの中に
は見あたらず、従って2種類以上のHFC系冷媒を混合
させた非共沸の混合冷媒が有望視されている。2. Description of the Related Art In recent years, from the standpoint of protecting the global environment, regulations on CFCs that destroy the ozone layer have been strengthened, and it has been decided to abolish CFC (chlorofluorocarbon), which has a particularly high destructive power, at the end of 1995. Also, regarding the FCFC (hydrochlorofluorocarbon), which has a relatively small destructive power, the total amount regulation was started in 1996, and it has been decided that it will be completely abolished in the future. Therefore, for devices that use CFCs as refrigerants, alternative refrigerants are being developed, and HFCs (hydrofluorocarbons) that do not destroy the ozone layer are being studied, but HCFCs used in refrigerators and air conditioners are being investigated. No substitute refrigerant that can be used alone as a substitute refrigerant is found in HFC, and therefore, a non-azeotropic mixed refrigerant obtained by mixing two or more kinds of HFC refrigerants is considered promising.
【0003】従来、CFCやHCFC等の単一冷媒を用
いた冷凍機や空気調和機等の冷凍サイクルは、COP
(成績係数)を向上させ、圧縮機の信頼性を確保するた
めにスーパーヒート制御を行っており、そのために飽和
蒸気温度検出回路を設けていた。Conventionally, a refrigeration cycle such as a refrigerator or an air conditioner using a single refrigerant such as CFC or HCFC has a COP
In order to improve the (coefficient of performance) and ensure the reliability of the compressor, superheat control was performed, and for that purpose, a saturated steam temperature detection circuit was provided.
【0004】以下、図面を参照しながら従来の飽和蒸気
温度検出回路について説明する。図9は、従来の冷凍機
や空気調和機等の冷凍サイクル図である。同図におい
て、1は圧縮機、2は凝縮器、3はステッピングモータ
を用いて弁開度をパルス制御可能とした電動膨張弁、4
は蒸発器であり、これらは順に環状に連結されている。
また、5は凝縮器2と電動膨張弁3とを結ぶ管路に一端
を接続し、他端を蒸発器4と圧縮機1とを結ぶ管路に接
続したバイパス回路であり、このバイパス回路5には補
助絞り6が設けられている。さらに、バイパス回路5お
よび圧縮機1の吸入側の管路上にそれぞれ温度センサ
8、9が配設されており、この温度センサ8、9によっ
て検出された温度から弁開度演算回路12にて電動膨張
弁3の弁開度を演算して弁開度信号を送出し、この弁開
度信号を受けて膨張弁駆動回路13にて電動膨張弁3の
弁開度を制御する。A conventional saturated vapor temperature detecting circuit will be described below with reference to the drawings. FIG. 9 is a refrigeration cycle diagram of a conventional refrigerator, air conditioner, or the like. In the figure, 1 is a compressor, 2 is a condenser, 3 is an electric expansion valve whose valve opening can be pulse-controlled by using a stepping motor, 4
Are evaporators, which are in turn connected in a ring.
Reference numeral 5 denotes a bypass circuit having one end connected to a pipe line connecting the condenser 2 and the electric expansion valve 3 and the other end connected to a pipe line connecting the evaporator 4 and the compressor 1. Is provided with an auxiliary aperture 6. Further, temperature sensors 8 and 9 are provided on the bypass circuit 5 and the suction-side pipelines of the compressor 1, respectively, and the valve opening calculation circuit 12 electrically drives the temperature sensors 8 and 9 based on the temperatures detected by the temperature sensors 8 and 9. The valve opening degree of the expansion valve 3 is calculated, a valve opening degree signal is sent out, and the expansion valve drive circuit 13 receives the valve opening degree signal to control the valve opening degree of the electric expansion valve 3.
【0005】図10は、この冷凍サイクルをP−h(モ
リエル)線図上にあらわしたもので、同図におけるA、
B、Cの記号のポイントは、図9のA、B、Cの位置の
冷媒の状態を示す。同図から明らかなように、ポイント
Cでは気液2相状態であるため、冷媒の温度はポイント
Bの冷媒の飽和蒸気温度TSである。従って、温度セン
サ8で検出した温度TSと温度センサ9で検出した温度
T2の差(T2−TS)が、圧縮機1に吸入される冷媒
のスーパーヒート量△Tをあらわす。FIG. 10 shows this refrigeration cycle on the P-h (Moriel) diagram.
The points of symbols B and C show the states of the refrigerant at the positions A, B and C in FIG. As is clear from the figure, since the point C is in the gas-liquid two-phase state, the temperature of the refrigerant is the saturated vapor temperature TS of the refrigerant at the point B. Therefore, the difference (T2-TS) between the temperature TS detected by the temperature sensor 8 and the temperature T2 detected by the temperature sensor 9 represents the superheat amount ΔT of the refrigerant sucked into the compressor 1.
【0006】次に、この冷凍サイクルの制御を説明す
る。図11は、スーパーヒート量△Tと電動膨張弁3の
弁開度変更量との関係を示す図であり、温度センサ8と
9で検出した温度信号TS、T2より所定周期毎に弁開
度演算回路12でスーパーヒート量△Tを算出し、図1
1に示す関係に従って(スーパーヒート量△Tが設定値
より大きい場合は弁開度を大きくし、設定値より小さい
場合は弁開度を小さくする)、電動膨張弁3の弁開度信
号を膨張弁駆動回路13に送出し、膨張弁駆動回路13
にて電動膨張弁3の弁開度を制御してスーパーヒート量
△Tを設定値に保つ。Next, the control of this refrigeration cycle will be described. FIG. 11 is a diagram showing the relationship between the superheat amount ΔT and the valve opening change amount of the electric expansion valve 3, which is based on the temperature signals TS and T2 detected by the temperature sensors 8 and 9 at a predetermined cycle. The calculation circuit 12 calculates the superheat amount ΔT, and FIG.
The valve opening signal of the electric expansion valve 3 is expanded according to the relationship shown in 1 (when the superheat amount ΔT is larger than the set value, the valve opening is increased, and when the superheat amount ΔT is smaller than the set value, the valve opening is decreased). It is sent to the valve drive circuit 13, and the expansion valve drive circuit 13
The valve opening of the electric expansion valve 3 is controlled to maintain the superheat amount ΔT at the set value.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記従
来の冷凍サイクルの飽和蒸気温度検出回路には以下のよ
うな課題があった。However, the conventional saturated vapor temperature detection circuit for the refrigeration cycle has the following problems.
【0008】図12は、冷媒として非共沸混合冷媒を用
いた場合の冷凍サイクルをP−h(モリエル)線図上に
あらわしたもので、同図におけるA、B、Cの記号のポ
イントは、図9のA、B、Cの位置の冷媒の状態を示
す。ここで、ポイントBにおけるスーパーヒート量は、
ポイントBの温度とその飽和蒸気温度(ポイントE)と
の差で求めることができる。ここで、単一冷媒の場合は
図10に示すようにポイントCの温度は飽和蒸気温度と
同じであるが、非共沸混合冷媒の場合は図12に示すよ
うに、2相域での等温線は右下がりの線となっているた
め、ポイントCの温度は飽和蒸気温度(ポイントE)の
温度よりも低い。従って、温度センサ8と9で検出した
温度信号T1、T2から算出した△Tは真のスーパーヒ
ート量よりも大きな値となってしまい、この状態で設定
値に保つ制御を行うために冷媒は、実際のスーパーヒー
ト量が設定値よりも低い状態か若しくは湿り蒸気の状態
で圧縮機に吸入される。FIG. 12 shows a refrigeration cycle in the case of using a non-azeotropic mixed refrigerant as a refrigerant on the Ph (Mollier) diagram, and the points of symbols A, B and C in the same figure are shown. 9 shows the state of the refrigerant at positions A, B and C in FIG. Here, the amount of super heat at point B is
It can be determined by the difference between the temperature at point B and the saturated steam temperature (point E). Here, in the case of a single refrigerant, the temperature at point C is the same as the saturated vapor temperature as shown in FIG. 10, but in the case of a non-azeotropic mixed refrigerant, as shown in FIG. Since the line is a line descending to the right, the temperature at point C is lower than the temperature at the saturated steam temperature (point E). Therefore, ΔT calculated from the temperature signals T1 and T2 detected by the temperature sensors 8 and 9 becomes a value larger than the true superheat amount, and in this state, the refrigerant is controlled to maintain the set value. It is sucked into the compressor when the actual amount of superheat is lower than the set value or in the state of wet steam.
