JPH10306949A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH10306949A
JPH10306949A JP11721897A JP11721897A JPH10306949A JP H10306949 A JPH10306949 A JP H10306949A JP 11721897 A JP11721897 A JP 11721897A JP 11721897 A JP11721897 A JP 11721897A JP H10306949 A JPH10306949 A JP H10306949A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
gas
liquid
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11721897A
Other languages
Japanese (ja)
Inventor
Osamu Morimoto
修 森本
Tomohiko Kasai
智彦 河西
Yoshihiro Sumida
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11721897A priority Critical patent/JPH10306949A/en
Publication of JPH10306949A publication Critical patent/JPH10306949A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a multi-room split type air conditioner for suitably and efficiently operating without lowering an efficiency of a refrigerating cycle even when non-azeotrope refrigerant is used as refrigerant. SOLUTION: The multi-room split type air conditioner comprises a refrigerant circuit using as refrigerant non-azeotrope refrigerant to supply it from a compressor 1 to a vapor-liquid separator 5 via an outdoor heat exchanger 2 operating as a condenser, to separate gas refrigerant separated by the separator 5 via a first indoor heat exchanger 3 operating as a condenser and first pressure- reducing means 6, to combine it with liquid refrigerant fed through a third pressure-reducing means 8, and to return it to the compressor 1 via a second pressure reducing means 7 and a second indoor side heat exchanger 4 operating as an evaporator. And, dryness altering means 19 to 24 for pouring the liquid refrigerant in the gas refrigerant flowing to the exchanger 3 to refrigerant of vapor-liquid two-phase state are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、室外機1台に対
して複数の室内機が並列に接続され、各室内機毎に冷房
と暖房が選択的に、例えば、一方の室内機では冷房が、
他方の室内機では暖房が同時に行うことができ、冷媒と
して非共沸混合冷媒が使用される冷媒回路を備えた多室
式空気調和機に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an outdoor unit in which a plurality of indoor units are connected in parallel to one outdoor unit, and cooling and heating are selectively performed for each indoor unit. ,
The present invention relates to a multi-room air conditioner having a refrigerant circuit in which heating can be simultaneously performed in the other indoor unit and a non-azeotropic mixed refrigerant is used as a refrigerant.

【0002】[0002]

【従来の技術】図33は、例えば特開平3−27166
5号公報等に記載された、従来の多室式空気調和機にお
ける冷房主体の冷暖同時運転時の冷媒回路を示す概略構
成図である。図において、1は圧縮機、2は凝縮器とし
て動作する室外熱交換器、3は凝縮器として動作する第
1の室内熱交換器、4は蒸発器として動作する第2の室
内熱交換器、5は気液分離器、6は第1の減圧手段、7
は第2の減圧手段、8は第3の減圧手段、9〜18は冷
媒配管である。
2. Description of the Related Art FIG.
FIG. 5 is a schematic configuration diagram illustrating a refrigerant circuit in a conventional multi-room air conditioner at the time of simultaneous cooling-heating and heating operations in a conventional multi-chamber air conditioner described in Japanese Patent Publication No. 5 (JP-A) No. 5; In the figure, 1 is a compressor, 2 is an outdoor heat exchanger that operates as a condenser, 3 is a first indoor heat exchanger that operates as a condenser, 4 is a second indoor heat exchanger that operates as an evaporator, 5 is a gas-liquid separator, 6 is a first decompression means, 7
Is a second pressure reducing means, 8 is a third pressure reducing means, and 9 to 18 are refrigerant pipes.

【0003】次に動作について説明する。圧縮機1を吐
出した高温高圧の冷媒は吐出冷媒配管9をへて室外熱交
換器2に流入し、ここで室外空気と熱交換して冷やさ
れ、ある乾き度まで凝縮され気液二相状態となり、冷媒
配管10をへて気液分離器5に流入する。気液分離器5
において、冷媒は液冷媒とガス冷媒とに分けられ、この
ガス冷媒は冷媒配管11を流れ第1の室内熱交換器3で
過冷却がつくまで凝縮され、冷媒配管12をへて第1の
減圧手段6で減圧されて液冷媒となる。気液分離器5で
分離された液冷媒は、バイパス用冷媒配管14をへて第
3の減圧手段8で若干減圧された後、第1の室内熱交換
器3及び第1の減圧手段6からの液冷媒と合流する。こ
の合流した液冷媒は、冷媒配管16をへて第2の減圧手
段7に流入し、ここで低圧まで減圧されて第2の室内熱
交換器4で蒸発された後、ガス冷媒となり冷媒配管18
をへて圧縮機1に戻る。
Next, the operation will be described. The high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 2 through the discharged refrigerant pipe 9, where it exchanges heat with outdoor air to be cooled, condensed to a certain degree of dryness, and is in a gas-liquid two-phase state. And flows into the gas-liquid separator 5 through the refrigerant pipe 10. Gas-liquid separator 5
, The refrigerant is divided into a liquid refrigerant and a gas refrigerant, and the gas refrigerant flows through the refrigerant pipe 11 and is condensed in the first indoor heat exchanger 3 until it is supercooled. The pressure is reduced by the means 6 to become a liquid refrigerant. The liquid refrigerant separated by the gas-liquid separator 5 is slightly depressurized by the third decompression means 8 via the bypass refrigerant pipe 14 and then transmitted from the first indoor heat exchanger 3 and the first decompression means 6. With the liquid refrigerant. The merged liquid refrigerant flows through the refrigerant pipe 16 into the second decompression means 7, where it is decompressed to a low pressure and evaporated in the second indoor heat exchanger 4, and then becomes a gas refrigerant and becomes a refrigerant pipe 18
To return to the compressor 1.

【0004】[0004]

【発明が解決しようとする課題】上記のような従来の多
室式空気調和機において、冷媒に非共沸混合冷媒を使用
する場合には、気液分離器5内で分離される液冷媒とガ
ス冷媒の組成が同一圧力のもとで温度に応じて変化し、
空気調和機の効率が低下したり、室内機で目標とする能
力が得られなかったり、また、室内熱交換器の出口にお
いて、目標とする冷媒の過冷却度または過熱度が得られ
ず、冷媒音や圧縮機への液戻りにより、冷凍サイクルの
信頼性が損なわれる等の問題点があった。
In a conventional multi-chamber air conditioner as described above, when a non-azeotropic mixed refrigerant is used as the refrigerant, the liquid refrigerant separated in the gas-liquid separator 5 is not used. The composition of the gas refrigerant changes according to the temperature under the same pressure,
The efficiency of the air conditioner is reduced, the target capacity is not obtained in the indoor unit, and the supercooling degree or superheat degree of the target refrigerant is not obtained at the outlet of the indoor heat exchanger, There have been problems such as the reliability of the refrigeration cycle being impaired due to noise and liquid return to the compressor.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、冷媒に非共沸混合冷媒を使用し
ても、冷凍サイクルの効率が低下することなく、各室内
機において目標とする熱交換能力が得られ、かつ、各室
内熱交換器出口の冷媒の状態を、目標とする過冷却度ま
たは過熱度とし、冷凍サイクルを適正かつ効率良く運転
できる多室式空気調和機を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. Even if a non-azeotropic mixed refrigerant is used as the refrigerant, the efficiency of the refrigeration cycle does not decrease, and the target for each indoor unit is reduced. And a multi-room air conditioner that can operate the refrigeration cycle properly and efficiently by setting the refrigerant state at the outlet of each indoor heat exchanger to the target degree of supercooling or superheat. The purpose is to gain.

【0006】[0006]

【課題を解決するための手段】この発明の請求項1に係
る空気調和機は、冷媒として非共沸混合冷媒を使用し、
圧縮機から凝縮器、減圧手段、及び蒸発器をへて上記圧
縮機に戻る冷媒回路を備えた空気調和機において、上記
凝縮器および蒸発器の少なくとも一方の熱交換器に、冷
媒の乾き度を変更する乾き度変更手段を設けたものであ
る。
The air conditioner according to claim 1 of the present invention uses a non-azeotropic mixed refrigerant as a refrigerant,
In an air conditioner provided with a refrigerant circuit that returns from the compressor to the condenser, the decompression means, and the evaporator to the compressor, the heat exchanger of at least one of the condenser and the evaporator has a degree of dryness of the refrigerant. A means for changing dryness is provided.

【0007】この発明の請求項2に係る多室式空気調和
機は、複数の室内熱交換器と気液分離器を有し、この気
液分離器で分離したガス冷媒を暖房室内熱交換器に、液
冷媒を冷房室内熱交換器に流し、冷媒として非共沸混合
冷媒を使用する冷媒回路を備えた冷暖同時運転を行う多
室式空気調和機において、上記暖房室内熱交換器に流入
するガス冷媒に液冷媒を注入し気液二相状態の冷媒とす
る乾き度変更手段を設けたものである。
A multi-room air conditioner according to a second aspect of the present invention has a plurality of indoor heat exchangers and a gas-liquid separator, and uses the gas refrigerant separated by the gas-liquid separator to heat the indoor heat exchanger. In the multi-room air conditioner that performs a simultaneous cooling and heating operation with a refrigerant circuit that uses a non-azeotropic mixed refrigerant as a refrigerant, the liquid refrigerant flows into the cooling indoor heat exchanger, and flows into the heating indoor heat exchanger. A dryness changing means is provided by injecting a liquid refrigerant into a gas refrigerant to convert the refrigerant into a gas-liquid two-phase refrigerant.

【0008】この発明の請求項3に係る多室式空気調和
機は、冷媒として非共沸混合冷媒を使用し、圧縮機から
室外熱交換器をへて気液分離器に流入しこの気液分離器
で分離されたガス冷媒が、第1の室内熱交換器及び第1
の減圧手段をへて、上記気液分離器で分離され第3の減
圧手段を経た液冷媒と合流し、第2の減圧手段、第2の
室内熱交換器をへて上記圧縮機に戻る冷媒回路を備えた
多室式空気調和機において、上記第1の室内熱交換器に
流入するガス冷媒に液冷媒を注入し気液二相状態の冷媒
とする乾き度変更手段を設けたものである。
According to a third aspect of the present invention, a multi-chamber air conditioner uses a non-azeotropic mixed refrigerant as a refrigerant, flows from a compressor to an outdoor heat exchanger, and flows into a gas-liquid separator. The gas refrigerant separated by the separator is supplied to the first indoor heat exchanger and the first indoor heat exchanger.
And the liquid refrigerant separated by the gas-liquid separator and passed through the third decompression means, and then returned to the compressor via the second decompression means and the second indoor heat exchanger. In a multi-room air conditioner provided with a circuit, a dryness changing means is provided, in which a liquid refrigerant is injected into a gas refrigerant flowing into the first indoor heat exchanger to convert the gas refrigerant into a gas-liquid two-phase state refrigerant. .

【0009】この発明の請求項4に係る多室式空気調和
機は、請求項3記載の発明において、気液分離器と第1
の室内熱交換器を接続する配管の途中に、気液分離器内
部の液冷媒が流入する穴を設けたものである。
A multi-room air conditioner according to a fourth aspect of the present invention is the multi-room air conditioner according to the third aspect of the present invention, wherein
A hole through which the liquid refrigerant in the gas-liquid separator flows is provided in the middle of the pipe connecting the indoor heat exchanger.

【0010】この発明の請求項5に係る多室式空気調和
機は、請求項3記載の発明において、気液分離器と第1
の室内熱交換器を接続するガス冷媒配管の途中に、気液
分離器と第3の減圧手段を接続する液冷媒配管から気液
混合管を介して液冷媒を吸上げ、上記ガス冷媒配管中の
ガス冷媒とを混合する気液混合部を設けたものである。
[0010] According to a fifth aspect of the present invention, in the multi-chamber air conditioner according to the third aspect, the gas-liquid separator and the first air conditioner are connected to each other.
In the middle of the gas refrigerant pipe connecting the indoor heat exchanger, the liquid refrigerant is sucked up from the liquid refrigerant pipe connecting the gas-liquid separator and the third decompression means via the gas-liquid mixing pipe, and And a gas-liquid mixing section for mixing the gas refrigerant.

【0011】この発明の請求項6に係る多室式空気調和
機は、容量可変式圧縮機、四方弁、室外熱交換器を有す
る室外機と、それぞれ室内熱交換器と第1の流量制御手
段が接続された複数の室内機と、上記室外機と高圧冷媒
配管、低圧冷媒配管の2本の冷媒配管により接続され、
上記複数の室内機の室内熱交換器とガス冷媒配管によ
り、これらの第1の流量制御手段と中圧冷媒配管により
それぞれ接続される分流コントローラを備え、上記分流
コントローラは、上記室外機と接続される高圧冷媒配管
からの冷媒を気液分離し、高圧ガス冷媒配管と高圧液冷
媒配管に出力する気液分離器、この高圧液冷媒配管と、
上記室内機と接続される複数の中圧冷媒配管との間に接
続された第2の流量制御手段、上記室外機と接続される
低圧冷媒配管と上記複数の中圧冷媒配管との間に接続さ
れた第3の流量制御手段、上記気液分離器の出力高圧ガ
ス冷媒配管と上記室内機に接続される複数のガス冷媒配
管とを選択的に接続する第1の切換え開閉弁、及び上記
室外機に接続される低圧冷媒配管と上記室内機に接続さ
れる複数のガス冷媒配管とを選択的に接続する第2の切
換え開閉弁を有しており、さらに、冷媒として非共沸混
合冷媒を使用した多室式空気調和機において、上記気液
分離器の出力高圧ガス冷媒配管と上記複数の第2の切換
え開閉弁とをそれぞれ接続する冷媒配管途中に、上記気
液分離器の出力高圧液冷媒配管から気液混合管により、
冷房主体の冷暖同時運転時に開かれる開閉弁を介して液
冷媒を吸上げ、上記気液分離器の出力高圧ガス冷媒配管
中のガス冷媒に混合する気液混合部を設けたものであ
る。
According to a sixth aspect of the present invention, there is provided a multi-room air conditioner comprising: an outdoor unit having a variable displacement compressor, a four-way valve, and an outdoor heat exchanger; an indoor heat exchanger and first flow control means, respectively. Are connected by two refrigerant pipes of the indoor unit, the outdoor unit, the high-pressure refrigerant pipe, and the low-pressure refrigerant pipe,
The air conditioner further includes a branch controller connected to each of the first flow control unit and the medium-pressure refrigerant pipe by the indoor heat exchangers and the gas refrigerant pipes of the plurality of indoor units, and the branch controller is connected to the outdoor unit. A gas-liquid separator that separates the refrigerant from the high-pressure refrigerant pipe into a high-pressure gas refrigerant pipe and a high-pressure liquid refrigerant pipe,
Second flow control means connected between the plurality of medium-pressure refrigerant pipes connected to the indoor unit, and connection between the low-pressure refrigerant pipe connected to the outdoor unit and the plurality of medium-pressure refrigerant pipes Third flow control means, a first switching on-off valve for selectively connecting an output high-pressure gas refrigerant pipe of the gas-liquid separator and a plurality of gas refrigerant pipes connected to the indoor unit, and the outdoor A second switching valve that selectively connects a low-pressure refrigerant pipe connected to the unit and a plurality of gas refrigerant pipes connected to the indoor unit, and further includes a non-azeotropic mixed refrigerant as a refrigerant. In the multi-chamber air conditioner used, in the middle of a refrigerant pipe connecting the output high-pressure gas refrigerant pipe of the gas-liquid separator and the plurality of second switching valves, the output high-pressure liquid of the gas-liquid separator is provided. From the refrigerant pipe to the gas-liquid mixing pipe,
A gas-liquid mixing section is provided which sucks up liquid refrigerant via an on-off valve opened during simultaneous cooling and heating operations mainly for cooling and mixes with the gas refrigerant in the output high-pressure gas refrigerant pipe of the gas-liquid separator.

【0012】この発明の請求項7に係る多室式空気調和
機は、請求項6記載の発明において、分流コントローラ
の第2の流量制御手段の上流又は下流の高圧又は中圧冷
媒配管から分岐し、バイパス流量制御手段と、複数の中
圧冷媒配管及び高圧液冷媒配管と熱交換する過冷却熱交
換器とを介して低圧冷媒配管にいたるバイパス管路を設
けたものである。
A multi-chamber air conditioner according to a seventh aspect of the present invention is the multi-room air conditioner according to the sixth aspect, wherein the multi-room air conditioner branches off from a high-pressure or medium-pressure refrigerant pipe upstream or downstream of the second flow control means of the branch controller. A bypass flow path to a low-pressure refrigerant pipe via a bypass flow rate control means and a supercooling heat exchanger that exchanges heat with a plurality of medium-pressure refrigerant pipes and a high-pressure liquid refrigerant pipe.

【0013】この発明の請求項8に係る多室式空気調和
機は、請求項7記載の発明において、バイパス流量制御
手段上流の冷媒温度を検出する第1の温度検出手段と、
バイパス流量制御手段下流の冷媒温度を検出する第2の
温度検出手段と、バイパス流量制御手段下流の冷媒圧力
を検出する第1の圧力検出手段と、圧縮機の吐出圧力を
検出する第2の圧力検出手段と、圧縮機の吸入圧力を検
出する第3の圧力検出手段と、上記第1、第2の温度検
出手段、及び上記第1の圧力検出手段の検出値から冷媒
の組成を演算する冷媒組成演算装置と、この冷媒組成演
算装置の演算値、及び上記第2、第3の圧力検出手段の
検出値に応じて、圧縮機の運転周波数及び室外ファンの
回転数を制御する圧縮機・室外ファン制御装置とを設け
たものである。
The multi-chamber air conditioner according to an eighth aspect of the present invention is the multi-room air conditioner according to the seventh aspect, wherein the first temperature detecting means detects a refrigerant temperature upstream of the bypass flow rate control means,
Second temperature detecting means for detecting the refrigerant temperature downstream of the bypass flow rate control means, first pressure detecting means for detecting the refrigerant pressure downstream of the bypass flow rate control means, and second pressure for detecting the discharge pressure of the compressor Detecting means, third pressure detecting means for detecting the suction pressure of the compressor, the first and second temperature detecting means, and refrigerant for calculating the composition of the refrigerant from the detected values of the first pressure detecting means A compressor / outdoor for controlling the operating frequency of the compressor and the number of rotations of the outdoor fan in accordance with a composition calculation device, a calculation value of the refrigerant composition calculation device, and a detection value of the second and third pressure detection means. A fan control device is provided.

【0014】この発明の請求項9に係る多室式空気調和
機は、請求項7記載の発明において、バイパス流量制御
手段上流の冷媒温度を検出する第1の温度検出手段と、
バイパス流量制御手段下流の冷媒温度を検出する第2の
温度検出手段と、第2の流量制御手段上流の高圧冷媒温
度を検出する第3の温度検出手段と、バイパス流量制御
手段下流の冷媒圧力を検出する第1の圧力検出手段と、
気液分離器の出力高圧冷媒圧力を検出する第5の圧力検
出手段と、上記第1、第2の温度検出手段、及び上記第
1の圧力検出手段の検出値から冷媒の組成を演算する冷
媒組成演算装置と、この冷媒組成演算装置の演算値、及
び上記第5の圧力検出手段、第3の温度検出手段の検出
値に応じて、第2の流量制御手段の開度を制御する制御
器とを設けたものである。
According to a ninth aspect of the present invention, in the multi-room air conditioner according to the seventh aspect, a first temperature detecting means for detecting a refrigerant temperature upstream of the bypass flow control means,
A second temperature detecting means for detecting a refrigerant temperature downstream of the bypass flow rate control means, a third temperature detecting means for detecting a high pressure refrigerant temperature upstream of the second flow rate control means, and a refrigerant pressure downstream of the bypass flow rate control means. First pressure detecting means for detecting;
Fifth pressure detecting means for detecting the output high-pressure refrigerant pressure of the gas-liquid separator, refrigerant for calculating the composition of the refrigerant from the detection values of the first and second temperature detecting means, and the first pressure detecting means A controller for controlling the degree of opening of the second flow rate control means in accordance with the composition calculation device, the calculation value of the refrigerant composition calculation device, and the detection values of the fifth pressure detection means and the third temperature detection means. Are provided.

【0015】この発明の請求項10に係る多室式空気調
和機は、請求項6記載の発明において、中圧冷媒配管の
冷媒圧力を検出する第4の圧力検出手段と、気液分離器
の出力高圧冷媒圧力を検出する第5の圧力検出手段と、
上記第4の圧力検出手段及び第5の圧力検出手段の検出
値に応じて、第3の流量制御手段の開度を制御する制御
器とを設けたものである。
According to a tenth aspect of the present invention, in the multi-room air conditioner according to the sixth aspect, a fourth pressure detecting means for detecting a refrigerant pressure of the medium-pressure refrigerant pipe; Fifth pressure detecting means for detecting the output high-pressure refrigerant pressure;
A controller for controlling the opening of the third flow control means in accordance with the detection values of the fourth pressure detection means and the fifth pressure detection means is provided.

【0016】この発明の請求項11に係る多室式空気調
和機は、請求項7記載の発明において、中圧冷媒配管の
冷媒圧力を検出する第4の圧力検出手段と、気液分離器
の出力高圧冷媒圧力を検出する第5の圧力検出手段と、
バイパス流量制御手段下流の冷媒温度を検出する第2の
温度検出手段と、バイパス管路の過冷却熱交換器下流の
冷媒温度を検出する第4の温度検出手段と、上記第4の
圧力検出手段、第5の圧力検出手段、第2の温度検出手
段、及び第4の温度検出手段の検出値に応じて、バイパ
ス流量制御手段の開度を制御する制御器とを設けたもの
である。
[0016] According to an eleventh aspect of the present invention, in the multi-room air conditioner according to the seventh aspect, a fourth pressure detecting means for detecting a refrigerant pressure of the medium-pressure refrigerant pipe, and a gas-liquid separator. Fifth pressure detecting means for detecting the output high-pressure refrigerant pressure;
Second temperature detecting means for detecting the temperature of the refrigerant downstream of the bypass flow rate control means, fourth temperature detecting means for detecting the temperature of the refrigerant downstream of the subcooling heat exchanger in the bypass line, and the fourth pressure detecting means , A fifth pressure detecting means, a second temperature detecting means, and a controller for controlling an opening degree of the bypass flow rate controlling means in accordance with a detection value of the fourth temperature detecting means.

【0017】この発明の請求項12に係る多室式空気調
和機は、請求項7記載の発明において、室内熱交換器と
第1の流量制御手段との間の冷媒温度を検出する第5の
温度検出手段と、室内熱交換器に接続されるガス冷媒配
管の冷媒温度を検出する第6の温度検出手段と、気液分
離器の出力高圧冷媒圧力を検出する第5の圧力検出手段
と、上記第5の温度検出手段及び第6の温度検出手段の
検出値、又はこれら検出値と上記第5の圧力検出手段で
検出された高圧冷媒圧力値の飽和温度値に応じて、第1
の流量制御手段の開度を制御する制御器とを設けたもの
である。
According to a twelfth aspect of the present invention, in the multi-room air conditioner according to the seventh aspect of the present invention, the fifth aspect detects the refrigerant temperature between the indoor heat exchanger and the first flow rate control means. Temperature detecting means, sixth temperature detecting means for detecting the refrigerant temperature of the gas refrigerant pipe connected to the indoor heat exchanger, fifth pressure detecting means for detecting the output high-pressure refrigerant pressure of the gas-liquid separator, According to the detected values of the fifth temperature detecting means and the sixth temperature detecting means, or the detected values and the saturated temperature value of the high-pressure refrigerant pressure value detected by the fifth pressure detecting means,
And a controller for controlling the opening of the flow rate control means.