【0009】このため、液圧縮による圧縮機信頼性の低
下やCOPの低下を招くおそれがあった。Therefore, there is a possibility that the reliability of the compressor may be lowered and the COP may be lowered due to the liquid compression.
【0010】本発明の冷凍サイクルの飽和蒸気温度検出
回路は上記課題に鑑み、非共沸混合冷媒を用いた冷凍サ
イクルにおいて、冷凍サイクルの構成を複雑にすること
なく圧縮機吸入冷媒の飽和蒸気温度を精度よく検出する
ことを目的とし、これにより最適な冷凍サイクル制御の
実現を図るものである。In view of the above problems, the saturated vapor temperature detection circuit of the refrigeration cycle of the present invention is a refrigeration cycle using a non-azeotropic mixed refrigerant, and the saturated vapor temperature of the refrigerant sucked into the compressor without complicating the structure of the refrigeration cycle. The purpose of this is to accurately detect the refrigeration cycle and thereby to realize optimal refrigeration cycle control.
【0011】[0011]
【課題を解決するための手段】上記課題を解決するため
に本発明の冷凍サイクルの飽和蒸気温度検出回路は、冷
媒として沸点が異なる2種類以上の冷媒を所定の比率で
混合した非共沸混合冷媒を用い、圧縮機、凝縮器、減圧
器、蒸発器を順に配管にて環状に連結して冷媒回路を構
成し、凝縮器出口から減圧器出口に至る管路に一端を接
続し、他端を蒸発器出口から圧縮機入口に至る管路に接
続したバイパス回路を配設し、このバイパス回路に上流
側から順に補助減圧器、冷媒加熱手段、冷媒温度検出手
段を設け、冷媒加熱手段の加熱量を制御する加熱量制御
手段、冷媒温度検出手段により冷媒温度を所定周期で検
出してその変化量より飽和蒸気温度を判別する判別手段
を有するものである。In order to solve the above problems, a saturated vapor temperature detection circuit of a refrigerating cycle according to the present invention is a non-azeotropic mixture in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio as refrigerants. Using a refrigerant, a compressor, a condenser, a decompressor, and an evaporator are sequentially connected by a pipe in a ring shape to form a refrigerant circuit, and one end is connected to a conduit from the condenser outlet to the decompressor outlet, and the other end. A bypass circuit is connected to the pipeline from the evaporator outlet to the compressor inlet, and an auxiliary decompressor, refrigerant heating means, and refrigerant temperature detection means are provided in this bypass circuit in order from the upstream side to heat the refrigerant heating means. The heating amount control means for controlling the amount, the refrigerant temperature detecting means for detecting the refrigerant temperature in a predetermined cycle, and the judging means for judging the saturated vapor temperature based on the change amount.
【0012】また、本発明の他の冷凍サイクルの飽和蒸
気温度検出回路は、冷媒として沸点が異なる2種類以上
の冷媒を所定の比率で混合した非共沸混合冷媒を用い、
圧縮機、凝縮器、減圧器、蒸発器を順に配管にて環状に
連結して冷媒回路を構成し、凝縮器出口から減圧器出口
に至る管路に一端を接続し、他端を蒸発器出口から圧縮
機入口に至る管路に接続したバイパス回路を配設し、こ
のバイパス回路に上流側から順に減圧量可変の補助減圧
器、冷媒温度検出手段を設け、補助減圧器出口から冷媒
温度検出手段設置位置に至る管路の一部と前記圧縮機出
口から前記凝縮器入口に至る管路の一部とを熱交換的に
接続し、前記補助減圧器の減圧量を制御する減圧量制御
手段、冷媒温度検出手段により冷媒温度を所定周期で検
出してその変化量より飽和蒸気温度を判別する判別手段
を有するものである。A saturated vapor temperature detection circuit of another refrigeration cycle of the present invention uses a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio as the refrigerant.
A compressor, a condenser, a decompressor, and an evaporator are sequentially connected by a pipe in a ring shape to form a refrigerant circuit, one end of which is connected to a conduit from the condenser outlet to the decompressor outlet, and the other end is connected to the evaporator outlet. A bypass circuit connected to the pipeline from the compressor to the compressor inlet is provided, and an auxiliary pressure reducer and a refrigerant temperature detecting means for varying the pressure reduction amount are provided in this bypass circuit in order from the upstream side, and a refrigerant temperature detecting means is provided from the auxiliary pressure reducer outlet. Decompression amount control means for controlling a decompression amount of the auxiliary decompressor by heat-exchangeably connecting a part of a pipe reaching the installation position and a part of a pipe extending from the compressor outlet to the condenser inlet, The refrigerant temperature detecting means detects the refrigerant temperature in a predetermined cycle and has a judging means for judging the saturated vapor temperature from the amount of change.
【0013】また、本発明の他の冷凍サイクルの飽和蒸
気温度検出回路は、冷媒として沸点が異なる2種類以上
の冷媒を所定の比率で混合した非共沸混合冷媒を用い、
圧縮機、凝縮器、減圧器、蒸発器を順に配管にて環状に
連結して冷媒回路を構成し、凝縮器出口から減圧器出口
に至る管路に一端を接続し、他端を蒸発器出口から圧縮
機入口に至る管路に接続したバイパス回路を配設し、こ
のバイパス回路に上流側から順に減圧量可変の補助減圧
器、冷媒温度検出手段を設け、補助減圧器出口から冷媒
温度検出手段設置位置に至る管路の一部を前記蒸発器内
に配設し、前記補助減圧器の減圧量を制御する減圧量制
御手段、冷媒温度検出手段により冷媒温度を所定周期で
検出してその変化量より飽和蒸気温度を判別する判別手
段を有するものである。A saturated vapor temperature detecting circuit of another refrigeration cycle of the present invention uses a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio as the refrigerant.
A compressor, a condenser, a decompressor, and an evaporator are sequentially connected by a pipe in a ring shape to form a refrigerant circuit, one end of which is connected to a conduit from the condenser outlet to the decompressor outlet, and the other end is connected to the evaporator outlet. A bypass circuit connected to the pipeline from the compressor to the compressor inlet is provided, and an auxiliary pressure reducer and a refrigerant temperature detecting means for varying the pressure reduction amount are provided in this bypass circuit in order from the upstream side, and a refrigerant temperature detecting means is provided from the auxiliary pressure reducer outlet. A part of the pipeline leading to the installation position is arranged in the evaporator, and the pressure reduction amount control means for controlling the pressure reduction amount of the auxiliary pressure reducer and the refrigerant temperature detection means detect the refrigerant temperature in a predetermined cycle and the change thereof. It has a discriminating means for discriminating the saturated vapor temperature from the amount.
【0014】[0014]
【作用】本発明は、上記手段により次のような作用を有
する。The present invention has the following actions due to the above means.