【0018】この発明の請求項13に係る多室式空気調
和機は、請求項8または9記載の発明において、室内機
の冷房と暖房の容量比に応じて、冷媒組成演算装置の演
算値を補正するものである。
According to a thirteenth aspect of the present invention, in the multi-room air conditioner according to the eighth or ninth aspect, the operation value of the refrigerant composition operation device is calculated according to the capacity ratio between the cooling and the heating of the indoor unit. It is to be corrected.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1はこの発明の実施の形態1における
冷房主体の冷暖同時運転時の冷媒回路を示す概略構成図
で、図において、1は圧縮機、2は凝縮器として動作す
る室外熱交換器、3は凝縮器として動作する第1の室内
熱交換器、4は蒸発器として動作する第2の室内熱交換
器、5は気液分離器、6は第1の減圧手段、7は第2の
減圧手段、8は第3の減圧手段、9〜18は冷媒配管
で、以上は図33に示す従来の多室式空気調和機と同様
のものである。また、この冷媒回路中の冷媒として非共
沸混合冷媒が使用されている。
Embodiment 1 FIG. FIG. 1 is a schematic configuration diagram showing a refrigerant circuit at the time of simultaneous cooling / heating operation mainly in cooling according to Embodiment 1 of the present invention. In FIG. A first indoor heat exchanger that operates as a condenser, 4 is a second indoor heat exchanger that operates as an evaporator, 5 is a gas-liquid separator, 6 is first decompression means, and 7 is second decompression means. , 8 are third pressure reducing means, and 9 to 18 are refrigerant pipes, which are the same as those of the conventional multi-room air conditioner shown in FIG. A non-azeotropic refrigerant mixture is used as the refrigerant in the refrigerant circuit.

【0020】19は、凝縮器である第1の室内熱交換器
3の途中に設けられた冷媒の乾き度を変更する第1の乾
き度変更部、20はこの第1の乾き度変更部19に冷媒
配管14からの液冷媒を注入する液混合管、21は蒸発
器である第2の室内熱交換器4の途中に設けられた冷媒
の乾き度を変更する第2の乾き度変更部、22、23は
この第2の乾き度変更部21に冷媒配管11からのガス
冷媒を注入する高圧、低圧ガス混合管、24はこの注入
されるガス冷媒を減圧する混合ガス減圧手段である。な
お、乾き度変更部19、21、液混合管20、ガス混合
管22、23及び混合ガス減圧手段24は乾き度変更手
段を構成している。
Reference numeral 19 denotes a first dryness changing unit for changing the dryness of a refrigerant provided in the middle of the first indoor heat exchanger 3 which is a condenser, and reference numeral 20 denotes the first dryness change unit 19. A liquid mixing pipe for injecting the liquid refrigerant from the refrigerant pipe 14 into the second, a second dryness changing unit 21 for changing the dryness of the refrigerant provided in the middle of the second indoor heat exchanger 4 as an evaporator, Reference numerals 22 and 23 denote high-pressure and low-pressure gas mixing tubes for injecting the gas refrigerant from the refrigerant pipe 11 into the second dryness changing unit 21, and reference numeral 24 denotes a mixed gas decompression means for decompressing the injected gas refrigerant. The dryness changing units 19 and 21, the liquid mixing pipe 20, the gas mixing pipes 22 and 23, and the mixed gas decompression means 24 constitute dryness changing means.

【0021】図2はこの実施の形態1における第1の乾
き度変更部19の一例を示す部分側断面図、図3は第1
の乾き度変更部19による冷媒の組成変化を示す相平衡
図、図4は第2の乾き度変更部21の一例を示す部分側
断面図、図5は第2の乾き度変更部21による冷媒の組
成変化を示す相平衡図である。図中19は第1の乾き度
変更部を構成する第1の室内熱交換器3の伝熱管、20
aは液混合管20先端のノズル状開口、21は第2の乾
き度変更部を構成する第2の室内熱交換器4の伝熱管、
23aは低圧ガス混合管23先端のノズル状開口であ
る。
FIG. 2 is a partial side sectional view showing an example of the first dryness changing unit 19 in the first embodiment, and FIG.
FIG. 4 is a phase equilibrium diagram showing a change in the composition of the refrigerant by the dryness changing section 19, FIG. 4 is a partial side sectional view showing an example of the second dryness changing section 21, and FIG. FIG. 4 is a phase equilibrium diagram showing a change in composition of. In the figure, reference numeral 19 denotes a heat transfer tube of the first indoor heat exchanger 3 which constitutes a first dryness changing unit;
a is a nozzle-shaped opening at the tip of the liquid mixing tube 20, 21 is a heat transfer tube of the second indoor heat exchanger 4 constituting a second dryness changing unit,
Reference numeral 23a denotes a nozzle-shaped opening at the tip of the low-pressure gas mixing pipe 23.

【0022】次にこの実施の形態1の冷媒の流れについ
て説明する。圧縮機1を吐出した高温高圧の冷媒は吐出
冷媒配管9をへて室外熱交換器2に流入し、ここで室外
空気と熱交換して冷やされ、ある乾き度まで凝縮され気
液二相状態となり、冷媒配管10をへて気液分離器5に
流入する。気液分離器5において、冷媒は液冷媒とガス
冷媒とに分けられ、このガス冷媒は第1の室内熱交換器
3内で第1の乾き度変更部19により乾き度が減らさ
れ、ある乾き度を持った気液二相冷媒とされるととも
に、過冷却がつくまで凝縮され、第1の減圧手段6で減
圧されて液冷媒となる。気液分離器5で分離された液冷
媒は、バイパス用冷媒配管14をへて第3の減圧手段8
で若干減圧された後、第1の室内熱交換器3及び第1の
減圧手段6からの液冷媒と合流する。この合流した液冷
媒は、冷媒配管16をへて第2の減圧手段7に流入し、
ここで低圧まで減圧されて第2の室内熱交換器4で蒸発
されるとともに、第2の乾き度変更部21により乾き度
が増やされた後、ガス冷媒となり冷媒配管18をへて圧
縮機1に戻る。
Next, the flow of the refrigerant according to the first embodiment will be described. The high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 2 through the discharged refrigerant pipe 9, where it exchanges heat with outdoor air to be cooled, condensed to a certain degree of dryness, and is in a gas-liquid two-phase state. And flows into the gas-liquid separator 5 through the refrigerant pipe 10. In the gas-liquid separator 5, the refrigerant is divided into a liquid refrigerant and a gas refrigerant, and the gas refrigerant is reduced in dryness by the first dryness changing unit 19 in the first indoor heat exchanger 3, The refrigerant is converted into a gas-liquid two-phase refrigerant having a high degree, is condensed until supercooling is obtained, and is decompressed by the first decompression means 6 to become a liquid refrigerant. The liquid refrigerant separated by the gas-liquid separator 5 flows through the bypass refrigerant pipe 14 to the third pressure reducing means 8.
, And merges with the liquid refrigerant from the first indoor heat exchanger 3 and the first decompression means 6. The combined liquid refrigerant flows into the second pressure reducing means 7 through the refrigerant pipe 16,
Here, the pressure is reduced to a low pressure and evaporated in the second indoor heat exchanger 4, and the dryness is increased by the second dryness changing unit 21. Return to

【0023】次に第1の乾き度変更部19の動作を図2
及び図3によって説明する。高圧ガス冷媒配管11から
第1の室内熱交換器3の伝熱管である第1の乾き度変更
部19を流れる冷媒は、冷媒配管14から液混合管20
により吸引されそれの先端開口20aから噴出された液
冷媒と混合され乾き度の小さな気液二相冷媒となる。図
3において、第1の乾き度変更部19の液混合管先端開
口20aより上流の冷媒の組成をA、下流の冷媒の組成
をBとすれば、上流部の組成Aでは飽和液温度がTaoで
あるのに対し、下流部の組成Bでは飽和液温度はTboと
なる。即ち、Tao<Tboであるので、組成Aのときより
も組成Bの時の凝縮温度は高くなり、凝縮能力は大きく
なる。従って、凝縮途中の冷媒に液冷媒を混合すること
によって、凝縮温度が上昇し、凝縮能力を向上させるこ
とができる。また、液混合管20から流入させる液冷媒
の組成または流量を制御することによって、凝縮能力を
可変にすることも可能である。
Next, the operation of the first dryness changing unit 19 will be described with reference to FIG.
And FIG. The refrigerant flowing from the high-pressure gas refrigerant pipe 11 to the first dryness changing section 19 which is the heat transfer pipe of the first indoor heat exchanger 3 is supplied from the refrigerant pipe 14 to the liquid mixing pipe 20.
And is mixed with the liquid refrigerant ejected from the front end opening 20a of the refrigerant to form a gas-liquid two-phase refrigerant having a small dryness. In FIG. 3, if the composition of the refrigerant upstream of the liquid mixing tube tip opening 20a of the first dryness changing unit 19 is A and the composition of the downstream refrigerant is B, the saturated liquid temperature Tao in the upstream composition A On the other hand, in the composition B in the downstream part, the saturated liquid temperature becomes Tbo. That is, since Tao <Tbo, the condensing temperature of the composition B is higher than that of the composition A, and the condensing ability is larger. Therefore, by mixing the liquid refrigerant with the refrigerant being condensed, the condensing temperature rises, and the condensing ability can be improved. Further, by controlling the composition or the flow rate of the liquid refrigerant flowing from the liquid mixing pipe 20, the condensing capacity can be made variable.

【0024】次に第2の乾き度変更部21の動作を図4
及び図5によって説明する。低圧二相冷媒配管17から
第2の室内熱交換器4の伝熱管である第2の乾き度変更
部21を流れる冷媒は、冷媒配管11から高圧ガス混合
管22、減圧手段24及び低圧ガス混合管23をへて、
それの先端開口23aから噴出されたガス冷媒と混合さ
れ乾き度の大きな気液二相冷媒となる。図5において、
第2の乾き度変更部21のガス混合管先端開口23aよ
り上流の冷媒の組成をA、下流の冷媒の組成をCとすれ
ば、上流部の組成Aでは飽和ガス温度がTaoであるのに
対し、下流部の組成Cでは飽和ガス温度はTcoとなる。
即ち、Tao>Tcoであるので、組成Aのときよりも組成
Cの時の蒸発温度は低くなり、蒸発能力は大きくなる。
従って、蒸発途中の冷媒にガス冷媒を混合することによ
って、蒸発温度が低下し、蒸発能力を向上させることが
できる。また、ガス混合管23から流入させるガス冷媒
の組成または流量を制御することによって、蒸発能力を
可変にすることも可能である。
Next, the operation of the second dryness changing unit 21 will be described with reference to FIG.
And FIG. The refrigerant flowing from the low-pressure two-phase refrigerant pipe 17 to the second dryness changing section 21 which is the heat transfer pipe of the second indoor heat exchanger 4 is supplied from the refrigerant pipe 11 to the high-pressure gas mixing pipe 22, the pressure reducing means 24 and the low-pressure gas mixing. Through tube 23,
It is mixed with the gas refrigerant jetted from the distal end opening 23a to become a gas-liquid two-phase refrigerant having a large dryness. In FIG.
If the composition of the refrigerant upstream of the gas mixing tube tip opening 23a of the second dryness changing section 21 is A and the composition of the downstream refrigerant is C, the saturation gas temperature is Tao in the upstream composition A. On the other hand, in the composition C in the downstream part, the saturation gas temperature is Tco.
That is, since Tao> Tco, the evaporation temperature in the case of the composition C is lower than that in the case of the composition A, and the evaporation ability is higher.
Therefore, by mixing the gaseous refrigerant with the refrigerant in the middle of evaporation, the evaporation temperature is reduced, and the evaporation ability can be improved. Further, by controlling the composition or the flow rate of the gas refrigerant flowing from the gas mixing pipe 23, it is possible to make the evaporation capacity variable.

【0025】実施の形態2.図6はこの発明の実施の形
態2における冷房主体の冷暖同時運転時の冷媒回路を示
す概略構成図で、図において、1は圧縮機、2は凝縮器
として動作する室外熱交換器、3は凝縮器として動作す
る第1の室内熱交換器、4は蒸発器として動作する第2
の室内熱交換器、5は気液分離器、6は第1の減圧手
段、7は第2の減圧手段、8は第3の減圧手段、9〜1
8は冷媒配管で、以上は図1に示す実施の形態1の多室
式空気調和機と同様のものである。25は、気液分離器
5中に設けられた、冷媒配管11への冷媒の乾き度を変
更する乾き度変更手段である。また、この冷媒回路中の
冷媒として非共沸混合冷媒が使用されている。
Embodiment 2 FIG. 6 is a schematic configuration diagram showing a refrigerant circuit at the time of simultaneous cooling / heating operation mainly for cooling in Embodiment 2 of the present invention. In FIG. A first indoor heat exchanger operating as a condenser, 4 a second indoor heat exchanger operating as an evaporator
Indoor heat exchanger, 5 is a gas-liquid separator, 6 is a first decompression means, 7 is a second decompression means, 8 is a third decompression means, 9-1
Reference numeral 8 denotes a refrigerant pipe, which is the same as the multi-room air conditioner according to the first embodiment shown in FIG. Reference numeral 25 denotes a dryness changing unit provided in the gas-liquid separator 5 for changing the dryness of the refrigerant to the refrigerant pipe 11. A non-azeotropic refrigerant mixture is used as the refrigerant in the refrigerant circuit.

【0026】図7は乾き度変更手段25の一例を示す部
分側断面図で、11aは冷媒配管11の気液分離器5内
においてU字形に曲げられたU字管部、27はこのU字
管部11aの下部に設けられた穴、28は液冷媒であ
る。図8は気液分離器5内の冷媒の乾き度変更手段25
による冷媒の組成変化を示す相平衡図である。
FIG. 7 is a partial sectional side view showing an example of the dryness changing means 25. Reference numeral 11a denotes a U-shaped pipe portion bent in a U-shape in the gas-liquid separator 5 of the refrigerant pipe 11, and 27 denotes this U-shaped portion. A hole 28 provided in the lower part of the pipe 11a is a liquid refrigerant. FIG. 8 shows a means 25 for changing the dryness of the refrigerant in the gas-liquid separator 5.
FIG. 4 is a phase equilibrium diagram showing a change in the composition of the refrigerant due to the following.

【0027】次にこの実施の形態2の冷媒の流れについ
て説明する。圧縮機1を吐出した高温高圧の冷媒は吐出
冷媒配管9をへて室外熱交換器2に流入し、ここで室外
空気と熱交換して冷やされ、ある乾き度まで凝縮され気
液二相状態となり、冷媒配管10をへて気液分離器5に
流入する。気液分離器5において、冷媒は液冷媒と、乾
き度変更手段25により、即ち、U字管部11aの端部
からガス冷媒が、穴27から液冷媒が吸い込まれること
により、乾き度が減らされた気液二相冷媒とに分けら
れ、この気液二相冷媒は冷媒配管11を流れ第1の室内
熱交換器3で過冷却がつくまで凝縮され、第1の減圧手
段6で減圧されて液冷媒となる。気液分離器5で分離さ
れた液冷媒は、バイパス用冷媒配管14をへて第3の減
圧手段8で若干減圧された後、第1の室内熱交換器3及
び第1の減圧手段6からの液冷媒と合流する。この合流
した液冷媒は、冷媒配管16をへて第2の減圧手段7に
流入し、ここで低圧まで減圧されて第2の室内熱交換器
4で蒸発された後、ガス冷媒となり冷媒配管18をへて
圧縮機1に戻る。
Next, the flow of the refrigerant according to the second embodiment will be described. The high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 2 through the discharged refrigerant pipe 9, where it exchanges heat with outdoor air to be cooled, condensed to a certain degree of dryness, and is in a gas-liquid two-phase state. And flows into the gas-liquid separator 5 through the refrigerant pipe 10. In the gas-liquid separator 5, the dryness is reduced by the liquid refrigerant and the dryness changing means 25, that is, the gaseous refrigerant is sucked from the end of the U-shaped tube 11 a and the liquid refrigerant is sucked from the hole 27. The gas-liquid two-phase refrigerant flows through the refrigerant pipe 11, is condensed in the first indoor heat exchanger 3 until it is supercooled, and is decompressed by the first decompression means 6. And becomes a liquid refrigerant. The liquid refrigerant separated by the gas-liquid separator 5 is slightly depressurized by the third decompression means 8 via the bypass refrigerant pipe 14 and then transmitted from the first indoor heat exchanger 3 and the first decompression means 6. With the liquid refrigerant. The merged liquid refrigerant flows through the refrigerant pipe 16 into the second decompression means 7, where it is decompressed to a low pressure and evaporated in the second indoor heat exchanger 4, and then becomes a gas refrigerant and becomes a refrigerant pipe 18 To return to the compressor 1.

【0028】次に図8によって乾き度変更手段25によ
る第1の室内熱交換器3の凝縮能力増加作用について説
明する。図8において、Aは気液分離器5に流入する冷
媒の組成、Bは気液分離器5内の液冷媒の組成、Cはガ
ス冷媒の組成、Dは乾き度変更手段25により気液分離
器5内の液冷媒とガス冷媒を適当な比率で混ぜ合せた時
の気液混合冷媒の組成をそれぞれ示している。
Next, the effect of increasing the condensing capacity of the first indoor heat exchanger 3 by the dryness changing means 25 will be described with reference to FIG. 8, A is the composition of the refrigerant flowing into the gas-liquid separator 5, B is the composition of the liquid refrigerant in the gas-liquid separator 5, C is the composition of the gas refrigerant, and D is the gas-liquid separation by the dryness changing means 25. The composition of the gas-liquid mixed refrigerant when the liquid refrigerant and the gas refrigerant in the vessel 5 are mixed at an appropriate ratio is shown.

【0029】ここで、第1の室内熱交換器3にガス冷媒
を流したときと、気液混合の冷媒を流したときを比較す
る。第1の室内熱交換器3にガス冷媒のみを流した場合
には、凝縮器出口の飽和液温度はTcoで平均の凝縮温度
はTcとなる。一方、第1の室内熱交換器3に気液二相
冷媒を流した場合には、凝縮器出口の飽和液温度はTdo
で平均の凝縮温度はTdとなる。Tco<TdoなのでTc<
Tdとなる。従って、第1の室内熱交換器3での凝縮温
度は、これに気液二相冷媒を供給した方がガス冷媒のみ
を供給した場合よりも高くなり、第1の室内熱交換器3
における熱交換媒体との温度差が大きくなり熱交換能力
が大きくなる。
Here, a comparison is made between when the gas refrigerant flows through the first indoor heat exchanger 3 and when the gas-liquid mixed refrigerant flows. When only the gas refrigerant flows through the first indoor heat exchanger 3, the saturated liquid temperature at the condenser outlet is Tco and the average condensing temperature is Tc. On the other hand, when the gas-liquid two-phase refrigerant flows through the first indoor heat exchanger 3, the saturated liquid temperature at the condenser outlet becomes Tdo
The average condensation temperature becomes Td. Tco <Tdo, so Tc <
Td. Therefore, the condensing temperature in the first indoor heat exchanger 3 is higher when the gas-liquid two-phase refrigerant is supplied thereto than when only the gas refrigerant is supplied, and the first indoor heat exchanger 3
, The temperature difference from the heat exchange medium is increased, and the heat exchange capacity is increased.

【0030】図9は乾き度変更手段25の他の例を示す
部分側断面図で、この例では冷媒配管11は、その端部
が気液分離器5内の上部に位置して、それの下部から取
り出され、かつ気液分離器5内の下部において穴27が
設けられている。このように構成しても、図7に示す乾
き度変更手段25と同等の作用効果を有するものであ
る。
FIG. 9 is a partial side sectional view showing another example of the dryness changing means 25. In this example, the refrigerant pipe 11 has an end located at an upper part in the gas-liquid separator 5, and A hole 27 is provided in the lower part of the gas-liquid separator 5 which is taken out from the lower part. Even with such a configuration, the same operation and effect as those of the dryness changing unit 25 shown in FIG. 7 are obtained.

【0031】実施の形態3.図10はこの発明の実施の
形態3における冷房主体の冷暖同時運転時の冷媒回路を
示す概略構成図で、図において、1は圧縮機、2は凝縮
器として動作する室外熱交換器、3は凝縮器として動作
する第1の室内熱交換器、4は蒸発器として動作する第
2の室内熱交換器、5は気液分離器、6は第1の減圧手
段、7は第2の減圧手段、8は第3の減圧手段、9〜1
8は冷媒配管で、以上は図1に示す実施の形態1の多室
式空気調和機と同様のものである。29は、気液分離器
5と第1の室内側熱交換器3を接続するガス冷媒配管1
1の途中に設けられ、ガス冷媒配管11中のガス冷媒に
液冷媒を混合する気液混合部、30は気液混合部29に
液冷媒配管14からの液冷媒を吸上げる気液混合管で、
気液混合部29と気液混合管30とで乾き度変更手段を
構成している。また、この冷媒回路中の冷媒として非共
沸混合冷媒が使用されている。
Embodiment 3 FIG. 10 is a schematic configuration diagram showing a refrigerant circuit at the time of simultaneous cooling / heating operation mainly for cooling according to Embodiment 3 of the present invention. In the figure, 1 is a compressor, 2 is an outdoor heat exchanger that operates as a condenser, A first indoor heat exchanger that operates as a condenser, 4 is a second indoor heat exchanger that operates as an evaporator, 5 is a gas-liquid separator, 6 is first decompression means, and 7 is second decompression means. , 8 are third decompression means, 9 to 1
Reference numeral 8 denotes a refrigerant pipe, which is the same as the multi-room air conditioner according to the first embodiment shown in FIG. 29 is a gas refrigerant pipe 1 connecting the gas-liquid separator 5 and the first indoor heat exchanger 3.
A gas-liquid mixing section provided in the middle of 1 and mixing the liquid refrigerant with the gas refrigerant in the gas refrigerant pipe 11 is a gas-liquid mixing pipe that sucks the liquid refrigerant from the liquid refrigerant pipe 14 into the gas-liquid mixing section 29. ,
The gas-liquid mixing section 29 and the gas-liquid mixing pipe 30 constitute a dryness changing unit. A non-azeotropic refrigerant mixture is used as the refrigerant in the refrigerant circuit.

【0032】図11は気液混合部29の内部構成を示す
部分側断面図で、11bは入口配管、11cはノズル
部、11dは細管部、11eは混合部、11fはディフ
ューザ部、11gは出口配管である。図12は気液混合
部29内の冷媒の組成変化を示す相平衡図、図13は第
1の室内熱交換器3入口冷媒の乾き度と冷凍サイクルの
効率との関係を示す図である。
FIG. 11 is a partial sectional side view showing the internal structure of the gas-liquid mixing section 29, wherein 11b is an inlet pipe, 11c is a nozzle section, 11d is a thin tube section, 11e is a mixing section, 11f is a diffuser section, and 11g is an outlet. Piping. FIG. 12 is a phase equilibrium diagram showing a change in the composition of the refrigerant in the gas-liquid mixing section 29, and FIG. 13 is a diagram showing the relationship between the dryness of the refrigerant at the inlet of the first indoor heat exchanger 3 and the efficiency of the refrigeration cycle.