【0015】すなわち、凝縮器出口から減圧器出口に至
る管路に一端を接続し、他端を蒸発器出口から圧縮機入
口に至る管路に接続したバイパス回路を配設し、このバ
イパス回路に上流側から順に補助減圧器、冷媒加熱手
段、冷媒温度検出手段を設け、冷媒加熱手段の加熱量を
制御する加熱量制御手段、冷媒温度検出手段により冷媒
温度を所定周期で検出してその変化量より飽和蒸気温度
を判別する判別手段を有することで、非共沸混合冷媒を
用いた冷凍サイクルにおいて、冷凍サイクルの構成を複
雑にすることなく圧縮機吸入冷媒の飽和蒸気温度を精度
よく検出することができ、これにより最適な冷凍サイク
ル制御の実現を図ることができる。That is, a bypass circuit having one end connected to a conduit from the condenser outlet to the decompressor outlet and the other end connected to a conduit from the evaporator outlet to the compressor inlet is provided. Auxiliary decompressor, refrigerant heating means, refrigerant temperature detection means are provided in order from the upstream side, the heating amount control means for controlling the heating amount of the refrigerant heating means, the refrigerant temperature is detected by the refrigerant temperature detection means in a predetermined cycle, and its change amount By having a determination unit that determines the saturated vapor temperature more, in a refrigeration cycle using a non-azeotropic mixed refrigerant, it is possible to accurately detect the saturated vapor temperature of the compressor suction refrigerant without complicating the configuration of the refrigeration cycle. This makes it possible to realize optimum refrigeration cycle control.
【0016】また、凝縮器出口から減圧器出口に至る管
路に一端を接続し、他端を蒸発器出口から圧縮機入口に
至る管路に接続したバイパス回路を配設し、このバイパ
ス回路に上流側から順に減圧量可変の補助減圧器、冷媒
温度検出手段を設け、補助減圧器出口から冷媒温度検出
手段設置位置に至る管路の一部と前記圧縮機出口から前
記凝縮器入口に至る管路の一部とを熱交換的に接続し、
前記補助減圧器の減圧量を制御する減圧量制御手段、冷
媒温度検出手段により冷媒温度を所定周期で検出してそ
の変化量より飽和蒸気温度を判別する判別手段を有する
ことで、冷凍サイクル中の熱を利用することができるの
で新たに加熱手段を付加することなく圧縮機吸入冷媒の
飽和蒸気温度を精度よく検出することができ、これによ
り最適な冷凍サイクル制御の実現を図ることができる。Further, a bypass circuit having one end connected to a pipe line extending from the condenser outlet to the pressure reducer outlet and the other end connected to a pipe line extending from the evaporator outlet to the compressor inlet is provided. Auxiliary decompressor with variable decompression amount and refrigerant temperature detecting means are provided in order from the upstream side, and a part of a pipe line from the auxiliary decompressor outlet to the refrigerant temperature detecting means installation position and a pipe from the compressor outlet to the condenser inlet Heat exchange connection with part of the path,
By having a decompression amount control means for controlling the decompression amount of the auxiliary decompressor, a refrigerant temperature detecting means for detecting the refrigerant temperature in a predetermined cycle and having a judging means for judging the saturated vapor temperature from the change amount thereof, Since the heat can be utilized, the saturated vapor temperature of the compressor suction refrigerant can be accurately detected without newly adding a heating means, and thus optimal refrigeration cycle control can be realized.
【0017】また、凝縮器出口から減圧器出口に至る管
路に一端を接続し、他端を蒸発器出口から圧縮機入口に
至る管路に接続したバイパス回路を配設し、このバイパ
ス回路に上流側から順に減圧量可変の補助減圧器、冷媒
温度検出手段を設け、補助減圧器出口から冷媒温度検出
手段設置位置に至る管路の一部を前記蒸発器内に配設
し、前記補助減圧器の減圧量を制御する減圧量制御手
段、冷媒温度検出手段により冷媒温度を所定周期で検出
してその変化量より飽和蒸気温度を判別する判別手段を
有することで、高温の加熱源と熱交換せずにバイパス回
路の冷媒を過熱蒸気にすることができるので、短時間で
圧縮機吸入冷媒の飽和蒸気温度を精度よく検出すること
ができ、これにより最適な冷凍サイクル制御の実現を図
ることができる。Further, a bypass circuit having one end connected to a pipeline from the condenser outlet to the decompressor outlet and the other end connected to a pipeline from the evaporator outlet to the compressor inlet is provided. Auxiliary decompressor with variable decompression amount and refrigerant temperature detecting means are provided in order from the upstream side, and a part of the pipeline from the outlet of the auxiliary decompressor to the installation location of the refrigerant temperature detecting means is arranged in the evaporator, and the auxiliary decompressing By having a decompression amount control means for controlling the decompression amount of the container and a determination means for detecting the refrigerant temperature at a predetermined cycle by the refrigerant temperature detection means and determining the saturated vapor temperature from the amount of change, heat exchange with a high temperature heating source Since the refrigerant in the bypass circuit can be turned into superheated steam without doing so, it is possible to accurately detect the saturated vapor temperature of the compressor suction refrigerant in a short time, and thereby achieve optimal refrigeration cycle control. it can.
【0018】[0018]
【実施例】以下、本発明の実施例について、図面を参考
に説明する。なお、従来の技術の項で説明したものと同
一の機能を有するものには同一の番号を付して詳細な説
明は省略する。Embodiments of the present invention will be described below with reference to the drawings. It should be noted that components having the same functions as those described in the section of the related art are designated by the same reference numerals and detailed description thereof will be omitted.
【0019】図1は、本発明の第1の実施例における冷
凍サイクル図である。同図において、1は圧縮機、2は
凝縮器、3は電動膨張弁、4は蒸発器であり、これらは
順に環状に連結されており、冷媒として非共沸混合冷媒
を用いている。また、5は凝縮器2と電動膨張弁3とを
結ぶ管路に一端を接続し、他端を蒸発器4と圧縮機1と
を結ぶ管路に接続したバイパス回路であり、このバイパ
ス回路5には補助絞り6が設けられている。また、補助
絞り6の下流側には冷媒を加熱する加熱ヒータ7が取り
付けられている。さらに、バイパス回路5および圧縮機
1の吸入側の管路上にそれぞれ温度センサ8、9が配設
されている。10は、加熱ヒータのオン、オフを制御す
る加熱ヒータ制御回路であり、11は加熱ヒータ制御回
路10へ制御信号を送出し、温度センサ8で検出した温
度T1より飽和蒸気温度TSを算出する飽和蒸気温度算
出回路である。飽和蒸気温度算出回路11で算出された
TSと温度センサ9によって検出された温度T2とを弁
開度演算回路12に送出し、従来の技術の項で説明した
ように、ここで電動膨張弁3の開度を演算して弁開度信
号を送出し、この弁開度信号を受けて膨張弁駆動回路1
3にて電動膨張弁3の弁開度を制御する。FIG. 1 is a refrigeration cycle diagram in the first embodiment of the present invention. In the figure, 1 is a compressor, 2 is a condenser, 3 is an electric expansion valve, and 4 is an evaporator, which are sequentially connected in an annular shape and use a non-azeotropic mixed refrigerant as a refrigerant. Reference numeral 5 denotes a bypass circuit having one end connected to a pipe line connecting the condenser 2 and the electric expansion valve 3 and the other end connected to a pipe line connecting the evaporator 4 and the compressor 1. Is provided with an auxiliary aperture 6. A heater 7 for heating the refrigerant is attached downstream of the auxiliary throttle 6. Further, temperature sensors 8 and 9 are arranged on the bypass side of the bypass circuit 5 and on the suction side of the compressor 1, respectively. Reference numeral 10 is a heating heater control circuit for controlling on / off of the heating heater, and 11 is a saturation signal which sends a control signal to the heating heater control circuit 10 to calculate a saturated vapor temperature TS from a temperature T1 detected by the temperature sensor 8. It is a steam temperature calculation circuit. The TS calculated by the saturated steam temperature calculation circuit 11 and the temperature T2 detected by the temperature sensor 9 are sent to the valve opening calculation circuit 12, where the electric expansion valve 3 is operated as described in the section of the related art. Of the expansion valve drive circuit 1
The valve opening degree of the electric expansion valve 3 is controlled by 3.
【0020】次に、この飽和蒸気温度検出回路での飽和
蒸気温度算出の方法について説明する。図2は、この冷
凍サイクルをP−h(モリエル)線図上にあらわしたも
ので、同図におけるA、Bの記号のポイントは、図1の
A、Bの位置の冷媒の状態を示す。ここで、加熱ヒータ
7がオフの場合、温度センサ8近傍の冷媒は図2のポイ
ントCの状態である。加熱ヒータ7をオンにすると、冷
媒は加熱されて冷媒の状態は矢印aの方向に移動し、ポ
イントDの状態となる。ここで再び加熱ヒータ7をオフ
にすると冷媒の状態は矢印bの方向に移動し、再びポイ
ントCの状態となる。この時、図2に示す等温線より明
らかなように、加熱域を移動するときは温度低下の速度
が大きく、2相域に入ると温度低下の速度が急に緩やか
になる。図3は、温度センサ8で検出した冷媒温度T1
の時間変化を示す。同図のTC、TDは、図2のC、D
のポイントの状態の冷媒温度である。同図から明らかな
ように、加熱ヒータ7がオフになると冷媒温度は急激に
低下するが、2相域に入ると温度低下が急に緩やかにな
る。この傾きが変化する時刻tsaの温度が飽和蒸気温
度TSである。従って、加熱ヒータ7がオフになってか
ら所定周期毎に温度センサ8で冷媒温度T1を検出し、
前回検出した冷媒温度T1との差の絶対値が所定値以下
になったときの温度を飽和蒸気温度とすることで検出可
能である。Next, a method of calculating the saturated steam temperature in this saturated steam temperature detection circuit will be described. FIG. 2 shows this refrigeration cycle on the P-h (Mollier) diagram, and the points indicated by the symbols A and B in the figure show the state of the refrigerant at the positions A and B in FIG. Here, when the heater 7 is off, the refrigerant in the vicinity of the temperature sensor 8 is in the state of point C in FIG. When the heater 7 is turned on, the refrigerant is heated and the state of the refrigerant moves in the direction of the arrow a to the state of point D. Here, when the heater 7 is turned off again, the state of the refrigerant moves in the direction of arrow b and becomes the state of point C again. At this time, as is clear from the isotherm shown in FIG. 2, the speed of temperature decrease is large when moving in the heating area, and the speed of temperature decrease suddenly becomes gentle when entering the two-phase area. FIG. 3 shows the refrigerant temperature T1 detected by the temperature sensor 8.
Shows the change over time. TC and TD in the figure are C and D in FIG.
Is the refrigerant temperature in the state of point. As is clear from the figure, when the heater 7 is turned off, the refrigerant temperature sharply drops, but when it enters the two-phase region, the temperature drop suddenly becomes gentle. The temperature at time tsa at which this slope changes is the saturated steam temperature TS. Therefore, after the heater 7 is turned off, the refrigerant temperature T1 is detected by the temperature sensor 8 at predetermined intervals,
This can be detected by setting the temperature when the absolute value of the difference from the previously detected refrigerant temperature T1 is equal to or lower than a predetermined value as the saturated steam temperature.
【0021】次に、この飽和蒸気温度検出回路の具体的
な制御について説明する。図4は、飽和蒸気温度算出回
路11での制御のフロー図である。まず、弁開度演算回
路12より所定周期毎にTS送出の要求を受けると、加
熱ヒータ7をオンとする。そして、温度センサ8で検出
した温度T1が図2に示すTDまで上昇すると、加熱ヒ
ータ7をオフとして所定周期t1毎にT1を検出し、直
前に検出した温度Tmとの差(変化量)の絶対値|T1
−Tm|が所定値Kより小さくなると、この時の冷媒温
度T1が飽和蒸気温度TSであると判断してTS=T1
とし、TSの温度信号を弁開度演算回路12に送出す
る。Next, the specific control of the saturated vapor temperature detection circuit will be described. FIG. 4 is a flow chart of control in the saturated steam temperature calculation circuit 11. First, when the request for TS transmission is received from the valve opening calculation circuit 12 at predetermined intervals, the heater 7 is turned on. Then, when the temperature T1 detected by the temperature sensor 8 rises to TD shown in FIG. 2, the heater 7 is turned off to detect T1 at every predetermined cycle t1, and the difference (change amount) from the temperature Tm detected immediately before is detected. Absolute value | T1
When −Tm | becomes smaller than the predetermined value K, it is determined that the refrigerant temperature T1 at this time is the saturated vapor temperature TS, and TS = T1.
Then, the temperature signal of TS is sent to the valve opening calculation circuit 12.
【0022】このように、冷媒として非共沸混合冷媒を
用いた場合でも、冷凍サイクルの構成を複雑にすること
なく圧縮機吸入冷媒の飽和蒸気温度を精度よく検出する
ことができ、これにより最適な冷凍サイクル制御の実現
を図ることができる。As described above, even when the non-azeotropic mixed refrigerant is used as the refrigerant, the saturated vapor temperature of the refrigerant sucked into the compressor can be accurately detected without complicating the structure of the refrigeration cycle. It is possible to realize various refrigeration cycle control.
【0023】次に、本発明の第2の実施例について、図
面を参照しながら説明する。図5は、本発明の第2の実
施例における冷凍サイクル図である。第1の実施例と異
なる点は、バイパス回路5上の補助絞り6、加熱ヒータ
7および加熱ヒータ制御回路10をなくし、バイパス回
路5上に膨張弁駆動回路13によって弁開度を制御可能
な電動膨張弁14を設け、その下流側の管路の一部を圧
縮機1と凝縮器2とを結ぶ管路と熱交換可能な熱交換部
15を設けたものである。Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a refrigeration cycle diagram in the second embodiment of the present invention. The difference from the first embodiment is that the auxiliary throttle 6, the heater 7 and the heater control circuit 10 on the bypass circuit 5 are eliminated, and the valve opening degree can be controlled on the bypass circuit 5 by the expansion valve drive circuit 13. The expansion valve 14 is provided, and a heat exchange section 15 capable of exchanging heat with a pipeline connecting the compressor 1 and the condenser 2 is provided in a part of the pipeline on the downstream side.
【0024】この飽和蒸気温度検出回路での温度飽和蒸
気温度算出の方法について説明する。本実施例では、圧
縮機1から吐出された高温の冷媒ガスによりバイパス回
路5の冷媒を加熱するため、加熱量の制御はできない。
従って、電動膨張弁14の弁開度を制御してバイパス回
路5を流れる冷媒の循環量を制御して第1の実施例と同
様に飽和蒸気温度を算出する。すなわち、最初に電動膨
張弁14の弁開度を小さくして、冷媒温度T1を図3に
おけるTDまで上昇させる。T1がTDまで上昇した
ら、次に所定周期毎に電動膨張弁14の弁開度を所定量
ずつ大きくし、冷媒温度T1を検出する。そうすると、
第1の実施例と同様に冷媒温度は急激に低下するが、2
相域に入ると温度低下が急に緩やかになる。この傾きが
変化する時刻tsaの温度が飽和蒸気温度TSである。
従って、冷媒温度T1がTDまで到達した後、所定周期
毎に温度センサ8で冷媒温度T1を検出し、前回検出し
た冷媒温度T1との差の絶対値が所定値以下になったと
きの温度を飽和蒸気温度とすることで検出可能である。A method of calculating the temperature saturated steam temperature in this saturated steam temperature detection circuit will be described. In this embodiment, since the refrigerant in the bypass circuit 5 is heated by the high temperature refrigerant gas discharged from the compressor 1, the heating amount cannot be controlled.