【0033】次にこの実施の形態3の冷媒の流れについ
て説明する。圧縮機1を吐出した高温高圧の冷媒は吐出
冷媒配管9をへて室外熱交換器2に流入し、ここで室外
空気と熱交換して冷やされ、ある乾き度まで凝縮され気
液二相状態となり、冷媒配管10をへて気液分離器5に
流入する。気液分離器5において冷媒は液冷媒とガス冷
媒とに分けられ、このガス冷媒はガス冷媒配管11から
気液混合部29に流入し、液冷媒配管14から気液混合
管30をへて吸い上げられた液冷媒と混合され、ある乾
き度を持った気液二相冷媒とされて第1の室内熱交換器
3に流入し、ここで過冷却がつくまで凝縮され、第1の
減圧手段6で減圧されて液冷媒となる。気液分離器5で
分離された液冷媒は、バイパス用冷媒配管14をへて第
3の減圧手段8で若干減圧された後、第1の室内熱交換
器3及び第1の減圧手段6からの液冷媒と合流する。こ
の合流した液冷媒は、冷媒配管16をへて第2の減圧手
段7に流入し、ここで低圧まで減圧されて第2の室内熱
交換器4で蒸発された後、ガス冷媒となり冷媒配管18
をへて圧縮機1に戻る。
Next, the flow of the refrigerant according to the third embodiment will be described. The high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 2 through the discharged refrigerant pipe 9, where it exchanges heat with outdoor air to be cooled, condensed to a certain degree of dryness, and is in a gas-liquid two-phase state. And flows into the gas-liquid separator 5 through the refrigerant pipe 10. In the gas-liquid separator 5, the refrigerant is divided into a liquid refrigerant and a gas refrigerant, and this gas refrigerant flows into the gas-liquid mixing section 29 from the gas refrigerant pipe 11, and is sucked up from the liquid refrigerant pipe 14 through the gas-liquid mixing pipe 30. The liquid refrigerant is mixed with the liquid refrigerant, and is converted into a gas-liquid two-phase refrigerant having a certain degree of dryness, flows into the first indoor heat exchanger 3, where it is condensed until it is supercooled, and the first pressure reducing means 6 The pressure is reduced to a liquid refrigerant. The liquid refrigerant separated by the gas-liquid separator 5 is slightly depressurized by the third decompression means 8 via the bypass refrigerant pipe 14 and then transmitted from the first indoor heat exchanger 3 and the first decompression means 6. With the liquid refrigerant. The merged liquid refrigerant flows through the refrigerant pipe 16 into the second decompression means 7, where it is decompressed to a low pressure and evaporated in the second indoor heat exchanger 4, and then becomes a gas refrigerant and becomes a refrigerant pipe 18
To return to the compressor 1.

【0034】次に気液混合部29の動作を図11、図1
2及び図13によって説明する。気液分離器5から高圧
ガス冷媒配管11へのガス冷媒は入口配管11bから気
液混合部29に流入し、ノズル部11cで細管部11d
まで絞られて加速して混合部11eに噴出してこのノズ
ル出口の静圧を低下させる。静圧の低下とともに、液冷
媒が液冷媒配管14から気液混合管30をへて吸い上げ
られ、混合部11eにおいて気液冷媒が同速度になるま
で加速された後、ディフューザ部11fで減速され静圧
が復帰し、適度の乾き度の気液二相冷媒とされて出口配
管11gに流出する。
Next, the operation of the gas-liquid mixing section 29 will be described with reference to FIGS.
2 and FIG. The gas refrigerant from the gas-liquid separator 5 to the high-pressure gas refrigerant pipe 11 flows into the gas-liquid mixing section 29 from the inlet pipe 11b, and the narrow pipe section 11d flows through the nozzle section 11c.
The nozzle is accelerated and jetted to the mixing section 11e to reduce the static pressure at the nozzle outlet. With a decrease in the static pressure, the liquid refrigerant is sucked up from the liquid refrigerant pipe 14 through the gas-liquid mixing pipe 30, and the gas-liquid refrigerant is accelerated to the same speed in the mixing unit 11e, and then decelerated by the diffuser unit 11f and decelerated. The pressure is restored, and the refrigerant is converted into a gas-liquid two-phase refrigerant having an appropriate degree of dryness and flows out to the outlet pipe 11g.

【0035】ここで、ノズル部11c先端の細管部11
d出口の静圧Psoはベルヌーイの定理から次式(1)で
示すことができる。 Pso=Psi−1/2・(ρii2−ρoo2) (1) ここで、Psiは気液混合部29入口の静圧、ρiは気液
混合部29入口の密度、ρoは細管部11d出口の密
度、uiは気液混合部29入口の速度、uoは細管部11
d出口の速度である。また、ノズル11cの設計は次式
(2)が成り立つようになされる。 Pso≦PL+ρLgZL−ΔP (2) ここで、gは重力加速度、ZLは気液混合管30の入口
から気液混合部29までの鉛直方向距離、PLは気液混
合管30の入口での冷媒の静圧、ΔPは、液冷媒が気液
混合管30を流れ混合部11eに流入するまでの摩擦抵
抗と、混合部11eに流入した液冷媒がノズル部11c
から流出する気体の速度まで加速するときの加速損失を
含む圧力の損失であり、混合部の形状によって変化す
る。
Here, the thin tube portion 11 at the tip of the nozzle portion 11c
The static pressure P so at the outlet d can be expressed by the following equation (1) from Bernoulli's theorem. P so = P si −1 / 2 · (ρ i u i2 −ρ o u o2 ) (1) where P si is the static pressure at the inlet of the gas-liquid mixing section 29 and ρ i is the inlet pressure at the inlet of the gas-liquid mixing section 29. Density, ρ o is the density at the outlet of the thin tube portion 11d, u i is the velocity at the inlet of the gas-liquid mixing unit 29, and u o is the thin tube portion 11d.
d is the speed at the exit. The nozzle 11c is designed so that the following equation (2) is satisfied. P so ≦ P L + ρ L gZ L −ΔP (2) where g is the gravitational acceleration, Z L is the vertical distance from the inlet of the gas-liquid mixing pipe 30 to the gas-liquid mixing section 29, and P L is the gas-liquid mixing. The static pressure and ΔP of the refrigerant at the inlet of the pipe 30 are the frictional resistance until the liquid refrigerant flows through the gas-liquid mixing pipe 30 and flows into the mixing section 11e, and the liquid refrigerant flowing into the mixing section 11e is the nozzle section 11c.
Pressure loss including acceleration loss when accelerating to the speed of gas flowing out of the chamber, and varies depending on the shape of the mixing section.

【0036】上式(1)から明らかなように、気液混合
部29の液冷媒流量はノズル部11cの先端部のガス冷
媒速度に応じて変化し、そのガス冷媒速度が大きいとき
には、その部分での静圧の低下が大きく、液冷媒の流入
量も多くなる。この結果、冷媒配管11を流れる冷媒流
量に関係なく、冷媒の気液混合割合(乾き度)τrを図
12に示すようにほぼ一定にすることができる。ここ
で、冷媒配管11を流れるガス冷媒の速度は、暖房を行
う第1の室内熱交換器3の負荷および容量に応じて変化
する。さらに、液冷媒の流入量を多くすると気液混合部
29出口の冷媒の乾き度は小さくなり、第1の室内熱交
換器3の冷媒の流量は大きくなるので、冷媒配管11お
よび第1の室内熱交換器3での圧力損失が増大し凝縮温
度が低下することから暖房の室内機の能力は低下する。
このため、図13に示すように、第1の室内熱交換器3
入口での冷媒の乾き度には、冷凍サイクルの効率を最大
とする最適値が存在する。従って、第1の室内熱交換器
3へ供給される冷媒の乾き度をこの最適値に調整するこ
とによって、これの負荷または容量に関係なく、広い範
囲で冷凍サイクルの効率を向上させることができる。
As is clear from the above equation (1), the flow rate of the liquid refrigerant in the gas-liquid mixing section 29 changes in accordance with the gas refrigerant velocity at the tip of the nozzle 11c. And the inflow of the liquid refrigerant increases. As a result, regardless of the flow rate of the refrigerant flowing through the refrigerant pipe 11, the gas-liquid mixing ratio (dryness) τ r of the refrigerant can be made substantially constant as shown in FIG. Here, the speed of the gas refrigerant flowing through the refrigerant pipe 11 changes according to the load and capacity of the first indoor heat exchanger 3 that performs heating. Furthermore, when the inflow of the liquid refrigerant is increased, the dryness of the refrigerant at the outlet of the gas-liquid mixing unit 29 is reduced, and the flow rate of the refrigerant in the first indoor heat exchanger 3 is increased. Since the pressure loss in the heat exchanger 3 increases and the condensing temperature decreases, the performance of the indoor unit for heating decreases.
Therefore, as shown in FIG. 13, the first indoor heat exchanger 3
There is an optimum value for the dryness of the refrigerant at the inlet, which maximizes the efficiency of the refrigeration cycle. Therefore, by adjusting the dryness of the refrigerant supplied to the first indoor heat exchanger 3 to this optimum value, it is possible to improve the efficiency of the refrigeration cycle in a wide range regardless of the load or capacity thereof. .

【0037】実施の形態4.図14はこの発明の実施の
形態4における多室式空気調和機の冷媒回路図、図15
は冷房を主体とした冷暖同時運転(以下冷主運転とい
う)時の冷媒の流れを示す冷媒回路図、図16は暖房を
主体とした冷暖同時運転(以下暖主運転という)時の冷
媒の流れを示す冷媒回路図、図17は室内機で冷房のみ
を行う運転(以下全冷房運転という)時の冷媒の流れを
示す冷媒回路図、図18は室内機で暖房のみを行う運転
(以下全暖房運転という)時の冷媒の流れを示す冷媒回
路図である。
Embodiment 4 FIG. FIG. 14 is a refrigerant circuit diagram of a multi-room air conditioner according to Embodiment 4 of the present invention.
FIG. 16 is a refrigerant circuit diagram showing a refrigerant flow during simultaneous cooling / heating operation mainly for cooling (hereinafter referred to as cooling main operation), and FIG. 16 is a refrigerant flow during simultaneous cooling / heating operation mainly for heating (hereinafter referred to as heating main operation). FIG. 17 is a refrigerant circuit diagram showing the flow of refrigerant during an operation of performing only cooling in an indoor unit (hereinafter referred to as cooling only operation), and FIG. 18 is an operation of performing only heating in an indoor unit (hereinafter referred to as heating only). FIG. 4 is a refrigerant circuit diagram illustrating a flow of a refrigerant during operation).

【0038】図において、1は容量可変式圧縮機、2は
室外熱交換器、5は気液分離器、11a、11b、11
cは高圧ガス冷媒配管、29a、29b、29cは気液
混合部、30は気液混合管、31は室外機、32は分流
コントローラ、33a、33b、33cは室内機、34
はアキュムレータ、35は四方弁、36a、36b、3
6c、36dは逆止弁、37、38は室外機31と分流
コントローラ32とを接続する低圧、高圧冷媒配管、3
9は高圧ガス冷媒配管、40は高圧液冷媒配管、41は
中圧冷媒配管、42は第2の流量制御手段、43は非共
沸混合冷媒を使用する場合で冷主運転時のみ開かれる開
閉弁、44a、44b、44cは第1の切換え開閉弁、
45a、45b、45cは第2の切換え開閉弁、46は
第3の流量制御手段、47は低圧冷媒配管、48a、4
8b、48cは室内熱交換器、49a、49b、49c
は第1の流量制御手段、50a、50b、50cは各室
内機33a、33b、33cと分流コントローラ32と
を接続するガス冷媒配管、51a、51b、51cは各
室内機33a、33b、33cと分流コントローラ32
とを接続する中圧冷媒配管である。
In the figure, 1 is a variable displacement compressor, 2 is an outdoor heat exchanger, 5 is a gas-liquid separator, 11a, 11b, 11
c is a high-pressure gas refrigerant pipe, 29a, 29b, 29c is a gas-liquid mixing section, 30 is a gas-liquid mixing pipe, 31 is an outdoor unit, 32 is a branch controller, 33a, 33b, 33c is an indoor unit, 34
Is an accumulator, 35 is a four-way valve, 36a, 36b, 3
6c and 36d are check valves, and 37 and 38 are low-pressure and high-pressure refrigerant pipes connecting the outdoor unit 31 and the branch controller 32.
9 is a high-pressure gas refrigerant pipe, 40 is a high-pressure liquid refrigerant pipe, 41 is a medium-pressure refrigerant pipe, 42 is a second flow rate control means, 43 is a non-azeotropic refrigerant mixture, and is opened and closed only during the cold main operation. Valves, 44a, 44b, 44c are first switching on-off valves,
45a, 45b, 45c are second switching valves, 46 is third flow control means, 47 is a low-pressure refrigerant pipe, 48a,
8b, 48c are indoor heat exchangers, 49a, 49b, 49c
Is a first flow control means, 50a, 50b, and 50c are gas refrigerant pipes connecting the indoor units 33a, 33b, and 33c to the flow dividing controller 32, and 51a, 51b, and 51c are divided into the indoor units 33a, 33b, and 33c. Controller 32
And a medium-pressure refrigerant pipe that connects

【0039】次に、図15によりこの実施の形態4にお
ける冷主運転時の冷媒の流れについて説明する。いま、
室内機33aが暖房運転、室内機33b、33cが冷房
運転されるものとし、開閉弁43が開、第1の切換え開
閉弁44aが閉、44b、44cが開、第2の切換え開
閉弁45aが開、45b、45cが閉とされ、そして第
3の流量制御手段46が閉とされる。
Next, the flow of the refrigerant during the cooling main operation in the fourth embodiment will be described with reference to FIG. Now
The indoor unit 33a performs the heating operation, the indoor units 33b and 33c perform the cooling operation, the on-off valve 43 is opened, the first switching on-off valve 44a is closed, the 44b and 44c are open, and the second switching on-off valve 45a is Open, 45b, 45c are closed, and the third flow control means 46 is closed.

【0040】それで、室外機31の圧縮機1を吐出した
高温高圧のガス冷媒は四方弁35をへて室外熱交換器2
に流入し、ここで室外空気と熱交換して冷やされ、ある
乾き度まで凝縮され気液二相状態となり、逆止弁36
b、高圧冷媒配管38をへて分流コントローラ32内の
気液分離器5に流入する。ここで冷媒は液冷媒とガス冷
媒とに分けられ、このガス冷媒は高圧ガス冷媒配管39
から冷媒配管11aに流れ、気液混合部29aで高圧液
冷媒配管40から開閉弁43、気液混合管30をへて吸
い上げられた液冷媒と混合され、ある乾き度を持った気
液二相冷媒とされて第2の切換え開閉弁45a、ガス冷
媒配管50aをへて室内機33aの室内熱交換器48a
に流入し、ここで室内空気と熱交換されて暖房が行なわ
れて凝縮され、第1の流量制御手段49aで減圧されて
液冷媒となり、中圧冷媒配管51aをへて分流コントロ
ーラ32に流入する。
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 of the outdoor unit 31 passes through the four-way valve 35 and passes through the outdoor heat exchanger 2.
, Where it is cooled by exchanging heat with the outdoor air, condensed to a certain degree of dryness, and becomes a gas-liquid two-phase state.
b, flows into the gas-liquid separator 5 in the branch controller 32 through the high-pressure refrigerant pipe 38. Here, the refrigerant is divided into a liquid refrigerant and a gas refrigerant, and this gas refrigerant is a high-pressure gas refrigerant pipe 39.
From the high-pressure liquid refrigerant pipe 40 to the on-off valve 43 and the liquid refrigerant sucked up through the gas-liquid mixing pipe 30 in the gas-liquid mixing section 29a. The refrigerant is turned into a refrigerant, passes through the second switching valve 45a and the gas refrigerant pipe 50a, and passes through the indoor heat exchanger 48a of the indoor unit 33a.
, Where heat is exchanged with room air to be heated and condensed, reduced in pressure by the first flow control means 49a to become a liquid refrigerant, and flows into the diversion controller 32 through the medium-pressure refrigerant pipe 51a. .

【0041】分流コントローラ32において、気液分離
器5で分離された液冷媒は、高圧液冷媒配管40をへて
第2の流量制御手段42で若干減圧された後、中圧冷媒
配管41で室内機33aから中圧冷媒配管51aをへて
流入した液冷媒と合流して、中圧冷媒配管51b、51
cをへて室内機33b、33cの第1の流量制御手段4
9b、49cに流入し、ここで低圧まで減圧され室内熱
交換器48b、48cで室内空気と熱交換されて冷房が
行なわれて蒸発され、ガス冷媒となりガス冷媒配管50
b、50c、分流コントローラ32の第1の切換え開閉
弁44b、44c、低圧冷媒配管37、室外機31の逆
止弁36a、四方弁35、アキュムレータ34をへて圧
縮機1に戻る。
In the branching controller 32, the liquid refrigerant separated by the gas-liquid separator 5 is slightly depressurized by the second flow rate control means 42 through the high-pressure liquid refrigerant pipe 40, and then the indoor refrigerant is supplied by the medium-pressure refrigerant pipe 41. Liquid refrigerant flowing from the compressor 33a through the medium-pressure refrigerant pipe 51a into the medium-pressure refrigerant pipes 51b, 51b.
c, the first flow control means 4 of the indoor units 33b and 33c.
9b, 49c, where it is decompressed to a low pressure and exchanged with indoor air in the indoor heat exchangers 48b, 48c to be cooled and evaporated to become a gas refrigerant and to become a gas refrigerant pipe 50
b, 50c, the first switching on / off valves 44b, 44c of the diversion controller 32, the low-pressure refrigerant pipe 37, the check valve 36a of the outdoor unit 31, the four-way valve 35, and the accumulator 34, and return to the compressor 1.

【0042】次に、図16により暖主運転時の冷媒の流
れについて説明する。いま、室内機33a、33bが暖
房運転、室内機33cが冷房運転されるものとし、開閉
弁43が閉、第1の切換え開閉弁44a、44bが閉、
44cが開、第2の切換え開閉弁45a、45bが開、
45cが閉とされ、そして第2の流量制御手段42が
閉、第3の流量制御手段46が開とされる。
Next, the flow of the refrigerant during the warm-up main operation will be described with reference to FIG. Now, it is assumed that the indoor units 33a and 33b perform the heating operation and the indoor unit 33c performs the cooling operation, the on-off valve 43 is closed, the first switching on-off valves 44a and 44b are closed,
44c is opened, the second switching valves 45a and 45b are opened,
45c is closed, the second flow control means 42 is closed, and the third flow control means 46 is opened.

【0043】それで、室外機31の圧縮機1を吐出した
高温高圧のガス冷媒は四方弁35をへて逆止弁36d、
高圧冷媒配管38をへて分流コントローラ32内の気液
分離器5に流入する。気液分離器5からのガス冷媒は高
圧ガス冷媒配管39から冷媒配管11a、11bに流
れ、気液混合部29a、29bでは開閉弁43が閉のた
め液冷媒と混合されることなく、第2の切換え開閉弁4
5a、45b、ガス冷媒配管50a、50bをへて室内
機33a、33bの室内熱交換器48a、48bに流入
し、ここで室内空気と熱交換されて暖房が行なわれて凝
縮され、第1の流量制御手段49a、49bで減圧され
て液冷媒となり、中圧冷媒配管51a、51bをへて分
流コントローラ32に流入する。
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 of the outdoor unit 31 passes through the four-way valve 35 to the check valve 36d.
The high-pressure refrigerant pipe 38 flows into the gas-liquid separator 5 in the diversion controller 32. The gas refrigerant from the gas-liquid separator 5 flows from the high-pressure gas refrigerant pipe 39 to the refrigerant pipes 11a and 11b, and is not mixed with the liquid refrigerant because the on-off valve 43 is closed in the gas-liquid mixing sections 29a and 29b. Switching valve 4
5a, 45b and gas refrigerant pipes 50a, 50b, flow into the indoor heat exchangers 48a, 48b of the indoor units 33a, 33b, where they are exchanged with indoor air for heating and condensed, and The pressure is reduced by the flow control means 49a, 49b to become a liquid refrigerant, and flows into the branch controller 32 through the medium-pressure refrigerant pipes 51a, 51b.

【0044】分流コントローラ32において、室内機3
3a、33bから中圧冷媒配管51a、51bをへて流
入した液冷媒は中圧冷媒配管41で合流し、その一部は
中圧冷媒配管51cをへて室内機33cの第1の流量制
御手段49cに流入し、ここで低圧まで減圧され室内熱
交換器48cで室内空気と熱交換されて冷房が行なわれ
蒸発される。中圧冷媒配管41の残りの液冷媒は、第3
の流量制御手段46で減圧され気液二相冷媒となり低圧
冷媒配管47に流入し、室内熱交換器48cで蒸発しガ
ス冷媒配管50c、第1の切換え開閉弁44cをへたガ
ス冷媒と合流して低圧冷媒配管37、室外機31の逆止
弁36cをへて室外熱交換器2に流入し、ここで室外空
気と熱交換して蒸発しガス冷媒となり、四方弁35、ア
キュムレータ34をへて圧縮機1に戻る。
In the branch controller 32, the indoor unit 3
The liquid refrigerant that has flowed through the medium-pressure refrigerant pipes 51a and 51b from the 3a and 33b merges in the medium-pressure refrigerant pipe 41, and a part of the liquid refrigerant flows through the medium-pressure refrigerant pipe 51c and the first flow control means of the indoor unit 33c. 49c, where the pressure is reduced to a low pressure, and the indoor heat exchanger 48c exchanges heat with indoor air to cool and evaporate. The remaining liquid refrigerant in the medium pressure refrigerant pipe 41 is the third liquid refrigerant.
The refrigerant is reduced in pressure by the flow control means 46, becomes a gas-liquid two-phase refrigerant, flows into the low-pressure refrigerant pipe 47, evaporates in the indoor heat exchanger 48c, and merges with the gas refrigerant flowing through the gas refrigerant pipe 50c and the first switching valve 44c. And flows into the outdoor heat exchanger 2 through the low-pressure refrigerant pipe 37 and the check valve 36c of the outdoor unit 31, where it exchanges heat with outdoor air and evaporates to become a gaseous refrigerant, and passes through the four-way valve 35 and the accumulator 34. Return to the compressor 1.

【0045】次に、図17により、全室内機33a、3
3b、33cが冷房運転される全冷房運転時の冷媒の流
れについて説明する。この時、開閉弁43が閉、全第1
の切換え開閉弁44a、44b、44cが開、全第2の
切換え開閉弁45a、45b、45cが閉とされ、そし
て第3の流量制御手段46が閉とされる。
Next, referring to FIG. 17, all the indoor units 33a, 3
The flow of the refrigerant at the time of the cooling only operation in which the cooling operation of the cooling units 3b and 33c is performed will be described. At this time, the on-off valve 43 is closed,
The switching valves 44a, 44b, 44c are opened, all the second switching valves 45a, 45b, 45c are closed, and the third flow control means 46 is closed.

【0046】それで、室外機31の圧縮機1を吐出した
高温高圧のガス冷媒は四方弁35をへて室外熱交換器2
に流入し、ここで室外空気と熱交換して冷やされ凝縮さ
れ液冷媒となり、逆止弁36b、高圧冷媒配管38をへ
て分流コントローラ32内の気液分離器5に流入する。
気液分離器5からの液冷媒は、高圧液冷媒配管40をへ
て第2の流量制御手段42で若干減圧された後、中圧冷
媒配管41、中圧冷媒配管51a、51b、51cをへ
て室内機33a、33b、33cの第1の流量制御手段
49a、49b、49cに流入し、ここで低圧まで減圧
され室内熱交換器48a、48b、48cで室内空気と
熱交換され冷房が行なわれて蒸発されガス冷媒となり、
ガス冷媒配管50a、50b、50c、分流コントロー
ラ32の第1の切換え開閉弁44a、44b、44c、
低圧冷媒配管37、室外機31の逆止弁36a、四方弁
35、アキュムレータ34をへて圧縮機1に戻る。
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 of the outdoor unit 31 passes through the four-way valve 35 and passes through the outdoor heat exchanger 2.
, Where it is cooled and condensed into liquid refrigerant by heat exchange with outdoor air, and flows into the gas-liquid separator 5 in the flow dividing controller 32 through the check valve 36 b and the high-pressure refrigerant pipe 38.
The liquid refrigerant from the gas-liquid separator 5 is slightly depressurized by the second flow control means 42 through the high-pressure liquid refrigerant pipe 40, and then flows through the medium-pressure refrigerant pipe 41 and the medium-pressure refrigerant pipes 51a, 51b, 51c. Then, the air flows into the first flow control means 49a, 49b, 49c of the indoor units 33a, 33b, 33c, where the pressure is reduced to a low pressure, and the indoor heat exchangers 48a, 48b, 48c exchange heat with indoor air to perform cooling. And evaporates to become a gas refrigerant,
Gas refrigerant pipes 50a, 50b, 50c, first switching on-off valves 44a, 44b, 44c of the branch controller 32,
The refrigerant returns to the compressor 1 through the low-pressure refrigerant pipe 37, the check valve 36a of the outdoor unit 31, the four-way valve 35, and the accumulator 34.