Therefore, the saturated steam temperature is calculated in the same manner as in the first embodiment by controlling the valve opening degree of the electric expansion valve 14 to control the circulation amount of the refrigerant flowing through the bypass circuit 5. That is, first, the valve opening degree of the electric expansion valve 14 is reduced to raise the refrigerant temperature T1 to TD in FIG. When T1 rises to TD, the valve opening degree of the electric expansion valve 14 is then increased by a predetermined amount every predetermined period, and the refrigerant temperature T1 is detected. Then,
As in the first embodiment, the temperature of the refrigerant drops sharply, but 2
When entering the phase range, the temperature drop suddenly slows down. The temperature at time tsa at which this slope changes is the saturated steam temperature TS.
Therefore, after the coolant temperature T1 reaches TD, the coolant temperature T1 is detected by the temperature sensor 8 in every predetermined cycle, and the temperature at the time when the absolute value of the difference from the coolant temperature T1 detected last time becomes equal to or less than the predetermined value is determined. It can be detected by setting the saturated vapor temperature.
【0025】次に、この飽和蒸気温度検出回路の具体的
な制御について説明する。図6は、飽和蒸気温度算出回
路11での制御のフロー図である。まず、弁開度演算回
路12より所定周期毎にTS送出の要求を受けると、温
度センサ8で検出した温度T1が図2に示すTDに上昇
するまで所定周期t2毎に膨張弁駆動回路13に信号を
発して電動膨張弁14の弁開度をK2パルスずつ絞って
いく。そして、冷媒温度T1が図2に示すTDまで上昇
すると、所定周期t3毎に膨張弁駆動回路13に信号を
発して電動膨張弁14の弁開度を大きくしていくと共に
T1を検出し、直前に検出した温度Tmとの差(変化
量)の絶対値|T1−Tm|が所定値Kより小さくなる
と、この時の冷媒温度T1が飽和蒸気温度TSであると
判断してTS=T1とし、TSの温度信号を弁開度演算
回路12に送出する。Next, the specific control of the saturated vapor temperature detection circuit will be described. FIG. 6 is a flow chart of control in the saturated steam temperature calculation circuit 11. First, when a TS transmission request is received from the valve opening calculation circuit 12 at predetermined intervals, the expansion valve drive circuit 13 is sent to the expansion valve drive circuit 13 at predetermined intervals t2 until the temperature T1 detected by the temperature sensor 8 rises to TD shown in FIG. A signal is issued to reduce the valve opening degree of the electric expansion valve 14 by K2 pulses. Then, when the refrigerant temperature T1 rises to TD shown in FIG. 2, a signal is issued to the expansion valve drive circuit 13 at every predetermined cycle t3 to increase the valve opening degree of the electric expansion valve 14, and T1 is detected. When the absolute value | T1−Tm | of the difference (change amount) from the temperature Tm detected in step S1 becomes smaller than the predetermined value K, it is determined that the refrigerant temperature T1 at this time is the saturated vapor temperature TS, and TS = T1, The temperature signal of TS is sent to the valve opening calculation circuit 12.
【0026】このように、冷媒として非共沸混合冷媒を
用いた場合でも、冷凍サイクル中の熱を利用することが
できるので新たに加熱手段を付加することなく圧縮機吸
入冷媒の飽和蒸気温度を精度よく検出することができ、
これにより最適な冷凍サイクル制御の実現を図ることが
できる。As described above, even when the non-azeotropic mixed refrigerant is used as the refrigerant, the heat in the refrigeration cycle can be utilized, so that the saturated vapor temperature of the refrigerant sucked into the compressor can be increased without adding any heating means. Can be detected accurately,
This makes it possible to realize optimum refrigeration cycle control.
【0027】次に、本発明の第3の実施例について、図
面を参照しながら説明する。図7は、本発明の第3の実
施例における冷凍サイクル図である。第2の実施例と異
なる点は、バイパス回路5上の電動膨張弁14の下流側
の管路の一部を蒸発器4内を通過させて冷媒を蒸発させ
る補助蒸発器16を設けたことである。Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a refrigeration cycle diagram in the third embodiment of the present invention. The difference from the second embodiment is that an auxiliary evaporator 16 is provided to evaporate the refrigerant by passing a part of the pipeline on the downstream side of the electric expansion valve 14 on the bypass circuit 5 through the evaporator 4. is there.
【0028】この飽和蒸気温度検出回路での温度飽和蒸
気温度算出の方法について説明すると、まず最初に電動
膨張弁14の弁開度を小さくして、冷媒温度T1を図3
におけるTDまで上昇させる。T1がTDまで上昇した
ら、次に所定周期毎に電動膨張弁14の弁開度を所定量
ずつ大きくし、冷媒温度T1を検出し、以下第2の実施
例と同様にしてTSを求めることができる。なお、具体
的な制御については図6に示す第2の実施例の制御のフ
ロー図と同じであるため説明は省略する。The method of calculating the temperature saturated steam temperature in the saturated steam temperature detection circuit will be described. First, the valve opening of the electric expansion valve 14 is made small, and the refrigerant temperature T1 is shown in FIG.
Up to TD at. When T1 rises to TD, next, the valve opening degree of the electric expansion valve 14 is increased by a predetermined amount for each predetermined cycle, the refrigerant temperature T1 is detected, and then TS is obtained in the same manner as in the second embodiment. it can. The specific control is the same as the control flow chart of the second embodiment shown in FIG.
【0029】第2の実施例においては、バイパス回路5
の冷媒は圧縮機1から吐出された高温の冷媒ガスにより
加熱されるため、図3に示すTDはかなり高温となるの
に対し、本実施例では冷媒を蒸発させるため、過熱域に
入っても雰囲気温度以上にはならず、従って比較的低温
で安定する。そのため、冷媒温度がTDからTSに到達
するまでの時間が短く、短時間で飽和蒸気温度TSを求
めることができる。In the second embodiment, the bypass circuit 5
3 is heated by the high-temperature refrigerant gas discharged from the compressor 1, the TD shown in FIG. 3 is considerably high in temperature. It does not exceed the ambient temperature and is therefore stable at relatively low temperatures. Therefore, it takes a short time for the refrigerant temperature to reach TD from TS, and the saturated vapor temperature TS can be obtained in a short time.
【0030】このように、冷媒として非共沸混合冷媒を
用いた場合でも、冷凍サイクル中の熱を利用することが
できるので新たに加熱手段を付加することなく圧縮機吸
入冷媒の飽和蒸気温度を精度よく、しかも短時間で検出
することができ、これにより最適な冷凍サイクル制御の
実現を図ることができる。As described above, even when the non-azeotropic mixed refrigerant is used as the refrigerant, the heat in the refrigeration cycle can be utilized, so that the saturated vapor temperature of the refrigerant sucked into the compressor can be controlled without adding a new heating means. It is possible to detect with high accuracy and in a short time, and thus it is possible to realize optimum refrigeration cycle control.
【0031】なお、上記第1〜第3の実施例において
は、本発明の飽和蒸気温度検出回路で検出した飽和蒸気
温度をスーパーヒート制御に利用した場合について説明
したがそれに限定されるものではなく、例えば検出した
飽和蒸気温度より蒸発器の氷結を推定したり、飽和圧力
への換算式を作成しておき、検出した飽和蒸気温度より
圧縮機吸入圧力を算出して保護制御に利用する等、他の
制御にも利用可能である。In the above first to third embodiments, the case where the saturated steam temperature detected by the saturated steam temperature detection circuit of the present invention is used for superheat control has been described, but the present invention is not limited thereto. , For example, the freezing of the evaporator is estimated from the detected saturated vapor temperature, a conversion formula to the saturated pressure is created, and the compressor suction pressure is calculated from the detected saturated vapor temperature and used for protection control. It can also be used for other controls.
【0032】また、上記第1〜第3の実施例において
は、バイパス回路5の一端を凝縮器2と減圧器(電動膨
張弁3)とを結ぶ管路の一部に接続したがこれに限定さ
れるものではなく、液冷媒の割合が多くて圧縮機1の吸
入側より高圧となるところであればよい。例えば減圧器
が2つに分割されている場合は2つの減圧器間へ接続し
てもよく、また減圧器がキャピラリチューブの場合なら
ば、キャピラリチューブの管路上のいずれかの位置へ接
続してもよい。In the first to third embodiments described above, one end of the bypass circuit 5 is connected to a part of the conduit connecting the condenser 2 and the pressure reducer (electric expansion valve 3), but this is not the only option. Instead, it is sufficient if the proportion of the liquid refrigerant is large and the pressure becomes higher than that on the suction side of the compressor 1. For example, when the decompressor is divided into two, it may be connected between the two decompressors, and when the decompressor is a capillary tube, it may be connected to any position on the pipeline of the capillary tube. Good.
【0033】また、ヒートポンプサイクルの場合は、四
方弁を切り換えて蒸発器と凝縮器が入れ替わっても、バ
イパス回路の一端を常に凝縮器出口から減圧器出口に至
る管路に接続するようにしておけば、本発明の飽和蒸気
温度検出回路を構成することが可能である。例えば、減
圧器を2つに分割して2つの減圧器間へバイパス回路の
一端を接続しておけば、凝縮器と蒸発器が入れ替わって
も常に中間圧の冷媒をバイパス回路に流すことができ
る。また、図8は、本発明の飽和蒸気温度検出回路をヒ
ートポンプサイクルに適用した場合の冷凍サイクル図の
一例を示す。同図において17、18は逆止弁であり、
19は四方弁である。このような冷媒回路を組めば、熱
交換器2aが凝縮器の時は冷媒は実線のように流れ、ま
た熱交換器4aが凝縮器の時は冷媒は破線のように流れ
る。従って、常に高圧の液冷媒をバイパス回路に流すこ
とができ、本発明の飽和蒸気温度検出回路を構成するこ
とが可能である。Further, in the case of the heat pump cycle, even if the four-way valve is switched and the evaporator and the condenser are exchanged, one end of the bypass circuit should always be connected to the conduit from the condenser outlet to the pressure reducer outlet. If so, it is possible to configure the saturated vapor temperature detection circuit of the present invention. For example, if the pressure reducer is divided into two and one end of the bypass circuit is connected between the two pressure reducers, even if the condenser and the evaporator are exchanged, the intermediate pressure refrigerant can always flow to the bypass circuit. . Further, FIG. 8 shows an example of a refrigeration cycle diagram when the saturated vapor temperature detection circuit of the present invention is applied to a heat pump cycle. In the figure, 17 and 18 are check valves,
19 is a four-way valve. When such a refrigerant circuit is assembled, when the heat exchanger 2a is a condenser, the refrigerant flows as shown by a solid line, and when the heat exchanger 4a is a condenser, the refrigerant flows as shown by a broken line. Therefore, the high-pressure liquid refrigerant can always flow through the bypass circuit, and the saturated vapor temperature detection circuit of the present invention can be configured.
【0034】また、上記第2および第3の実施例におい
ては、減圧量可変の補助減圧器については、電動膨張弁
を用いて説明したが、これに限定されるものではなく、
減圧量を制御できるものであれば、他の方式のものを用
いてもよい。In the second and third embodiments described above, the auxiliary decompressor with variable decompression amount is described using the electric expansion valve, but the invention is not limited to this.
Other methods may be used as long as the amount of pressure reduction can be controlled.
【0035】また、本発明の飽和蒸気温度検出回路は、
フロン系冷媒に限らず非共沸混合冷媒であれば、他の冷
媒にも適用可能である。Further, the saturated vapor temperature detection circuit of the present invention is
Not only the CFC-based refrigerant but also a non-azeotropic mixed refrigerant can be applied to other refrigerants.
【0036】[0036]
【発明の効果】上記実施例より明らかなように本発明の
冷凍サイクルの飽和蒸気温度検出回路は、凝縮器出口か
ら減圧器出口に至る管路に一端を接続し、他端を蒸発器
出口から圧縮機入口に至る管路に接続したバイパス回路
を配設し、このバイパス回路に上流側から順に補助減圧
器、冷媒加熱手段、冷媒温度検出手段を設け、冷媒加熱
手段の加熱量を制御する加熱量制御手段、冷媒温度検出
手段により冷媒温度を所定周期で検出してその変化量よ
り飽和蒸気温度を判別する判別手段を有することで、非
共沸混合冷媒を用いた冷凍サイクルにおいて、冷凍サイ
クルの構成を複雑にすることなく圧縮機吸入冷媒の飽和
蒸気温度を精度よく検出することができ、これにより最
適な冷凍サイクル制御の実現を図ることができる。As is apparent from the above embodiment, the saturated vapor temperature detection circuit of the refrigeration cycle of the present invention has one end connected to the conduit from the condenser outlet to the pressure reducer outlet, and the other end from the evaporator outlet. A bypass circuit connected to the pipeline to the compressor inlet is provided, and an auxiliary decompressor, refrigerant heating means, and refrigerant temperature detection means are provided in this bypass circuit from the upstream side in order to control the heating amount of the refrigerant heating means. In the refrigerating cycle using the non-azeotropic mixed refrigerant, the refrigerating cycle using the non-azeotropic mixed refrigerant has a quantity controlling means and a judging means for judging the saturated vapor temperature from the amount of change by detecting the refrigerant temperature in a predetermined cycle by the refrigerant temperature detecting means. The saturated vapor temperature of the compressor suction refrigerant can be accurately detected without complicating the configuration, and thus optimal refrigeration cycle control can be realized.
【0037】また、凝縮器出口から減圧器出口に至る管
路に一端を接続し、他端を蒸発器出口から圧縮機入口に
至る管路に接続したバイパス回路を配設し、このバイパ
ス回路に上流側から順に減圧量可変の補助減圧器、冷媒
温度検出手段を設け、補助減圧器出口から冷媒温度検出
手段設置位置に至る管路の一部と前記圧縮機出口から前
記凝縮器入口に至る管路の一部とを熱交換的に接続し、
前記補助減圧器の減圧量を制御する減圧量制御手段、冷
媒温度検出手段により冷媒温度を所定周期で検出してそ
の変化量より飽和蒸気温度を判別する判別手段を有する
ことで、冷凍サイクル中の熱を利用することができるの
で新たに加熱手段を付加することなく圧縮機吸入冷媒の
飽和蒸気温度を精度よく検出することができ、これによ
り最適な冷凍サイクル制御の実現を図ることができる。Further, a bypass circuit having one end connected to a conduit from the condenser outlet to the decompressor outlet and the other end connected to a conduit from the evaporator outlet to the compressor inlet is provided. Auxiliary decompressor with variable decompression amount and refrigerant temperature detecting means are provided in order from the upstream side, and a part of a pipe line from the auxiliary decompressor outlet to the refrigerant temperature detecting means installation position and a pipe from the compressor outlet to the condenser inlet Heat exchange connection with part of the path,
By having a decompression amount control means for controlling the decompression amount of the auxiliary decompressor, a refrigerant temperature detecting means for detecting the refrigerant temperature in a predetermined cycle and having a judging means for judging the saturated vapor temperature from the change amount thereof, Since the heat can be utilized, the saturated vapor temperature of the compressor suction refrigerant can be accurately detected without newly adding a heating means, and thus optimal refrigeration cycle control can be realized.