【0047】次に、図18により、全室内機33a、3
3b、33cが暖房運転される全暖房運転時の冷媒の流
れについて説明する。この時、開閉弁43が閉、全第1
の切換え開閉弁44a、44b、44cが閉、全第2の
切換え開閉弁45a、45b、45cが開とされ、そし
て第2の流量制御手段42が閉とされる。
Next, referring to FIG. 18, all the indoor units 33a, 3
A description will be given of the flow of the refrigerant during the heating only operation in which the heating operation is performed on the heating units 3b and 33c. At this time, the on-off valve 43 is closed,
The switching valves 44a, 44b, 44c are closed, all the second switching valves 45a, 45b, 45c are opened, and the second flow control means 42 is closed.

【0048】それで、室外機31の圧縮機1を吐出した
高温高圧のガス冷媒は四方弁35をへて逆止弁36d、
高圧冷媒配管38をへて分流コントローラ32内の気液
分離器5に流入する。この気液分離器5からのガス冷媒
は高圧ガス冷媒配管39から冷媒配管11a、11b、
11cに流れ、気液混合部29a、29b、29cでは
開閉弁43が閉のため液冷媒と混合されることなく、第
2の切換え開閉弁45a、45b、45cガス冷媒配管
50a、50b、50cをへて室内機33a、33b、
33cの室内熱交換器48a、48b、48cに流入
し、ここで室内空気と熱交換されて暖房が行なわれて凝
縮され、第1の流量制御手段49a、49b、49cで
減圧されて液冷媒となり、中圧冷媒配管51a、51
b、51cをへて分流コントローラ32の中圧冷媒配管
41で合流し、第3の流量制御手段46で減圧され気液
二相冷媒となり低圧冷媒配管47に流入し、低圧冷媒配
管37、室外機31の逆止弁36cをへて室外熱交換器
2に流入し、ここで室外空気と熱交換して蒸発しガス冷
媒となり、四方弁35、アキュムレータ34をへて圧縮
機1に戻る。
Then, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 of the outdoor unit 31 passes through the four-way valve 35 to the check valve 36d,
The high-pressure refrigerant pipe 38 flows into the gas-liquid separator 5 in the diversion controller 32. The gas refrigerant from the gas-liquid separator 5 is supplied from the high-pressure gas refrigerant pipe 39 to the refrigerant pipes 11a, 11b,
11c, the gas-liquid mixing sections 29a, 29b, and 29c close the second switching on-off valves 45a, 45b, and 45c without being mixed with the liquid refrigerant because the on-off valve 43 is closed. To the indoor units 33a, 33b,
33c, flows into the indoor heat exchangers 48a, 48b, 48c, where it is heat-exchanged with room air, heated and condensed, and decompressed by the first flow control means 49a, 49b, 49c to become a liquid refrigerant. , Medium pressure refrigerant pipes 51a, 51
b, 51c, merges in the medium-pressure refrigerant pipe 41 of the branching controller 32, is decompressed by the third flow control means 46, becomes a gas-liquid two-phase refrigerant, flows into the low-pressure refrigerant pipe 47, and flows into the low-pressure refrigerant pipe 37, the outdoor unit. The refrigerant flows into the outdoor heat exchanger 2 via the check valve 36c of 31, and then exchanges heat with the outdoor air to evaporate into a gas refrigerant, and returns to the compressor 1 through the four-way valve 35 and the accumulator 34.

【0049】以上のように従来の多室式空気調和機の冷
媒回路に、気液混合部29a、29b、29c、気液混
合管30、及び開閉弁43を付設し、非共沸混合冷媒を
使用する場合で冷主運転時にのみ開閉弁43を開くこと
により、冷媒に単一冷媒や共沸混合冷媒を使用する場合
でも非共沸混合冷媒を使用する場合でも、ともに冷凍サ
イクルを効率良く運転することができる。
As described above, the gas-liquid mixing sections 29a, 29b, 29c, the gas-liquid mixing pipe 30, and the on-off valve 43 are provided in the refrigerant circuit of the conventional multi-chamber air conditioner, and the non-azeotropic mixed refrigerant is provided. By using the open / close valve 43 only during the cold main operation in use, the refrigeration cycle can be operated efficiently both when using a single refrigerant, an azeotropic mixed refrigerant, and when using a non-azeotropic mixed refrigerant. can do.

【0050】実施の形態5.図19〜図30はこの発明
の実施の形態5における多室式空気調和機を示し、図1
9はそれの冷媒回路図、図20は冷主運転時の冷媒の流
れを示す冷媒回路図、図21は暖主運転時の冷媒の流れ
を示す冷媒回路図、図22は全冷房運転時の冷媒の流れ
を示す冷媒回路図、図23は全暖房運転時の冷媒の流れ
を示す冷媒回路図、図24は制御系を示すブロック線
図、図25は冷媒組成演算のアルゴリズムを示すフロー
チャート、図26は圧縮機及び室外ファンの制御アルゴ
リズムを示すフローチャート、図27は第2の流量制御
手段の制御アルゴリズムを示すフローチャート、図28
は第3の流量制御手段の制御アルゴリズムを示すフロー
チャート、図29はバイパス流量制御手段の制御アルゴ
リズムを示すフローチャート、図30は第1の流量制御
手段の制御アルゴリズムを示すフローチャートである。
Embodiment 5 19 to 30 show a multi-room air conditioner according to Embodiment 5 of the present invention.
9 is a refrigerant circuit diagram thereof, FIG. 20 is a refrigerant circuit diagram showing the flow of the refrigerant in the cold main operation, FIG. 21 is a refrigerant circuit diagram showing the flow of the refrigerant in the warm main operation, and FIG. FIG. 23 is a refrigerant circuit diagram showing a refrigerant flow during a heating only operation, FIG. 24 is a block diagram showing a control system, and FIG. 25 is a flowchart showing an algorithm of refrigerant composition calculation. 26 is a flowchart showing a control algorithm of the compressor and the outdoor fan, FIG. 27 is a flowchart showing a control algorithm of the second flow control means, and FIG.
Is a flowchart showing a control algorithm of the third flow control means, FIG. 29 is a flowchart showing a control algorithm of the bypass flow control means, and FIG. 30 is a flowchart showing a control algorithm of the first flow control means.

【0051】図において、1は容量可変式圧縮機、2は
室外熱交換器、5は気液分離器、11a、11b、11
cは高圧ガス冷媒配管、29a、29b、29cは気液
混合部、30は気液混合管、31は室外機、32は分流
コントローラ、33a、33b、33cは室内機、34
はアキュムレータ、35は四方弁、36a、36b、3
6c、36dは逆止弁、37、38は低圧、高圧冷媒配
管、39は高圧ガス冷媒配管、40は高圧液冷媒配管、
41は中圧冷媒配管、42は第2の流量制御手段、43
は開閉弁、44a、44b、44cは第1の切換え開閉
弁、45a、45b、45cは第2の切換え開閉弁、4
6は第3の流量制御手段、47は低圧冷媒配管、48
a、48b、48cは室内熱交換器、49a、49b、
49cは第1の流量制御手段、50a、50b、50c
は各室内機33a、33b、33cと分流コントローラ
32とを接続するガス冷媒配管、51a、51b、51
cは中圧冷媒配管で、以上は図14に示す実施の形態4
と同様のものである。
In the drawing, 1 is a variable displacement compressor, 2 is an outdoor heat exchanger, 5 is a gas-liquid separator, 11a, 11b, 11
c is a high-pressure gas refrigerant pipe, 29a, 29b, 29c is a gas-liquid mixing section, 30 is a gas-liquid mixing pipe, 31 is an outdoor unit, 32 is a branch controller, 33a, 33b, 33c is an indoor unit, 34
Is an accumulator, 35 is a four-way valve, 36a, 36b, 3
6c and 36d are check valves, 37 and 38 are low-pressure and high-pressure refrigerant pipes, 39 is a high-pressure gas refrigerant pipe, 40 is a high-pressure liquid refrigerant pipe,
41 is a medium pressure refrigerant pipe, 42 is a second flow control means, 43
Is an on-off valve, 44a, 44b and 44c are first switching on-off valves, and 45a, 45b and 45c are second switching on-off valves.
6 is a third flow control means, 47 is a low-pressure refrigerant pipe, 48
a, 48b, 48c are indoor heat exchangers, 49a, 49b,
49c is a first flow control means, 50a, 50b, 50c
Is a gas refrigerant pipe connecting each indoor unit 33a, 33b, 33c and the branch controller 32, 51a, 51b, 51
c is a medium-pressure refrigerant pipe, and the above is the fourth embodiment shown in FIG.
Is similar to

【0052】52は室外熱交換器用の室外ファン、53
は、分流コントローラ32における第2の流量制御手段
42の下流の中圧冷媒配管41、或は上流の高圧液冷媒
配管40から分岐して低圧冷媒配管にいたるバイパス管
路、54はこのバイパス管路53の上流に設けられたバ
イパス流量制御手段、55a、55b、55cは中圧冷
媒配管51a、51b、51cと熱交換する第1の過冷
却熱交換器、56は高圧液冷媒配管40と熱交換する第
2の過冷却熱交換器である。
52 is an outdoor fan for the outdoor heat exchanger, 53
Is a bypass pipe branching from the medium-pressure refrigerant pipe 41 downstream of the second flow rate control means 42 or the upstream high-pressure liquid refrigerant pipe 40 to the low-pressure refrigerant pipe in the branch flow controller 32, and 54 is this bypass pipe. A bypass flow rate control means provided upstream of 53, 55a, 55b, 55c is a first supercooling heat exchanger that exchanges heat with medium pressure refrigerant pipes 51a, 51b, 51c, and 56 is a heat exchange with high pressure liquid refrigerant pipe 40. A second subcooling heat exchanger.

【0053】57はバイパス用流量制御手段54上流の
冷媒温度を検出する第1の温度検出手段、58はバイパ
ス流量制御手段54下流の冷媒温度を検出する第2の温
度検出手段、59はバイパス流量制御手段54下流の冷
媒圧力を検出する第1の圧力検出手段、60は圧縮機1
の吐出圧力を検出する第2の圧力検出手段、61は圧縮
機1の吸入圧力を検出する第3の圧力検出手段、62は
第2の流量制御手段42上流の高圧液冷媒配管40中の
冷媒温度を検出する第3の温度検出手段、63はバイパ
ス管路53の第2の過冷却熱交換器56下流の冷媒温度
を検出する第4の温度検出手段、64はバイパス管路5
3の中圧冷媒配管41からの分岐点の冷媒圧力を検出す
る第4の圧力検出手段、65は気液分離器5の出口であ
る高圧ガス冷媒配管39或は高圧液冷媒配管40の冷媒
圧力を検出する第5の圧力検出手段、66a、66b、
66cは、室内熱交換器48a、48b、48cと第1
の流量制御手段49a、49b、49cとの間の冷媒温
度を検出する第5の温度検出手段、67a、67b、6
7cは、室内熱交換器48a、48b、48cに接続さ
れるガス冷媒配管50a、50b、50cの冷媒温度を
検出する第6の温度検出手段である。
57 is a first temperature detecting means for detecting the temperature of the refrigerant upstream of the bypass flow rate control means 54; 58 is a second temperature detecting means for detecting the temperature of the refrigerant downstream of the bypass flow rate control means 54; The first pressure detecting means for detecting the refrigerant pressure downstream of the control means 54,
Second pressure detecting means for detecting the discharge pressure of the compressor, 61 is third pressure detecting means for detecting the suction pressure of the compressor 1, and 62 is the refrigerant in the high-pressure liquid refrigerant pipe 40 upstream of the second flow control means 42. Third temperature detecting means for detecting the temperature, 63 is fourth temperature detecting means for detecting the refrigerant temperature downstream of the second subcooling heat exchanger 56 in the bypass pipe 53, and 64 is the bypass pipe 5
Third pressure detecting means 65 for detecting the refrigerant pressure at the branch point from the medium-pressure refrigerant pipe 41. Reference numeral 65 denotes the refrigerant pressure of the high-pressure gas refrigerant pipe 39 or the high-pressure liquid refrigerant pipe 40 which is the outlet of the gas-liquid separator 5. Pressure detecting means 66a, 66b for detecting
66c is connected to the indoor heat exchangers 48a, 48b, 48c and the first
Fifth temperature detecting means 67a, 67b, 6 for detecting the refrigerant temperature between the flow rate controlling means 49a, 49b, 49c.
Reference numeral 7c denotes sixth temperature detecting means for detecting the refrigerant temperature of the gas refrigerant pipes 50a, 50b, 50c connected to the indoor heat exchangers 48a, 48b, 48c.

【0054】68は第1の温度検出手段57の検出値T
1、第2の温度検出手段58の検出値T2、及び第1の圧
力検出手段59の検出値P1から冷媒の組成を演算する
冷媒組成演算装置、69は、この冷媒組成演算装置68
の演算結果である冷媒組成値α、第2の圧力検出手段6
0の検出値P2、及び第3の圧力検出手段61の検出値
3に応じて、圧縮機1の運転周波数及び室外ファンの
回転数を制御する圧縮機・室外ファン制御装置である第
1の制御器、70は、冷媒組成演算装置68からの冷媒
組成値α、第2の温度検出手段58の検出値T2、第3
の温度検出手段62の検出値T3、第4の温度検出手段6
3の検出値T4、第4の圧力検出手段64の検出値P4
及び第5の圧力検出手段65の検出値P5を入力し、第
2の流量制御手段42、第3の流量制御手段46、及び
バイパス流量制御手段54の制御信号を出力する第2の
制御器、71a〜71cは、各室内機33a、33b、
33cに設けられ、第2の制御器70で演算された飽和
液温度値TC、第5の温度検出手段66a、66b、6
6cの検出値T5、第6の温度検出手段67a、67
b、67cの検出値T6に応じて第1の流量制御手段4
9a、49b、49cの制御信号を出力する第3の制御
器である。
Reference numeral 68 denotes a detected value T of the first temperature detecting means 57.
1 , a refrigerant composition calculator 69 for calculating the composition of the refrigerant from the detected value T 2 of the second temperature detector 58 and the detected value P 1 of the first pressure detector 59,
Of the refrigerant composition value α, which is the calculation result of
Detection value P 2 0, and according to the detected value P 3 of the third pressure detecting means 61, first a compressor, an outdoor fan control device for controlling the rotational speed of the operating frequency and the outdoor fan of the compressor 1 , The refrigerant composition value α from the refrigerant composition calculation device 68, the detection value T 2 of the second temperature detection means 58, the third
The detected value T 3 of the temperature detecting means 62 , the fourth temperature detecting means 6
Third detection value T 4, the detection value P 4 of the fourth pressure detecting means 64,
And a detection value P5 of the fifth pressure detecting means 65, and a second controller which outputs control signals of the second flow rate controlling means 42, the third flow rate controlling means 46, and the bypass flow rate controlling means 54. , 71a to 71c are the indoor units 33a, 33b,
33c, the saturated liquid temperature value TC calculated by the second controller 70, the fifth temperature detecting means 66a, 66b, 6
Detection value T 5 of 6c, sixth temperature detection means 67a, 67
b, the first flow control means 4 according to the detected value T 6 of 67c.
This is a third controller that outputs control signals 9a, 49b, and 49c.

【0055】次に、図20によりこの実施の形態5にお
ける冷主運転時の冷媒の流れについて説明する。いま、
室内機33aが暖房運転、室内機33b、33cが冷房
運転されるものとし、開閉弁43が開、第1の切換え開
閉弁44aが閉、44b、44cが開、第2の切換え開
閉弁45aが開、45b、45cが閉とされ、そして第
3の流量制御手段46が閉とされる。
Next, the flow of the refrigerant during the cold main operation in the fifth embodiment will be described with reference to FIG. Now
The indoor unit 33a performs the heating operation, the indoor units 33b and 33c perform the cooling operation, the on-off valve 43 is opened, the first switching on-off valve 44a is closed, the 44b and 44c are open, and the second switching on-off valve 45a is Open, 45b, 45c are closed, and the third flow control means 46 is closed.

【0056】それで、室外機31の圧縮機1を吐出した
高温高圧のガス冷媒は四方弁35をへて室外熱交換器2
に流入し、ここで室外空気と熱交換して冷やされ、ある
乾き度まで凝縮され気液二相状態となり、逆止弁36
b、高圧冷媒配管38をへて分流コントローラ32内の
気液分離器5に流入する。ここで冷媒は液冷媒とガス冷
媒とに分けられ、このガス冷媒は高圧ガス冷媒配管39
から冷媒配管11aに流れ、気液混合部29aで高圧液
冷媒配管40から開閉弁43、気液混合管30をへて吸
い上げられた液冷媒と混合され、ある乾き度を持った気
液二相冷媒とされて第2の切換え開閉弁45a、ガス冷
媒配管50aをへて室内機33aの室内熱交換器48a
に流入し、ここで室内空気と熱交換されて暖房が行なわ
れて凝縮され、第1の流量制御手段49aで減圧されて
液冷媒となり、中圧冷媒配管51aをへて分流コントロ
ーラ32に流入する。
Then, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 of the outdoor unit 31 flows through the four-way valve 35 to the outdoor heat exchanger 2.
, Where it is cooled by exchanging heat with the outdoor air, condensed to a certain degree of dryness, and becomes a gas-liquid two-phase state.
b, flows into the gas-liquid separator 5 in the branch controller 32 through the high-pressure refrigerant pipe 38. Here, the refrigerant is divided into a liquid refrigerant and a gas refrigerant, and this gas refrigerant is a high-pressure gas refrigerant pipe 39.
From the high-pressure liquid refrigerant pipe 40 to the on-off valve 43 and the liquid refrigerant sucked up through the gas-liquid mixing pipe 30 in the gas-liquid mixing section 29a. The refrigerant is turned into a refrigerant, passes through the second switching valve 45a and the gas refrigerant pipe 50a, and passes through the indoor heat exchanger 48a of the indoor unit 33a.
, Where heat is exchanged with room air to be heated and condensed, reduced in pressure by the first flow control means 49a to become a liquid refrigerant, and flows into the diversion controller 32 through the medium-pressure refrigerant pipe 51a. .

【0057】分流コントローラ32において、気液分離
器5で分離された液冷媒は、高圧液冷媒配管40をへて
第2の流量制御手段42で若干減圧された後、中圧冷媒
配管41で室内機33aから中圧冷媒配管51aをへて
流入した液冷媒と合流する。また、第2の流量制御手段
42で減圧された液冷媒の一部は、バイパス管路53に
分流し、バイパス流量制御手段54で減圧され、第1の
過冷却熱交換器55a、55b、55cにより中圧冷媒
配管51a、51b、51cを流れる液冷媒を、第2の
過冷却熱交換器56により高圧液冷媒配管40を流れる
液冷媒をそれぞれ過冷却するとともに、自身は蒸発して
低圧冷媒配管37に流入する。
In the branching controller 32, the liquid refrigerant separated by the gas-liquid separator 5 is slightly depressurized by the second flow rate control means 42 through the high-pressure liquid refrigerant pipe 40, and then the indoor refrigerant is changed by the medium-pressure refrigerant pipe 41. Joins with the liquid refrigerant that has flowed from the device 33a through the medium-pressure refrigerant pipe 51a. Further, a part of the liquid refrigerant decompressed by the second flow control means 42 is diverted to the bypass pipe 53, decompressed by the bypass flow control means 54, and is cooled by the first subcooling heat exchangers 55a, 55b, 55c. The liquid refrigerant flowing through the medium-pressure refrigerant pipes 51a, 51b, and 51c is supercooled by the second subcooling heat exchanger 56, and the liquid refrigerant flowing through the high-pressure liquid refrigerant pipe 40 is evaporated and the low-pressure refrigerant pipe itself evaporates. 37.

【0058】第1の過冷却熱交換器55a、55b、5
5c及び第2の過冷却熱交換器56で過冷却された残り
の液冷媒は、中圧冷媒配管51b、51cをへて室内機
33b、33cの第1の流量制御手段49b、49cに
流入し、ここで低圧まで減圧され室内熱交換器48b、
48cで室内空気と熱交換されて冷房が行なわれて蒸発
され、ガス冷媒となりガス冷媒配管50b、50c、分
流コントローラ32の第1の切換え開閉弁44b、44
cをへて、バイパス管路53で蒸発したガス冷媒と合流
して低圧冷媒配管37、室外機31の逆止弁36a、四
方弁35、アキュムレータ34をへて圧縮機1に戻る。
The first subcooling heat exchangers 55a, 55b, 5
The remaining liquid refrigerant supercooled by 5c and the second subcooling heat exchanger 56 flows into the first flow control means 49b, 49c of the indoor units 33b, 33c via the medium-pressure refrigerant pipes 51b, 51c. Here, the pressure is reduced to a low pressure, and the indoor heat exchanger 48b is
At 48c, heat is exchanged with the room air to perform cooling and evaporate to become a gas refrigerant, the gas refrigerant pipes 50b and 50c, and the first switching valves 44b and 44 of the branch controller 32.
Then, the refrigerant flows into the low pressure refrigerant pipe 37, the check valve 36 a of the outdoor unit 31, the four-way valve 35, and the accumulator 34, and returns to the compressor 1.

【0059】以上のようにこの実施の形態では、冷主運
転時に高沸点成分に富む冷媒となる気液分離器5からの
液冷媒が、バイパス管路53に一部分流されるので、高
圧液冷媒配管40及び中圧冷媒配管51a、51b、5
1c内の液冷媒と熱交換することにより熱回収されると
ともに、バイパス管路53に高沸点成分に富む冷媒がバ
イパスされ、冷房される室内機48b、48cを流れる
冷媒の組成は低沸点成分に富む冷媒となり、圧縮機1の
吐出冷媒と同じ組成の冷媒よりは蒸発温度が低下し、冷
房室内機の能力が増加し、冷凍サイクルを効率良く運転
することができる。
As described above, in this embodiment, the liquid refrigerant from the gas-liquid separator 5 which becomes a refrigerant rich in high boiling point components during the cooling main operation is partially flown into the bypass pipe 53, so that the high-pressure liquid refrigerant pipe 40 and medium pressure refrigerant pipes 51a, 51b, 5
Heat is recovered by exchanging heat with the liquid refrigerant in 1c, and the refrigerant rich in the high boiling point component is bypassed in the bypass pipe 53, and the composition of the refrigerant flowing through the indoor units 48b and 48c to be cooled becomes low boiling point component. The refrigerant becomes rich, the evaporation temperature is lower than that of the refrigerant having the same composition as the refrigerant discharged from the compressor 1, the capacity of the cooling indoor unit is increased, and the refrigeration cycle can be operated efficiently.

【0060】次に、図21により暖主運転時の冷媒の流
れについて説明する。いま、室内機33a、33bが暖
房運転、室内機33cが冷房運転されるものとし、開閉
弁43が閉、第1の切換え開閉弁44a、44bが閉、
44cが開、第2の切換え開閉弁45a、45bが開、
45cが閉とされ、そして第2の流量制御手段42が
閉、第3の流量制御手段46が開とされる。
Next, the flow of the refrigerant during the warm-up main operation will be described with reference to FIG. Now, it is assumed that the indoor units 33a and 33b perform the heating operation and the indoor unit 33c performs the cooling operation, the on-off valve 43 is closed, the first switching on-off valves 44a and 44b are closed,
44c is opened, the second switching valves 45a and 45b are opened,
45c is closed, the second flow control means 42 is closed, and the third flow control means 46 is opened.