【0038】また、凝縮器出口から減圧器出口に至る管
路に一端を接続し、他端を蒸発器出口から圧縮機入口に
至る管路に接続したバイパス回路を配設し、このバイパ
ス回路に上流側から順に減圧量可変の補助減圧器、冷媒
温度検出手段を設け、補助減圧器出口から冷媒温度検出
手段設置位置に至る管路の一部を前記蒸発器内に配設
し、前記補助減圧器の減圧量を制御する減圧量制御手
段、冷媒温度検出手段により冷媒温度を所定周期で検出
してその変化量より飽和蒸気温度を判別する判別手段を
有することで、高温の加熱源と熱交換せずにバイパス回
路の冷媒を過熱蒸気にすることができるので、短時間で
圧縮機吸入冷媒の飽和蒸気温度を精度よく検出すること
ができ、これにより最適な冷凍サイクル制御の実現を図
ることができる。Further, a bypass circuit having one end connected to a pipeline from the condenser outlet to the decompressor outlet and the other end connected to a pipeline from the evaporator outlet to the compressor inlet is provided. Auxiliary decompressor with variable decompression amount and refrigerant temperature detecting means are provided in order from the upstream side, and a part of the pipeline from the outlet of the auxiliary decompressor to the installation location of the refrigerant temperature detecting means is arranged in the evaporator, and the auxiliary decompressing By having a decompression amount control means for controlling the decompression amount of the container and a determination means for detecting the refrigerant temperature at a predetermined cycle by the refrigerant temperature detection means and determining the saturated vapor temperature from the amount of change, heat exchange with a high temperature heating source Since the refrigerant in the bypass circuit can be turned into superheated steam without doing so, it is possible to accurately detect the saturated vapor temperature of the compressor suction refrigerant in a short time, and thereby achieve optimal refrigeration cycle control. it can.
【図1】本発明の飽和蒸気温度検出回路の第1の実施例
における冷凍サイクル図FIG. 1 is a refrigeration cycle diagram in a first embodiment of a saturated vapor temperature detection circuit of the present invention.
【図2】同実施例におけるP−h線図上の冷凍サイクル
図FIG. 2 is a refrigeration cycle diagram on the Ph diagram in the example.
【図3】同実施例における冷媒温度の時間変化を示す特
性図FIG. 3 is a characteristic diagram showing the change over time of the refrigerant temperature in the same example.
【図4】同実施例における制御のフロー図FIG. 4 is a flow chart of control in the embodiment.
【図5】本発明の飽和蒸気温度検出回路の第2の実施例
における冷凍サイクル図FIG. 5 is a refrigeration cycle diagram in the second embodiment of the saturated vapor temperature detection circuit of the present invention.
【図6】同実施例における制御のフロー図FIG. 6 is a flow chart of control in the embodiment.
【図7】本発明の飽和蒸気温度検出回路の第3の実施例
における冷凍サイクル図FIG. 7 is a refrigeration cycle diagram in a third embodiment of the saturated vapor temperature detection circuit of the present invention.
【図8】本発明の飽和蒸気温度検出回路をヒートポンプ
サイクルに適用した場合の冷凍サイクル図FIG. 8 is a refrigeration cycle diagram when the saturated vapor temperature detection circuit of the present invention is applied to a heat pump cycle.
【図9】従来の飽和蒸気温度検出回路の冷凍サイクル図FIG. 9 is a refrigeration cycle diagram of a conventional saturated vapor temperature detection circuit.
【図10】同飽和蒸気温度検出回路におけるP−h線図
上の冷凍サイクル図FIG. 10 is a refrigeration cycle diagram on the Ph diagram in the saturated vapor temperature detection circuit.
【図11】スーパーヒート量と電動膨張弁の弁開度変更
量との関係図FIG. 11 is a relationship diagram between the superheat amount and the valve opening change amount of the electric expansion valve.
【図12】従来の飽和蒸気温度検出回路における非共沸
混合冷媒を用いた場合のP−h線図上の冷凍サイクル図FIG. 12 is a refrigeration cycle diagram on the Ph diagram when a non-azeotropic mixed refrigerant is used in a conventional saturated vapor temperature detection circuit.
1 圧縮機 2 凝縮器 2a 熱交換器 3 電動膨張弁(減圧器) 4 蒸発器 4a 熱交換器 5 バイパス回路 6 補助絞り(補助減圧器) 7 加熱ヒータ(冷媒加熱手段) 8 温度センサ(冷媒温度検出手段) 10 加熱ヒータ制御回路(加熱量制御手段) 11 飽和蒸気温度算出回路(判別手段) 13 膨張弁駆動回路(減圧量制御手段) 14 電動膨張弁(減圧量可変の補助減圧器) 15 熱交換部 16 補助蒸発器 1 Compressor 2 Condenser 2a Heat exchanger 3 Electric expansion valve (pressure reducer) 4 Evaporator 4a Heat exchanger 5 Bypass circuit 6 Auxiliary throttle (auxiliary pressure reducer) 7 Heating heater (refrigerant heating means) 8 Temperature sensor (refrigerant temperature) Detection means) 10 Heating heater control circuit (heating amount control means) 11 Saturated steam temperature calculation circuit (determination means) 13 Expansion valve drive circuit (decompression amount control means) 14 Electric expansion valve (auxiliary decompressor with variable decompression amount) 15 Heat Exchange part 16 Auxiliary evaporator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 義典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshinori Kobayashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (3)
を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機、凝縮器、減圧器、蒸発器を順に配管にて環状に連結
して冷媒回路を構成し、凝縮器出口から減圧器出口に至
る管路に一端を接続し、他端を蒸発器出口から圧縮機入
口に至る管路に接続したバイパス回路を配設し、このバ
イパス回路に上流側から順に補助減圧器、冷媒加熱手
段、冷媒温度検出手段を設け、前記冷媒加熱手段の加熱
量を制御する加熱量制御手段、前記冷媒温度検出手段に
より冷媒温度を所定周期で検出してその変化量より飽和
蒸気温度を判別する判別手段を有する冷凍サイクルの飽
和蒸気温度検出回路。1. A non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as a refrigerant, and a compressor, a condenser, a pressure reducer, and an evaporator are sequentially connected in an annular shape by pipes. A refrigerant circuit is constructed by connecting one end to the pipeline from the condenser outlet to the decompressor outlet, and the other end is connected to the pipeline from the evaporator outlet to the compressor inlet. The circuit is provided with an auxiliary decompressor, a refrigerant heating means, and a refrigerant temperature detection means in order from the upstream side, and a heating amount control means for controlling the heating amount of the refrigerant heating means, and the refrigerant temperature detection means detects the refrigerant temperature in a predetermined cycle. A saturated steam temperature detection circuit for a refrigeration cycle, which has a determining means for determining the saturated steam temperature based on the amount of change in temperature.