【0061】それで、室外機31の圧縮機1を吐出した
高温高圧のガス冷媒は四方弁35をへて逆止弁36d、
高圧冷媒配管38をへて分流コントローラ32内の気液
分離器5に流入する。気液分離器5からのガス冷媒は高
圧ガス冷媒配管39から冷媒配管11a、11bに流
れ、気液混合部29a、29bでは開閉弁43が閉のた
め液冷媒と混合されることなく、第2の切換え開閉弁4
5a、45b、ガス冷媒配管50a、50bをへて室内
機33a、33bの室内熱交換器48a、48bに流入
し、ここで室内空気と熱交換されて暖房が行なわれて凝
縮され、第1の流量制御手段49a、49bで減圧され
て液冷媒となり、中圧冷媒配管51a、51bをへて分
流コントローラ32に流入する。
Then, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 of the outdoor unit 31 passes through the four-way valve 35 to the check valve 36d.
The high-pressure refrigerant pipe 38 flows into the gas-liquid separator 5 in the diversion controller 32. The gas refrigerant from the gas-liquid separator 5 flows from the high-pressure gas refrigerant pipe 39 to the refrigerant pipes 11a and 11b, and is not mixed with the liquid refrigerant because the on-off valve 43 is closed in the gas-liquid mixing sections 29a and 29b. Switching valve 4
5a, 45b and gas refrigerant pipes 50a, 50b, flow into the indoor heat exchangers 48a, 48b of the indoor units 33a, 33b, where they are exchanged with indoor air for heating and condensed, and The pressure is reduced by the flow control means 49a, 49b to become a liquid refrigerant, and flows into the branch controller 32 through the medium-pressure refrigerant pipes 51a, 51b.

【0062】分流コントローラ32において、室内機3
3a、33bから中圧冷媒配管51a、51bをへて流
入した液冷媒は中圧冷媒配管41で合流し、その一部は
中圧冷媒配管51cをへて室内機33cの第1の流量制
御手段49cに流入し、ここで低圧まで減圧され室内熱
交換器48cで室内空気と熱交換されて冷房が行なわれ
蒸発される。中圧冷媒配管41の残りの液冷媒は第3の
流量制御手段46に流入するとともに、バイパス管路5
3に分流する。第3の流量制御手段46に流入した冷媒
は減圧され気液二相冷媒となり低圧冷媒配管47に流入
し、バイパス管路53に流入した液冷媒はバイパス流量
制御手段54で減圧され、主として第1の過冷却熱交換
器55a、55b、55cにより中圧冷媒配管51a、
51b、51cを流れる液冷媒と熱交換してこれらの冷
媒を過冷却するとともに、自身は蒸発して低圧冷媒配管
37に流入する。
In the branch controller 32, the indoor unit 3
The liquid refrigerant that has flowed through the medium-pressure refrigerant pipes 51a and 51b from the 3a and 33b merges in the medium-pressure refrigerant pipe 41, and a part of the liquid refrigerant flows through the medium-pressure refrigerant pipe 51c and the first flow control means of the indoor unit 33c. 49c, where the pressure is reduced to a low pressure, and the indoor heat exchanger 48c exchanges heat with indoor air to cool and evaporate. The remaining liquid refrigerant in the medium pressure refrigerant pipe 41 flows into the third flow control means 46 and
Divide into three. The refrigerant flowing into the third flow control means 46 is decompressed and becomes a gas-liquid two-phase refrigerant and flows into the low-pressure refrigerant pipe 47. Of the medium-pressure refrigerant pipe 51a by the supercooling heat exchangers 55a, 55b, 55c of
The refrigerant exchanges heat with the liquid refrigerant flowing through the refrigerants 51b and 51c to supercool these refrigerants.

【0063】室内熱交換器48cで蒸発しガス冷媒配管
50c、第1の切換え開閉弁44cをへたガス冷媒と、
第3の流量制御手段46で減圧された低圧冷媒配管47
からの気液二相冷媒と、バイパス管路53からのガス冷
媒とは合流して低圧冷媒配管37に流入し、室外機31
の逆止弁36cをへて室外熱交換器2に流入し、ここで
室外空気と熱交換して蒸発しガス冷媒となり、四方弁3
5、アキュムレータ34をへて圧縮機1に戻る。
The gas refrigerant evaporated in the indoor heat exchanger 48c and passed through the gas refrigerant pipe 50c and the first switching valve 44c;
Low-pressure refrigerant pipe 47 depressurized by the third flow control means 46
And the gas refrigerant from the bypass pipe 53 merge into the low-pressure refrigerant pipe 37 and flow into the outdoor unit 31.
Flows into the outdoor heat exchanger 2 through the non-return valve 36c, where it exchanges heat with the outdoor air and evaporates to become a gas refrigerant.
5. Return to the compressor 1 via the accumulator 34.

【0064】次に、図22により、全室内機33a、3
3b、33cが冷房運転される全冷房運転時の冷媒の流
れについて説明する。この時、開閉弁43が閉、全第1
の切換え開閉弁44a、44b、44cが開、全第2の
切換え開閉弁45a、45b、45cが閉とされ、そし
て第3の流量制御手段46が閉とされる。
Next, referring to FIG. 22, all the indoor units 33a, 3
The flow of the refrigerant at the time of the cooling only operation in which the cooling operation of the cooling units 3b and 33c is performed will be described. At this time, the on-off valve 43 is closed,
The switching valves 44a, 44b, 44c are opened, all the second switching valves 45a, 45b, 45c are closed, and the third flow control means 46 is closed.

【0065】それで、室外機31の圧縮機1を吐出した
高温高圧のガス冷媒は四方弁35をへて室外熱交換器2
に流入し、ここで室外空気と熱交換して冷やされ凝縮さ
れ液冷媒となり、逆止弁36b、高圧冷媒配管38をへ
て分流コントローラ32内の気液分離器5に流入する。
気液分離器5からの液冷媒は、高圧液冷媒配管40をへ
て第2の流量制御手段42で若干減圧された後、一部は
中圧冷媒配管41からバイパス管路53に分流し、バイ
パス流量制御手段54で減圧され、第1の過冷却熱交換
器55a、55b、55cにより中圧冷媒配管51a、
51b、51cを流れる液冷媒を、第2の過冷却熱交換
器56により高圧液冷媒配管40を流れる液冷媒をそれ
ぞれ過冷却するとともに、自身は蒸発して低圧冷媒配管
37に流入する。
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 of the outdoor unit 31 passes through the four-way valve 35 and passes through the outdoor heat exchanger 2.
, Where it is cooled and condensed into liquid refrigerant by heat exchange with outdoor air, and flows into the gas-liquid separator 5 in the flow dividing controller 32 through the check valve 36 b and the high-pressure refrigerant pipe 38.
The liquid refrigerant from the gas-liquid separator 5 is slightly depressurized by the second flow rate control means 42 through the high-pressure liquid refrigerant pipe 40, and then partially diverted from the medium-pressure refrigerant pipe 41 to the bypass pipe 53, The pressure is reduced by the bypass flow rate control means 54, and the medium-pressure refrigerant pipes 51 a,
The liquid refrigerant flowing through the high-pressure liquid refrigerant pipe 40 is supercooled by the second subcooling heat exchanger 56, and the liquid refrigerant itself evaporates and flows into the low-pressure refrigerant pipe 37.

【0066】中圧冷媒配管41の残りの冷媒は、中圧冷
媒配管51a、51b、51cをへて室内機33a、3
3b、33cの第1の流量制御手段49a、49b、4
9cに流入し、ここで低圧まで減圧され室内熱交換器4
8a、48b、48cで室内空気と熱交換され冷房が行
なわれて蒸発されガス冷媒となり、ガス冷媒配管50
a、50b、50c、分流コントローラ32の第1の切
換え開閉弁44a、44b、44cをへて、バイパス管
路53からのガス冷媒と合流し、低圧冷媒配管37、室
外機31の逆止弁36a、四方弁35、アキュムレータ
34をへて圧縮機1に戻る。
The remaining refrigerant in the medium-pressure refrigerant pipe 41 passes through the medium-pressure refrigerant pipes 51a, 51b, and 51c to the indoor units 33a,
3b, 33c first flow control means 49a, 49b, 4
9c, where the pressure is reduced to a low pressure and the indoor heat exchanger 4
8a, 48b, and 48c, heat exchange with room air is performed, cooling is performed, and the refrigerant is evaporated to a gas refrigerant.
a, 50b, 50c, and the first switching on / off valves 44a, 44b, 44c of the diversion controller 32 to join the gas refrigerant from the bypass line 53, the low-pressure refrigerant pipe 37, and the check valve 36a of the outdoor unit 31. , The four-way valve 35 and the accumulator 34 to return to the compressor 1.

【0067】次に、図23により、全室内機33a、3
3b、33cが暖房運転される全暖房運転時の冷媒の流
れについて説明する。この時、開閉弁43が閉、全第1
の切換え開閉弁44a、44b、44cが閉、全第2の
切換え開閉弁45a、45b、45cが開とされ、そし
て第2の流量制御手段42が閉とされる。
Next, referring to FIG. 23, all the indoor units 33a, 3
A description will be given of the flow of the refrigerant during the heating only operation in which the heating operation is performed on the heating units 3b and 33c. At this time, the on-off valve 43 is closed,
The switching valves 44a, 44b, 44c are closed, all the second switching valves 45a, 45b, 45c are opened, and the second flow control means 42 is closed.

【0068】それで、室外機31の圧縮機1を吐出した
高温高圧のガス冷媒は四方弁35をへて逆止弁36d、
高圧冷媒配管38をへて分流コントローラ32内の気液
分離器5に流入する。この気液分離器5からのガス冷媒
は高圧ガス冷媒配管39から冷媒配管11a、11b、
11cに流れ、気液混合部29a、29b、29cでは
開閉弁43が閉のため液冷媒と混合されることなく、第
2の切換え開閉弁45a、45b、45cガス冷媒配管
50a、50b、50cをへて室内機33a、33b、
33cの室内熱交換器48a、48b、48cに流入
し、ここで室内空気と熱交換されて暖房が行なわれて凝
縮され、第1の流量制御手段49a、49b、49cで
減圧されて液冷媒となり、中圧冷媒配管51a、51
b、51cをへて分流コントローラ32に流入する。
Then, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 of the outdoor unit 31 passes through the four-way valve 35 to the check valve 36d.
The high-pressure refrigerant pipe 38 flows into the gas-liquid separator 5 in the diversion controller 32. The gas refrigerant from the gas-liquid separator 5 is supplied from the high-pressure gas refrigerant pipe 39 to the refrigerant pipes 11a, 11b,
11c, the gas-liquid mixing sections 29a, 29b, and 29c close the second switching on-off valves 45a, 45b, and 45c without being mixed with the liquid refrigerant because the on-off valve 43 is closed. To the indoor units 33a, 33b,
33c, flows into the indoor heat exchangers 48a, 48b, 48c, where it is heat-exchanged with room air, heated and condensed, and decompressed by the first flow control means 49a, 49b, 49c to become a liquid refrigerant. , Medium pressure refrigerant pipes 51a, 51
b and 51c flow into the diversion controller 32.

【0069】分流コントローラ32において、中圧冷媒
配管51a、51b、51cの液冷媒は中圧冷媒配管4
1で合流し、一部はバイパス管路53に分流し、バイパ
ス流量制御手段54で減圧され、第1の過冷却熱交換器
55a、55b、55cにより中圧冷媒配管51a、5
1b、51cを流れる液冷媒を過冷却して蒸発して低圧
冷媒配管37に流入する。中圧冷媒配管41で合流した
残りの液冷媒は第3の流量制御手段46で減圧され気液
二相冷媒となり低圧冷媒配管47から、バイパス管路5
3からのガス冷媒と合流し低圧冷媒配管37に流入し、
室外機31の逆止弁36cをへて室外熱交換器2に流入
し、ここで室外空気と熱交換して蒸発しガス冷媒とな
り、四方弁35、アキュムレータ34をへて圧縮機1に
戻る。
In the branching controller 32, the liquid refrigerant in the medium-pressure refrigerant pipes 51a, 51b, 51c is
1 and a part thereof is diverted to the bypass pipe 53, the pressure is reduced by the bypass flow rate control means 54, and the intermediate-pressure refrigerant pipes 51a, 51b,
The liquid refrigerant flowing through 1b and 51c is supercooled and evaporated, and flows into the low-pressure refrigerant pipe 37. The remaining liquid refrigerant that has joined in the medium-pressure refrigerant pipe 41 is decompressed by the third flow control means 46 and becomes a gas-liquid two-phase refrigerant.
3 and flows into the low-pressure refrigerant pipe 37,
The gas flows into the outdoor heat exchanger 2 through the check valve 36c of the outdoor unit 31, and exchanges heat with the outdoor air to evaporate into a gas refrigerant.

【0070】次に、図24及び図25によって、冷媒組
成演算装置68における冷媒回路を流れる冷媒の組成演
算について説明する。まず、ステップS1にて、第1の
温度検出手段57により検出されたバイパス流量制御手
段54上流の冷媒温度検出値T1、第2の温度検出手段
58及び第1の圧力検出手段59により検出されたバイ
パス流量制御手段54下流の冷媒温度検出値T2及び圧
力検出値P1が検出取込まれ(以下検知されという)、
ステップS2で冷媒の組成値αが仮定され、ステップS
3において仮定冷媒組成値αと第1の冷媒温度検出値T
1から所定の計算式によりバイパス流量制御手段54上
流の液冷媒のエンタルピHLが算出され、ステップS4
で仮定冷媒組成値α、第1の冷媒圧力検出値P1、及び
第2の冷媒温度検出値T2からバイパス流量制御手段5
4下流の二相冷媒のエンタルピHTが算出され、ステッ
プS5でこれら液冷媒エンタルピ算出値HLと二相冷媒
のエンタルピ算出値HTとが比較され、一致しなければ
ステップS2に戻る。これらのステップS2〜S5が仮
定冷媒組成値αを変えながら繰り返され、HLとHTが一
致したら演算は終了し、その時の冷媒組成値αが演算結
果として冷媒組成演算装置68から出力される。
Next, the calculation of the composition of the refrigerant flowing through the refrigerant circuit in the refrigerant composition calculation device 68 will be described with reference to FIGS. 24 and 25. First, in step S1, the refrigerant temperature detection value T 1 upstream of the bypass flow rate control means 54 detected by the first temperature detection means 57 is detected by the second temperature detection means 58 and the first pressure detection means 59. The detected refrigerant temperature value T 2 and the detected pressure value P 1 downstream of the bypass flow rate control means 54 are detected (hereinafter, detected),
In step S2, the composition value α of the refrigerant is assumed, and
3, the assumed refrigerant composition value α and the first refrigerant temperature detection value T
The enthalpy HL of the liquid refrigerant upstream of the bypass flow rate control means 54 is calculated from 1 using a predetermined calculation formula, and step S4
From the refrigerant composition value α, the first refrigerant pressure detection value P 1 , and the second refrigerant temperature detection value T 2.
4 enthalpy H T downstream of the two-phase refrigerant is calculated, and the enthalpy calculated value H T of liquid refrigerant enthalpy calculated value H L and two-phase refrigerant are compared at step S5, if they do not match the flow returns to step S2. These steps S2~S5 are repeated while changing the assumption refrigerant composition value alpha, the calculation Once matches H L and H T ends, the refrigerant composition value alpha at that time is output from the refrigerant composition calculating unit 68 as a result of calculation .

【0071】次に、図24及び図26によって、第1の
制御器69における圧縮機1及び室外ファン52の制御
について説明する。まず、ステップS6にて、冷媒組成
演算装置68の演算結果である冷媒組成値αが検知さ
れ、ステップS7にてこの冷媒組成値αに応じた冷凍サ
イクルにおける高圧圧力目標値Pd *及び低圧圧力目標値
s *が設定される。ステップS8にて第2の圧力検出手
段60により検出された圧縮機1の吐出圧力検出値
2、第3の圧力検出手段61により検出された圧縮機
1の吸入圧力検出値P3が検知され、ステップS9で、
吐出圧力検出値P2と高圧圧力目標値Pd *との差ΔPd
及び吸入圧力検出値P3と低圧圧力目標値Ps *との差Δ
sが演算され、ステップ10でこれら演算値ΔPd、Δ
sに応じて圧縮機1の運転周波数変更幅ΔFcomp及び
室外ファン52の回転数変更幅ΔAKが算出され、ステ
ップS11でこれら算出値に応じて圧縮機1の運転周波
数及び室外ファン52の回転数が変更される。そして、
ステップS12でタイマ(図示されていない)によって
検知される、圧縮機1起動時或は前回変更時からの経過
時間Timeと予め設定された所定時間Time*との比較が
行なわれ、所定時間Time*経過するまではステップS8
〜ステップS12が繰り返され、所定時間Time*経過後
ステップS13でタイマがリセットされてステップS6
に戻る。なお、この実施の形態では圧縮機1の運転周波
数及び室外ファン52の回転数が制御されるが、圧縮機
1や室外熱交換器2の容量を制御するのであれば他の手
段であってもよい。
Next, the control of the compressor 1 and the outdoor fan 52 in the first controller 69 will be described with reference to FIGS. 24 and 26. First, in step S6, the refrigerant composition value α, which is the calculation result of the refrigerant composition calculation device 68, is detected, and in step S7, the high pressure target value P d * and the low pressure pressure in the refrigeration cycle corresponding to the refrigerant composition value α. target value P s * is set. In step S8, the discharge pressure detection value P 2 of the compressor 1 detected by the second pressure detection means 60 and the suction pressure detection value P 3 of the compressor 1 detected by the third pressure detection means 61 are detected. , In step S9,
The difference ΔP d between the discharge pressure detection value P 2 and the high pressure target value P d * ,
And the difference Δ between the suction pressure detection value P 3 and the low pressure target value P s *
P s is calculated, and these calculated values ΔP d , Δ
The operating frequency change width ΔF comp of the compressor 1 and the rotation speed change width ΔAK of the outdoor fan 52 are calculated in accordance with P s, and the operating frequency of the compressor 1 and the rotation of the outdoor fan 52 are calculated in step S11 in accordance with these calculated values. The number changes. And
In step S12, the elapsed time from the start of the compressor 1 or the previous change, Time, detected by a timer (not shown), is compared with a predetermined time Time *, and the predetermined time Time * is detected . Until the time elapses, step S8
Step S12 is repeated, and after elapse of the predetermined time Time * , the timer is reset in Step S13 and Step S6
Return to In this embodiment, the operating frequency of the compressor 1 and the number of revolutions of the outdoor fan 52 are controlled, but other means may be used as long as the capacity of the compressor 1 and the outdoor heat exchanger 2 is controlled. Good.

【0072】次に、図24及び図27によって、第2の
制御器70における第2の流量制御手段42の制御につ
いて説明する。まず、ステップS14にて、この空気調
和機の運転モードが検出され、冷主運転時にはステップ
S15に、全冷房運転時にはステップS16に、全暖房
運転時及び暖主運転時にはステップS17に進む。
Next, the control of the second flow control means 42 in the second controller 70 will be described with reference to FIGS. 24 and 27. First, in step S14, the operation mode of the air conditioner is detected. The process proceeds to step S15 during the cooling main operation, proceeds to step S16 during the cooling only operation, and proceeds to step S17 during the heating only operation and the warm main operation.

【0073】冷主運転時には、ステップS15で冷主運
転と認識されステップS18に進み、冷媒組成演算装置
68の演算結果である冷媒組成値α、第5の圧力検出手
段65により検出された高圧冷媒圧力値P5、及び第3
の温度検出手段62により検出された高圧冷媒温度値T
3が検知され、ステップS19でこれら検知された冷媒
組成値α、高圧冷媒圧力値P5、及び高圧冷媒温度値T3
から冷媒の過冷却度値SCが算出され、ステップS20
でこの過冷却度値SCと予め設定された目標過冷却度値
SC*と比較され、過冷却度値SCが目標過冷却度値S
*を超えていればステップS21へ進み第2の流量制
御手段42の開度が増加され、過冷却度値SCが目標過
冷却度値SC*以下であればステップS22へ進み第2
の流量制御手段42の開度が減少される。ステップS2
3で経過時間Timeと予め設定された所定時間Time*
の比較が行なわれ、所定時間Time*以下であればステッ
プS18に戻り、ステップS18〜ステップS23が繰
り返され、所定時間Time*経過後ステップS24でタイ
マがリセットされてステップS25に進み、運転モード
の変更が確認され、運転モードに変更があればステップ
S14に戻り、変更がなければステップS18に戻る。
In the cold main operation, the operation is recognized as the cold main operation in step S15, and the process proceeds to step S18, in which the refrigerant composition value α calculated by the refrigerant composition calculating device 68 and the high-pressure refrigerant detected by the fifth pressure detecting means 65 are used. Pressure value P 5 and third
High-pressure refrigerant temperature value T detected by the temperature detecting means 62 of FIG.
3 are detected, and the detected refrigerant composition value α, high-pressure refrigerant pressure value P 5 , and high-pressure refrigerant temperature value T 3 are detected in step S19.
The supercooling degree value SC of the refrigerant is calculated from
This subcooling degree value SC is compared with a preset target subcooling degree value SC *, and the subcooling degree value SC is compared with the target subcooling degree value S.
If it exceeds C * , the process proceeds to step S21, and the opening of the second flow rate control means 42 is increased. If the subcooling degree SC is equal to or less than the target supercooling degree SC * , the process proceeds to step S22.
Of the flow rate control means 42 is reduced. Step S2
Comparison of 3 is set in advance and the elapsed time Time in the predetermined time Time * is performed, the process returns to step S18 if the predetermined time Time * less, steps S18~ step S23 is repeated, step after a predetermined time Time * elapsed In S24, the timer is reset and the process proceeds to step S25, where a change in the operation mode is confirmed. If there is a change in the operation mode, the process returns to step S14, and if there is no change, the process returns to step S18.

【0074】全冷房運転時には、ステップS16で全冷
房運転と認識されステップS26に進み、第2の流量制
御手段42の開度が全開とされ、ステップS27で経過
時間Timeと予め設定された所定時間Time*との比較が
行なわれ、所定時間Time*以下であればステップS28
に進み第2の流量制御手段42の開度が全開のまま変更
されずにステップS27に戻り、所定時間Time*経過後
ステップS29でタイマがリセットされてステップS3
0に進み、運転モードの変更が確認され、運転モードに
変更があればステップS14に戻り、変更がなければス
テップS27に戻る。
In the cooling only operation, the cooling operation is recognized in step S16 and the process proceeds to step S26, in which the opening of the second flow control means 42 is fully opened, and in step S27, the elapsed time Time and the predetermined time set in advance are set. Comparison with Time * is performed, and if it is equal to or less than the predetermined time Time * , step S28
Then, the flow returns to step S27 without changing the opening degree of the second flow control means 42 while being fully opened, and after a predetermined time Time * has elapsed, the timer is reset in step S29 and step S3 is performed.
The process proceeds to step S0, where a change in the operation mode is confirmed. If there is a change in the operation mode, the process returns to step S14, and if there is no change, the process returns to step S27.

【0075】全暖房運転または暖主運転時には、ステッ
プS17で全暖房運転または暖主運転と認識されステッ
プS31に進み、第2の流量制御手段42の開度が全閉
とされ、ステップS32で経過時間Timeと予め設定さ
れた所定時間Time*との比較が行なわれ、所定時間Tim
e*以下であればステップS33に進み第2の流量制御手
段42の開度が全閉のまま変更されずにステップS32
に戻り、所定時間Time*経過後ステップS34でタイマ
がリセットされてステップS35に進み、運転モードの
変更が確認され、運転モードに変更があればステップS
14に戻り、変更がなければステップS32に戻る。
At the time of the heating only operation or the warming-up main operation, the operation is recognized as the heating only operation or the warming-up main operation at step S17, and the process proceeds to step S31. The time Time is compared with a predetermined time Time * which is set in advance, and the predetermined time Tim is compared.
If it is equal to or less than e * , the process proceeds to step S33, and the opening degree of the second flow rate control means 42 is not changed while being fully closed, and step S32 is performed.
After a lapse of the predetermined time Time * , the timer is reset in step S34, and the process proceeds to step S35. In step S35, a change in the operation mode is confirmed.
The process returns to step S14, and if there is no change, the process returns to step S32.

【0076】次に、図24及び図28によって、第2の
制御器70における第3の流量制御手段46の制御につ
いて説明する。まず、ステップS36にて、この空気調
和機の運転モードが検出され、全冷房運転時または冷主
運転時にはステップS37に、全暖房運転時または暖主
運転時にはステップS38に進む。
Next, the control of the third flow control means 46 in the second controller 70 will be described with reference to FIGS. 24 and 28. First, in step S36, the operation mode of the air conditioner is detected, and the process proceeds to step S37 during cooling only operation or cooling main operation, and proceeds to step S38 during cooling only operation or warm main operation.

【0077】全冷房運転時または冷主運転時には、ステ
ップS37で全冷房または冷主運転と認識されステップ
S39に進み、第3の流量制御手段46の開度が全閉と
され、ステップS40で経過時間Timeと予め設定され
た所定時間Time*との比較が行なわれ、所定時間Time*
以下であればステップS41に進み第3の流量制御手段
46の開度が全閉のまま変更されずにステップS40に
戻り、所定時間Time*経過後ステップS42でタイマが
リセットされてステップS43に進み、運転モードの変
更が確認され、運転モードに変更があればステップS3
6に戻り、変更がなければステップS40に戻る。
At the time of the cooling only operation or the cooling main operation, the cooling operation is recognized as the cooling only operation or the cooling main operation in step S37, and the process proceeds to step S39. The time Time is compared with a predetermined time Time * which is set in advance, and the predetermined time Time * is compared .
If not, the process proceeds to step S41 and returns to step S40 without changing the opening degree of the third flow control means 46 to the fully closed state. After a predetermined time Time * has elapsed, the timer is reset in step S42 and the process proceeds to step S43. The change of the operation mode is confirmed, and if there is a change in the operation mode, step S3
6, and if there is no change, the process returns to step S40.

【0078】全暖房運転時または暖主運転時には、ステ
ップS38で全暖房または暖主運転と認識されステップ
S44に進み、第4の圧力検出手段64により検出され
た中圧冷媒圧力値P4及び第5の圧力検出手段65によ
り検出された高圧冷媒圧力値P5が検知され、ステップ
S45で検知された高圧冷媒圧力値P5と中圧冷媒圧力
値P4との圧力差と予め設定された目標値ΔP45 *との比
較が行なわれ、圧力差が目標値を超えていればステップ
S46へ進み第3の流量制御手段46の開度が減少さ
れ、圧力差(P5−P4)が目標値ΔP45 *以下であれば
ステップS47へ進み第3の流量制御手段46の開度が
増加される。ステップS48で経過時間Timeと予め設
定された所定時間Time*との比較が行なわれ、所定時間
Time*以下であればステップS44に戻り、ステップS
44〜ステップS48が繰り返され、所定時間Time*
過後ステップS49でタイマがリセットされてステップ
S50に進み、運転モードの変更が確認され、運転モー
ドに変更があればステップS36に戻り、変更がなけれ
ばステップS44に戻る。
[0078] At or during warm main operating heating only operation, the process proceeds to step S44 is recognized as the total heating or warm main operation at step S38, the fourth and intermediate pressure refrigerant pressure value P 4 detected by the pressure detecting means 64 of the high pressure refrigerant pressure value P 5 detected by the pressure detecting means 65 of 5 is detected, the pressure difference between a preset target the high pressure refrigerant pressure value P 5 and the intermediate-pressure refrigerant pressure value P 4 detected by the step S45 A comparison with the value ΔP 45 * is performed. If the pressure difference exceeds the target value, the process proceeds to step S46, where the opening of the third flow rate control means 46 is reduced, and the pressure difference (P 5 −P 4 ) is set to the target value. If it is equal to or less than the value ΔP 45 * , the process proceeds to step S47, and the opening degree of the third flow control means 46 is increased. In step S48, the elapsed time Time is compared with a predetermined time Time * which is set in advance. If the time is less than or equal to the predetermined time Time * , the process returns to step S44 and returns to step S44.
Steps S44 to S48 are repeated, the timer is reset in step S49 after a lapse of a predetermined time Time *, and the process proceeds to step S50, where a change in the operation mode is confirmed. If there is a change in the operation mode, the process returns to step S36. If it is, the process returns to step S44.

【0079】次に、図24及び図29によって、第2の
制御器70におけるバイパス流量制御手段54の制御に
ついて説明する。まず、ステップS51にて、この空気
調和機の運転モードが検出され、全冷房運転時または冷
主運転時にはステップS52に、全暖房運転時または暖
主運転時にはステップS53に進む。
Next, the control of the bypass flow rate control means 54 in the second controller 70 will be described with reference to FIGS. First, in step S51, the operation mode of the air conditioner is detected, and the process proceeds to step S52 during cooling only operation or cooling main operation, and proceeds to step S53 during cooling only operation or warm main operation.

【0080】全冷房運転時または冷主運転時には、ステ
ップS52で全冷房または冷主運転と認識されステップ
S54に進み、第2の温度検出手段58により検出され
たバイパス流量制御手段54出口の冷媒温度値T2と第
4の温度検出手段63により検出された第2の過冷却熱
交換器56下流の冷媒温度値T4が検知され、ステップ
S55でこれら検知された冷媒温度値T2と冷媒温度値
4と差から冷媒の過熱度値SHが算出され、ステップ
S56でこの過熱度値SHと予め設定された目標過熱度
値SH*と比較され、過熱度値SHが目標過熱度値SH*
を超えていればステップS57へ進みバイパス流量制御
手段54の開度が増加され、過熱度値SHが目標過熱度
値SH*以下であればステップS58へ進みバイパス流
量制御手段54の開度が減少される。ステップS59で
経過時間Timeと予め設定された所定時間Time*との比
較が行なわれ、所定時間Time*以下であればステップS
54に戻り、ステップS54〜ステップS59が繰り返
され、所定時間Time*経過後ステップS60でタイマが
リセットされてステップS61に進み、運転モードの変
更が確認され、運転モードに変更があればステップS5
1に戻り、変更がなければステップS54に戻る。
During the cooling only operation or the cooling main operation, the cooling operation is recognized as the cooling only operation or the cooling main operation in step S52, and the process proceeds to step S54. The value T 2 and the refrigerant temperature value T 4 downstream of the second subcooling heat exchanger 56 detected by the fourth temperature detecting means 63 are detected. In step S55, the detected refrigerant temperature value T 2 and refrigerant temperature are detected. the value T 4 and difference superheat value SH of the refrigerant is calculated from, is compared with the degree of superheat value SH preset target degree of superheat value SH * in step S56, the superheat value SH is the target degree of superheat value SH *
If the superheat degree exceeds the target superheat value SH * , the operation proceeds to step S58, and the opening degree of the bypass flow control means 54 decreases. Is done. Comparison with a predetermined time Time * set in advance and the elapsed time Time in step S59 is performed, step S if a predetermined time Time * less
Returning to step S54, steps S54 to S59 are repeated, and after a lapse of a predetermined time Time * , the timer is reset in step S60, and the process proceeds to step S61.
Returning to step 1, if there is no change, return to step S54.

【0081】全暖房運転時または暖主運転時には、ステ
ップS53で全暖房または暖主運転と認識されステップ
S62に進み、第4の圧力検出手段64により検出され
た中圧冷媒圧力値P4及び第5の圧力検出手段65によ
り検出された高圧冷媒圧力値P5が検知され、ステップ
S63で検知された高圧冷媒圧力値P5と中圧冷媒圧力
値P4との圧力差と予め設定された目標値ΔP45 *との比
較が行なわれ、圧力差が目標値を超えていればステップ
S64へ進みバイパス流量制御手段54の開度が減少さ
れ、圧力差(P5−P4)が目標値ΔP45 *以下であれば
ステップS65へ進みバイパス流量制御手段54の開度
が増加される。ステップS66で経過時間Timeと予め
設定された所定時間Time*との比較が行なわれ、所定時
間Time*以下であればステップS62に戻り、ステップ
S62〜ステップS66が繰り返され、所定時間Time*
経過後ステップS67でタイマがリセットされてステッ
プS68に進み、運転モードの変更が確認され、運転モ
ードに変更があればステップS51に戻り、変更がなけ
ればステップS62に戻る。
[0081] at the time or warm main operating heating only operation, the process proceeds to step S62 is recognized as the total heating or warm main operation at step S53, the fourth and intermediate pressure refrigerant pressure value P 4 detected by the pressure detecting means 64 of the high pressure refrigerant pressure value P 5 detected by the pressure detecting means 65 of 5 is detected, the pressure difference between a preset target the high pressure refrigerant pressure value P 5 and the intermediate-pressure refrigerant pressure value P 4 detected by the step S63 A comparison with the value ΔP 45 * is performed, and if the pressure difference exceeds the target value, the process proceeds to step S64, where the opening of the bypass flow rate control means 54 is reduced, and the pressure difference (P 5 −P 4 ) is reduced to the target value ΔP If it is not more than 45 * , the process proceeds to step S65, and the opening degree of the bypass flow rate control means 54 is increased. In step S66, the elapsed time Time is compared with a predetermined time Time * which is set in advance. If the time is equal to or shorter than the predetermined time Time * , the process returns to step S62, and steps S62 to S66 are repeated, and the predetermined time Time * is repeated .
After the elapse, the timer is reset in step S67, and the process proceeds to step S68. In step S68, a change in the operation mode is confirmed. If the operation mode is changed, the process returns to step S51. If not, the process returns to step S62.

【0082】次に、図24及び図30によって、各室内
機33a、33b、33cに設けられた第3の制御器7
1a、71b、71cによる第1の流量制御手段54
a、54b、54cの制御について説明する。まず、ス
テップS69にて、各室内機の運転モードが検出され、
冷房運転時にはステップS70に、暖房運転時にはステ
ップS71に進む。
Next, referring to FIG. 24 and FIG. 30, the third controller 7 provided in each of the indoor units 33a, 33b and 33c will be described.
First flow control means 54 by 1a, 71b, 71c
The control of a, 54b, and 54c will be described. First, in step S69, the operation mode of each indoor unit is detected,
The operation proceeds to step S70 during the cooling operation and to step S71 during the heating operation.

【0083】冷房運転時には、ステップS70で冷房運
転と認識されステップS72に進み、第5の温度検出手
段66a、66b、66cにより検出された室内熱交換
器48a、48b、48cと第1の流量制御手段49
a、49b、49cとの間の冷媒温度値T5と、第6の
温度検出手段67a、67b、67cにより検出された
ガス冷媒配管50a、50b、50cの冷媒温度値T6
が検知され、ステップS73でこれら検知された冷媒温
度値T6と冷媒温度値T5と差から冷媒の過熱度値SHが
算出され、ステップS74でこの過熱度値SHと予め設
定された目標過熱度値SH*と比較され、過熱度値SH
が目標過熱度値SH*を超えていればステップS75へ
進み第1の流量制御手段49a、49b、49cの開度
が増加され、過熱度値SHが目標過熱度値SH*以下で
あればステップS76へ進み第1の流量制御手段49
a、49b、49cの開度が減少される。ステップS7
7で経過時間Timeと予め設定された所定時間Time*
の比較が行なわれ、所定時間Time*以下であればステッ
プS72に戻り、ステップS72〜ステップS77が繰
り返され、所定時間Time*経過後ステップS78でタイ
マがリセットされてステップS69に戻る。
At the time of the cooling operation, the cooling operation is recognized in step S70 and the process proceeds to step S72, where the indoor heat exchangers 48a, 48b and 48c detected by the fifth temperature detecting means 66a, 66b and 66c and the first flow control are performed. Means 49
a, 49b, the refrigerant temperature value T 5 between the 49c, sixth temperature detection means 67a, 67b, the gas refrigerant pipe 50a detected by 67c, 50b, the refrigerant temperature of 50c value T 6
There are detected, these detected refrigerant temperature value T 6 and the refrigerant temperature value T 5 and superheat value SH of the refrigerant from the difference calculated in step S73, a predetermined target superheating this superheat value SH in step S74 The superheat degree SH is compared with the degree SH *.
If the value exceeds the target superheat value SH * , the process proceeds to step S75, and the opening of the first flow rate control means 49a, 49b, 49c is increased. If the superheat value SH is equal to or less than the target superheat value SH * , Proceeding to S76, the first flow rate control means 49
The opening degrees of a, 49b, and 49c are reduced. Step S7
Comparison with a predetermined time Time * set in advance and the elapsed time Time at 7 is carried out, the process returns to step S72 if the predetermined time Time * less, steps S72~ step S77 is repeated, step after a predetermined time Time * elapsed In S78, the timer is reset, and the process returns to step S69.

【0084】暖房運転時には、ステップS71で冷房運
転と認識されステップS79に進み、第5の温度検出手
段66a、66b、66cにより検出された室内熱交換
器48a、48b、48cと第1の流量制御手段49
a、49b、49cとの間の冷媒温度値T5と、分流コ
ントローラ32から送信される第5の圧力検出手段65
により検出された高圧冷媒圧力値P5の飽和液温度値T
Cが検知される。ここで、冷主運転時の暖房室内機では
飽和液温度値TCの代りに第6の温度検出手段67a、
67b、67cにより検出されたガス冷媒配管50a、
50b、50cの冷媒温度値T6を検知するようにして
もよい。ステップS80でこれら検知された飽和液温度
値TCまたは冷媒温度値T6と冷媒温度値T5と差から冷
媒の過冷却度値SCが算出され、ステップS81でこの
過冷却度値SCと予め設定された目標過熱度値SC*
比較され、過冷却度値SCが目標過冷却度値SC*を超
えていればステップS82へ進み第1の流量制御手段4
9a、49b、49cの開度が増加され、過冷却度値S
Cが目標過冷却度値SC*以下であればステップS82
へ進み第1の流量制御手段54a、54b、54cの開
度が減少される。ステップS82で経過時間Timeと予
め設定された所定時間Time*との比較が行なわれ、所定
時間Time*以下であればステップS79に戻り、ステッ
プS79〜ステップS84が繰り返され、所定時間Tim
e*経過後ステップS85でタイマがリセットされてステ
ップS69に戻る。
During the heating operation, the cooling operation is recognized in step S71, and the flow advances to step S79. Means 49
a, 49b, the refrigerant temperature value T 5 between the 49c, the fifth pressure detecting means which is transmitted from the branch controller 32 65
Saturated liquid temperature value T of the high-pressure refrigerant pressure value P 5 detected by
C is detected. Here, in the heating indoor unit during the cooling main operation, the sixth temperature detecting means 67a instead of the saturated liquid temperature value TC,
Gas refrigerant pipe 50a detected by 67b, 67c,
50b, it may be configured to detect a refrigerant temperature value T 6 of 50c. Step S80 These sensed saturated liquid temperature value TC or a refrigerant temperature value T 6 and the refrigerant temperature value T 5 and from the difference of the refrigerant supercooling degree value SC is calculated by preset this degree of supercooling value SC in step S81 Is compared with the set target superheat degree value SC * . If the supercool degree value SC exceeds the target supercool degree value SC * , the process proceeds to step S82 and the first flow rate control means 4
The opening of 9a, 49b, 49c is increased, and the supercooling degree S
If C is equal to or less than the target supercooling degree value SC * , step S82
Then, the opening degree of the first flow control means 54a, 54b, 54c is reduced. In step S82, the elapsed time Time is compared with a predetermined time Time * which is set in advance. If the time is equal to or shorter than the predetermined time Time * , the process returns to step S79, and steps S79 to S84 are repeated to obtain the predetermined time Tim.
After e * , the timer is reset in step S85 and the process returns to step S69.

【0085】この実施形態では以上のように冷媒の組成
に応じた制御が行なわれるようにしたので、冷媒の異常
音や圧縮機への液バックを防止することができ、全ての
運転モードにおいて効率のよく、かつ、適正な運転を行
うことができる。
In this embodiment, since the control according to the composition of the refrigerant is performed as described above, abnormal noise of the refrigerant and liquid back to the compressor can be prevented, and the efficiency can be improved in all the operation modes. , And appropriate driving can be performed.

【0086】実施の形態6.図31はこの発明の実施の
形態6における圧縮機及び室外ファンの制御アルゴリズ
ムを示すフローチャート、図32は暖房室内機と冷房室
内機の能力比と室内機を流れる冷媒の組成との関係を示
す図である。なお、図19〜図25はこの実施の形態6
にも適用される。
Embodiment 6 FIG. FIG. 31 is a flowchart illustrating a control algorithm of a compressor and an outdoor fan according to Embodiment 6 of the present invention, and FIG. 32 is a diagram illustrating a relationship between a capacity ratio of a heating indoor unit and a cooling indoor unit and a composition of a refrigerant flowing through the indoor unit. It is. 19 to 25 show the sixth embodiment.
Also applies.

【0087】次に、図24、図31及び図32によっ
て、第1の制御器69における圧縮機1及び室外ファン
52の制御について説明する。まず、ステップS86に
て、冷媒組成演算装置68の演算結果である冷媒組成値
αcalが検知される。図32に示すように、冷主運転時
は、暖房室内機能力Qeと冷房室内機能力Qcの比率に応
じて気液分離器5で平衡する冷媒の組成が異なる。従っ
て、このQc/Qcに対する冷媒組成の変化を予め求めて
おき、この関係とステップS87で検知された冷房室内
機能力Qcと暖房室内機能力Qeが用いられてステップS
88において、検知された冷媒組成値αcalが補正さ
れ、冷房室内機循環冷媒の組成αc及び暖房室内機循環
冷媒の組成αhが求められる。ステップS89にてこの
冷媒組成値αc及びαhに応じた冷凍サイクルにおける高
圧圧力目標値Pd *及び低圧圧力目標値Ps *が設定され
る。
Next, the control of the compressor 1 and the outdoor fan 52 in the first controller 69 will be described with reference to FIGS. 24, 31 and 32. First, in step S86, a refrigerant composition value α cal which is a calculation result of the refrigerant composition calculation device 68 is detected. As shown in FIG. 32, the cold main operation, the composition of the refrigerant in equilibrium with the gas-liquid separator 5 in accordance with the ratio of the heating indoor functional force Q e and cooling indoor function force Q c are different. Therefore, a change in the refrigerant composition with respect to Q c / Q c is determined in advance, and the relationship between the cooling room functional force Q c and the heating indoor functional force Q e detected in step S87 is used in step S87.
At 88, the detected refrigerant composition value α cal is corrected, and the composition α c of the cooling indoor unit circulating refrigerant and the composition α h of the heating indoor unit circulating refrigerant are obtained. * High pressure target value P d * and the low-pressure pressure target value P s in the refrigeration cycle in accordance with the refrigerant composition value alpha c and alpha h is set at step S89.

【0088】ステップS90にて第2の圧力検出手段6
0により検出された圧縮機1の吐出圧力検出値P2、第
3の圧力検出手段61により検出された圧縮機1の吸入
圧力検出値P3が検知され、ステップS91で、吐出圧
力検出値P2と高圧圧力目標値Pd *との差ΔPd、及び吸
入圧力検出値P3と低圧圧力目標値Ps *との差ΔPsが演
算され、ステップ92でこれら演算値ΔPd、ΔPsに応
じて圧縮機1の運転周波数変更幅ΔFcomp及び室外ファ
ン52の回転数変更幅ΔAKが算出され、ステップS9
3でこれら算出値に応じて圧縮機1の運転周波数及び室
外ファン52の回転数が変更される。そして、ステップ
S94で経過時間Timeと予め設定された所定時間Time
*との比較が行なわれ、所定時間Time*経過するまでは
ステップS90〜ステップS94が繰り返され、所定時
間Time*経過後ステップS95でタイマがリセットされ
てステップS86に戻る。
In step S90, the second pressure detecting means 6
0, the detected discharge pressure value P 2 of the compressor 1 and the detected pressure value P 3 of the compressor 1 detected by the third pressure detecting means 61 are detected. 2 and the high-pressure pressure target value P d * the difference between [Delta] P d, and the difference [Delta] P s of the suction pressure detection value P 3 and the low pressure target value P s * is calculated, these calculated values [Delta] P d at step 92, [Delta] P s , The operating frequency change width ΔF comp of the compressor 1 and the rotation speed change width ΔAK of the outdoor fan 52 are calculated, and step S9 is performed.
In 3, the operating frequency of the compressor 1 and the rotation speed of the outdoor fan 52 are changed according to these calculated values. Then, in step S94, the elapsed time Time and the preset predetermined time Time
* Comparison with is performed until a predetermined time Time * elapses is repeated steps S90~ step S94, the timer is reset at a predetermined time Time * elapsed after step S95 returns to step S86.

【0089】以上のようにこの実施の形態6では、冷主
運転において室内機を循環する冷媒の組成をより精度よ
く求めるようにしているので、冷主運転での冷凍サイク
ルをより適正に運転することができる。
As described above, in the sixth embodiment, the composition of the refrigerant circulating in the indoor unit is determined more accurately in the cold main operation, so that the refrigeration cycle in the cold main operation is more appropriately operated. be able to.

【0090】[0090]

【発明の効果】以上のようにこの発明の請求項1によれ
ば、冷媒として非共沸混合冷媒を使用し、圧縮機から凝
縮器、減圧手段、及び蒸発器をへて上記圧縮機に戻る冷
媒回路を備えた空気調和機において、上記凝縮器および
蒸発器の少なくとも一方の熱交換器の途中に、冷媒の乾
き度を変更する乾き度変更手段を設けたので、蒸発器ま
たは凝縮器の能力が向上または可変となる空気調和機が
得られる効果がある。
As described above, according to the first aspect of the present invention, a non-azeotropic mixed refrigerant is used as the refrigerant, and the refrigerant returns to the compressor via the condenser, the pressure reducing means, and the evaporator. In the air conditioner provided with the refrigerant circuit, since the dryness changing means for changing the dryness of the refrigerant is provided in the middle of at least one of the condenser and the evaporator, the capacity of the evaporator or the condenser is improved. There is an effect that an air conditioner with improved or variable air quality can be obtained.

【0091】この発明の請求項2によれば、複数の室内
熱交換器と気液分離器を有し、この気液分離器で分離し
たガス冷媒を暖房室内熱交換器に、液冷媒を冷房室内熱
交換器に流し、冷媒として非共沸混合冷媒を使用する冷
媒回路を備えた冷暖同時運転を行う多室式空気調和機に
おいて、上記暖房室内熱交換器に流入するガス冷媒に液
冷媒を注入し気液二相状態の冷媒とする乾き度変更手段
を設けたので、暖房室内機の能力が向上した多室式空気
調和機が得られる効果がある。
According to a second aspect of the present invention, a plurality of indoor heat exchangers and a gas-liquid separator are provided. The gas refrigerant separated by the gas-liquid separator is supplied to the heating indoor heat exchanger, and the liquid refrigerant is cooled. In a multi-room air conditioner that performs simultaneous cooling and heating with a refrigerant circuit that uses a non-azeotropic mixed refrigerant as a refrigerant, the liquid refrigerant is used as a gas refrigerant flowing into the heating indoor heat exchanger. Since the dryness changing means for injecting the refrigerant into the gas-liquid two-phase state refrigerant is provided, there is an effect that a multi-room air conditioner with improved performance of the heating indoor unit can be obtained.

【0092】この発明の請求項3によれば、冷媒として
非共沸混合冷媒を使用し、圧縮機から室外熱交換器をへ
て気液分離器に流入しこの気液分離器で分離されたガス
冷媒が、第1の室内熱交換器及び第1の減圧手段をへ
て、上記気液分離器で分離され第3の減圧手段を経た液
冷媒と合流し、第2の減圧手段、第2の室内側熱交換器
をへて上記圧縮機に戻る冷媒回路を備えた多室式空気調
和機において、上記第1の室内熱交換器に流入するガス
冷媒に液冷媒を注入し気液二相状態の冷媒とする乾き度
変更手段を設けたので、第1の室内熱交換器の能力が増
加し、冷凍サイクルが効率良く運転できる多室式空気調
和機が得られる効果がある。
According to the third aspect of the present invention, a non-azeotropic mixed refrigerant is used as a refrigerant, flows into the gas-liquid separator from the compressor via the outdoor heat exchanger, and is separated by the gas-liquid separator. The gas refrigerant passes through the first indoor heat exchanger and the first decompression unit, and joins with the liquid refrigerant separated by the gas-liquid separator and passed through the third decompression unit. In the multi-chamber air conditioner provided with a refrigerant circuit that returns to the compressor through the indoor heat exchanger, a liquid refrigerant is injected into the gas refrigerant flowing into the first indoor heat exchanger, and a gas-liquid two-phase Since the dryness changing means for providing the refrigerant in the state is provided, the capacity of the first indoor heat exchanger is increased, and there is an effect that a multi-room air conditioner capable of operating the refrigeration cycle efficiently can be obtained.

【0093】この発明の請求項4によれば、請求項3記
載の発明において、気液分離器と第1の室内側熱交換器
を接続する配管の途中に、気液分離器内部の液冷媒が流
入する穴を設けたので、第1の室内熱交換器に流す気液
二相状態の冷媒が容易に作成でき、第1の室内熱交換器
の能力が増加し、冷凍サイクルが効率良く運転できる多
室式空気調和機が安価に得られる効果がある。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the liquid refrigerant inside the gas-liquid separator is provided in the pipe connecting the gas-liquid separator and the first indoor heat exchanger. Is provided, the gas-liquid two-phase refrigerant flowing to the first indoor heat exchanger can be easily created, the capacity of the first indoor heat exchanger increases, and the refrigeration cycle operates efficiently. There is an effect that a possible multi-room air conditioner can be obtained at low cost.

【0094】この発明の請求項5によれば、請求項3記
載の発明において、気液分離器と第1の室内側熱交換器
を接続するガス冷媒配管の途中に、気液分離器と第3の
減圧手段を接続する液冷媒配管から気液混合管を介して
液冷媒を吸上げ、上記ガス冷媒配管中のガス冷媒とを混
合する気液混合部を設けたので、第1の室内熱交換器に
流す気液二相状態の乾き度が適正に制御でき、室内機の
負荷および容量に関係なく、広い範囲で冷凍サイクルの
効率を向上させることができる多室式空気調和機が得ら
れる効果がある。
According to a fifth aspect of the present invention, in the third aspect of the invention, the gas-liquid separator and the first indoor heat exchanger are connected to each other in a gas refrigerant pipe. Since a gas-liquid mixing section for sucking up liquid refrigerant from a liquid refrigerant pipe connecting the pressure reducing means of No. 3 through a gas-liquid mixing pipe and mixing with the gas refrigerant in the gas refrigerant pipe is provided, the first indoor heat A multi-room air conditioner that can appropriately control the dryness of the gas-liquid two-phase state flowing through the exchanger and can improve the efficiency of the refrigeration cycle in a wide range regardless of the load and capacity of the indoor unit can be obtained. effective.

【0095】この発明の請求項6によれば、容量可変式
圧縮機、四方弁、室外熱交換器を有する室外機と、それ
ぞれ室内熱交換器と第1の流量制御手段が接続された複
数の室内機と、上記室外機と高圧冷媒配管、低圧冷媒配
管の2本の冷媒配管により接続され、上記複数の室内機
の室内熱交換器とガス冷媒配管により、これらの第1の
流量制御手段と中圧冷媒配管によりそれぞれ接続され、
上記室外機と接続される高圧冷媒配管からの冷媒を気液
分離し、高圧ガス冷媒配管と高圧液冷媒配管に出力する
気液分離器、この高圧液冷媒配管と、上記室内機と接続
される複数の中圧冷媒配管との間に接続された第2の流
量制御手段、上記室外機と接続される低圧冷媒配管と、
上記複数の中圧冷媒配管との間に接続された第3の流量
制御手段、上記気液分離器の出力高圧ガス冷媒配管と、
上記室内機と接続される複数のガス冷媒配管とを選択的
に接続する第1の切換え開閉弁、及び上記室外機と接続
される低圧冷媒配管と、上記室内機と接続される複数の
ガス冷媒配管とを選択的に接続する第2の切換え開閉弁
を有する分流コントローラを備え、冷媒として非共沸混
合冷媒を使用した多室式空気調和機において、上記気液
分離器の出力高圧ガス冷媒配管と上記複数の第2の切換
え開閉弁とをそれぞれ接続する冷媒配管途中に、上記気
液分離器の出力高圧液冷媒配管から気液混合管により、
冷房主体の冷暖同時運転時に開かれる開閉弁を介して液
冷媒を吸上げ、上記気液分離器の出力高圧ガス冷媒配管
中のガス冷媒に混合する気液混合部を設けたので、冷媒
に非共沸混合冷媒を使用した場合に冷凍サイクルの効率
が向上し、かつ、冷媒として単一冷媒または共沸混合冷
媒を使用した場合でも冷凍サイクルの効率が低下するこ
とのない多室式空気調和機が得られる効果がある。
According to the sixth aspect of the present invention, an outdoor unit having a variable displacement compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units each connected to the indoor heat exchanger and the first flow control means. The indoor unit, the outdoor unit and the high-pressure refrigerant pipe and the low-pressure refrigerant pipe are connected by two refrigerant pipes. Connected by medium-pressure refrigerant pipes,
A gas-liquid separator that separates the refrigerant from the high-pressure refrigerant pipe connected to the outdoor unit into gas and liquid and outputs the refrigerant to the high-pressure gas refrigerant pipe and the high-pressure liquid refrigerant pipe. The high-pressure liquid refrigerant pipe is connected to the indoor unit. Second flow control means connected between the plurality of medium-pressure refrigerant pipes, a low-pressure refrigerant pipe connected to the outdoor unit,
Third flow control means connected between the plurality of medium-pressure refrigerant pipes, an output high-pressure gas refrigerant pipe of the gas-liquid separator,
A first switching on-off valve for selectively connecting a plurality of gas refrigerant pipes connected to the indoor unit, a low-pressure refrigerant pipe connected to the outdoor unit, and a plurality of gas refrigerants connected to the indoor unit In a multi-chamber air conditioner having a non-azeotropic mixed refrigerant as a refrigerant, the output high-pressure gas refrigerant pipe of the gas-liquid separator is provided with a diversion controller having a second switching on-off valve for selectively connecting to a pipe. In the middle of a refrigerant pipe connecting each of the plurality of second switching valves, the output high-pressure liquid refrigerant pipe of the gas-liquid separator is connected by a gas-liquid mixing pipe.
A gas-liquid mixing section is provided for sucking up liquid refrigerant through an on-off valve opened during simultaneous cooling / heating operation mainly for cooling and mixing with the gas refrigerant in the output high-pressure gas refrigerant pipe of the gas-liquid separator. A multi-room air conditioner in which the efficiency of a refrigeration cycle is improved when an azeotropic mixed refrigerant is used, and the efficiency of the refrigeration cycle is not reduced even when a single refrigerant or an azeotropic mixed refrigerant is used as a refrigerant. The effect is obtained.

【0096】この発明の請求項7によれば、請求項6記
載の発明において、分流コントローラの第2の流量制御
手段の上流又は下流の高圧又は中圧冷媒配管から分岐
し、バイパス用流量制御手段と、複数の中圧冷媒配管及
び高圧液冷媒配管と熱交換する過冷却熱交換器とを介し
て室外機と接続される低圧冷媒配管にいたるバイパス管
路を設けたので、請求項6記載の発明の効果に加え、冷
房室内熱交換器の蒸発温度が低下してその能力が増加
し、冷凍サイクルの効率がさらに向上するという効果が
ある。
According to a seventh aspect of the present invention, in the sixth aspect of the present invention, the bypass flow rate control means branches off from the high pressure or medium pressure refrigerant pipe upstream or downstream of the second flow rate control means of the branch flow controller. And a bypass pipe leading to a low-pressure refrigerant pipe connected to the outdoor unit through a plurality of medium-pressure refrigerant pipes and a supercooling heat exchanger that exchanges heat with the high-pressure liquid refrigerant pipe. In addition to the effects of the invention, there is an effect that the evaporating temperature of the cooling indoor heat exchanger is reduced to increase its capacity, and the efficiency of the refrigeration cycle is further improved.

【0097】この発明の請求項8によれば、請求項7記
載の発明において、バイパス用流量制御手段上流の冷媒
温度を検出する第1の温度検出手段と、バイパス用流量
制御手段下流の冷媒温度を検出する第2の温度検出手段
と、バイパス用流量制御手段下流の冷媒圧力を検出する
第1の圧力検出手段と、圧縮機の吐出圧力を検出する第
2の圧力検出手段と、圧縮機の吸入圧力を検出する第3
の圧力検出手段と、上記第1、第2の温度検出手段、及
び上記第1の圧力検出手段の検出値から冷媒の組成を演
算する冷媒組成演算装置と、この冷媒組成演算装置の演
算値、及び上記第2、第3の圧力検出手段の検出値に応
じて、圧縮機の運転周波数及び室外ファンの回転数を制
御する圧縮機・室外ファン制御装置とを設けたので、請
求項7記載の発明の効果に加え、あらゆる運転モードに
おける冷媒の組成に応じた圧縮機及び室外ファンの制御
ができ、冷凍サイクルの効率がさらに向上するという効
果がある。
According to an eighth aspect of the present invention, in the invention according to the seventh aspect, the first temperature detecting means for detecting the refrigerant temperature upstream of the bypass flow rate control means, and the refrigerant temperature downstream of the bypass flow rate control means. Temperature detecting means for detecting the pressure, first pressure detecting means for detecting the refrigerant pressure downstream of the flow control means for bypass, second pressure detecting means for detecting the discharge pressure of the compressor, Third to detect suction pressure
Pressure detecting means, a first and second temperature detecting means, a refrigerant composition calculating device for calculating the composition of the refrigerant from the detected value of the first pressure detecting means, a calculated value of the refrigerant composition calculating device, And a compressor / outdoor fan control device for controlling the operating frequency of the compressor and the number of revolutions of the outdoor fan according to the detection values of the second and third pressure detecting means. In addition to the effects of the present invention, the compressor and the outdoor fan can be controlled in accordance with the composition of the refrigerant in all operation modes, so that the efficiency of the refrigeration cycle is further improved.

【0098】この発明の請求項9によれば、請求項7記
載の発明において、バイパス流量制御手段上流の冷媒温
度を検出する第1の温度検出手段と、バイパス流量制御
手段下流の冷媒温度を検出する第2の温度検出手段と、
第2の流量制御手段上流の高圧冷媒温度を検出する第3
の温度検出手段と、バイパス流量制御手段下流の冷媒圧
力を検出する第1の圧力検出手段と、気液分離器の出力
高圧冷媒圧力を検出する第5の圧力検出手段と、上記第
1、第2の温度検出手段、及び上記第1の圧力検出手段
の検出値から冷媒の組成を演算する冷媒組成演算装置
と、この冷媒組成演算装置の演算値、及び上記第5の圧
力検出手段、第3の温度検出手段の検出値に応じて、第
2の流量制御手段の開度を制御する制御器とを設けたの
で、請求項7記載の発明の効果に加え、あらゆる運転モ
ードにおける冷媒の組成に応じた第2の流量制御手段の
開度制御ができ、冷凍サイクルの効率がさらに向上する
という効果がある。
According to a ninth aspect of the present invention, in the invention according to the seventh aspect, the first temperature detecting means for detecting the refrigerant temperature upstream of the bypass flow rate control means and the refrigerant temperature downstream of the bypass flow rate control means are detected. A second temperature detecting means,
A third method for detecting the high-pressure refrigerant temperature upstream of the second flow control means.
Temperature detecting means, first pressure detecting means for detecting the refrigerant pressure downstream of the bypass flow rate controlling means, fifth pressure detecting means for detecting the output high-pressure refrigerant pressure of the gas-liquid separator, A second temperature detecting means, a refrigerant composition calculating device for calculating the composition of the refrigerant from the detected value of the first pressure detecting means, a calculated value of the refrigerant composition calculating device, the fifth pressure detecting means, And a controller for controlling the opening of the second flow rate control means in accordance with the value detected by the temperature detection means. The opening degree of the second flow rate control means can be controlled accordingly, and the efficiency of the refrigeration cycle is further improved.

【0099】この発明の請求項10によれば、請求項6
記載の発明において、中圧冷媒配管の冷媒圧力を検出す
る第4の圧力検出手段と、気液分離器の出力高圧冷媒圧
力を検出する第5の圧力検出手段と、上記第4の圧力検
出手段及び第5の圧力検出手段の検出値に応じて、第3
の流量制御手段の開度を制御する制御器とを設けたの
で、請求項6記載の発明の効果に加え、あらゆる運転モ
ードにおける適正な第3の流量制御手段の開度制御がで
き、冷凍サイクルの効率がさらに向上するという効果が
ある。
According to claim 10 of the present invention, claim 6
In the invention described above, fourth pressure detecting means for detecting the refrigerant pressure of the medium-pressure refrigerant pipe, fifth pressure detecting means for detecting the output high-pressure refrigerant pressure of the gas-liquid separator, and the fourth pressure detecting means And the third value according to the detection value of the fifth pressure detecting means.
And a controller for controlling the opening degree of the flow rate control means of the third embodiment. In addition to the effect of the invention according to claim 6, the opening degree of the third flow rate control means can be properly controlled in any operation mode, and the refrigeration cycle This has the effect of further improving the efficiency.

【0100】この発明の請求項11によれば、請求項7
記載の発明において、中圧冷媒配管の冷媒圧力を検出す
る第4の圧力検出手段と、気液分離器の出力高圧冷媒圧
力を検出する第5の圧力検出手段と、バイパス流量制御
手段下流の冷媒温度を検出する第2の温度検出手段と、
バイパス管路の過冷却熱交換器下流の冷媒温度を検出す
る第4の温度検出手段と、上記第4の圧力検出手段、第
5の圧力検出手段、第2の温度検出手段、及び第4の温
度検出手段の検出値に応じて、バイパス流量制御手段の
開度を制御する制御器とを設けたので、請求項7記載の
発明の効果に加え、あらゆる運転モードにおける適正な
バイパス流量制御手段の開度制御ができ、冷凍サイクル
の効率がさらに向上するという効果がある。
According to claim 11 of the present invention, claim 7
In the invention described above, fourth pressure detecting means for detecting the refrigerant pressure of the medium-pressure refrigerant pipe, fifth pressure detecting means for detecting the output high-pressure refrigerant pressure of the gas-liquid separator, and refrigerant downstream of the bypass flow rate control means Second temperature detecting means for detecting a temperature;
A fourth temperature detecting means for detecting a refrigerant temperature downstream of the subcooling heat exchanger in the bypass pipe, the fourth pressure detecting means, the fifth pressure detecting means, the second temperature detecting means, and a fourth temperature detecting means. A controller is provided for controlling the opening of the bypass flow rate control means in accordance with the value detected by the temperature detection means. There is an effect that the opening degree can be controlled and the efficiency of the refrigeration cycle is further improved.

【0101】この発明の請求項12によれば、請求項7
記載の発明において、室内熱交換器と第1の流量制御手
段との間の冷媒温度を検出する第5の温度検出手段と、
室内熱交換器に接続されるガス冷媒配管の冷媒温度を検
出する第6の温度検出手段と、気液分離器の出力高圧冷
媒圧力を検出する第5の圧力検出手段と、上記第5の温
度検出手段及び第6の温度検出手段の検出値、又はこれ
ら検出値と上記第5の圧力検出手段で検出された高圧冷
媒圧力値の飽和温度値に応じて、第1の流量制御手段の
開度を制御する制御器とを設けたので、請求項7記載の
発明の効果に加え、あらゆる運転モードにおいて室内熱
交換器に最適の過熱度、過冷却度を与えるよう第1のバ
イパス流量制御手段の制御ができ、冷凍サイクルの効率
がさらに向上するという効果がある。
According to claim 12 of the present invention, claim 7
In the described invention, a fifth temperature detecting means for detecting a refrigerant temperature between the indoor heat exchanger and the first flow control means,
Sixth temperature detecting means for detecting the refrigerant temperature of the gas refrigerant pipe connected to the indoor heat exchanger, fifth pressure detecting means for detecting the output high-pressure refrigerant pressure of the gas-liquid separator, and the fifth temperature The opening degree of the first flow rate control means according to the detection values of the detection means and the sixth temperature detection means, or the detected values and the saturated temperature value of the high pressure refrigerant pressure value detected by the fifth pressure detection means And a controller for controlling the first bypass flow rate control means so as to provide the optimal degree of superheat and subcooling to the indoor heat exchanger in all operation modes in addition to the effect of the invention described in claim 7. Control can be performed and the efficiency of the refrigeration cycle is further improved.

【0102】この発明の請求項13によれば、請求項8
または9記載の発明において、室内機の冷房と暖房の容
量比に応じて、冷媒組成演算装置の演算値を補正するよ
うにしたので、請求項8または9記載の発明の効果に加
え、冷媒の組成がより精度よく求めることができ、冷主
運転における冷凍サイクルをより適正に運転することが
できる効果がある。
According to claim 13 of the present invention, claim 8
In the invention according to the ninth or ninth aspect, the calculated value of the refrigerant composition calculating device is corrected according to the capacity ratio between the cooling and the heating of the indoor unit. There is an effect that the composition can be obtained with higher accuracy and the refrigeration cycle in the cold main operation can be more appropriately operated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の冷主運転時の冷媒
回路を示す概略構成図。
FIG. 1 is a schematic configuration diagram illustrating a refrigerant circuit during a cold main operation according to a first embodiment of the present invention.

【図2】 実施の形態1の第1の乾き度変更部の一例を
示す部分側断面図。
FIG. 2 is a partial side sectional view showing an example of a first dryness changing unit according to the first embodiment.

【図3】 実施の形態1の第1の乾き度変更部による冷
媒組成変化を示す相平衡図。
FIG. 3 is a phase equilibrium diagram showing a change in refrigerant composition by a first dryness changing unit according to the first embodiment.

【図4】 実施の形態1の第2の乾き度変更部の一例を
示す部分側断面図。
FIG. 4 is a partial side sectional view showing an example of a second dryness changing unit according to the first embodiment.

【図5】 実施の形態1の第2の乾き度変更部による冷
媒組成変化を示す相平衡図。
FIG. 5 is a phase equilibrium diagram illustrating a change in refrigerant composition by a second dryness changing unit according to the first embodiment.

【図6】 実施の形態2の冷主運転時の冷媒回路を示す
概略構成図。
FIG. 6 is a schematic configuration diagram illustrating a refrigerant circuit during a cold main operation according to the second embodiment.

【図7】 実施の形態2の乾き度変更手段の一例を示す
部分側断面図。
FIG. 7 is a partial side sectional view showing an example of a dryness changing unit according to the second embodiment.

【図8】 実施の形態2の気液分離器内冷媒の乾き度変
更手段による冷媒組成変化を示す相平衡図。
FIG. 8 is a phase equilibrium diagram showing a change in refrigerant composition by means for changing the dryness of refrigerant in a gas-liquid separator according to the second embodiment.

【図9】 実施の形態2の乾き度変更手段の他の例を示
す部分側断面図。
FIG. 9 is a partial side sectional view showing another example of the dryness changing unit according to the second embodiment.

【図10】 実施の形態3の冷主運転時の冷媒回路を示
す概略構成図。
FIG. 10 is a schematic configuration diagram illustrating a refrigerant circuit during a cold main operation according to a third embodiment.

【図11】 実施の形態3の気液混合部の内部構成を示
す部分側断面図。
FIG. 11 is a partial side sectional view showing an internal configuration of a gas-liquid mixing unit according to a third embodiment.

【図12】 実施の形態3の気液混合部内冷媒の組成変
化を示す相平衡図。
FIG. 12 is a phase equilibrium diagram showing a change in the composition of the refrigerant in the gas-liquid mixing section according to the third embodiment.

【図13】 実施の形態3の第1の室内熱交換器入口冷
媒の乾き度と冷凍サイクルの効率との関係を示す図。
FIG. 13 is a diagram showing the relationship between the dryness of the refrigerant at the inlet of the first indoor heat exchanger and the efficiency of the refrigeration cycle in the third embodiment.

【図14】 実施の形態4の多室式空気調和機の冷媒回
路図。
FIG. 14 is a refrigerant circuit diagram of the multi-room air conditioner according to the fourth embodiment.

【図15】 実施の形態4の冷主運転時の冷媒の流れを
示す冷媒回路図。
FIG. 15 is a refrigerant circuit diagram illustrating a flow of a refrigerant during a cold main operation according to the fourth embodiment.

【図16】 実施の形態4の暖主運転時の冷媒の流れを
示す冷媒回路図。
FIG. 16 is a refrigerant circuit diagram showing the flow of refrigerant during a warm-up main operation according to a fourth embodiment.

【図17】 実施の形態4の全冷房運転時の冷媒の流れ
を示す冷媒回路図。
FIG. 17 is a refrigerant circuit diagram illustrating a flow of a refrigerant during a cooling only operation according to the fourth embodiment.

【図18】 実施の形態4の全暖房運転時の冷媒の流れ
を示す冷媒回路図。
FIG. 18 is a refrigerant circuit diagram illustrating a flow of a refrigerant during a heating only operation according to the fourth embodiment.

【図19】 実施の形態5の多室式空気調和機の冷媒回
路図。
FIG. 19 is a refrigerant circuit diagram of the multi-room air conditioner according to the fifth embodiment.

【図20】 実施の形態5の冷主運転時の冷媒の流れを
示す冷媒回路図。
FIG. 20 is a refrigerant circuit diagram showing the flow of the refrigerant during the cold main operation according to the fifth embodiment.

【図21】 実施の形態5の暖主運転時の冷媒の流れを
示す冷媒回路図。
FIG. 21 is a refrigerant circuit diagram showing the flow of refrigerant during a warm-up main operation according to a fifth embodiment.

【図22】 実施の形態5の全冷房運転時の冷媒の流れ
を示す冷媒回路図。
FIG. 22 is a refrigerant circuit diagram showing the flow of the refrigerant during the cooling only operation in the fifth embodiment.

【図23】 実施の形態5の全暖房運転時の冷媒の流れ
を示す冷媒回路図。
FIG. 23 is a refrigerant circuit diagram illustrating a flow of a refrigerant during a heating only operation according to the fifth embodiment.

【図24】 実施の形態5の制御系を示すブロック線
図。
FIG. 24 is a block diagram showing a control system according to the fifth embodiment.

【図25】 実施の形態5の冷媒組成演算のアルゴリズ
ムを示すフローチャート。
FIG. 25 is a flowchart showing an algorithm of a refrigerant composition calculation according to the fifth embodiment.

【図26】 実施の形態5の圧縮機及び室外ファンの制
御アルゴリズムを示すフローチャート。
FIG. 26 is a flowchart illustrating a control algorithm of a compressor and an outdoor fan according to the fifth embodiment.

【図27】 実施の形態5の第2の流量制御手段の制御
アルゴリズムを示すフローチャート。
FIG. 27 is a flowchart showing a control algorithm of a second flow control unit according to the fifth embodiment.

【図28】 実施の形態5の第3の流量制御手段の制御
アルゴリズムを示すフローチャート。
FIG. 28 is a flowchart illustrating a control algorithm of a third flow control unit according to the fifth embodiment.

【図29】 実施の形態5のバイパス流量制御手段の制
御アルゴリズムを示すフローチャート。
FIG. 29 is a flowchart illustrating a control algorithm of a bypass flow rate control unit according to the fifth embodiment.

【図30】 実施の形態5の第1の流量制御手段の制御
アルゴリズムを示すフローチャート。
FIG. 30 is a flowchart showing a control algorithm of a first flow rate control means according to the fifth embodiment.

【図31】 実施の形態6の圧縮機及び室外ファンの制
御アルゴリズムを示すフローチャート。
FIG. 31 is a flowchart showing a control algorithm of a compressor and an outdoor fan according to the sixth embodiment.

【図32】 実施の形態6の暖房室内機と冷房室内機の
能力比と室内機を流れる冷媒組成との関係を示す図。
FIG. 32 is a diagram illustrating a relationship between a capacity ratio between a heating indoor unit and a cooling indoor unit and a refrigerant composition flowing through the indoor unit according to the sixth embodiment.

【図33】 従来の多室式空気調和機の冷主運転時の冷
媒回路を示す概略構成図。
FIG. 33 is a schematic configuration diagram showing a refrigerant circuit during a cooling main operation of a conventional multi-room air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 室外熱交換器、3 第1の室内熱交換
器(凝縮器)、4 第2の室内熱交換器(蒸発器)、5
気液分離器、6 第1の減圧手段、7 第2の減圧手
段、8 第3の減圧手段、9〜18 冷媒配管、19
第1の乾き度変更部(乾き度変更手段)、20 液混合
管(乾き度変更手段)、21 第2の乾き度変更部(乾
き度変更手段)、22 高圧ガス混合管、23 低圧ガ
ス混合管(乾き度変更手段)、24 混合ガス減圧手段
(乾き度変更手段)、25 乾き度変更手段、27
穴、28 液冷媒、29、29a、29b、29c 気
液混合部(乾き度変更手段)、30 気液混合管(乾き
度変更手段)、31 室外機、32 分流コントロー
ラ、33a、33b、33c 室内機、34 アキュム
レータ、35 四方弁、36a、36b、36c、36
d 逆止弁、37 低圧冷媒配管、38 高圧冷媒配
管、39 高圧ガス冷媒配管、40 高圧液冷媒配管、
41 中圧冷媒配管、42 第2の流量制御手段、43
開閉弁、44a、44b、44c 第1の切換え開閉
弁、45a、45b、45c 第2の切換え開閉弁、4
6 第3の流量制御手段、47 低圧冷媒配管、48
a、48b、48c 室内熱交換器、49a、49b、
49c 第1の流量制御手段、50a、50b、50c
ガス冷媒配管、51a、51b、51c 中圧冷媒配
管、52室外ファン、53バイパス管路、54 バイパ
ス流量制御手段、55a、55b、55c 第1の過冷
却熱交換器、56 第2の過冷却熱交換器、57 第1
の温度検出手段、58 第2の温度検出手段、59 第
1の圧力検出手段、60第2の圧力検出手段、61 第
3の圧力検出手段、62 第3の温度検出手段、63
第4の温度検出手段、64 第4の圧力検出手段、65
第5の圧力検出手段、66a、66b、66c 第5
の温度検出手段、67a、67b、67c 第6の温度
検出手段、68 冷媒組成演算装置、69 第1の制御
器(圧縮機・室外ファン制御装置)、70 第2の制御
器、71a〜71c 第3の制御器。
Reference Signs List 1 compressor, 2 outdoor heat exchanger, 3 first indoor heat exchanger (condenser), 4 second indoor heat exchanger (evaporator), 5
Gas-liquid separator, 6 first decompression means, 7 second decompression means, 8 third decompression means, 9-18 refrigerant pipe, 19
1st dryness changing section (dryness changing means), 20 liquid mixing tubes (dryness changing means), 21 second dryness changing section (dryness changing means), 22 high pressure gas mixing pipe, 23 low pressure gas mixing Pipe (dryness changing means), 24 mixed gas decompression means (dryness changing means), 25 dryness changing means, 27
Hole, 28 liquid refrigerant, 29, 29a, 29b, 29c gas-liquid mixing section (dryness changing means), 30 gas-liquid mixing pipe (dryness changing means), 31 outdoor unit, 32 branch controller, 33a, 33b, 33c indoor Machine, 34 accumulator, 35 four-way valve, 36a, 36b, 36c, 36
d check valve, 37 low-pressure refrigerant pipe, 38 high-pressure refrigerant pipe, 39 high-pressure gas refrigerant pipe, 40 high-pressure liquid refrigerant pipe,
41 medium pressure refrigerant pipe, 42 second flow control means, 43
On-off valve, 44a, 44b, 44c First switching on-off valve, 45a, 45b, 45c Second switching on-off valve, 4
6 third flow control means, 47 low-pressure refrigerant pipe, 48
a, 48b, 48c indoor heat exchangers, 49a, 49b,
49c First flow control means, 50a, 50b, 50c
Gas refrigerant piping, 51a, 51b, 51c Medium pressure refrigerant piping, 52 outdoor fan, 53 bypass pipeline, 54 bypass flow rate control means, 55a, 55b, 55c First supercooling heat exchanger, 56 Second supercooling heat Exchanger, 57 first
Temperature detecting means, 58 second temperature detecting means, 59 first pressure detecting means, 60 second pressure detecting means, 61 third pressure detecting means, 62 third temperature detecting means, 63
Fourth temperature detecting means, 64 Fourth pressure detecting means, 65
Fifth pressure detecting means, 66a, 66b, 66c
Temperature detecting means, 67a, 67b, 67c sixth temperature detecting means, 68 refrigerant composition calculating device, 69 first controller (compressor / outdoor fan control device), 70 second controller, 71a to 71c 3 controllers.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 冷媒として非共沸混合冷媒を使用し、圧
縮機から凝縮器、減圧手段、及び蒸発器をへて上記圧縮
機に戻る冷媒回路を備えた空気調和機において、上記凝
縮器および蒸発器の少なくとも一方の熱交換器に、冷媒
の乾き度を変更する乾き度変更手段を設けたことを特徴
とする空気調和機。
1. An air conditioner using a non-azeotropic mixed refrigerant as a refrigerant and comprising a refrigerant circuit returning from the compressor to a condenser, a decompression means, and an evaporator to the compressor, An air conditioner characterized in that at least one of the heat exchangers of the evaporator is provided with a dryness changing means for changing the dryness of the refrigerant.
【請求項2】 複数の室内熱交換器と気液分離器を有
し、この気液分離器で分離したガス冷媒を暖房室内熱交
換器に、液冷媒を冷房室内熱交換器に流し、冷媒として
非共沸混合冷媒を使用する冷媒回路を備えた冷暖同時運
転を行う多室式空気調和機において、上記暖房室内熱交
換器に流入するガス冷媒に液冷媒を注入し気液二相状態
の冷媒とする乾き度変更手段を設けたことを特徴とする
多室式空気調和機。
2. A gas refrigerant having a plurality of indoor heat exchangers and a gas-liquid separator, wherein the gas refrigerant separated by the gas-liquid separator flows through a heating indoor heat exchanger, and the liquid refrigerant flows through a cooling indoor heat exchanger. In a multi-room air conditioner that performs simultaneous cooling and heating with a refrigerant circuit using a non-azeotropic mixed refrigerant, a liquid refrigerant is injected into the gas refrigerant flowing into the heating indoor heat exchanger, and a gas-liquid two-phase state is formed. A multi-room air conditioner comprising a dryness changing means for using a refrigerant.
【請求項3】 冷媒として非共沸混合冷媒を使用し、圧
縮機から室外熱交換器をへて気液分離器に流入しこの気
液分離器で分離されたガス冷媒が、第1の室内熱交換器
及び第1の減圧手段をへて、上記気液分離器で分離され
第3の減圧手段を経た液冷媒と合流し、第2の減圧手
段、第2の室内熱交換器をへて上記圧縮機に戻る冷媒回
路を備えた多室式空気調和機において、上記第1の室内
熱交換器に流入するガス冷媒に液冷媒を注入し気液二相
状態の冷媒とする乾き度変更手段を設けたことを特徴と
する多室式空気調和機。
3. A non-azeotropic mixed refrigerant is used as the refrigerant, and the gas refrigerant flows from the compressor to the gas-liquid separator through the outdoor heat exchanger and is separated by the gas-liquid separator. After passing through the heat exchanger and the first decompression means, the liquid refrigerant separated by the gas-liquid separator and passing through the third decompression means is joined, and then passed through the second decompression means and the second indoor heat exchanger. In a multi-chamber air conditioner provided with a refrigerant circuit returning to the compressor, a dryness changing means for injecting a liquid refrigerant into a gas refrigerant flowing into the first indoor heat exchanger and converting the gas refrigerant into a gas-liquid two-phase refrigerant A multi-room air conditioner characterized by having a.
【請求項4】 気液分離器と第1の室内熱交換器を接続
する配管の途中に、気液分離器内部の液冷媒が流入する
穴を設けたことを特徴とする請求項3記載の多室式空気
調和機。
4. The gas-liquid separator according to claim 3, wherein a hole through which a liquid refrigerant inside the gas-liquid separator flows is provided in the middle of a pipe connecting the gas-liquid separator and the first indoor heat exchanger. Multi-room air conditioner.
【請求項5】 気液分離器と第1の室内熱交換器を接続
するガス冷媒配管の途中に、気液分離器と第3の減圧手
段を接続する液冷媒配管から気液混合管を介して液冷媒
を吸上げ、上記ガス冷媒配管中のガス冷媒とを混合する
気液混合部を設けたことを特徴とする請求項3記載の多
室式空気調和機。
5. A gas refrigerant pipe connecting the gas-liquid separator and the first indoor heat exchanger, a liquid refrigerant pipe connecting the gas-liquid separator and the third pressure reducing means, and a gas-liquid mixing pipe. 4. The multi-room air conditioner according to claim 3, further comprising a gas-liquid mixing section that sucks up the liquid refrigerant and mixes the liquid refrigerant with the gas refrigerant in the gas refrigerant pipe.
【請求項6】 容量可変式圧縮機、四方弁、室外熱交換
器を有する室外機と、それぞれ室内熱交換器と第1の流
量制御手段が接続された複数の室内機と、上記室外機と
高圧冷媒配管、低圧冷媒配管の2本の冷媒配管により接
続され、上記複数の室内機の室内熱交換器とガス冷媒配
管により、これらの第1の流量制御手段と中圧冷媒配管
によりそれぞれ接続される分流コントローラを備え、上
記分流コントローラは、上記室外機と接続される高圧冷
媒配管からの冷媒を気液分離し、高圧ガス冷媒配管と高
圧液冷媒配管に出力する気液分離器、この高圧液冷媒配
管と、上記室内機と接続される複数の中圧冷媒配管との
間に接続された第2の流量制御手段、上記室外機と接続
される低圧冷媒配管と上記複数の中圧冷媒配管との間に
接続された第3の流量制御手段、上記気液分離器の出力
高圧ガス冷媒配管と上記室内機に接続される複数のガス
冷媒配管とを選択的に接続する第1の切換え開閉弁、及
び上記室外機に接続される低圧冷媒配管と上記室内機に
接続される複数のガス冷媒配管とを選択的に接続する第
2の切換え開閉弁を有しており、さらに、冷媒として非
共沸混合冷媒を使用した多室式空気調和機において、上
記気液分離器の出力高圧ガス冷媒配管と上記複数の第2
の切換え開閉弁とをそれぞれ接続する冷媒配管途中に、
上記気液分離器の出力高圧液冷媒配管から気液混合管に
より、冷房主体の冷暖同時運転時に開かれる開閉弁を介
して液冷媒を吸上げ、上記気液分離器の出力高圧ガス冷
媒配管中のガス冷媒に混合する気液混合部を設けたこと
を特徴とする多室式空気調和機。
6. An outdoor unit having a variable displacement compressor, a four-way valve, and an outdoor heat exchanger, a plurality of indoor units each connected to an indoor heat exchanger and first flow control means, and the outdoor unit High-pressure refrigerant pipes and low-pressure refrigerant pipes are connected by two refrigerant pipes, and the indoor heat exchangers of the plurality of indoor units and gas refrigerant pipes are connected by first flow control means and medium-pressure refrigerant pipes, respectively. A gas-liquid separator that separates refrigerant from a high-pressure refrigerant pipe connected to the outdoor unit into gas-liquid and outputs the refrigerant to a high-pressure gas refrigerant pipe and a high-pressure liquid refrigerant pipe; A second flow control unit connected between the refrigerant pipe and the plurality of medium-pressure refrigerant pipes connected to the indoor unit, a low-pressure refrigerant pipe connected to the outdoor unit, and the plurality of medium-pressure refrigerant pipes; The third stream connected between Quantity control means, a first switching valve for selectively connecting the output high-pressure gas refrigerant pipe of the gas-liquid separator and the plurality of gas refrigerant pipes connected to the indoor unit, and connected to the outdoor unit It has a second switching valve for selectively connecting the low-pressure refrigerant pipe and the plurality of gas refrigerant pipes connected to the indoor unit. In the air conditioner, the output high-pressure gas refrigerant pipe of the gas-liquid separator and the plurality of second
In the middle of the refrigerant pipe connecting the switching valve of
From the output high-pressure liquid refrigerant pipe of the gas-liquid separator, the liquid refrigerant is sucked up by a gas-liquid mixing pipe through an on-off valve that is opened during simultaneous cooling and heating operations mainly for cooling, and the output high-pressure gas refrigerant pipe of the gas-liquid separator A multi-room air conditioner, comprising a gas-liquid mixing section for mixing with a gas refrigerant.
【請求項7】 分流コントローラの第2の流量制御手段
の上流又は下流の高圧又は中圧冷媒配管から分岐し、バ
イパス流量制御手段と、複数の中圧冷媒配管及び高圧液
冷媒配管と熱交換する過冷却熱交換器とを介して低圧冷
媒配管にいたるバイパス管路を設けたことを特徴とする
請求項6記載の多室式空気調和機。
7. A branch from a high-pressure or medium-pressure refrigerant pipe upstream or downstream of the second flow control means of the branch flow controller, and performs heat exchange with the bypass flow control means and a plurality of medium-pressure refrigerant pipes and high-pressure liquid refrigerant pipes. 7. The multi-room air conditioner according to claim 6, wherein a bypass pipe is provided to the low-pressure refrigerant pipe via the supercooling heat exchanger.
【請求項8】 バイパス流量制御手段上流の冷媒温度を
検出する第1の温度検出手段と、バイパス流量制御手段
下流の冷媒温度を検出する第2の温度検出手段と、バイ
パス流量制御手段下流の冷媒圧力を検出する第1の圧力
検出手段と、圧縮機の吐出圧力を検出する第2の圧力検
出手段と、圧縮機の吸入圧力を検出する第3の圧力検出
手段と、上記第1、第2の温度検出手段、及び上記第1
の圧力検出手段の検出値から冷媒の組成を演算する冷媒
組成演算装置と、この冷媒組成演算装置の演算値、及び
上記第2、第3の圧力検出手段の検出値に応じて、圧縮
機の運転周波数及び室外ファンの回転数を制御する圧縮
機・室外ファン制御装置とを設けたことを特徴とする請
求項7記載の多室式空気調和機。
8. A first temperature detecting means for detecting a refrigerant temperature upstream of the bypass flow rate control means, a second temperature detecting means for detecting a refrigerant temperature downstream of the bypass flow rate control means, and a refrigerant downstream of the bypass flow rate control means. A first pressure detecting means for detecting a pressure, a second pressure detecting means for detecting a discharge pressure of the compressor, a third pressure detecting means for detecting a suction pressure of the compressor, and the first and second pressure detecting means. Temperature detecting means, and the first
A refrigerant composition calculating device for calculating the composition of the refrigerant from the detected value of the pressure detecting means, and a calculated value of the refrigerant composition calculating device, and the compressor of the compressor according to the detected values of the second and third pressure detecting means. The multi-room air conditioner according to claim 7, further comprising a compressor / outdoor fan control device for controlling an operation frequency and a rotation speed of the outdoor fan.
【請求項9】 バイパス流量制御手段上流の冷媒温度を
検出する第1の温度検出手段と、バイパス流量制御手段
下流の冷媒温度を検出する第2の温度検出手段と、第2
の流量制御手段上流の高圧冷媒温度を検出する第3の温
度検出手段と、バイパス流量制御手段下流の冷媒圧力を
検出する第1の圧力検出手段と、気液分離器の出力高圧
冷媒圧力を検出する第5の圧力検出手段と、上記第1、
第2の温度検出手段、及び上記第1の圧力検出手段の検
出値から冷媒の組成を演算する冷媒組成演算装置と、こ
の冷媒組成演算装置の演算値、及び上記第5の圧力検出
手段、第3の温度検出手段の検出値に応じて、第2の流
量制御手段の開度を制御する制御器とを設けたことを特
徴とする請求項7記載の多室式空気調和機。
9. A first temperature detecting means for detecting a refrigerant temperature upstream of the bypass flow rate control means, a second temperature detecting means for detecting a refrigerant temperature downstream of the bypass flow rate control means,
Third temperature detecting means for detecting the high-pressure refrigerant temperature upstream of the flow control means, first pressure detecting means for detecting the refrigerant pressure downstream of the bypass flow control means, and detecting the output high-pressure refrigerant pressure of the gas-liquid separator. A fifth pressure detecting means for performing
A second temperature detecting means, a refrigerant composition calculating device for calculating a composition of the refrigerant from a detection value of the first pressure detecting means, a calculated value of the refrigerant composition calculating device, the fifth pressure detecting means, 8. The multi-room air conditioner according to claim 7, further comprising a controller that controls an opening of the second flow rate control means in accordance with a value detected by the temperature detection means.
【請求項10】 中圧冷媒配管の冷媒圧力を検出する第
4の圧力検出手段と、気液分離器の出力高圧冷媒圧力を
検出する第5の圧力検出手段と、上記第4の圧力検出手
段及び第5の圧力検出手段の検出値に応じて、第3の流
量制御手段の開度を制御する制御器とを設けたことを特
徴とする請求項6記載の多室式空気調和機。
10. A fourth pressure detecting means for detecting a refrigerant pressure of a medium-pressure refrigerant pipe, a fifth pressure detecting means for detecting an output high-pressure refrigerant pressure of a gas-liquid separator, and the fourth pressure detecting means. 7. A multi-room air conditioner according to claim 6, further comprising a controller for controlling an opening of said third flow control means in accordance with a value detected by said fifth pressure detection means.
【請求項11】 中圧冷媒配管の冷媒圧力を検出する第
4の圧力検出手段と、気液分離器の出力高圧冷媒圧力を
検出する第5の圧力検出手段と、バイパス流量制御手段
下流の冷媒温度を検出する第2の温度検出手段と、バイ
パス管路の過冷却熱交換器下流の冷媒温度を検出する第
4の温度検出手段と、上記第4の圧力検出手段、第5の
圧力検出手段、第2の温度検出手段、及び第4の温度検
出手段の検出値に応じて、バイパス流量制御手段の開度
を制御する制御器とを設けたことを特徴とする請求項7
記載の多室式空気調和機。
11. A fourth pressure detecting means for detecting a refrigerant pressure of the medium pressure refrigerant pipe, a fifth pressure detecting means for detecting an output high pressure refrigerant pressure of the gas-liquid separator, and a refrigerant downstream of the bypass flow rate control means. Second temperature detecting means for detecting the temperature, fourth temperature detecting means for detecting the refrigerant temperature downstream of the subcooling heat exchanger in the bypass pipe, the fourth pressure detecting means, and the fifth pressure detecting means A controller for controlling an opening of the bypass flow rate control means in accordance with a value detected by the second temperature detection means and the fourth temperature detection means.
The multi-room air conditioner as described.
【請求項12】 室内熱交換器と第1の流量制御手段と
の間の冷媒温度を検出する第5の温度検出手段と、室内
熱交換器に接続されるガス冷媒配管の冷媒温度を検出す
る第6の温度検出手段と、気液分離器の出力高圧冷媒圧
力を検出する第5の圧力検出手段と、上記第5の温度検
出手段及び第6の温度検出手段の検出値、又はこれら検
出値と上記第5の圧力検出手段で検出された高圧冷媒圧
力値の飽和温度値に応じて、第1の流量制御手段の開度
を制御する制御器とを設けたことを特徴とする請求項7
記載の多室式空気調和機。
12. A fifth temperature detecting means for detecting a refrigerant temperature between the indoor heat exchanger and the first flow control means, and a refrigerant temperature of a gas refrigerant pipe connected to the indoor heat exchanger. Sixth temperature detection means, fifth pressure detection means for detecting the output high-pressure refrigerant pressure of the gas-liquid separator, detection values of the fifth temperature detection means and sixth temperature detection means, or these detection values And a controller for controlling an opening degree of the first flow rate control means in accordance with a saturation temperature value of the high pressure refrigerant pressure value detected by the fifth pressure detection means.
The multi-room air conditioner as described.
【請求項13】 室内機の冷房と暖房の容量比に応じ
て、冷媒組成演算装置の演算値を補正することを特徴と
する請求項8または9記載の多室式空気調和機。
13. The multi-room air conditioner according to claim 8, wherein a calculation value of the refrigerant composition calculation device is corrected according to a capacity ratio between cooling and heating of the indoor unit.
JP11721897A 1997-05-07 1997-05-07 Air conditioner Pending JPH10306949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11721897A JPH10306949A (en) 1997-05-07 1997-05-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11721897A JPH10306949A (en) 1997-05-07 1997-05-07 Air conditioner

Publications (1)

Publication Number Publication Date
JPH10306949A true JPH10306949A (en) 1998-11-17

Family

ID=14706327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11721897A Pending JPH10306949A (en) 1997-05-07 1997-05-07 Air conditioner

Country Status (1)

Country Link
JP (1) JPH10306949A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150109747A (en) * 2014-03-20 2015-10-02 엘지전자 주식회사 Air Conditioner and Controlling method for the same
JPWO2014030236A1 (en) * 2012-08-23 2016-07-28 三菱電機株式会社 Refrigeration equipment
CN107906777A (en) * 2017-10-24 2018-04-13 青岛海尔空调电子有限公司 Heat pump unit
WO2020066002A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Refrigeration cycle device
JP6698951B1 (en) * 2019-02-27 2020-05-27 三菱電機株式会社 Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014030236A1 (en) * 2012-08-23 2016-07-28 三菱電機株式会社 Refrigeration equipment
KR20150109747A (en) * 2014-03-20 2015-10-02 엘지전자 주식회사 Air Conditioner and Controlling method for the same
CN107906777A (en) * 2017-10-24 2018-04-13 青岛海尔空调电子有限公司 Heat pump unit
WO2020066002A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Refrigeration cycle device
JP6698951B1 (en) * 2019-02-27 2020-05-27 三菱電機株式会社 Air conditioner
WO2020174619A1 (en) * 2019-02-27 2020-09-03 三菱電機株式会社 Air conditioning device
CN113454408A (en) * 2019-02-27 2021-09-28 三菱电机株式会社 Air conditioning apparatus
CN113454408B (en) * 2019-02-27 2022-07-01 三菱电机株式会社 Air conditioning apparatus
US11906191B2 (en) 2019-02-27 2024-02-20 Mitsubishi Electric Corporation Air-conditioning apparatus

Similar Documents

Publication Publication Date Title
JP5968534B2 (en) Air conditioner
JP6017058B2 (en) Air conditioner
JP4321095B2 (en) Refrigeration cycle equipment
JP6785988B2 (en) Air conditioner
US20240085044A1 (en) Air-conditioning apparatus
JP2006112753A (en) Refrigerating air conditioner
WO2006057141A1 (en) Air conditioner
JP5274174B2 (en) Air conditioner
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
JP6594599B1 (en) Air conditioner
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
US7451615B2 (en) Refrigeration device
JPH10306949A (en) Air conditioner
JP2008241192A (en) Refrigerating cycle device
JP4767340B2 (en) Heat pump control device
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
JP2502197B2 (en) Refrigeration cycle equipment
JP2013053849A (en) Heat pump device, and outdoor unit thereof
JPH07332814A (en) Heat pump system
JP2001241797A (en) Refrigerating cycle
JP7507963B2 (en) Refrigeration Cycle Equipment
WO2022201336A1 (en) Refrigeration cycle device
JP2003279174A (en) Air conditioning device
JPH04359767A (en) Air conditioner