を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機、凝縮器、減圧器、蒸発器を順に配管にて環状に連結
して冷媒回路を構成し、凝縮器出口から減圧器出口に至
る管路に一端を接続し、他端を蒸発器出口から圧縮機入
口に至る管路に接続したバイパス回路を配設し、このバ
イパス回路に上流側から順に減圧量可変の補助減圧器、
冷媒温度検出手段を設け、前記補助減圧器出口から前記
冷媒温度検出手段設置位置に至る管路の一部と前記圧縮
機出口から前記凝縮器入口に至る管路の一部とを熱交換
的に接続し、前記補助減圧器の減圧量を制御する減圧量
制御手段、前記冷媒温度検出手段により冷媒温度を所定
周期で検出してその変化量より飽和蒸気温度を判別する
判別手段を有する冷凍サイクルの飽和蒸気温度検出回
路。2. A non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as a refrigerant, and a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in an annular shape by pipes. A refrigerant circuit is constructed by connecting one end to the pipeline from the condenser outlet to the decompressor outlet, and the other end is connected to the pipeline from the evaporator outlet to the compressor inlet. Auxiliary decompressor with variable decompression amount in order from the upstream side to the circuit,
Refrigerant temperature detection means is provided, and a part of the pipeline from the auxiliary decompressor outlet to the refrigerant temperature detection means installation position and a portion of the pipeline from the compressor outlet to the condenser inlet are heat-exchanged. Of the refrigeration cycle having a pressure reducing amount control means connected to control the pressure reducing amount of the auxiliary pressure reducer, a means for detecting the refrigerant temperature by the refrigerant temperature detecting means in a predetermined cycle, and determining the saturated vapor temperature from the change amount thereof. Saturated steam temperature detection circuit.
を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機、凝縮器、減圧器、蒸発器を順に配管にて環状に連結
して冷媒回路を構成し、凝縮器出口から減圧器出口に至
る管路に一端を接続し、他端を蒸発器出口から圧縮機入
口に至る管路に接続したバイパス回路を配設し、このバ
イパス回路に上流側から順に減圧量可変の補助減圧器、
冷媒温度検出手段を設け、前記補助減圧器出口から前記
冷媒温度検出手段設置位置に至る管路の一部を前記蒸発
器内に配設し、前記補助減圧器の減圧量を制御する減圧
量制御手段、冷媒温度検出手段により冷媒温度を所定周
期で検出してその変化量より飽和蒸気温度を判別する判
別手段を有する冷凍サイクルの飽和蒸気温度検出回路。3. A non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as a refrigerant, and a compressor, a condenser, a decompressor, and an evaporator are sequentially connected by a pipe in an annular shape. A refrigerant circuit is constructed by connecting one end to the pipeline from the condenser outlet to the decompressor outlet, and the other end is connected to the pipeline from the evaporator outlet to the compressor inlet. Auxiliary decompressor with variable decompression amount in order from the upstream side to the circuit,
A refrigerant temperature detecting means is provided, and a part of a pipe line from the outlet of the auxiliary pressure reducer to the installation position of the refrigerant temperature detecting means is provided in the evaporator, and a pressure reduction amount control for controlling the pressure reduction amount of the auxiliary pressure reducer is provided. A saturated vapor temperature detection circuit for a refrigeration cycle, comprising: a means for detecting the refrigerant temperature at a predetermined cycle by the refrigerant temperature detecting means;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21123993A JP3178178B2 (en) | 1993-08-26 | 1993-08-26 | Refrigeration cycle saturated steam temperature detection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21123993A JP3178178B2 (en) | 1993-08-26 | 1993-08-26 | Refrigeration cycle saturated steam temperature detection circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0763430A true JPH0763430A (en) | 1995-03-10 |
JP3178178B2 JP3178178B2 (en) | 2001-06-18 |
Family
ID=16602597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21123993A Expired - Fee Related JP3178178B2 (en) | 1993-08-26 | 1993-08-26 | Refrigeration cycle saturated steam temperature detection circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3178178B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009204235A (en) * | 2008-02-28 | 2009-09-10 | Sanyo Electric Co Ltd | Heat pump type water heater |
WO2020194490A1 (en) * | 2019-03-26 | 2020-10-01 | 三菱電機株式会社 | Outdoor unit and refrigeration cycle device equipped with same |
WO2020217423A1 (en) * | 2019-04-25 | 2020-10-29 | 三菱電機株式会社 | Heat-source-side unit and refrigeration cycle apparatus comprising same |
WO2020255355A1 (en) * | 2019-06-20 | 2020-12-24 | 三菱電機株式会社 | Outdoor unit, refrigeration cycle device, and refrigerator |
JPWO2020066002A1 (en) * | 2018-09-28 | 2021-08-30 | 三菱電機株式会社 | Refrigeration cycle equipment |
JPWO2020217424A1 (en) * | 2019-04-25 | 2021-10-21 | 三菱電機株式会社 | Heat source side unit and refrigeration cycle device equipped with it |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5278451B2 (en) * | 2011-01-27 | 2013-09-04 | パナソニック株式会社 | Refrigeration cycle apparatus and hot water heater using the same |
-
1993
- 1993-08-26 JP JP21123993A patent/JP3178178B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009204235A (en) * | 2008-02-28 | 2009-09-10 | Sanyo Electric Co Ltd | Heat pump type water heater |
JPWO2020066002A1 (en) * | 2018-09-28 | 2021-08-30 | 三菱電機株式会社 | Refrigeration cycle equipment |
WO2020194490A1 (en) * | 2019-03-26 | 2020-10-01 | 三菱電機株式会社 | Outdoor unit and refrigeration cycle device equipped with same |
CN113614473A (en) * | 2019-03-26 | 2021-11-05 | 三菱电机株式会社 | Outdoor unit and refrigeration cycle device provided with same |
CN113614473B (en) * | 2019-03-26 | 2022-12-20 | 三菱电机株式会社 | Outdoor unit and refrigeration cycle device provided with same |
WO2020217423A1 (en) * | 2019-04-25 | 2020-10-29 | 三菱電機株式会社 | Heat-source-side unit and refrigeration cycle apparatus comprising same |
JPWO2020217424A1 (en) * | 2019-04-25 | 2021-10-21 | 三菱電機株式会社 | Heat source side unit and refrigeration cycle device equipped with it |
JPWO2020217423A1 (en) * | 2019-04-25 | 2021-11-04 | 三菱電機株式会社 | Heat source side unit and refrigeration cycle device equipped with it |
WO2020255355A1 (en) * | 2019-06-20 | 2020-12-24 | 三菱電機株式会社 | Outdoor unit, refrigeration cycle device, and refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JP3178178B2 (en) | 2001-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3679323B2 (en) | Refrigeration cycle apparatus and control method thereof | |
JP6656402B2 (en) | Refrigeration cycle device | |
US20090266093A1 (en) | Refrigerating air conditioning system | |
WO2007110908A9 (en) | Refrigeration air conditioning device | |
JP5791716B2 (en) | Refrigeration air conditioner and control method of refrigeration air conditioner | |
JP3440910B2 (en) | Refrigeration equipment | |
KR101901540B1 (en) | Air conditioning device | |
JP6594599B1 (en) | Air conditioner | |
JP4462435B2 (en) | Refrigeration equipment | |
JP2005249384A (en) | Refrigerating cycle device | |
AU2019436796B2 (en) | Air-conditioning apparatus | |
JP2019184207A (en) | Air conditioner | |
JP2943613B2 (en) | Refrigeration air conditioner using non-azeotropic mixed refrigerant | |
JP3178178B2 (en) | Refrigeration cycle saturated steam temperature detection circuit | |
JP3351076B2 (en) | Refrigeration cycle saturated steam temperature detector | |
JP2000283568A (en) | Refrigerating device and control method therefor | |
JPH0875280A (en) | Freezing and air conditioning device with non-azeotropic mixture refrigerant | |
JPH06101911A (en) | Refrigerating cycle using non-azeotropic mixed refrigerant | |
JP3178192B2 (en) | Refrigeration cycle control device | |
JPH07198235A (en) | Air conditioner | |
JPH06257868A (en) | Heat pump type ice heat accumulating device for air conditioning | |
JP6540074B2 (en) | Air conditioner | |
JPH07190526A (en) | Refrigerating cycle equipment using nonazeotropic mixture refrigerant | |
JP2001241797A (en) | Refrigerating cycle | |
JP3661014B2 (en) | Refrigeration equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080413 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090413 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |