WO2022201336A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022201336A1
WO2022201336A1 PCT/JP2021/012114 JP2021012114W WO2022201336A1 WO 2022201336 A1 WO2022201336 A1 WO 2022201336A1 JP 2021012114 W JP2021012114 W JP 2021012114W WO 2022201336 A1 WO2022201336 A1 WO 2022201336A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
gas
flow
switching port
Prior art date
Application number
PCT/JP2021/012114
Other languages
French (fr)
Japanese (ja)
Inventor
創一朗 越
拓也 松田
宗希 石山
雄亮 田代
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180095839.6A priority Critical patent/CN116981894A/en
Priority to PCT/JP2021/012114 priority patent/WO2022201336A1/en
Priority to JP2023508236A priority patent/JPWO2022201336A1/ja
Priority to EP21932946.3A priority patent/EP4317847A4/en
Publication of WO2022201336A1 publication Critical patent/WO2022201336A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present disclosure relates to a refrigeration cycle device.
  • Patent Document 1 describes a refrigeration cycle device using a non-azeotropic refrigerant mixture, which includes a compressor, a condenser, a pressure reducer, a first evaporator, a second evaporator, a gas-liquid A separator is connected to guide the gaseous refrigerant separated by the gas-liquid separator to the suction side of the compressor, and to guide the liquid refrigerant separated by the gas-liquid separator to the second evaporator. It is proposed to
  • Patent Literature 1 discloses a technique of applying a gas-liquid separator exclusively to the evaporator. For this reason, there is a problem that the technology cannot be fully utilized in a system in which the heat exchanger functions not only as an evaporator but also as a condenser.
  • An object of the present invention is to provide a refrigeration cycle device capable of
  • the present disclosure relates to a refrigeration cycle device.
  • the refrigeration cycle device includes a compressor, a first heat exchanger, a second heat exchanger, a third heat exchanger, an expansion device, a gas-liquid separator, a first flow rate adjusting device, and a switching device.
  • the switching device is configured to switch the refrigerant circulation path between a first route corresponding to the first operation mode and a second route corresponding to the second operation mode. In the first route, the refrigerant flows in the order of the compressor, the first heat exchanger, the expansion device, the second heat exchanger, and the gas-liquid separator.
  • the gaseous refrigerant flowing into the heat exchanger and discharged from the gas-liquid separator passes through the first flow control device and joins with the refrigerant discharged from the third heat exchanger at a first junction,
  • the refrigerant merged at the first junction flows to the compressor.
  • the refrigerant flows in the order of the compressor, the second heat exchanger, and the gas-liquid separator, and the gas-state refrigerant discharged from the gas-liquid separator passes through the first flow control device.
  • the liquid state refrigerant that flows into the third heat exchanger and is discharged from the gas-liquid separator joins the refrigerant discharged from the third heat exchanger at the second junction, and joins at the second junction Refrigerant flows through the expansion device, the first heat exchanger, and the compressor in that order.
  • the refrigeration cycle apparatus of the present disclosure it is possible to improve the operating efficiency using the gas-liquid separator regardless of whether the heat exchanger functions as an evaporator or a condenser.
  • FIG. 1 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device (Embodiment 1);
  • FIG. FIG. 4 is a diagram showing the flow of refrigerant in the first operation mode of the refrigeration cycle device (Embodiment 1);
  • FIG. 4 is a diagram showing the flow of refrigerant in the second operation mode of the refrigeration cycle device (Embodiment 1);
  • FIG. 4 is a ph diagram showing changes in refrigerant state in a first operation mode (Embodiment 1).
  • FIG. 4 is a ph diagram showing changes in refrigerant state in a second operation mode (Embodiment 1).
  • 4 is a flow chart for explaining control of a control device in a first operation mode (Embodiment 1).
  • FIG. 4 is a flowchart for explaining control of a control device in a second operation mode (Embodiment 1).
  • FIG. 4 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device (Embodiment 2).
  • FIG. 11 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device (Embodiment 3).
  • 9 is a flowchart for explaining control of the control device in the second operation mode (Embodiment 3).
  • FIG. 1 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to Embodiment 1.
  • the refrigeration cycle device 100 includes a compressor 1, an expansion device 3, a four-way valve 4, a gas-liquid separator 6, a first heat exchanger 10, a second heat exchanger 20, a third heat exchanger 30, and a first flow control device. 51 and a refrigerant circuit including at least a control device 90 .
  • the first heat exchanger 10 is mounted on the indoor unit.
  • the second heat exchanger 20 and the third heat exchanger 30 are mounted on the outdoor unit.
  • a gas-liquid separator 6 is arranged between the second heat exchanger 20 and the third heat exchanger 30 .
  • This configuration is equivalent to a configuration in which the heat exchanger on the outdoor unit side is divided into two heat exchangers and the gas-liquid separator 6 is arranged between one heat exchanger and the other heat exchanger.
  • the second heat exchanger 20 has a first port P1 and a second port P2.
  • the third heat exchanger 30 has a third port P3 and a fourth port P4.
  • the gas-liquid separator 6 includes an inflow port P61, a gas discharge port P62, and a liquid discharge port P63. Between the gas discharge port P62 and the third heat exchanger 30, a first flow rate adjusting device 51 that adjusts the flow rate of refrigerant is provided.
  • the first flow rate adjusting device 51 includes a valve for adjusting the flow rate of the refrigerant.
  • the first flow control device 51 changes the flow rate of the refrigerant by adjusting the opening degree of the valve.
  • the gas discharge port P62 is connected to the third port P3 of the third heat exchanger 30 via the first flow control device 51.
  • the gas discharge port P62 discharges gaseous refrigerant from the gas-liquid separator 6 .
  • the liquid discharge port P63 is connected to the fourth port P4 of the third heat exchanger 30 .
  • the liquid discharge port P63 discharges liquid refrigerant from the gas-liquid separator 6 .
  • the refrigerant in gas state will be referred to as gas refrigerant
  • the refrigerant in liquid state will be referred to as liquid refrigerant.
  • refrigerant is simply used.
  • the four-way valve 4 has a first switching port P41, a second switching port P42, a third switching port P43, and a fourth switching port P44.
  • a discharge port of the compressor 1 is connected to the first switching port P41, and a suction port of the compressor 1 is connected to the second switching port P42.
  • a first check valve 41 , a second check valve 42 , a third check valve 43 and a fourth check valve 44 are provided in the refrigerant circuit of the refrigeration cycle device 100 .
  • the first check valve 41 is provided between the fourth switching port P44 of the four-way valve 4 and the point a shown in FIG. 1 on the refrigerant circuit.
  • a point a corresponds to a first confluence point where the refrigerant discharged from the third port P3 of the third heat exchanger 30 and the refrigerant discharged from the first flow control device 51 join.
  • the first check valve 41 blocks the flow of refrigerant from the fourth switching port P44 toward the first junction a.
  • the second check valve 42 is provided between the fourth switching port P44 of the four-way valve 4 and the first port P1 of the second heat exchanger 20.
  • the second check valve 42 blocks the flow of refrigerant from the expansion device 3 toward the fourth switching port P44 of the four-way valve 4 .
  • the third check valve 43 is provided between the fourth switching port P44, the expansion device 3, and the first port P1 of the second heat exchanger 20.
  • the third check valve 43 blocks the flow of refrigerant from the fourth switching port to the expansion device 3 .
  • the fourth check valve 44 is provided between the expansion device 3 and the point b shown in FIG. 1 on the refrigerant circuit.
  • a point b corresponds to a second confluence point where the refrigerant discharged from the fourth port P4 of the third heat exchanger 30 and the refrigerant discharged from the liquid discharge port P63 of the gas-liquid separator 6 join.
  • the fourth check valve 44 blocks the flow of refrigerant from the expansion device 3 to the second junction b.
  • the four-way valve 4 changes between the first state and the second state.
  • the first switching port P41 communicates with the third switching port P43
  • the second switching port P42 communicates with the fourth switching port P44.
  • the first switching port P41 communicates with the fourth switching port P44
  • the second switching port P42 communicates with the third switching port P43.
  • the four-way valve 4 switches the direction in which the refrigerant discharged from the compressor 1 flows through the flow path by changing between the first state and the second state.
  • the four-way valve 4, the first check valve 41, the second check valve 42, the third check valve 43, and the fourth check valve 44 function so that the refrigerant circulates in the first order and the second order. Switch to the order. As a result, the operation mode of the refrigeration cycle device 100 is switched between the first operation mode and the second operation mode.
  • the first operation mode high pressure refrigerant flows into the first heat exchanger 10 .
  • the second operation mode low pressure refrigerant flows into the first heat exchanger 10 .
  • the first operation mode corresponds to heating operation
  • the second operation mode corresponds to cooling operation.
  • the control device 90 sets the four-way valve 4 to the first state in the first operation mode, and sets the four-way valve 4 to the second state in the second operation mode.
  • the four-way valve 4, the first check valve 41, the second check valve 42, the third check valve 43, and the fourth check valve 44 constitute a switching device 40 for switching the operation mode.
  • the switching device 40 switches the route in which the refrigerant discharged from the compressor 1 circulates between a first route corresponding to the first operation mode and a second route corresponding to the second operation mode.
  • a plurality of temperature sensors including a first temperature sensor 71 , a second temperature sensor 72 and a third temperature sensor 73 are provided in the refrigerant circuit of the refrigeration cycle device 100 .
  • the first temperature sensor 71 is provided on the side of the gas-liquid separator 6 from which gaseous refrigerant is discharged. More specifically, the first temperature sensor 71 is provided between the side of the gas-liquid separator 6 from which gaseous refrigerant is discharged and the first flow rate adjusting device 51 .
  • the second temperature sensor 72 is provided on the third port P3 side of the third heat exchanger 30 . More specifically, the second temperature sensor 72 is provided between the third port P3 side of the third heat exchanger 30 and the first junction a.
  • the third temperature sensor 73 is provided on the fourth port P4 side of the third heat exchanger 30 . More specifically, the third temperature sensor 73 is provided between the fourth port P4 side of the third heat exchanger 30 and the second junction b.
  • the control device 90 includes a processor 91 and a memory 92 .
  • the memory 92 includes ROM (Read Only Memory) and RAM (Random Access Memory).
  • the processor 91 expands a program stored in ROM into RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures of the control device 90 are described.
  • the control device 90 controls each device in the refrigeration cycle device 100 according to a program stored in the memory 92 .
  • the control device 90 controls the compressor 1 , the expansion device 3 , the four-way valve 4 and the first flow control device 51 .
  • the second heat exchanger 20 is located upstream of the refrigerant. is located, and the third heat exchanger 30 is located downstream of the refrigerant.
  • a non-azeotropic mixed refrigerant such as R466A will be described as an example of the refrigerant.
  • a non-azeotropic refrigerant mixture is formed by mixing two or more refrigerants with different boiling points. For this reason, the non-azeotropic mixed refrigerant has the characteristic that a deviation occurs between the saturated gas temperature and the saturated liquid temperature under a constant pressure. Generally, the saturated gas temperature is higher than the saturated liquid temperature. Such temperature differences are called temperature gradients.
  • the present disclosure proposes a configuration that can improve driving performance while reducing pressure loss when a non-azeotropic refrigerant mixture is used.
  • the present disclosure proposes a configuration applicable to both the first operating mode and the second operating mode.
  • the heat exchanger in the outdoor unit is divided into a second heat exchanger 20 on the upstream side and a third heat exchanger 30 on the downstream side.
  • a gas-liquid separator 6 is arranged in the flow path on the way to the heat exchanger 30 .
  • the operating capability is improved by flowing liquid refrigerant or gas refrigerant to the third heat exchanger 30 on the downstream side according to the operation mode.
  • the refrigerant applicable to the refrigeration cycle device 100 is not limited to the non-azeotropic mixed refrigerant.
  • FIG. 2 is a diagram showing the flow of refrigerant in the first operation mode of refrigeration cycle apparatus 100. As shown in FIG. The refrigerant flow in the first operation mode will be described with reference to FIG. In the first operation mode, the control device 90 controls the four-way valve 4 so that the flow path indicated by the solid line in FIG. 2 is formed in the four-way valve 4 .
  • the switching device 40 including the four-way valve 4 works to cause the refrigerant to flow through the refrigerant circuit of the refrigeration cycle device 100 as indicated by the arrow. That is, the refrigerant discharged from the compressor 1 passes through the first switching port P41 and the third switching port P43 of the four-way valve 4, the first heat exchanger 10, the expansion device 3, the second heat exchanger 20, the gas-liquid It flows through the separator 6 in order. After that, the liquid refrigerant discharged from the liquid discharge port P63 of the gas-liquid separator 6 flows into the third heat exchanger 30 from the fourth port P4.
  • the gas refrigerant discharged from the gas discharge port P62 of the gas-liquid separator 6 passes through the first flow rate adjusting device 51 toward the first junction a shown in FIG.
  • the refrigerant discharged from the third port P3 of the third heat exchanger 30 also flows into the first junction a.
  • the refrigerant merged from two directions at the first confluence point a flows into the suction port of the compressor 1 via the four-way valve 4 .
  • the first route of the refrigerant in the first operation mode is configured by the route of the refrigerant outlined above. That is, in the first route, the refrigerant flows through the compressor 1, the first heat exchanger 10, the expansion device 3, the second heat exchanger 20, and the gas-liquid separator 6 in this order, and then is discharged from the gas-liquid separator 6. While the liquid state refrigerant discharged from the gas-liquid separator 6 flows into the third heat exchanger 30, the gas state refrigerant discharged from the gas-liquid separator 6 flows from the third heat exchanger 30 via the first flow rate adjusting device 51 It merges with the discharged refrigerant at the first confluence point a. The refrigerant merged at the first junction a flows into the compressor 1 .
  • the refrigerant flow in the first operation mode will be described in more detail.
  • the first heat exchanger 10 on the indoor unit side functions as a condenser
  • the second heat exchanger 20 and the third heat exchanger 30 on the outdoor unit side function as evaporators.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows into the first heat exchanger 10 on the indoor unit side after passing through the four-way valve 4 .
  • the gas refrigerant that has flowed into the first heat exchanger 10 is condensed by radiating heat to the indoor air. As a result, liquefaction of the refrigerant progresses in the first heat exchanger 10 .
  • the refrigerant discharged from the first heat exchanger 10 flows into the expansion device 3 .
  • the expansion device 3 has a valve for adjusting the degree of expansion of the refrigerant.
  • the refrigerant discharged from the first heat exchanger 10 expands in the expansion device 3 to change into a two-phase refrigerant in which gas and liquid are mixed.
  • the two-phase refrigerant discharged from the expansion device 3 passes through the third check valve 43 and flows from the first port P1 into the second heat exchanger 20 on the outdoor unit side.
  • a fourth check valve 44 blocks the flow of refrigerant from the expansion device 3 toward the second junction b.
  • the two-phase refrigerant with a higher degree of dryness is discharged from the second port P2 of the second heat exchanger 20.
  • the two-phase refrigerant discharged from the second port P2 flows into the gas-liquid separator 6 from the inflow port P61 and is separated into gas refrigerant and liquid refrigerant.
  • the liquid refrigerant separated by the gas-liquid separator 6 is discharged from the liquid discharge port P63.
  • the liquid refrigerant discharged from the liquid discharge port P63 flows into the third heat exchanger 30 from the fourth port P4. At this time, the liquid refrigerant discharged from the liquid discharge port P63 does not flow through the fourth check valve 44 to the expansion device 3 side. This is because the pressure of the liquid refrigerant discharged from the liquid discharge port P63 is lower than the pressure of the refrigerant flowing from the expansion device 3 toward the third check valve 43.
  • the pressure difference corresponds to the pressure loss between the second heat exchanger 20 portion and the third check valve 43 portion.
  • the third temperature sensor 73 detects the temperature of the liquid refrigerant flowing into the third heat exchanger 30 from the fourth port P4. The temperature detected by the third temperature sensor 73 is transmitted to the control device 90 .
  • the gas refrigerant separated by the gas-liquid separator 6 is discharged from the gas discharge port P62.
  • the gas refrigerant discharged from the gas discharge port P ⁇ b>62 passes through the first flow control device 51 toward the first junction a on the downstream side of the third heat exchanger 30 without flowing into the third heat exchanger 30 . Therefore, of the second heat exchanger 20 and the third heat exchanger 30 in the outdoor unit, the liquid refrigerant flows into the downstream third heat exchanger 30, and the gas refrigerant does not flow.
  • the first temperature sensor 71 detects the temperature of the gas refrigerant separated by the gas-liquid separator 6 .
  • the temperature detected by the first temperature sensor 71 is transmitted to the control device 90 .
  • This temperature is equivalent to the saturated gas temperature of the refrigerant flowing into the gas-liquid separator 6 .
  • the control device 90 estimates the pressure inside the gas-liquid separator 6 from the temperature detected by the first temperature sensor 71 .
  • the liquid refrigerant exchanges heat with the outside air and gasifies.
  • gas refrigerant does not flow into the third heat exchanger 30 , no temperature gradient occurs in the third heat exchanger 30 .
  • the temperature in the third heat exchanger 30 is not uneven.
  • the gasified refrigerant in the third heat exchanger 30 is discharged from the third port P3.
  • the second temperature sensor 72 detects the temperature of the gas refrigerant discharged from the third port P3.
  • the temperature detected by the second temperature sensor 72 is transmitted to the control device 90 .
  • the temperature detected by the second temperature sensor 72 corresponds to the outlet temperature of the evaporator in the first operating mode.
  • the control device 90 estimates the degree of superheat (SH: Super Heat) at the evaporator outlet based on the temperature detected by the first temperature sensor 71 and the temperature detected by the second temperature sensor 72 .
  • the gas refrigerant discharged from the third port P3 of the third heat exchanger 30 joins with the gas refrigerant discharged from the first flow control device 51 at the first confluence point a.
  • the gas refrigerant merged from two directions flows into the suction side of the compressor 1 through the first check valve 41 and the four-way valve 4 .
  • the gas refrigerant does not flow to the second heat exchanger 20 through the second check valve 42 .
  • the pressure difference corresponds to the pressure loss between the second heat exchanger 20 and the first check valve 41 .
  • FIG. 3 is a diagram showing the flow of refrigerant in the second operation mode of refrigeration cycle apparatus 100. As shown in FIG. The refrigerant flow in the second operation mode will be described with reference to FIG. In the second operation mode, the control device 90 controls the four-way valve 4 so that the flow path indicated by the solid line in FIG. 3 is formed in the four-way valve 4 .
  • the switching device 40 including the four-way valve 4 works to cause the refrigerant to flow through the refrigerant circuit of the refrigeration cycle device 100 as indicated by the arrow. That is, the refrigerant discharged from the compressor 1 passes through the first switching port P41 and the fourth switching port P44 of the four-way valve 4 and flows through the second heat exchanger 20 and the gas-liquid separator 6 in this order. After that, the gas refrigerant discharged from the gas discharge port P62 of the gas-liquid separator 6 flows into the third heat exchanger 30 from the third port P3 via the first flow control device 51 .
  • the liquid refrigerant discharged from the liquid discharge port P63 of the gas-liquid separator 6 joins the refrigerant discharged from the fourth port P4 of the third heat exchanger 30 at the second junction b.
  • the refrigerant merged at the second junction b flows through the expansion device 3 and the first heat exchanger 10 in this order, and then flows through the four-way valve 4 to the suction port of the compressor 1 .
  • the refrigerant route outlined above constitutes the second refrigerant route in the second operation mode. That is, in the second route, the refrigerant flows through the compressor 1, the second heat exchanger 20, and the gas-liquid separator 6 in this order, and then the gaseous refrigerant discharged from the gas-liquid separator 6 is adjusted to the first flow rate. While flowing into the third heat exchanger 30 via the device 51, the liquid state refrigerant discharged from the gas-liquid separator 6 joins the refrigerant discharged from the third heat exchanger 30 at the second junction b After joining, the refrigerant joined at the second joining point b flows through the expansion device 3, the first heat exchanger 10, and the compressor 1 in this order.
  • the indoor unit side first heat exchanger 10 functions as an evaporator
  • the outdoor unit side second heat exchanger 20 and third heat exchanger 30 function as condensers.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows from the first port P1 through the second check valve 42 into the second heat exchanger 20 on the outdoor unit side. do.
  • a first check valve 41 blocks the flow of refrigerant from the four-way valve 4 toward the first confluence point a.
  • the gas refrigerant that has flowed into the second heat exchanger 20 is condensed by radiating heat to the outside air, and changes into a two-phase refrigerant in which gas and liquid are mixed.
  • the two-phase refrigerant discharged from the second port of the second heat exchanger 20 flows into the gas-liquid separator 6 from the inflow port P61 and is separated into gas refrigerant and liquid refrigerant.
  • the gas refrigerant separated by the gas-liquid separator 6 is discharged from the gas discharge port P62.
  • the gas refrigerant discharged from the gas discharge port P62 flows into the third heat exchanger 30 from the third port P3 through the first flow regulating device 51 .
  • the gas refrigerant discharged from the first flow control device 51 does not flow through the first check valve 41 to the fourth switching port P44 side of the four-way valve 4 .
  • the reason for this is that the pressure of the gaseous refrigerant discharged from the first flow rate adjusting device 51 is lower than the pressure of the refrigerant at the fourth switching port P44 of the four-way valve 4 .
  • the pressure difference corresponds to the pressure loss between the four-way valve 4 and the first check valve 41 .
  • the liquid refrigerant separated by the gas-liquid separator 6 is discharged from the liquid discharge port P63.
  • the liquid refrigerant discharged from the liquid discharge port P ⁇ b>63 goes downstream of the third heat exchanger 30 without flowing into the third heat exchanger 30 . Therefore, of the second heat exchanger 20 and the third heat exchanger 30 in the outdoor unit, the gas refrigerant flows into the downstream third heat exchanger 30, and the liquid refrigerant does not flow.
  • the gas refrigerant exchanges heat with the outside air and condenses. As a result, liquefaction of the refrigerant progresses in the third heat exchanger 30 . As described above, no liquid refrigerant flows into the third heat exchanger 30 , so no temperature gradient occurs in the third heat exchanger 30 . As a result, the temperature in the third heat exchanger 30 is not uneven.
  • the liquid refrigerant discharged from the fourth port P4 of the third heat exchanger 30 joins the liquid refrigerant discharged from the liquid discharge port P63 of the gas-liquid separator 6 at the second junction b.
  • the liquid refrigerant merged at the second junction b flows into the expansion device 3 through the fourth check valve 44 .
  • liquid refrigerant does not flow to the second heat exchanger 20 through the third check valve 43 .
  • the refrigerant pressure at the fourth check valve 44 portion is lower than the refrigerant pressure at the first port P1 portion of the second heat exchanger 20 .
  • the pressure difference corresponds to the pressure loss of the second heat exchanger 20 , the first flow regulating device 51 and the fourth check valve 44 .
  • the refrigerant that has flowed into the expansion device 3 is expanded by the expansion device 3, and then flows into the first heat exchanger 10 on the indoor unit side.
  • the refrigerant that has flowed into the first heat exchanger 10 absorbs heat from the indoor air and evaporates, and then flows into the suction side of the compressor 1 through the four-way valve 4 .
  • the first check valve 41 and the second check valve 42 constitute a first valve mechanism.
  • a second valve mechanism is configured by the third check valve 43 and the fourth check valve 44 .
  • the first valve mechanism communicates the expansion device 3 with the first port P1 of the second heat exchanger 20 in the first operation mode in which the four-way valve 4 is in the first state, and the expansion device 3 communicates with the third heat exchanger. Communication with the fourth port P4 of the exchanger 30 is cut off.
  • the first valve mechanism opens the flow of refrigerant from the first junction a to the fourth switching port P44 and blocks the flow of refrigerant from the expansion device 3 to the fourth switching port P44. Furthermore, in the second operation mode, the first valve mechanism opens the flow of refrigerant from the fourth switching port P44 to the second heat exchanger 20, and allows the flow of refrigerant from the fourth switching port P44 to the first junction a. block the
  • the second valve mechanism opens the flow of refrigerant from the expansion device 3 to the second heat exchanger 20, blocks the flow of refrigerant from the expansion device 3 to the second junction b, and In the second operation mode, the refrigerant flow from the second junction b to the expansion device 3 is opened, and the refrigerant flow from the fourth switching port P44 to the expansion device 3 is blocked.
  • FIG. 4 is a ph diagram showing changes in refrigerant state in the first operation mode.
  • FIG. 4 will be described with reference to FIG.
  • hout, hout', hg, hl, hin, and hsep shown in FIG. 4 respectively correspond to Pout, Poout', Pog, Pol, Poin, and Posep in FIG.
  • the enthalpy at Poin in the refrigerant circuit of FIG. 2 corresponds to hin shown in FIG.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is condensed by the first heat exchanger 10 .
  • the refrigerant is two-phased into a gas refrigerant and a liquid refrigerant in the expansion device 3 and then flows into the second heat exchanger 20 .
  • the enthalpy of the refrigerant at this time is hin.
  • Two-phase refrigerant with a higher dryness is discharged from the second heat exchanger 20 .
  • the discharged two-phase refrigerant flows into the gas-liquid separator 6 .
  • the enthalpy of the refrigerant at this time is hsep.
  • the two-phase refrigerant that has flowed into the gas-liquid separator 6 is separated into gas refrigerant and liquid refrigerant in the gas-liquid separator 6 .
  • the gas refrigerant discharged from the gas-liquid separator 6 goes to the first flow control device 51 .
  • the enthalpy of the gas refrigerant at this time is hg.
  • the gas refrigerant discharged from the gas-liquid separator 6 goes to the third heat exchanger 30 .
  • the enthalpy of the liquid refrigerant at this time is hl.
  • the amount of refrigerant flowing into the gas-liquid separator 6 is X [kg/hr]
  • the amount of gas refrigerant discharged from the gas-liquid separator 6 is Y [kg/hr]
  • the evaporation capacity is represented by the following formula (1).
  • the flow rate X is determined by the rotation speed of the compressor 1, the suction density of the compressor 1, and the like.
  • the flow rate Y and the flow rate Z are determined by the degree of opening of the first flow control device 51 attached to the gas refrigerant outlet side of the gas-liquid separator 6 .
  • the enthalpy hsep of the refrigerant flowing into the gas-liquid separator 6 can be adjusted by adjusting the size of the second heat exchanger 20 functioning as an evaporator, the air volume, and the like. Therefore, by adjusting the degree of opening of the first flow rate adjusting device 51 while considering the composition change of the refrigerant, the evaporation capacity can be improved.
  • the liquid refrigerant that has flowed into the third heat exchanger 30 exchanges heat with the outside air and is gasified. As a result, the enthalpy of the refrigerant discharged from the third heat exchanger 30 becomes hout'.
  • the gas refrigerant discharged from the third heat exchanger 30 joins with the gas refrigerant discharged from the first flow control device 51 at the confluence point a. The enthalpy of the gas refrigerant at this time is hout. After that, the gas refrigerant returns to the compressor 1 through the four-way valve 4 .
  • pressure loss can be reduced compared to the case where the entire amount of the two-phase refrigerant flows through the third heat exchanger 30 .
  • the dryness at the inlet of the third heat exchanger 30 becomes almost zero. Therefore, the flow velocity of the refrigerant flowing through the third heat exchanger 30 can be lowered compared to the case where the two-phase refrigerant flows. As a result, pressure loss can be improved also from the viewpoint of flow velocity.
  • the present embodiment only the liquid refrigerant with almost zero dryness is allowed to flow to the third heat exchanger 30 .
  • Such a liquid refrigerant is less susceptible to gravity and flow bias. Therefore, by allowing only the liquid refrigerant to flow through the third heat exchanger 30, the flow rate of the refrigerant in each flow path can be made uniform. As a result, according to the present embodiment, it is possible to improve the unevenness of the coolant temperature due to the temperature gradient.
  • the amount of liquid refrigerant flowing through the third heat exchanger 30 can be controlled by adjusting the degree of opening of the first flow rate adjusting device 51 .
  • the degree of opening of the first flow rate adjusting device 51 For example, when the rotation speed of the compressor 1 and the opening degree of the expansion device 3 are constant and the opening degree of the first flow rate adjusting device 51 is increased, bypass to the outlet side of the third heat exchanger 30 functioning as an evaporator.
  • the amount of gas refrigerant flowing through the third heat exchanger 30 increases, and the amount of liquid refrigerant flowing through the third heat exchanger 30 decreases.
  • the degree of superheat at the outlet of the third heat exchanger 30 increases.
  • the degree of opening of the first flow rate adjusting device 51 is reduced, the amount of liquid refrigerant flowing into the third heat exchanger 30 increases, so the liquid refrigerant does not completely gasify inside the third heat exchanger 30 .
  • the degree of superheat is reduced. Therefore, the degree of superheat at the outlet of the third heat exchanger 30 can be controlled to an optimum value by adjusting the degree of opening of the first flow rate adjusting device 51 and increasing or decreasing the amount of bypass gas refrigerant. can.
  • the degree of superheat at the outlet of the third heat exchanger 30 can be estimated based on the temperature detected by the first temperature sensor 71 and the temperature detected by the second temperature sensor 72 . Since the non-azeotropic refrigerant mixture has a temperature gradient, it is difficult to estimate the saturation temperature from the temperature of the refrigerant in the two-phase state. It can accurately estimate the degree of superheat.
  • FIG. 5 is a ph diagram showing changes in refrigerant state in the second operation mode.
  • FIG. 5 will be described with reference to FIG.
  • hout, hout', hg, hl, hin, and hsep in FIG. 5 correspond to Pout, Poout', Pog, Pol, Poin, and Posep in FIG. 3, respectively.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows into the second heat exchanger 20 .
  • the enthalpy of the refrigerant at this time is hin.
  • the refrigerant that has flowed into the second heat exchanger 20 is condensed and discharged as a two-phase refrigerant.
  • the two-phase refrigerant discharged from the second heat exchanger 20 flows into the gas-liquid separator 6 .
  • the enthalpy of the refrigerant at this time is hsep.
  • the two-phase refrigerant that has flowed into the gas-liquid separator 6 is separated into gas refrigerant and liquid refrigerant in the gas-liquid separator 6 .
  • the gas refrigerant discharged from the gas-liquid separator 6 goes to the third heat exchanger 30 through the first flow control device 51 .
  • the enthalpy of the gas refrigerant before the first flow control device 51 is hg.
  • the liquid refrigerant discharged from the gas-liquid separator 6 goes downstream of the third heat exchanger 30 .
  • the enthalpy of the liquid refrigerant at this time is hl.
  • the amount of refrigerant flowing into the gas-liquid separator 6 is X [kg/hr]
  • the amount of gas refrigerant discharged from the gas-liquid separator 6 is Y [kg/hr]
  • the condensation capacity is represented by the following formula (2).
  • the gas refrigerant that has flowed into the third heat exchanger 30 exchanges heat with the outside air and condenses. As a result, the enthalpy of the refrigerant discharged from the third heat exchanger 30 becomes hout'.
  • the refrigerant discharged from the third heat exchanger 30 joins the liquid refrigerant discharged from the gas-liquid separator 6 at the second junction b.
  • the enthalpy of the refrigerant at this time is hout.
  • the refrigerant is expanded by the expansion device 3 , flows into the first heat exchanger 10 , evaporates, and then returns to the compressor 1 through the four-way valve 4 .
  • the second operation mode when the non-azeotropic refrigerant mixture flows into the second heat exchanger 20 on the outdoor unit side, the refrigerant with a high boiling point is preferentially condensed in the second heat exchanger 20 rather than the refrigerant with a low boiling point. be. Therefore, most of the gas refrigerant in the gas-liquid separator 6 is low boiling point refrigerant, and most of the liquid refrigerant in the gas/liquid separator 6 is high boiling point refrigerant. In the second operation mode, only the gaseous refrigerant separated by the gas-liquid separator 6 flows to the third heat exchanger 30, so that the refrigerant with a low boiling point component is condensed in the third heat exchanger 30.
  • the gas-liquid separator 6, of the second heat exchanger 20 and the third heat exchanger 30 by using the gas-liquid separator 6, of the second heat exchanger 20 and the third heat exchanger 30, the low boiling point component is transferred to the third heat exchanger 30 on the downstream side.
  • a large amount of refrigerant can flow.
  • the efficiency of the refrigeration cycle can be improved.
  • the amount of refrigerant flowing to the third heat exchanger 30 is adjusted by adjusting the opening degree of the first flow rate adjusting device 51 while considering the composition change of the refrigerant. can be adjusted. For example, if the opening of the first flow control device 51 is increased while the rotation speed of the compressor 1 and the opening of the expansion device 3 are kept constant, the amount of gaseous refrigerant flowing to the third heat exchanger 30 increases. .
  • the degree of supercooling (SC: Supercool) at the outlet of the third heat exchanger 30 is lowered.
  • SC Supercool
  • the degree of opening of the first flow rate adjusting device 51 is decreased, the degree of supercooling increases. Therefore, by adjusting the opening degree of the first flow rate adjusting device 51 and increasing or decreasing the amount of gaseous refrigerant flowing to the third heat exchanger 30, the degree of subcooling at the outlet portion of the third heat exchanger 30 is optimized. can be controlled to be
  • the degree of subcooling at the outlet of the third heat exchanger 30 can be estimated based on the temperature detected by the first temperature sensor 71 and the temperature detected by the third temperature sensor 73 .
  • FIG. 6 is a flow chart for explaining the control of the control device 90 in the first operation mode.
  • the control device 90 changes the rotation speed of the compressor 1 (step S1).
  • the rotation speed of the compressor 1 is determined by the difference between the temperature set by the remote controller of the indoor unit and the room temperature.
  • the controller 90 changes the rotation speed of the compressor 1 to an appropriate value.
  • control device 90 adjusts the opening degree of the expansion device 3 (step S2).
  • control device 90 calculates the degree of supercooling (SC: Super cool) at the outlet of the first heat exchanger 10 that functions as a condenser (step S3).
  • the degree of supercooling at the outlet of the first heat exchanger 10 can be calculated, for example, from the temperature at the outlet of the first heat exchanger 10 and the pressure of the first heat exchanger 10 . Therefore, a sensor for detecting temperature and a sensor for detecting pressure should be appropriately arranged in the refrigerant circuit.
  • control device 90 determines whether or not the degree of subcooling at the outlet of the first heat exchanger 10 functioning as a condenser is within the target range (step S4).
  • the opening degree of the expansion device 3 is adjusted again.
  • the control device 90 keeps the expansion device 3 open degree repeatedly adjust.
  • the target value area is the target value ⁇ target error.
  • control device 90 determines in step S4 that the degree of subcooling at the outlet of the first heat exchanger 10 is within the target region, it adjusts the opening degree of the first flow rate adjusting device 51 (step S5).
  • control device 90 calculates the degree of superheat (SH: Superheat) at the outlet of the third heat exchanger 30 that functions as an evaporator (step S6). At this time, the controller 90 calculates the degree of superheat at the outlet of the third heat exchanger 30 based on the temperature detected by the first temperature sensor 71 and the temperature detected by the second temperature sensor 72 .
  • control device 90 determines whether or not the degree of superheat at the outlet of the third heat exchanger 30 functioning as an evaporator is within the target range (step S7).
  • the control device 90 determines that the degree of superheat at the outlet of the third heat exchanger 30 is not within the target value, in step S5, the opening degree of the first flow rate adjusting device 51 is adjusted again.
  • control device 90 keeps the first flow control device 51 in step S5 until the degree of superheat at the outlet of the third heat exchanger 30 is within the target region set for each rotation speed of the compressor 1. Repeatedly adjust the opening.
  • the controller 90 determines that the degree of superheat at the outlet of the third heat exchanger 30 is within the target range, the process ends.
  • the control device 90 closes the flow path by setting the opening degree of the first flow rate adjusting device 51 to zero, and the gas refrigerant is subjected to the third heat exchange. You may make it flow to the vessel 30. In this case, the control device 90 checks whether the rotation speed of the compressor 1 is within a specified rotation speed range each time the rotation speed of the compressor 1 changes.
  • control device 90 performs the third heat exchange based on the detection value of the first temperature sensor 71 and the detection value of the second temperature sensor 72 in the first operation mode.
  • the degree of superheat of the third heat exchanger 30 is controlled by calculating the degree of superheat of the heat exchanger 30 and adjusting the degree of opening of the first flow control device 51 .
  • FIG. 7 is a flow chart for explaining the control of the control device 90 in the second operation mode.
  • the control device 90 changes the rotation speed of the compressor 1 (step S11) as in the process of step S1.
  • the control device 90 adjusts the opening degree of the expansion device 3 so that the discharge temperature of the compressor 1 is within the target range (step S12).
  • the discharge temperature of the compressor 1 can be specified, for example, based on the detected value of a temperature sensor provided in the discharge portion of the compressor 1 .
  • the control device 90 determines whether or not the discharge temperature of the compressor 1 is within the target range (step S13). When the control device 90 determines that the discharge temperature of the compressor 1 is not within the target range, the opening degree of the expansion device 3 is adjusted again in step S12.
  • control device 90 determines in step S13 that the discharge temperature of the compressor 1 is within the target range, it adjusts the opening degree of the first flow rate adjusting device 51 (step S14).
  • control device 90 calculates the degree of supercooling at the outlet of the third heat exchanger 30 that functions as a condenser (step S15). At this time, the controller 90 calculates the degree of subcooling at the outlet of the third heat exchanger 30 based on the temperature detected by the first temperature sensor 71 and the temperature detected by the third temperature sensor 73 .
  • control device 90 determines whether or not the degree of subcooling at the outlet of the third heat exchanger 30 functioning as a condenser is within a target range set for each rotation speed of the compressor 1 (step S16).
  • the opening degree of the first flow control device 51 is adjusted again.
  • control device 90 keeps the first flow rate adjusting device 51 Repeatedly adjust the opening of the When the controller 90 determines that the degree of subcooling at the outlet of the third heat exchanger 30 is within the target range, the process ends.
  • control device 90 performs the third heat exchange based on the detection value of the first temperature sensor 71 and the detection value of the third temperature sensor 73 in the second operation mode.
  • the degree of supercooling of the third heat exchanger 30 is controlled by calculating the degree of supercooling of the heat exchanger 30 and adjusting the degree of opening of the first flow control device 51 .
  • the refrigeration cycle apparatus 100 improves the operating capacity by flowing liquid refrigerant or gas refrigerant to the third heat exchanger 30 on the downstream side according to the operation mode. Therefore, according to the refrigerating cycle apparatus 100, the operating efficiency of the refrigerating cycle can be improved in both the first operating mode and the second operating mode.
  • the gas-liquid separator 6 is used regardless of whether the second heat exchanger 20 and the third heat exchanger 30 on the outdoor unit side function as an evaporator or a condenser. It can be used to improve operational efficiency. In particular, when a non-azeotropic mixed refrigerant is used, the effect of improving the operating efficiency of the refrigeration cycle can be enhanced.
  • FIG. 8 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 110 according to the second embodiment.
  • a refrigerating cycle device 110 according to the second embodiment differs from the refrigerating cycle device 100 according to the first embodiment in the configuration of a switching device.
  • a refrigeration cycle device 110 according to the second embodiment includes a switching device 400 configured with a first three-way valve 45 and a second three-way valve 46 .
  • the first three-way valve 45 is provided between the fourth switching port P44, the second heat exchanger 20 and the first junction a.
  • the first three-way valve 45 switches the connection destination to the fourth switching port P44 between the second heat exchanger 20 and the first confluence point a.
  • the second three-way valve 46 is provided between the expansion device 3, the second heat exchanger 20 and the second junction b.
  • the second three-way valve 46 switches the connection destination to the expansion device 3 between the second heat exchanger 20 and the second junction b.
  • the control device 90 controls the four-way valve 4, the first three-way valve 45, and the second three-way valve 46 so that the flow path indicated by the solid line in FIG. 8 is formed in the first operation mode. Thereby, the refrigerant circulates in the refrigerant circuit in the same order as shown in FIG. In the second operation mode, the control device 90 controls the four-way valve 4 as shown in FIG. 3, and switches the connection state of the first three-way valve 45 and the second three-way valve 46 to the state shown by the dashed line in FIG. . Thereby, the refrigerant circulates in the refrigerant circuit in the same order as shown in FIG.
  • the first three-way valve 45 has the same function as the first check valve 41 and the second check valve 42 of the refrigeration cycle device 100 according to the first embodiment.
  • the second three-way valve 46 has the same function as the third check valve 43 and the fourth check valve 44 of the refrigeration cycle apparatus 100 according to the first embodiment. Therefore, in Embodiment 2, the first valve mechanism is composed of the first three-way valve 45 and the second valve mechanism is composed of the second three-way valve 46 .
  • a first valve mechanism related to Embodiment 1 is composed of a first check valve 41 and a second check valve 42 .
  • the first valve mechanism related to Embodiment 2 is composed of the first three-way valve 45 .
  • a second valve mechanism related to Embodiment 1 is composed of a third check valve 43 and a fourth check valve 44 .
  • the second valve mechanism related to Embodiment 2 is composed of the second three-way valve 46 . Therefore, according to the second embodiment, the number of parts can be reduced as compared with the first embodiment.
  • FIG. 9 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 120 according to Embodiment 3. As shown in FIG.
  • the refrigerating cycle device 120 according to the third embodiment further includes a second flow rate adjusting device 52 and a fourth temperature sensor 74 compared to the refrigerating cycle device 100 according to the first embodiment.
  • the second flow regulating device 52 is provided between the side of the gas-liquid separator 6 where the liquid state refrigerant is discharged and the second junction b.
  • the fourth temperature sensor 74 is provided between the liquid refrigerant discharge side of the gas-liquid separator 6 and the second flow control device 52 .
  • control device 90 can control the amount of gas refrigerant discharged from the gas-liquid separator 6 and the amount of liquid refrigerant. can be adjusted more finely.
  • the detection target of the first temperature sensor 71 is the temperature of the gas refrigerant
  • the temperature gradient of the non-azeotropic refrigerant mixture is taken into account.
  • the fourth temperature sensor 74 can directly detect the saturation temperature of the liquid refrigerant. Therefore, the control device 90 can more accurately calculate the degree of supercooling based on the values detected by the third temperature sensor 73 and the values detected by the fourth temperature sensor 74 .
  • FIG. 10 is a flow chart for explaining the control of the control device 90 in the second operation mode according to the third embodiment.
  • the flowchart shown in FIG. 10 differs from the flowchart shown in FIG. 7 only in that step S24 is provided instead of step S14.
  • Steps S21 to S23 of Fig. 10 are the same as steps S11 to S13 of Fig. 7, so the description thereof will not be repeated here.
  • the control device 90 adjusts the opening degrees of the first flow rate adjusting device 51 and the second flow rate adjusting device 52 in step S24.
  • the control device 90 calculates the degree of subcooling at the outlet of the third heat exchanger 30 that functions as a condenser (step S25). At this time, the control device 90 calculates the degree of supercooling of the outlet portion of the third heat exchanger 30 based on the temperature detected by the third temperature sensor 73 and the temperature detected by the fourth temperature sensor 74 . As a result, the control device 90 calculates the degree of supercooling at the outlet portion of the third heat exchanger 30 based on the temperature detected by the first temperature sensor 71 and the temperature detected by the third temperature sensor 73. As a result, the degree of supercooling can be calculated more accurately.
  • control device 90 determines whether or not the degree of subcooling at the outlet of the third heat exchanger 30 functioning as a condenser is within a target range set for each rotation speed of the compressor 1 (step S26).
  • the control device 90 determines that the degree of supercooling at the outlet of the third heat exchanger 30 is not within the target region, in step S24, the opening degrees of the first flow rate adjusting device 51 and the second flow rate adjusting device 52 to adjust.
  • control device 90 keeps the first flow rate adjusting device 51 and the opening degree of the second flow control device 52 is repeatedly adjusted.
  • the controller 90 determines that the degree of subcooling at the outlet of the third heat exchanger 30 is within the target range, the process ends.
  • the first valve mechanism is composed of the first check valve 41 and the second check valve 42, and the second valve mechanism is composed of the third check valve 43 and the fourth check valve 44. is doing.
  • the first valve mechanism may be composed of the first three-way valve 45 and the second valve mechanism may be composed of the second three-way valve 46 .
  • a refrigeration cycle device (100) includes a compressor (1), a first heat exchanger (10), a second heat exchanger (20), a third heat exchanger (30), and an expansion device (3). , the gas-liquid separator (6), the first flow rate adjusting device (51), and the refrigerant circulation path between the first route corresponding to the first operation mode and the second route corresponding to the second operation mode. a switching device (40) configured to switch. In the first route, the refrigerant flows through the compressor (1), the first heat exchanger (10), the expansion device (3), the second heat exchanger (20), and the gas-liquid separator (6) in this order.
  • the liquid state refrigerant discharged from the gas-liquid separator (6) flows into the third heat exchanger (30), and the gas state refrigerant discharged from the gas-liquid separator (6) flows into the first flow rate Via the adjusting device (51), it joins with the refrigerant discharged from the third heat exchanger (30) at the first junction (a).
  • the refrigerant merged at the first junction (a) flows to the compressor (1).
  • the refrigerant flows through the compressor (1), the second heat exchanger (20), and the gas-liquid separator (6) in this order, and the gaseous refrigerant discharged from the gas-liquid separator (6) is , flows through the first flow rate adjusting device (51) into the third heat exchanger (30), and the liquid state refrigerant discharged from the gas-liquid separator (6) flows into the third heat exchanger (30 ) joins with the refrigerant discharged from the second junction (b), and the refrigerant joined at the second junction (b) passes through the expansion device (3), the first heat exchanger (10), the compressor (1 ).
  • the operating efficiency of the refrigeration cycle can be improved in both the first operation mode and the second operation mode.
  • the heat exchanger functions as either an evaporator or a condenser
  • the effect of improving the operating efficiency of the refrigeration cycle can be enhanced.
  • the switching device (40) includes a four-way valve (4), first valve mechanisms (41, 42), and second valve mechanisms (43, 44).
  • the four-way valve (4) has a first switching port (P41), a second switching port (P42), a third switching port (P43), and a fourth switching port (P44). is connected to the discharge port of the compressor (1), and the second switching port (P42) is connected to the suction port of the compressor (1).
  • the four-way valve (4) communicates the first switching port (P41) and the third switching port (P43) and communicates the second switching port (P42) and the fourth switching port (P44) in the first operation mode.
  • the first switching port (P41) and the fourth switching port (P44) are communicated, and the second switching port (P42) and the third switching port (P43) are communicated.
  • the first valve mechanism (41, 42) opens the flow of refrigerant from the first junction (a) to the fourth switching port (P44) in the first operation mode, and the expansion device (3) to the fourth switching port (P44).
  • the first valve mechanism (41, 42) is provided between the fourth switching port (P44) and the first junction (a), and the fourth switching port (P44) to the first junction (a) ), and is provided between the expansion device (3), the fourth switching port (P44), and the second heat exchanger (20).
  • the second valve mechanism (43, 44) is provided between the fourth switching port (P44), the expansion device (3) and the second heat exchanger (20), and the expansion device is connected to the fourth switching port (P44).
  • a third check valve (43) that cuts off the flow of refrigerant to (3) is provided between the expansion device and the second junction (b), and is provided between the expansion device (3) and the second junction (b). ) and a fourth check valve (44) for blocking the flow of refrigerant to (44).
  • the first valve mechanism may be composed of a first three-way valve (45).
  • the second valve mechanism may comprise a second three-way valve (46).
  • the first three-way valve (45) is provided between the fourth switching port (P44), the second heat exchanger (20) and the first junction (a), and is connected to the fourth switching port (P44). Switching ahead between the second heat exchanger (20) and the first junction (a).
  • a second three-way valve (46) is provided between the expansion device (3), the second heat exchanger (20) and the second junction (b), and connects the expansion device (3) to the second Switching between the heat exchanger (20) and the second junction (b).
  • the refrigerating cycle device has a first temperature sensor (71) provided between the gas-liquid separator (6) where the gaseous refrigerant is discharged (P62) and the first flow rate adjusting device (51). , a second temperature sensor (72) provided between the third heat exchanger (30) and the first junction (a), and a control device (90) for controlling the first flow control device (51) further provide.
  • the controller (90) determines the degree of superheat of the third heat exchanger (30) based on the detected value of the first temperature sensor (71) and the detected value of the second temperature sensor (72).
  • the degree of superheat of the third heat exchanger (30) is controlled by calculating (step S6) and adjusting the degree of opening of the first flow control device (51) (steps S5 to S7).
  • the refrigeration cycle device may further include a third temperature sensor (73) provided between the third heat exchanger (30) and the second junction (b).
  • the controller (90) adjusts the degree of supercooling of the third heat exchanger (30) based on the detected value of the first temperature sensor (71) and the detected value of the third temperature sensor (73). is calculated (step S15), and the degree of supercooling of the third heat exchanger (30) is controlled by adjusting the opening degree of the first flow control device (51) (steps S14 to S16).
  • the refrigeration cycle device includes a second flow rate adjusting device (52 ), the third temperature sensor (73) provided between the third heat exchanger (30) and the second junction (b), and the gas-liquid separator (6), the liquid refrigerant is discharged
  • a fourth temperature sensor (74) provided between the side (P63) and the second flow control device (52) may further be provided.
  • the controller (90) adjusts the degree of supercooling of the third heat exchanger (30) based on the values detected by the third temperature sensor (73) and the values detected by the fourth temperature sensor (74). is calculated (step S25), and the degree of supercooling of the third heat exchanger (30) is controlled by adjusting the opening degrees of the first flow rate adjusting device (51) and the second flow rate adjusting device (52) ( Steps S24 to S26).

Abstract

A refrigeration cycle device (100) is provided with a compressor (1), a first heat exchanger (10), a second heat exchanger (20), a third heat exchanger (30), an expansion device (3), a gas-liquid separator (6), a first flow rate adjusting device (51), and a switching device (40) that switches a refrigerant circulating route between a first route and a second route. In the first route, the refrigerant flows through the compressor (1), the first heat exchanger (10), the expansion device (3), the second heat exchanger (20), and the gas-liquid separator (6) in this order, and then the refrigerant in liquid form discharged from the gas-liquid separator (6) enters the third heat exchanger (30). In the second route, the refrigerant flows through the compressor (1), the second heat exchanger (20), and the gas-liquid separator (6) in this order, and then the refrigerant in gas form discharged from the gas-liquid separator (6) enters the third heat exchanger (30) via the first flow rate adjusting device (51).

Description

冷凍サイクル装置refrigeration cycle equipment
 本開示は、冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device.
 近年、地球温暖化係数(GWP:Global Warming Potential)の規制値の引き下げ等が進んでいる影響もあって、非共沸混合冷媒を使用した冷凍サイクル装置の開発が進められている。実公昭62-025644号公報(特許文献1)では、非共沸混合冷媒を用いた冷凍サイクル装置に関して、圧縮機、凝縮器、減圧器、第1の蒸発器、第2の蒸発器、気液分離器を接続し、気液分離器で分離されるガス状態の冷媒を圧縮機の吸込側に導き、気液分離器で分離される液状態の冷媒を第2の蒸発器に導くように構成することが提案されている。 In recent years, the development of refrigeration cycle equipment using non-azeotropic refrigerant mixtures is progressing, partly due to the reduction of the regulation value of the global warming potential (GWP). Japanese Utility Model Publication No. 62-025644 (Patent Document 1) describes a refrigeration cycle device using a non-azeotropic refrigerant mixture, which includes a compressor, a condenser, a pressure reducer, a first evaporator, a second evaporator, a gas-liquid A separator is connected to guide the gaseous refrigerant separated by the gas-liquid separator to the suction side of the compressor, and to guide the liquid refrigerant separated by the gas-liquid separator to the second evaporator. It is proposed to
実公昭62-025644号公報Japanese Utility Model Publication No. 62-025644
 特許文献1に記載の技術によれば、気液分離器によって冷媒をガス状態の冷媒と液状態の冷媒とに分離した上で、液状態の冷媒を第2の蒸発器に導くことにより、冷凍サイクルの運転効率を向上させることができる。しかしながら、特許文献1は、専ら蒸発器に対して気液分離器を適用する技術を開示する。このため、熱交換器を蒸発器のみならず凝縮器としても機能させるようなシステムではその技術を十分に活用できないという課題がある。 According to the technique described in Patent Document 1, the refrigerant is separated into a gas state refrigerant and a liquid state refrigerant by a gas-liquid separator, and then the liquid state refrigerant is led to a second evaporator to freeze the refrigerant. The operating efficiency of the cycle can be improved. However, Patent Literature 1 discloses a technique of applying a gas-liquid separator exclusively to the evaporator. For this reason, there is a problem that the technology cannot be fully utilized in a system in which the heat exchanger functions not only as an evaporator but also as a condenser.
 本開示はこのような課題を解決するためになされたものであり、熱交換器を蒸発器および凝縮器のいずれに機能させた場合にも気液分離器を利用して運転効率を向上させることが可能な冷凍サイクル装置を提供することを目的とする。 The present disclosure has been made to solve such problems, and is intended to improve the operating efficiency by using a gas-liquid separator when the heat exchanger functions as either an evaporator or a condenser. An object of the present invention is to provide a refrigeration cycle device capable of
 本開示は、冷凍サイクル装置に関する。冷凍サイクル装置は、圧縮機と、第1熱交換器と、第2熱交換器と、第3熱交換器と、膨張装置と、気液分離器と、第1流量調整装置と、切替装置とを備える。切替装置は、冷媒循環経路を第1運転モードに対応する第1順路と第2運転モードに対応する第2順路との間で切り替えるように構成されている。第1順路において、冷媒は、圧縮機、第1熱交換器、膨張装置、第2熱交換器、気液分離器の順に流れ、気液分離器から排出された液状態の冷媒は、第3熱交換器に流入し、気液分離器から排出されたガス状態の冷媒は、第1流量調整装置を経由して、第3熱交換器から排出された冷媒と第1合流点で合流し、第1合流点で合流した冷媒は、圧縮機に流れる。第2順路において、冷媒は、圧縮機、第2熱交換器、気液分離器の順に冷媒が流れ、気液分離器から排出されたガス状態の冷媒は、第1流量調整装置を経由して、第3熱交換器に流入し、気液分離器から排出された液状態の冷媒は、第3熱交換器から排出された冷媒と第2合流点で合流し、第2合流点で合流した冷媒は、膨張装置、第1熱交換器、圧縮機の順に流れる。 The present disclosure relates to a refrigeration cycle device. The refrigeration cycle device includes a compressor, a first heat exchanger, a second heat exchanger, a third heat exchanger, an expansion device, a gas-liquid separator, a first flow rate adjusting device, and a switching device. Prepare. The switching device is configured to switch the refrigerant circulation path between a first route corresponding to the first operation mode and a second route corresponding to the second operation mode. In the first route, the refrigerant flows in the order of the compressor, the first heat exchanger, the expansion device, the second heat exchanger, and the gas-liquid separator. The gaseous refrigerant flowing into the heat exchanger and discharged from the gas-liquid separator passes through the first flow control device and joins with the refrigerant discharged from the third heat exchanger at a first junction, The refrigerant merged at the first junction flows to the compressor. In the second route, the refrigerant flows in the order of the compressor, the second heat exchanger, and the gas-liquid separator, and the gas-state refrigerant discharged from the gas-liquid separator passes through the first flow control device. , the liquid state refrigerant that flows into the third heat exchanger and is discharged from the gas-liquid separator joins the refrigerant discharged from the third heat exchanger at the second junction, and joins at the second junction Refrigerant flows through the expansion device, the first heat exchanger, and the compressor in that order.
 本開示の冷凍サイクル装置によれば、熱交換器を蒸発器および凝縮器のいずれに機能させた場合にも気液分離器を利用して運転効率を向上させることが可能となる。 According to the refrigeration cycle apparatus of the present disclosure, it is possible to improve the operating efficiency using the gas-liquid separator regardless of whether the heat exchanger functions as an evaporator or a condenser.
冷凍サイクル装置の構成を示す冷媒回路図である(実施の形態1)。1 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device (Embodiment 1); FIG. 冷凍サイクル装置の第1運転モードにおける冷媒の流れを示す図である(実施の形態1)。FIG. 4 is a diagram showing the flow of refrigerant in the first operation mode of the refrigeration cycle device (Embodiment 1); 冷凍サイクル装置の第2運転モードにおける冷媒の流れを示す図である(実施の形態1)。FIG. 4 is a diagram showing the flow of refrigerant in the second operation mode of the refrigeration cycle device (Embodiment 1); 第1運転モードにおける冷媒の状態変化を示すp-h線図である(実施の形態1)。FIG. 4 is a ph diagram showing changes in refrigerant state in a first operation mode (Embodiment 1). 第2運転モードにおける冷媒の状態変化を示すp-h線図である(実施の形態1)。FIG. 4 is a ph diagram showing changes in refrigerant state in a second operation mode (Embodiment 1). 第1運転モードにおける制御装置の制御を説明するためのフローチャートである(実施の形態1)。4 is a flow chart for explaining control of a control device in a first operation mode (Embodiment 1). 第2運転モードにおける制御装置の制御を説明するためのフローチャートである(実施の形態1)。4 is a flowchart for explaining control of a control device in a second operation mode (Embodiment 1). 冷凍サイクル装置の構成を示す冷媒回路図である(実施の形態2)。FIG. 4 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device (Embodiment 2). 冷凍サイクル装置の構成を示す冷媒回路図である(実施の形態3)。FIG. 11 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device (Embodiment 3). 第2運転モードにおける制御装置の制御を説明するためのフローチャートである(実施の形態3)。9 is a flowchart for explaining control of the control device in the second operation mode (Embodiment 3).
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1に関わる冷凍サイクル装置100の構成を示す冷媒回路図である。冷凍サイクル装置100は、圧縮機1、膨張装置3、四方弁4、気液分離器6、第1熱交換器10、第2熱交換器20、第3熱交換器30、第1流量調整装置51、および制御装置90を少なくとも含んで構成される冷媒回路を備える。
Embodiment 1.
FIG. 1 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 100 according to Embodiment 1. FIG. The refrigeration cycle device 100 includes a compressor 1, an expansion device 3, a four-way valve 4, a gas-liquid separator 6, a first heat exchanger 10, a second heat exchanger 20, a third heat exchanger 30, and a first flow control device. 51 and a refrigerant circuit including at least a control device 90 .
 第1熱交換器10は、室内機に搭載される。第2熱交換器20および第3熱交換器30は、室外機に搭載される。第2熱交換器20と第3熱交換器30との間には気液分離器6が配置される。この構成は、室外機側の熱交換器を2つの熱交換器に分割し、一方の熱交換器と他方の熱交換器との間に気液分離器6を配置した構成に等しい。 The first heat exchanger 10 is mounted on the indoor unit. The second heat exchanger 20 and the third heat exchanger 30 are mounted on the outdoor unit. A gas-liquid separator 6 is arranged between the second heat exchanger 20 and the third heat exchanger 30 . This configuration is equivalent to a configuration in which the heat exchanger on the outdoor unit side is divided into two heat exchangers and the gas-liquid separator 6 is arranged between one heat exchanger and the other heat exchanger.
 第2熱交換器20は、第1ポートP1と第2ポートP2とを有する。第3熱交換器30は、第3ポートP3と第4ポートP4とを有する。 The second heat exchanger 20 has a first port P1 and a second port P2. The third heat exchanger 30 has a third port P3 and a fourth port P4.
 気液分離器6は、流入ポートP61と、ガス排出ポートP62と、液排出ポートP63とを備える。ガス排出ポートP62と第3熱交換器30との間には、冷媒の流量を調整する第1流量調整装置51が設けられる。第1流量調整装置51は、冷媒の流量を調整するための弁を備える。第1流量調整装置51は、弁の開度を調整することによって、冷媒の流量を変化させる。 The gas-liquid separator 6 includes an inflow port P61, a gas discharge port P62, and a liquid discharge port P63. Between the gas discharge port P62 and the third heat exchanger 30, a first flow rate adjusting device 51 that adjusts the flow rate of refrigerant is provided. The first flow rate adjusting device 51 includes a valve for adjusting the flow rate of the refrigerant. The first flow control device 51 changes the flow rate of the refrigerant by adjusting the opening degree of the valve.
 流入ポートP61には、第2熱交換器20の第2ポートP2から排出された冷媒が流入する。ガス排出ポートP62は、第1流量調整装置51を経由して第3熱交換器30の第3ポートP3と接続される。ガス排出ポートP62は、気液分離器6からガス状態の冷媒を排出する。液排出ポートP63は、第3熱交換器30の第4ポートP4と接続される。液排出ポートP63は、気液分離器6から液状態の冷媒を排出する。 The refrigerant discharged from the second port P2 of the second heat exchanger 20 flows into the inflow port P61. The gas discharge port P62 is connected to the third port P3 of the third heat exchanger 30 via the first flow control device 51. The gas discharge port P62 discharges gaseous refrigerant from the gas-liquid separator 6 . The liquid discharge port P63 is connected to the fourth port P4 of the third heat exchanger 30 . The liquid discharge port P63 discharges liquid refrigerant from the gas-liquid separator 6 .
 以下、ガス状態の冷媒をガス冷媒と称し、液状態の冷媒を液冷媒と称する。また、冷媒の状態がガス状態であるか液状態であるかに言及する必要がない場面においては、単に冷媒という用語を使用する。 Hereinafter, the refrigerant in gas state will be referred to as gas refrigerant, and the refrigerant in liquid state will be referred to as liquid refrigerant. Also, in situations where there is no need to refer to whether the state of the refrigerant is gaseous or liquid, the term refrigerant is simply used.
 四方弁4は、第1切替ポートP41、第2切替ポートP42、第3切替ポートP43、および第4切替ポートP44を有する。第1切替ポートP41に圧縮機1の吐出口が接続され、第2切替ポートP42に圧縮機1の吸入口が接続される。 The four-way valve 4 has a first switching port P41, a second switching port P42, a third switching port P43, and a fourth switching port P44. A discharge port of the compressor 1 is connected to the first switching port P41, and a suction port of the compressor 1 is connected to the second switching port P42.
 冷凍サイクル装置100の冷媒回路には、第1逆止弁41、第2逆止弁42、第3逆止弁43、および第4逆止弁44が設けられる。 A first check valve 41 , a second check valve 42 , a third check valve 43 and a fourth check valve 44 are provided in the refrigerant circuit of the refrigeration cycle device 100 .
 第1逆止弁41は、四方弁4の第4切替ポートP44と、冷媒回路上の図1に示す点aとの間に設けられる。点aは、第3熱交換器30の第3ポートP3から排出された冷媒と第1流量調整装置51から排出された冷媒とが合流する第1合流点に該当する。第1逆止弁41は、第4切替ポートP44から第1合流点aへ向かう冷媒の流れを遮断する。 The first check valve 41 is provided between the fourth switching port P44 of the four-way valve 4 and the point a shown in FIG. 1 on the refrigerant circuit. A point a corresponds to a first confluence point where the refrigerant discharged from the third port P3 of the third heat exchanger 30 and the refrigerant discharged from the first flow control device 51 join. The first check valve 41 blocks the flow of refrigerant from the fourth switching port P44 toward the first junction a.
 第2逆止弁42は、四方弁4の第4切替ポートP44と第2熱交換器20の第1ポートP1との間に設けられる。第2逆止弁42は、膨張装置3から四方弁4の第4切替ポートP44へ向かう冷媒の流れを遮断する。 The second check valve 42 is provided between the fourth switching port P44 of the four-way valve 4 and the first port P1 of the second heat exchanger 20. The second check valve 42 blocks the flow of refrigerant from the expansion device 3 toward the fourth switching port P44 of the four-way valve 4 .
 第3逆止弁43は、第4切替ポートP44と膨張装置3と第2熱交換器20の第1ポートP1との間に設けられる。第3逆止弁43は、第4切替ポートから膨張装置3への冷媒の流れを遮断する。 The third check valve 43 is provided between the fourth switching port P44, the expansion device 3, and the first port P1 of the second heat exchanger 20. The third check valve 43 blocks the flow of refrigerant from the fourth switching port to the expansion device 3 .
 第4逆止弁44は、膨張装置3と冷媒回路上の図1に示す点bとの間に設けられる。点bは、第3熱交換器30の第4ポートP4から排出された冷媒と気液分離器6の液排出ポートP63から排出された冷媒とが合流する第2合流点に該当する。第4逆止弁44は、膨張装置3から第2合流点bへの冷媒の流れを遮断する。 The fourth check valve 44 is provided between the expansion device 3 and the point b shown in FIG. 1 on the refrigerant circuit. A point b corresponds to a second confluence point where the refrigerant discharged from the fourth port P4 of the third heat exchanger 30 and the refrigerant discharged from the liquid discharge port P63 of the gas-liquid separator 6 join. The fourth check valve 44 blocks the flow of refrigerant from the expansion device 3 to the second junction b.
 四方弁4は、第1状態と第2状態とに変化する。第1状態において、第1切替ポートP41と第3切替ポートP43とが連通するとともに第2切替ポートP42と第4切替ポートP44とが連通する。第2状態において、第1切替ポートP41と第4切替ポートP44とが連通するとともに第2切替ポートP42と第3切替ポートP43とが連通する。 The four-way valve 4 changes between the first state and the second state. In the first state, the first switching port P41 communicates with the third switching port P43, and the second switching port P42 communicates with the fourth switching port P44. In the second state, the first switching port P41 communicates with the fourth switching port P44, and the second switching port P42 communicates with the third switching port P43.
 四方弁4は、第1状態と第2状態とに変化することによって、圧縮機1から吐出された冷媒が流路を流れる方向を切り替える。四方弁4、第1逆止弁41、第2逆止弁42、第3逆止弁43、および第4逆止弁44が機能することによって、冷媒が循環する順序が第1順序と第2順序とに切替わる。これにより、冷凍サイクル装置100の運転モードが第1運転モードと第2運転モードとに切り替わる。 The four-way valve 4 switches the direction in which the refrigerant discharged from the compressor 1 flows through the flow path by changing between the first state and the second state. The four-way valve 4, the first check valve 41, the second check valve 42, the third check valve 43, and the fourth check valve 44 function so that the refrigerant circulates in the first order and the second order. Switch to the order. As a result, the operation mode of the refrigeration cycle device 100 is switched between the first operation mode and the second operation mode.
 第1運転モードでは、第1熱交換器10に高圧冷媒が流入する。第2運転モードでは、第1熱交換器10に低圧冷媒が流入する。第1熱交換器10を室内機に搭載する場合、第1運転モードは暖房運転に相当し、第2運転モードは冷房運転に相当する。制御装置90は、第1運転モードにおいて四方弁4を第1状態に設定し、第2運転モードにおいて四方弁4を第2状態に設定する。 In the first operation mode, high pressure refrigerant flows into the first heat exchanger 10 . In the second operation mode, low pressure refrigerant flows into the first heat exchanger 10 . When the first heat exchanger 10 is installed in the indoor unit, the first operation mode corresponds to heating operation, and the second operation mode corresponds to cooling operation. The control device 90 sets the four-way valve 4 to the first state in the first operation mode, and sets the four-way valve 4 to the second state in the second operation mode.
 四方弁4、第1逆止弁41、第2逆止弁42、第3逆止弁43、および第4逆止弁44により、運転モードを切り替える切替装置40が構成されている。切替装置40は、圧縮機1から吐出された冷媒が循環する順路を第1運転モードに対応する第1順路と第2運転モードに対応する第2順路との間で切り替える。 The four-way valve 4, the first check valve 41, the second check valve 42, the third check valve 43, and the fourth check valve 44 constitute a switching device 40 for switching the operation mode. The switching device 40 switches the route in which the refrigerant discharged from the compressor 1 circulates between a first route corresponding to the first operation mode and a second route corresponding to the second operation mode.
 冷凍サイクル装置100の冷媒回路には、第1温度センサー71と第2温度センサー72と第3温度センサー73とを含む複数の温度センサーが設けられる。 A plurality of temperature sensors including a first temperature sensor 71 , a second temperature sensor 72 and a third temperature sensor 73 are provided in the refrigerant circuit of the refrigeration cycle device 100 .
 第1温度センサー71は、気液分離器6のガス状態の冷媒が排出される側に設けられる。より具体的には、第1温度センサー71は、気液分離器6においてガス状態の冷媒が排出される側と第1流量調整装置51との間に設けられる。 The first temperature sensor 71 is provided on the side of the gas-liquid separator 6 from which gaseous refrigerant is discharged. More specifically, the first temperature sensor 71 is provided between the side of the gas-liquid separator 6 from which gaseous refrigerant is discharged and the first flow rate adjusting device 51 .
 第2温度センサー72は、第3熱交換器30の第3ポートP3側に設けられる。より具体的には、第2温度センサー72は、第3熱交換器30の第3ポートP3側と第1合流点aとの間に設けられる。 The second temperature sensor 72 is provided on the third port P3 side of the third heat exchanger 30 . More specifically, the second temperature sensor 72 is provided between the third port P3 side of the third heat exchanger 30 and the first junction a.
 第3温度センサー73は、第3熱交換器30の第4ポートP4側に設けられる。より具体的には、第3温度センサー73は、第3熱交換器30の第4ポートP4側と第2合流点bとの間に設けられる。 The third temperature sensor 73 is provided on the fourth port P4 side of the third heat exchanger 30 . More specifically, the third temperature sensor 73 is provided between the fourth port P4 side of the third heat exchanger 30 and the second junction b.
 制御装置90は、プロセッサ91と、メモリ92とを含んで構成される。メモリ92は、ROM(Read Only Memory)およびRAM(Random Access Memory)を含む。プロセッサ91は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置90の処理手順が記されたプログラムである。 The control device 90 includes a processor 91 and a memory 92 . The memory 92 includes ROM (Read Only Memory) and RAM (Random Access Memory). The processor 91 expands a program stored in ROM into RAM or the like and executes it. The program stored in the ROM is a program in which processing procedures of the control device 90 are described.
 制御装置90は、メモリ92に格納されたプログラムに従って、冷凍サイクル装置100における各機器を制御する。たとえば、制御装置90は、圧縮機1と膨張装置3と四方弁4と第1流量調整装置51とを制御する。 The control device 90 controls each device in the refrigeration cycle device 100 according to a program stored in the memory 92 . For example, the control device 90 controls the compressor 1 , the expansion device 3 , the four-way valve 4 and the first flow control device 51 .
 次に、第1運転モードおよび第2運転モードにおける冷媒の流れを説明する。以下の説明によって明らかにされるとおり、本開示では、第1順路と第2順路とのいずれの場合にも、圧縮機1を起点としたときに、冷媒の上流側に第2熱交換器20が位置し、冷媒の下流側に第3熱交換器30が位置する。 Next, the flow of refrigerant in the first and second operation modes will be described. As will be clarified by the following description, in the present disclosure, in both the first route and the second route, when the compressor 1 is used as a starting point, the second heat exchanger 20 is located upstream of the refrigerant. is located, and the third heat exchanger 30 is located downstream of the refrigerant.
 本開示では、冷媒としてR466Aなどの非共沸混合冷媒を例に挙げて説明する。非共沸混合冷媒は、沸点が異なる2種類以上の冷媒を混合することにより構成される。このため、非共沸混合冷媒は、一定の圧力の下で飽和ガス温度と飽和液温度とに乖離が発生するという特徴を有する。一般的に、飽和ガス温度は、飽和液温度より高い。このような温度差は温度勾配と呼ばれる。 In the present disclosure, a non-azeotropic mixed refrigerant such as R466A will be described as an example of the refrigerant. A non-azeotropic refrigerant mixture is formed by mixing two or more refrigerants with different boiling points. For this reason, the non-azeotropic mixed refrigerant has the characteristic that a deviation occurs between the saturated gas temperature and the saturated liquid temperature under a constant pressure. Generally, the saturated gas temperature is higher than the saturated liquid temperature. Such temperature differences are called temperature gradients.
 温度勾配が存在すると、熱交換器内での温度に偏りが生じるため、運転効率が悪化するおそれがある。本開示では、非共沸混合冷媒を用いた場合に、圧力損失を少なくしつつも運転性能を改善することが可能な構成を提案する。特に、本開示では、第1運転モードと第2運転モードとのいずれの場合にも適用可能な構成を提案する。 If there is a temperature gradient, the temperature inside the heat exchanger will be uneven, which may reduce the operating efficiency. The present disclosure proposes a configuration that can improve driving performance while reducing pressure loss when a non-azeotropic refrigerant mixture is used. In particular, the present disclosure proposes a configuration applicable to both the first operating mode and the second operating mode.
 冷凍サイクル装置100においては、室外機内の熱交換器が上流側の第2熱交換器20と下流側の第3熱交換器30とに分割して構成され、第2熱交換器20と第3熱交換器30との途中の流路に気液分離器6が配置されている。さらに、冷凍サイクル装置100においては、運転モードに応じて液冷媒またはガス冷媒を下流側の第3熱交換器30へ流すことによって運転能力を向上させている。なお、冷凍サイクル装置100に適用可能な冷媒は、非共沸混合冷媒に限定されるものではない。 In the refrigeration cycle apparatus 100, the heat exchanger in the outdoor unit is divided into a second heat exchanger 20 on the upstream side and a third heat exchanger 30 on the downstream side. A gas-liquid separator 6 is arranged in the flow path on the way to the heat exchanger 30 . Furthermore, in the refrigerating cycle apparatus 100, the operating capability is improved by flowing liquid refrigerant or gas refrigerant to the third heat exchanger 30 on the downstream side according to the operation mode. Note that the refrigerant applicable to the refrigeration cycle device 100 is not limited to the non-azeotropic mixed refrigerant.
 <第1運転モードにおける冷媒の流れ>
 図2は、冷凍サイクル装置100の第1運転モードにおける冷媒の流れを示す図である。図2を参照しながら第1運転モードにおける冷媒の流れを説明する。第1運転モードでは、制御装置90は、図2において実線で示される流路が四方弁4に形成されるように、四方弁4を制御する。
<Refrigerant flow in the first operation mode>
FIG. 2 is a diagram showing the flow of refrigerant in the first operation mode of refrigeration cycle apparatus 100. As shown in FIG. The refrigerant flow in the first operation mode will be described with reference to FIG. In the first operation mode, the control device 90 controls the four-way valve 4 so that the flow path indicated by the solid line in FIG. 2 is formed in the four-way valve 4 .
 このとき、四方弁4を含む切替装置40の働きによって、矢印が示すように冷媒が冷凍サイクル装置100の冷媒回路を流れる。すなわち、圧縮機1から吐出された冷媒は、四方弁4の第1切替ポートP41および第3切替ポートP43を経て、第1熱交換器10、膨張装置3、第2熱交換器20、気液分離器6の順に流れる。その後、気液分離器6の液排出ポートP63から排出された液冷媒が第4ポートP4から第3熱交換器30に流入する。 At this time, the switching device 40 including the four-way valve 4 works to cause the refrigerant to flow through the refrigerant circuit of the refrigeration cycle device 100 as indicated by the arrow. That is, the refrigerant discharged from the compressor 1 passes through the first switching port P41 and the third switching port P43 of the four-way valve 4, the first heat exchanger 10, the expansion device 3, the second heat exchanger 20, the gas-liquid It flows through the separator 6 in order. After that, the liquid refrigerant discharged from the liquid discharge port P63 of the gas-liquid separator 6 flows into the third heat exchanger 30 from the fourth port P4.
 一方、気液分離器6のガス排出ポートP62から排出されたガス冷媒は第1流量調整装置51を経由して図2に示される第1合流点aに向かう。第1合流点aには、第3熱交換器30の第3ポートP3から排出された冷媒も流れ込む。第1合流点aで2方向から合流した冷媒は、四方弁4を経由して、圧縮機1の吸入口に流れる。 On the other hand, the gas refrigerant discharged from the gas discharge port P62 of the gas-liquid separator 6 passes through the first flow rate adjusting device 51 toward the first junction a shown in FIG. The refrigerant discharged from the third port P3 of the third heat exchanger 30 also flows into the first junction a. The refrigerant merged from two directions at the first confluence point a flows into the suction port of the compressor 1 via the four-way valve 4 .
 以上、概説した冷媒の順路によって第1運転モードにおける冷媒の第1順路が構成される。すなわち、第1順路において、冷媒は、圧縮機1、第1熱交換器10、膨張装置3、第2熱交換器20、気液分離器6の順に流れた後、気液分離器6から排出された液状態の冷媒が第3熱交換器30に流入する一方、気液分離器6から排出されたガス状態の冷媒が第1流量調整装置51を経由して、第3熱交換器30から排出された冷媒と第1合流点aで合流する。第1合流点aで合流した冷媒は、圧縮機1に流れる。 The first route of the refrigerant in the first operation mode is configured by the route of the refrigerant outlined above. That is, in the first route, the refrigerant flows through the compressor 1, the first heat exchanger 10, the expansion device 3, the second heat exchanger 20, and the gas-liquid separator 6 in this order, and then is discharged from the gas-liquid separator 6. While the liquid state refrigerant discharged from the gas-liquid separator 6 flows into the third heat exchanger 30, the gas state refrigerant discharged from the gas-liquid separator 6 flows from the third heat exchanger 30 via the first flow rate adjusting device 51 It merges with the discharged refrigerant at the first confluence point a. The refrigerant merged at the first junction a flows into the compressor 1 .
 次に、第1運転モードにおける冷媒の流れをより詳細に説明する。第1運転モードにおいて、室内機側の第1熱交換器10は、凝縮器として機能し、室外機側の第2熱交換器20および第3熱交換器30は、蒸発器として機能する。圧縮機1から吐出された高温、高圧のガス冷媒は、四方弁4を通った後に、室内機側の第1熱交換器10へ流入する。 Next, the refrigerant flow in the first operation mode will be described in more detail. In the first operation mode, the first heat exchanger 10 on the indoor unit side functions as a condenser, and the second heat exchanger 20 and the third heat exchanger 30 on the outdoor unit side function as evaporators. The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows into the first heat exchanger 10 on the indoor unit side after passing through the four-way valve 4 .
 第1熱交換器10に流入したガス冷媒は、室内の空気に放熱することによって凝縮する。その結果、第1熱交換器10内で冷媒の液化が進む。第1熱交換器10から排出された冷媒は膨張装置3に流入する。膨張装置3は、冷媒の膨張の程度を調整するための弁を備える。第1熱交換器10から排出された冷媒は膨張装置3において膨張することでガスと液とが混ざり合った二相の冷媒に変化する。 The gas refrigerant that has flowed into the first heat exchanger 10 is condensed by radiating heat to the indoor air. As a result, liquefaction of the refrigerant progresses in the first heat exchanger 10 . The refrigerant discharged from the first heat exchanger 10 flows into the expansion device 3 . The expansion device 3 has a valve for adjusting the degree of expansion of the refrigerant. The refrigerant discharged from the first heat exchanger 10 expands in the expansion device 3 to change into a two-phase refrigerant in which gas and liquid are mixed.
 膨張装置3から排出された二相の冷媒は、第3逆止弁43を経由して第1ポートP1から室外機側の第2熱交換器20へ流入する。膨張装置3から第2合流点bに向かう冷媒の流れは第4逆止弁44によって遮断される。 The two-phase refrigerant discharged from the expansion device 3 passes through the third check valve 43 and flows from the first port P1 into the second heat exchanger 20 on the outdoor unit side. A fourth check valve 44 blocks the flow of refrigerant from the expansion device 3 toward the second junction b.
 第2熱交換器20では二相冷媒の一部が蒸発するため、乾き度がより高くなった二相冷媒が第2熱交換器20の第2ポートP2から排出される。第2ポートP2から排出された二相冷媒は、流入ポートP61から気液分離器6に流入して、ガス冷媒と液冷媒とに分離される。 Since part of the two-phase refrigerant evaporates in the second heat exchanger 20, the two-phase refrigerant with a higher degree of dryness is discharged from the second port P2 of the second heat exchanger 20. The two-phase refrigerant discharged from the second port P2 flows into the gas-liquid separator 6 from the inflow port P61 and is separated into gas refrigerant and liquid refrigerant.
 気液分離器6で分離された液冷媒は、液排出ポートP63から排出される。液排出ポートP63から排出された液冷媒は、第4ポートP4から第3熱交換器30へ流入する。このとき、液排出ポートP63から排出された液冷媒が第4逆止弁44を通って膨張装置3側に流れることはない。この理由は、液排出ポートP63から排出された液冷媒の圧力が、膨張装置3から第3逆止弁43に向かって流れる冷媒の圧力よりも低いためである。その圧力差は、第2熱交換器20部分と第3逆止弁43部分との圧力損失分に相当する。 The liquid refrigerant separated by the gas-liquid separator 6 is discharged from the liquid discharge port P63. The liquid refrigerant discharged from the liquid discharge port P63 flows into the third heat exchanger 30 from the fourth port P4. At this time, the liquid refrigerant discharged from the liquid discharge port P63 does not flow through the fourth check valve 44 to the expansion device 3 side. This is because the pressure of the liquid refrigerant discharged from the liquid discharge port P63 is lower than the pressure of the refrigerant flowing from the expansion device 3 toward the third check valve 43. The pressure difference corresponds to the pressure loss between the second heat exchanger 20 portion and the third check valve 43 portion.
 第3温度センサー73は、第4ポートP4から第3熱交換器30へ流入する液冷媒の温度を検出する。第3温度センサー73が検出した温度は制御装置90へ送信される。 The third temperature sensor 73 detects the temperature of the liquid refrigerant flowing into the third heat exchanger 30 from the fourth port P4. The temperature detected by the third temperature sensor 73 is transmitted to the control device 90 .
 一方、気液分離器6で分離されたガス冷媒は、ガス排出ポートP62から排出される。ガス排出ポートP62から排出されたガス冷媒は、第3熱交換器30に流入することなく、第1流量調整装置51を通じて、第3熱交換器30の下流側の第1合流点aに向かう。このため、室外機内の第2熱交換器20と第3熱交換器30とのうち、下流側の第3熱交換器30には液冷媒が流入し、ガス冷媒が流入しない。 On the other hand, the gas refrigerant separated by the gas-liquid separator 6 is discharged from the gas discharge port P62. The gas refrigerant discharged from the gas discharge port P<b>62 passes through the first flow control device 51 toward the first junction a on the downstream side of the third heat exchanger 30 without flowing into the third heat exchanger 30 . Therefore, of the second heat exchanger 20 and the third heat exchanger 30 in the outdoor unit, the liquid refrigerant flows into the downstream third heat exchanger 30, and the gas refrigerant does not flow.
 第1温度センサー71は、気液分離器6で分離されたガス冷媒の温度を検出する。第1温度センサー71が検出した温度は制御装置90へ送信される。この温度は気液分離器6に流入した冷媒の飽和ガス温度と同等である。制御装置90は、第1温度センサー71が検出した温度から気液分離器6内の圧力を推定する。 The first temperature sensor 71 detects the temperature of the gas refrigerant separated by the gas-liquid separator 6 . The temperature detected by the first temperature sensor 71 is transmitted to the control device 90 . This temperature is equivalent to the saturated gas temperature of the refrigerant flowing into the gas-liquid separator 6 . The control device 90 estimates the pressure inside the gas-liquid separator 6 from the temperature detected by the first temperature sensor 71 .
 第3熱交換器30では液冷媒が外気と熱交換をし、ガス化する。このように、第3熱交換器30にはガス冷媒が流入しないため、第3熱交換器30内に温度勾配が発生しない。その結果、第3熱交換器30内での温度に偏りが生じない。第3熱交換器30内でガス化した冷媒は、第3ポートP3から排出される。 In the third heat exchanger 30, the liquid refrigerant exchanges heat with the outside air and gasifies. As described above, since gas refrigerant does not flow into the third heat exchanger 30 , no temperature gradient occurs in the third heat exchanger 30 . As a result, the temperature in the third heat exchanger 30 is not uneven. The gasified refrigerant in the third heat exchanger 30 is discharged from the third port P3.
 第2温度センサー72は、第3ポートP3から排出されたガス冷媒の温度を検出する。第2温度センサー72が検出した温度は制御装置90へ送信される。第2温度センサー72が検出した温度は、第1運転モードにおいては蒸発器の出口温度に相当する。制御装置90は、第1温度センサー71が検出した温度と第2温度センサー72が検出した温度とに基づいて、蒸発器出口の過熱度(SH:Super Heat)を推定する。 The second temperature sensor 72 detects the temperature of the gas refrigerant discharged from the third port P3. The temperature detected by the second temperature sensor 72 is transmitted to the control device 90 . The temperature detected by the second temperature sensor 72 corresponds to the outlet temperature of the evaporator in the first operating mode. The control device 90 estimates the degree of superheat (SH: Super Heat) at the evaporator outlet based on the temperature detected by the first temperature sensor 71 and the temperature detected by the second temperature sensor 72 .
 第3熱交換器30の第3ポートP3から排出されたガス冷媒は、第1流量調整装置51から排出されたガス冷媒と第1合流点aで合流する。2方向から合流したガス冷媒は、第1逆止弁41と四方弁4とを通って圧縮機1の吸入側に流入する。このとき、ガス冷媒が第2逆止弁42を通って第2熱交換器20へ流れることはない。第1逆止弁41と四方弁4との間のガス冷媒の圧力は第2熱交換器20の第1ポートP1部分の冷媒の圧力よりも低いためである。その圧力差は、第2熱交換器20と第1逆止弁41との圧力損失分に相当する。 The gas refrigerant discharged from the third port P3 of the third heat exchanger 30 joins with the gas refrigerant discharged from the first flow control device 51 at the first confluence point a. The gas refrigerant merged from two directions flows into the suction side of the compressor 1 through the first check valve 41 and the four-way valve 4 . At this time, the gas refrigerant does not flow to the second heat exchanger 20 through the second check valve 42 . This is because the pressure of the gas refrigerant between the first check valve 41 and the four-way valve 4 is lower than the pressure of the refrigerant at the first port P1 of the second heat exchanger 20 . The pressure difference corresponds to the pressure loss between the second heat exchanger 20 and the first check valve 41 .
 <第2運転モードにおける冷媒の流れ>
 図3は、冷凍サイクル装置100の第2運転モードにおける冷媒の流れを示す図である。図3を参照しながら第2運転モードにおける冷媒の流れを説明する。第2運転モードでは、制御装置90は、図3において実線で示される流路が四方弁4に形成されるように、四方弁4を制御する。
<Refrigerant flow in the second operation mode>
FIG. 3 is a diagram showing the flow of refrigerant in the second operation mode of refrigeration cycle apparatus 100. As shown in FIG. The refrigerant flow in the second operation mode will be described with reference to FIG. In the second operation mode, the control device 90 controls the four-way valve 4 so that the flow path indicated by the solid line in FIG. 3 is formed in the four-way valve 4 .
 このとき、四方弁4を含む切替装置40の働きによって、矢印が示すように冷媒が冷凍サイクル装置100の冷媒回路を流れる。すなわち、圧縮機1から吐出された冷媒は、四方弁4の第1切替ポートP41および第4切替ポートP44を経て、第2熱交換器20、気液分離器6の順に流れる。その後、気液分離器6のガス排出ポートP62から排出されたガス冷媒は、第1流量調整装置51を経由して第3ポートP3から第3熱交換器30に流入する。 At this time, the switching device 40 including the four-way valve 4 works to cause the refrigerant to flow through the refrigerant circuit of the refrigeration cycle device 100 as indicated by the arrow. That is, the refrigerant discharged from the compressor 1 passes through the first switching port P41 and the fourth switching port P44 of the four-way valve 4 and flows through the second heat exchanger 20 and the gas-liquid separator 6 in this order. After that, the gas refrigerant discharged from the gas discharge port P62 of the gas-liquid separator 6 flows into the third heat exchanger 30 from the third port P3 via the first flow control device 51 .
 一方、気液分離器6の液排出ポートP63から排出された液冷媒は第3熱交換器30の第4ポートP4から排出された冷媒と第2合流点bで合流する。第2合流点bで合流した冷媒は、膨張装置3、第1熱交換器10の順に流れた後、四方弁4を経由して、圧縮機1の吸入口に流れる。 On the other hand, the liquid refrigerant discharged from the liquid discharge port P63 of the gas-liquid separator 6 joins the refrigerant discharged from the fourth port P4 of the third heat exchanger 30 at the second junction b. The refrigerant merged at the second junction b flows through the expansion device 3 and the first heat exchanger 10 in this order, and then flows through the four-way valve 4 to the suction port of the compressor 1 .
 以上、概説した冷媒の順路によって第2運転モードにおける冷媒の第2順路が構成される。すなわち、第2順路において、冷媒は、圧縮機1、第2熱交換器20、気液分離器6の順に流れた後、気液分離器6から排出されたガス状態の冷媒が第1流量調整装置51を経由して、第3熱交換器30に流入する一方、気液分離器6から排出された液状態の冷媒が第3熱交換器30から排出された冷媒と第2合流点bで合流した後、第2合流点bで合流した冷媒が膨張装置3、第1熱交換器10、圧縮機1の順に流れる。 The refrigerant route outlined above constitutes the second refrigerant route in the second operation mode. That is, in the second route, the refrigerant flows through the compressor 1, the second heat exchanger 20, and the gas-liquid separator 6 in this order, and then the gaseous refrigerant discharged from the gas-liquid separator 6 is adjusted to the first flow rate. While flowing into the third heat exchanger 30 via the device 51, the liquid state refrigerant discharged from the gas-liquid separator 6 joins the refrigerant discharged from the third heat exchanger 30 at the second junction b After joining, the refrigerant joined at the second joining point b flows through the expansion device 3, the first heat exchanger 10, and the compressor 1 in this order.
 次に、第2運転モードにおける冷媒の流れをより詳細に説明する。第2運転モードにおいて、室内機側の第1熱交換器10は、蒸発器として機能し、室外機側の第2熱交換器20および第3熱交換器30は、凝縮器として機能する。圧縮機1から吐出された高温、高圧のガス冷媒は、四方弁4を通った後に、第2逆止弁42を経由して第1ポートP1から室外機側の第2熱交換器20へ流入する。四方弁4から第1合流点aに向かう冷媒の流れは第1逆止弁41によって遮断される。 Next, the refrigerant flow in the second operation mode will be described in more detail. In the second operation mode, the indoor unit side first heat exchanger 10 functions as an evaporator, and the outdoor unit side second heat exchanger 20 and third heat exchanger 30 function as condensers. After passing through the four-way valve 4, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows from the first port P1 through the second check valve 42 into the second heat exchanger 20 on the outdoor unit side. do. A first check valve 41 blocks the flow of refrigerant from the four-way valve 4 toward the first confluence point a.
 第2熱交換器20に流入したガス冷媒は、外気に放熱することによって凝縮し、ガスと液とが混ざり合った二相の冷媒に変化する。第2熱交換器20の第2ポートから排出された二相冷媒は、流入ポートP61から気液分離器6に流入して、ガス冷媒と液冷媒とに分離される。 The gas refrigerant that has flowed into the second heat exchanger 20 is condensed by radiating heat to the outside air, and changes into a two-phase refrigerant in which gas and liquid are mixed. The two-phase refrigerant discharged from the second port of the second heat exchanger 20 flows into the gas-liquid separator 6 from the inflow port P61 and is separated into gas refrigerant and liquid refrigerant.
 気液分離器6で分離されたガス冷媒は、ガス排出ポートP62から排出される。ガス排出ポートP62から排出されたガス冷媒は、第1流量調整装置51を通じて、第3ポートP3から第3熱交換器30へ流入する。このとき、第1流量調整装置51から排出されたガス冷媒が第1逆止弁41を通って四方弁4の第4切替ポートP44側に流れることはない。この理由は、第1流量調整装置51から排出されたガス冷媒の圧力が、四方弁4の第4切替ポートP44部分の冷媒の圧力よりも低いためである。その圧力差は、四方弁4と第1逆止弁41との圧力損失分に相当する。 The gas refrigerant separated by the gas-liquid separator 6 is discharged from the gas discharge port P62. The gas refrigerant discharged from the gas discharge port P62 flows into the third heat exchanger 30 from the third port P3 through the first flow regulating device 51 . At this time, the gas refrigerant discharged from the first flow control device 51 does not flow through the first check valve 41 to the fourth switching port P44 side of the four-way valve 4 . The reason for this is that the pressure of the gaseous refrigerant discharged from the first flow rate adjusting device 51 is lower than the pressure of the refrigerant at the fourth switching port P44 of the four-way valve 4 . The pressure difference corresponds to the pressure loss between the four-way valve 4 and the first check valve 41 .
 一方、気液分離器6で分離された液冷媒は、液排出ポートP63から排出される。液排出ポートP63から排出された液冷媒は、第3熱交換器30に流入することなく、第3熱交換器30の下流側に向かう。このため、室外機内の第2熱交換器20と第3熱交換器30とのうち、下流側の第3熱交換器30にはガス冷媒が流入し、液冷媒が流入しない。 On the other hand, the liquid refrigerant separated by the gas-liquid separator 6 is discharged from the liquid discharge port P63. The liquid refrigerant discharged from the liquid discharge port P<b>63 goes downstream of the third heat exchanger 30 without flowing into the third heat exchanger 30 . Therefore, of the second heat exchanger 20 and the third heat exchanger 30 in the outdoor unit, the gas refrigerant flows into the downstream third heat exchanger 30, and the liquid refrigerant does not flow.
 第3熱交換器30ではガス冷媒が外気と熱交換をし、凝縮する。その結果、第3熱交換器30内で冷媒の液化が進む。このように、第3熱交換器30には液冷媒が流入しないため、第3熱交換器30内に温度勾配が発生しない。その結果、第3熱交換器30内での温度に偏りが生じない。 In the third heat exchanger 30, the gas refrigerant exchanges heat with the outside air and condenses. As a result, liquefaction of the refrigerant progresses in the third heat exchanger 30 . As described above, no liquid refrigerant flows into the third heat exchanger 30 , so no temperature gradient occurs in the third heat exchanger 30 . As a result, the temperature in the third heat exchanger 30 is not uneven.
 第3熱交換器30の第4ポートP4から排出された液冷媒は、気液分離器6の液排出ポートP63から排出された液冷媒と第2合流点bで合流する。第2合流点bで合流した液冷媒は、第4逆止弁44を通って膨張装置3に流入する。このとき、液冷媒が第3逆止弁43を通って第2熱交換器20へ流れることはない。第4逆止弁44部分の冷媒の圧力は、第2熱交換器20の第1ポートP1部分の冷媒の圧力よりも低いためである。その圧力差は、第2熱交換器20、第1流量調整装置51、および第4逆止弁44の圧力損失分に相当する。 The liquid refrigerant discharged from the fourth port P4 of the third heat exchanger 30 joins the liquid refrigerant discharged from the liquid discharge port P63 of the gas-liquid separator 6 at the second junction b. The liquid refrigerant merged at the second junction b flows into the expansion device 3 through the fourth check valve 44 . At this time, liquid refrigerant does not flow to the second heat exchanger 20 through the third check valve 43 . This is because the refrigerant pressure at the fourth check valve 44 portion is lower than the refrigerant pressure at the first port P1 portion of the second heat exchanger 20 . The pressure difference corresponds to the pressure loss of the second heat exchanger 20 , the first flow regulating device 51 and the fourth check valve 44 .
 膨張装置3に流入した冷媒は、膨張装置3によって膨張した後、室内機側の第1熱交換器10に流入する。第1熱交換器10に流入した冷媒は、室内の空気から熱を吸収することで蒸発した後、四方弁4を通じて圧縮機1の吸入側へ流入する。 The refrigerant that has flowed into the expansion device 3 is expanded by the expansion device 3, and then flows into the first heat exchanger 10 on the indoor unit side. The refrigerant that has flowed into the first heat exchanger 10 absorbs heat from the indoor air and evaporates, and then flows into the suction side of the compressor 1 through the four-way valve 4 .
 第1運転モードおよび第2運転モードにおける冷媒の流れは、以上に説明したとおりである。冷凍サイクル装置100において、第1逆止弁41と第2逆止弁42とにより第1弁機構が構成される。第3逆止弁43と第4逆止弁44とにより第2弁機構が構成される。  The flow of the refrigerant in the first operation mode and the second operation mode is as described above. In the refrigeration cycle device 100, the first check valve 41 and the second check valve 42 constitute a first valve mechanism. A second valve mechanism is configured by the third check valve 43 and the fourth check valve 44 .
 第1弁機構は、四方弁4が第1状態となっている第1運転モードにおいて、膨張装置3と第2熱交換器20の第1ポートP1とを連通させ、膨張装置3と第3熱交換器30の第4ポートP4との連通を遮断する。 The first valve mechanism communicates the expansion device 3 with the first port P1 of the second heat exchanger 20 in the first operation mode in which the four-way valve 4 is in the first state, and the expansion device 3 communicates with the third heat exchanger. Communication with the fourth port P4 of the exchanger 30 is cut off.
 第1弁機構は、第1運転モードにおいて、第1合流点aから第4切替ポートP44への冷媒の流れを開放し、膨張装置3から第4切替ポートP44への冷媒の流れを遮断する。さらに、第1弁機構は、第2運転モードにおいて、第4切替ポートP44から第2熱交換器20への冷媒の流れを開放し、第4切替ポートP44から第1合流点aの冷媒の流れを遮断する。 In the first operation mode, the first valve mechanism opens the flow of refrigerant from the first junction a to the fourth switching port P44 and blocks the flow of refrigerant from the expansion device 3 to the fourth switching port P44. Furthermore, in the second operation mode, the first valve mechanism opens the flow of refrigerant from the fourth switching port P44 to the second heat exchanger 20, and allows the flow of refrigerant from the fourth switching port P44 to the first junction a. block the
 第2弁機構は、第1運転モードにおいて、膨張装置3から第2熱交換器20への冷媒の流れを開放し、膨張装置3から第2合流点bへの冷媒の流れを遮断し、第2運転モードにおいて、第2合流点bから膨張装置3への冷媒の流れを開放し、第4切替ポートP44から膨張装置3への冷媒の流れを遮断する。 In the first operation mode, the second valve mechanism opens the flow of refrigerant from the expansion device 3 to the second heat exchanger 20, blocks the flow of refrigerant from the expansion device 3 to the second junction b, and In the second operation mode, the refrigerant flow from the second junction b to the expansion device 3 is opened, and the refrigerant flow from the fourth switching port P44 to the expansion device 3 is blocked.
 <第1運転モードにおけるp-h線図>
 図4は、第1運転モードにおける冷媒の状態変化を示すp-h線図である。図2を参照しながら、図4について説明する。
<ph diagram in the first operation mode>
FIG. 4 is a ph diagram showing changes in refrigerant state in the first operation mode. FIG. 4 will be described with reference to FIG.
 ここで、図4に示されるhout、hout’、hg、hl、hin、およびhsepは、それぞれ、図2のPoout、Poout’、Pog、Pol、Poin、およびPosepと対応している。たとえば、図2の冷媒回路のPoinの位置のエンタルピは、図4が示すhinに対応する。 Here, hout, hout', hg, hl, hin, and hsep shown in FIG. 4 respectively correspond to Pout, Poout', Pog, Pol, Poin, and Posep in FIG. For example, the enthalpy at Poin in the refrigerant circuit of FIG. 2 corresponds to hin shown in FIG.
 圧縮機1から吐出された高温高圧のガス冷媒は、第1熱交換器10によって凝縮される。その後、冷媒は膨張装置3においてガス冷媒と液冷媒とに二相化してから第2熱交換器20に流入する。このときの冷媒のエンタルピはhinである。第2熱交換器20からは、乾き度がより高くなった二相冷媒が排出される。排出された二相冷媒は気液分離器6に流入する。このときの冷媒のエンタルピはhsepである。 The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is condensed by the first heat exchanger 10 . After that, the refrigerant is two-phased into a gas refrigerant and a liquid refrigerant in the expansion device 3 and then flows into the second heat exchanger 20 . The enthalpy of the refrigerant at this time is hin. Two-phase refrigerant with a higher dryness is discharged from the second heat exchanger 20 . The discharged two-phase refrigerant flows into the gas-liquid separator 6 . The enthalpy of the refrigerant at this time is hsep.
 気液分離器6に流入した二相冷媒は、気液分離器6においてガス冷媒と液冷媒とに分離される。気液分離器6から排出されたガス冷媒は第1流量調整装置51に向かう。このときのガス冷媒のエンタルピはhgである。一方、気液分離器6から排出されたガス冷媒は第3熱交換器30に向かう。このときの液冷媒のエンタルピはhlである。 The two-phase refrigerant that has flowed into the gas-liquid separator 6 is separated into gas refrigerant and liquid refrigerant in the gas-liquid separator 6 . The gas refrigerant discharged from the gas-liquid separator 6 goes to the first flow control device 51 . The enthalpy of the gas refrigerant at this time is hg. On the other hand, the gas refrigerant discharged from the gas-liquid separator 6 goes to the third heat exchanger 30 . The enthalpy of the liquid refrigerant at this time is hl.
 ここで、気液分離器6に流入する冷媒の量をX[kg/hr]、気液分離器6から排出されるガス冷媒の量をY[kg/hr]、気液分離器6から排出される液冷媒の量をZ[kg/hr]とすると、X=Y+Zが成立する。このとき、蒸発能力は以下の式(1)にて表される。 Here, the amount of refrigerant flowing into the gas-liquid separator 6 is X [kg/hr], the amount of gas refrigerant discharged from the gas-liquid separator 6 is Y [kg/hr], and the amount of refrigerant discharged from the gas-liquid separator 6 is Assuming that the amount of liquid refrigerant applied is Z [kg/hr], X=Y+Z is established. At this time, the evaporation capacity is represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、流量Xは圧縮機1の回転数、圧縮機1の吸入密度などによって決まる。流量Yおよび流量Zは、気液分離器6のガス冷媒の出口側に取り付けられた第1流量調整装置51の開度によって決まる。気液分離器6に流入する冷媒のエンタルピhsepは、蒸発器として機能する第2熱交換器20のサイズ、風量などによって調整できる。したがって、冷媒の組成変化を考慮しながら、第1流量調整装置51の開度を調整することによって、蒸発能力を改善することができる。 Here, the flow rate X is determined by the rotation speed of the compressor 1, the suction density of the compressor 1, and the like. The flow rate Y and the flow rate Z are determined by the degree of opening of the first flow control device 51 attached to the gas refrigerant outlet side of the gas-liquid separator 6 . The enthalpy hsep of the refrigerant flowing into the gas-liquid separator 6 can be adjusted by adjusting the size of the second heat exchanger 20 functioning as an evaporator, the air volume, and the like. Therefore, by adjusting the degree of opening of the first flow rate adjusting device 51 while considering the composition change of the refrigerant, the evaporation capacity can be improved.
 第3熱交換器30に流入した液冷媒は外気と熱交換し、ガス化する。これにより、第3熱交換器30から排出された冷媒のエンタルピはhout’となる。第3熱交換器30から排出されたガス冷媒は、第1流量調整装置51から排出されたガス冷媒と合流点aで合流する。このときのガス冷媒のエンタルピはhoutとなる。その後、ガス冷媒は四方弁4を通って圧縮機1に戻る。 The liquid refrigerant that has flowed into the third heat exchanger 30 exchanges heat with the outside air and is gasified. As a result, the enthalpy of the refrigerant discharged from the third heat exchanger 30 becomes hout'. The gas refrigerant discharged from the third heat exchanger 30 joins with the gas refrigerant discharged from the first flow control device 51 at the confluence point a. The enthalpy of the gas refrigerant at this time is hout. After that, the gas refrigerant returns to the compressor 1 through the four-way valve 4 .
 第1運転モードでは、気液分離器6を用いることにより、第3熱交換器30へ液冷媒のみを流す。このため、ガス冷媒と液冷媒とを含む二相冷媒の全量を第3熱交換器30に流す場合と比較して、第3熱交換器30に流れる冷媒の流量を減らすことができる(Z=X-Y)。その結果、二相冷媒の全量を第3熱交換器30に流す場合と比較して、圧力損失を低減させることができる。 In the first operation mode, only the liquid refrigerant flows to the third heat exchanger 30 by using the gas-liquid separator 6 . Therefore, the flow rate of the refrigerant flowing through the third heat exchanger 30 can be reduced compared to the case where the entire amount of the two-phase refrigerant containing the gas refrigerant and the liquid refrigerant flows through the third heat exchanger 30 (Z = XY). As a result, pressure loss can be reduced compared to the case where the entire amount of the two-phase refrigerant flows through the third heat exchanger 30 .
 さらに、ガス冷媒よりも密度の高い液冷媒のみを第3熱交換器30へ流すため、第3熱交換器30の入口の乾き度がほぼ0になる。このため、2相冷媒を流す場合に比べて、第3熱交換器30を流れる冷媒の流速を下げることができる。その結果、流速の観点からも、圧力損失を改善できる。 Furthermore, since only the liquid refrigerant having a higher density than the gas refrigerant flows to the third heat exchanger 30, the dryness at the inlet of the third heat exchanger 30 becomes almost zero. Therefore, the flow velocity of the refrigerant flowing through the third heat exchanger 30 can be lowered compared to the case where the two-phase refrigerant flows. As a result, pressure loss can be improved also from the viewpoint of flow velocity.
 ここで、下流側の第3熱交換器30内に複数の流路が設けられている場合を考える。この場合、ガス冷媒と液冷媒とから成る二相の非共沸混合冷媒を第3熱交換器30に流すと、相対的に高い位置の流路にはガス冷媒が流れ、相対的に低い位置の流路には液冷媒が流れる。これは、ガス冷媒と液冷媒とに密度差があるためである。そうすると、非共沸混合冷媒の温度勾配によって、冷媒温度に偏りが生じてしまう。しかし、本実施の形態では、乾き度がほぼ0の液冷媒のみを第3熱交換器30へ流す。このような液冷媒は重力や流れの偏りの影響を受けにくい。このため、液冷媒のみを第3熱交換器30へ流すことにより、各流路の冷媒の流量を均一化することができる。その結果、本実施の形態によれば、温度勾配による冷媒温度の偏りを改善できる。 Here, consider a case where a plurality of flow paths are provided in the third heat exchanger 30 on the downstream side. In this case, when a two-phase non-azeotropic refrigerant mixture composed of a gas refrigerant and a liquid refrigerant flows through the third heat exchanger 30, the gas refrigerant flows in the relatively high flow passages, and the relatively low flow passages flow. A liquid refrigerant flows through the flow path of . This is because there is a density difference between the gas refrigerant and the liquid refrigerant. As a result, the temperature gradient of the non-azeotropic refrigerant mixture causes a deviation in the refrigerant temperature. However, in the present embodiment, only the liquid refrigerant with almost zero dryness is allowed to flow to the third heat exchanger 30 . Such a liquid refrigerant is less susceptible to gravity and flow bias. Therefore, by allowing only the liquid refrigerant to flow through the third heat exchanger 30, the flow rate of the refrigerant in each flow path can be made uniform. As a result, according to the present embodiment, it is possible to improve the unevenness of the coolant temperature due to the temperature gradient.
 本実施の形態によれば、第1流量調整装置51の開度を調整することにより、第3熱交換器30を流れる液冷媒の量を制御できる。たとえば、圧縮機1の回転数と膨張装置3の開度とが一定の状態で第1流量調整装置51の開度を大きくすると、蒸発器として機能する第3熱交換器30の出口側へバイパスするガス冷媒の量が増え、第3熱交換器30を流れる液冷媒の量が少なくなる。 According to this embodiment, the amount of liquid refrigerant flowing through the third heat exchanger 30 can be controlled by adjusting the degree of opening of the first flow rate adjusting device 51 . For example, when the rotation speed of the compressor 1 and the opening degree of the expansion device 3 are constant and the opening degree of the first flow rate adjusting device 51 is increased, bypass to the outlet side of the third heat exchanger 30 functioning as an evaporator. The amount of gas refrigerant flowing through the third heat exchanger 30 increases, and the amount of liquid refrigerant flowing through the third heat exchanger 30 decreases.
 第3熱交換器30を流れる液冷媒の量が減ると、冷媒が第3熱交換器30の内部で完全に蒸発し、ガス化することを期待できる。この場合、第3熱交換器30の出口の過熱度が上昇する。一方、第1流量調整装置51の開度を小さくすると、第3熱交換器30に流入する液冷媒の量が増えるため、液冷媒が第3熱交換器30の内部で完全にガス化しなくなる。その結果、過熱度が下がる。したがって、第1流量調整装置51の開度を調整し、バイパスするガス冷媒の量を増減させることによって、第3熱交換器30の出口部分の過熱度を最適値になるように制御することができる。 When the amount of liquid refrigerant flowing through the third heat exchanger 30 decreases, the refrigerant can be expected to completely evaporate inside the third heat exchanger 30 and gasify. In this case, the degree of superheat at the outlet of the third heat exchanger 30 increases. On the other hand, when the degree of opening of the first flow rate adjusting device 51 is reduced, the amount of liquid refrigerant flowing into the third heat exchanger 30 increases, so the liquid refrigerant does not completely gasify inside the third heat exchanger 30 . As a result, the degree of superheat is reduced. Therefore, the degree of superheat at the outlet of the third heat exchanger 30 can be controlled to an optimum value by adjusting the degree of opening of the first flow rate adjusting device 51 and increasing or decreasing the amount of bypass gas refrigerant. can.
 第3熱交換器30の出口部分の過熱度は、第1温度センサー71が検出した温度と第2温度センサー72が検出した温度とに基づいて推定することができる。非共沸混合冷媒は温度勾配があるため、二相状態の冷媒の温度から飽和温度を推定することが難しいが、気液分離器6によって単相状態となったガス冷媒の温度に基づいてより正確に過熱度を推定することができる。 The degree of superheat at the outlet of the third heat exchanger 30 can be estimated based on the temperature detected by the first temperature sensor 71 and the temperature detected by the second temperature sensor 72 . Since the non-azeotropic refrigerant mixture has a temperature gradient, it is difficult to estimate the saturation temperature from the temperature of the refrigerant in the two-phase state. It can accurately estimate the degree of superheat.
 <第2運転モードにおけるp-h線図>
 図5は、第2運転モードにおける冷媒の状態変化を示すp-h線図である。図3を参照しながら、図5について説明する。
<ph diagram in the second operation mode>
FIG. 5 is a ph diagram showing changes in refrigerant state in the second operation mode. FIG. 5 will be described with reference to FIG.
 ここで、図5のhout、hout’、hg、hl、hin、およびhsepは、それぞれ、図3のPoout、Poout’、Pog、Pol、Poin、およびPosepと対応している。 Here, hout, hout', hg, hl, hin, and hsep in FIG. 5 correspond to Pout, Poout', Pog, Pol, Poin, and Posep in FIG. 3, respectively.
 圧縮機1から吐出された高温高圧のガス冷媒は、第2熱交換器20に流入する。このときの冷媒のエンタルピはhinである。第2熱交換器20に流入した冷媒は凝縮し、二相冷媒となって排出される。第2熱交換器20から排出された二相冷媒は気液分離器6に流入する。このときの冷媒のエンタルピはhsepである。 The high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows into the second heat exchanger 20 . The enthalpy of the refrigerant at this time is hin. The refrigerant that has flowed into the second heat exchanger 20 is condensed and discharged as a two-phase refrigerant. The two-phase refrigerant discharged from the second heat exchanger 20 flows into the gas-liquid separator 6 . The enthalpy of the refrigerant at this time is hsep.
 気液分離器6に流入した二相冷媒は、気液分離器6においてガス冷媒と液冷媒とに分離される。気液分離器6から排出されたガス冷媒は第1流量調整装置51を経て第3熱交換器30に向かう。第1流量調整装置51手前のガス冷媒のエンタルピはhgである。一方、気液分離器6から排出された液冷媒は第3熱交換器30の下流側に向かう。このときの液冷媒のエンタルピはhlである。 The two-phase refrigerant that has flowed into the gas-liquid separator 6 is separated into gas refrigerant and liquid refrigerant in the gas-liquid separator 6 . The gas refrigerant discharged from the gas-liquid separator 6 goes to the third heat exchanger 30 through the first flow control device 51 . The enthalpy of the gas refrigerant before the first flow control device 51 is hg. On the other hand, the liquid refrigerant discharged from the gas-liquid separator 6 goes downstream of the third heat exchanger 30 . The enthalpy of the liquid refrigerant at this time is hl.
 ここで、気液分離器6に流入する冷媒の量をX[kg/hr]、気液分離器6から排出されるガス冷媒の量をY[kg/hr]、気液分離器6から排出される液冷媒の量をZ[kg/hr]とすると、第1運転モードの場合と同様に、X=Y+Zが成立する。このとき、凝縮能力は以下の式(2)にて表される。 Here, the amount of refrigerant flowing into the gas-liquid separator 6 is X [kg/hr], the amount of gas refrigerant discharged from the gas-liquid separator 6 is Y [kg/hr], and the amount of refrigerant discharged from the gas-liquid separator 6 is Assuming that the amount of liquid refrigerant to be supplied is Z [kg/hr], X=Y+Z holds as in the case of the first operation mode. At this time, the condensation capacity is represented by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 第3熱交換器30に流入したガス冷媒は外気と熱交換し、凝縮する。これにより、第3熱交換器30から排出された冷媒のエンタルピはhout’となる。第3熱交換器30から排出された冷媒は、気液分離器6から排出された液冷媒と第2合流点bで合流する。このときの冷媒のエンタルピはhoutとなる。その後、冷媒は膨張装置3で膨張し、第1熱交換器10に流入し、蒸発した後、四方弁4を通じて圧縮機1に戻る。 The gas refrigerant that has flowed into the third heat exchanger 30 exchanges heat with the outside air and condenses. As a result, the enthalpy of the refrigerant discharged from the third heat exchanger 30 becomes hout'. The refrigerant discharged from the third heat exchanger 30 joins the liquid refrigerant discharged from the gas-liquid separator 6 at the second junction b. The enthalpy of the refrigerant at this time is hout. After that, the refrigerant is expanded by the expansion device 3 , flows into the first heat exchanger 10 , evaporates, and then returns to the compressor 1 through the four-way valve 4 .
 第2運転モードでは、気液分離器6を用いることにより、第3熱交換器30へガス冷媒のみを流す。このため、ガス冷媒と液冷媒とを含む二相冷媒の全量を第3熱交換器30に流す場合と比較して、第3熱交換器30に流れる冷媒の流量を減らすことができる。その結果、二相冷媒の全量を第3熱交換器30に流す場合と比較して、圧力損失を低減させることができる。 In the second operation mode, only gas refrigerant is allowed to flow to the third heat exchanger 30 by using the gas-liquid separator 6 . Therefore, the flow rate of the refrigerant flowing through the third heat exchanger 30 can be reduced compared to the case where the entire amount of the two-phase refrigerant containing gas refrigerant and liquid refrigerant flows through the third heat exchanger 30 . As a result, pressure loss can be reduced compared to the case where the entire amount of the two-phase refrigerant flows through the third heat exchanger 30 .
 第2運転モードでは、非共沸混合冷媒が室外機側の第2熱交換器20に流入した場合、低沸点の冷媒よりも高沸点の冷媒が優先的に第2熱交換器20で凝縮される。このため、気液分離器6内のガス冷媒の大部分は低沸点成分の冷媒であり、気液分離器6内の液冷媒の大部分は高沸点の冷媒である。第2運転モードにおいては、気液分離器6で分離されたガス冷媒のみを第3熱交換器30に流すため、第3熱交換器30で凝縮されるのは低沸点成分の冷媒である。 In the second operation mode, when the non-azeotropic refrigerant mixture flows into the second heat exchanger 20 on the outdoor unit side, the refrigerant with a high boiling point is preferentially condensed in the second heat exchanger 20 rather than the refrigerant with a low boiling point. be. Therefore, most of the gas refrigerant in the gas-liquid separator 6 is low boiling point refrigerant, and most of the liquid refrigerant in the gas/liquid separator 6 is high boiling point refrigerant. In the second operation mode, only the gaseous refrigerant separated by the gas-liquid separator 6 flows to the third heat exchanger 30, so that the refrigerant with a low boiling point component is condensed in the third heat exchanger 30. FIG.
 このように、第2運転モードにおいて、気液分離器6を用いることで、第2熱交換器20および第3熱交換器30のうち、下流側の第3熱交換器30へ低沸点成分の多い冷媒を流すことができる。ここで、低沸点成分の冷媒の理論成績係数が高沸点成分の冷媒より高い場合、冷凍サイクルの効率を改善できる。 Thus, in the second operation mode, by using the gas-liquid separator 6, of the second heat exchanger 20 and the third heat exchanger 30, the low boiling point component is transferred to the third heat exchanger 30 on the downstream side. A large amount of refrigerant can flow. Here, when the theoretical coefficient of performance of the refrigerant with the low boiling point component is higher than that of the refrigerant with the high boiling point component, the efficiency of the refrigeration cycle can be improved.
 第2運転モードにおいても、第1運転モードと同様に、冷媒の組成変化を考慮しながら、第1流量調整装置51の開度を調整することによって第3熱交換器30へ流れる冷媒の量を調整することができる。たとえば、圧縮機1の回転数と膨張装置3の開度とを一定に保った状態で第1流量調整装置51の開度を大きくすると、第3熱交換器30へ流れるガス冷媒の量が増える。 In the second operation mode, similarly to the first operation mode, the amount of refrigerant flowing to the third heat exchanger 30 is adjusted by adjusting the opening degree of the first flow rate adjusting device 51 while considering the composition change of the refrigerant. can be adjusted. For example, if the opening of the first flow control device 51 is increased while the rotation speed of the compressor 1 and the opening of the expansion device 3 are kept constant, the amount of gaseous refrigerant flowing to the third heat exchanger 30 increases. .
 第3熱交換器30へ流れるガス冷媒の量が増えると、気液分離器6内の液面の高さが上昇する。その結果、第3熱交換器30の出口部分の過冷却度(SC:Super cool)が低くなる。一方、第1流量調整装置51の開度を小さくすると、過冷却度が高くなる。したがって、第1流量調整装置51の開度を調整し、第3熱交換器30へ流れるガス冷媒の量を増減させることによって、第3熱交換器30の出口部分の過冷却度を最適値になるように制御することができる。 When the amount of gas refrigerant flowing to the third heat exchanger 30 increases, the liquid level in the gas-liquid separator 6 rises. As a result, the degree of supercooling (SC: Supercool) at the outlet of the third heat exchanger 30 is lowered. On the other hand, when the degree of opening of the first flow rate adjusting device 51 is decreased, the degree of supercooling increases. Therefore, by adjusting the opening degree of the first flow rate adjusting device 51 and increasing or decreasing the amount of gaseous refrigerant flowing to the third heat exchanger 30, the degree of subcooling at the outlet portion of the third heat exchanger 30 is optimized. can be controlled to be
 第3熱交換器30の出口部分の過冷却度は、第1温度センサー71が検出した温度と第3温度センサー73が検出した温度とに基づいて推定することができる。 The degree of subcooling at the outlet of the third heat exchanger 30 can be estimated based on the temperature detected by the first temperature sensor 71 and the temperature detected by the third temperature sensor 73 .
 <第1運転モードにおける制御装置の制御>
 図6は、第1運転モードにおける制御装置90の制御を説明するためのフローチャートである。はじめに、制御装置90は、圧縮機1の回転数を変化させる(ステップS1)。圧縮機1の回転数は、室内機のリモコンで設定した温度と室内温度との差分などによって決定される。制御装置90は、圧縮機1の回転数を適切な値に変化させる。
<Control of the control device in the first operation mode>
FIG. 6 is a flow chart for explaining the control of the control device 90 in the first operation mode. First, the control device 90 changes the rotation speed of the compressor 1 (step S1). The rotation speed of the compressor 1 is determined by the difference between the temperature set by the remote controller of the indoor unit and the room temperature. The controller 90 changes the rotation speed of the compressor 1 to an appropriate value.
 次に、制御装置90は、膨張装置3の開度を調整する(ステップS2)。
 次に、制御装置90は、凝縮器として機能する第1熱交換器10の出口の過冷却度(SC:Super cool)を算出する(ステップS3)。第1熱交換器10の出口の過冷却度は、たとえば、第1熱交換器10の出口の温度と、第1熱交換器10の圧力とから算出することができる。したがって、温度を検出するセンサーと圧力を検出するセンサーとを適宜、冷媒回路に配置するとよい。
Next, the control device 90 adjusts the opening degree of the expansion device 3 (step S2).
Next, the control device 90 calculates the degree of supercooling (SC: Super cool) at the outlet of the first heat exchanger 10 that functions as a condenser (step S3). The degree of supercooling at the outlet of the first heat exchanger 10 can be calculated, for example, from the temperature at the outlet of the first heat exchanger 10 and the pressure of the first heat exchanger 10 . Therefore, a sensor for detecting temperature and a sensor for detecting pressure should be appropriately arranged in the refrigerant circuit.
 次に、制御装置90は、凝縮器として機能する第1熱交換器10の出口の過冷却度が目標領域以内にあるか否かを判定する(ステップS4)。制御装置90は、第1熱交換器10の出口の過冷却度が目標領域以内にないと判定したとき、ステップS2において、再度、膨張装置3の開度を調整する。 Next, the control device 90 determines whether or not the degree of subcooling at the outlet of the first heat exchanger 10 functioning as a condenser is within the target range (step S4). When the control device 90 determines that the degree of subcooling at the outlet of the first heat exchanger 10 is not within the target region, in step S2, the opening degree of the expansion device 3 is adjusted again.
 このように、制御装置90は、第1熱交換器10の出口の過冷却度が圧縮機1の回転数毎に設定された目標領域以内になるまで、ステップS2において、膨張装置3の開度を繰り返し調整する。ここで、目標値領域は、目標値±目標誤差である。 In this way, the control device 90 keeps the expansion device 3 open degree repeatedly adjust. Here, the target value area is the target value±target error.
 制御装置90は、ステップS4において、第1熱交換器10の出口の過冷却度が目標領域以内であると判定したとき、第1流量調整装置51の開度を調整する(ステップS5)。 When the control device 90 determines in step S4 that the degree of subcooling at the outlet of the first heat exchanger 10 is within the target region, it adjusts the opening degree of the first flow rate adjusting device 51 (step S5).
 次に、制御装置90は、蒸発器として機能する第3熱交換器30の出口の過熱度(SH:Super heat)を算出する(ステップS6)。このとき、制御装置90は、第1温度センサー71が検出した温度と第2温度センサー72が検出した温度とに基づいて第3熱交換器30の出口部分の過熱度を算出する。 Next, the control device 90 calculates the degree of superheat (SH: Superheat) at the outlet of the third heat exchanger 30 that functions as an evaporator (step S6). At this time, the controller 90 calculates the degree of superheat at the outlet of the third heat exchanger 30 based on the temperature detected by the first temperature sensor 71 and the temperature detected by the second temperature sensor 72 .
 次に、制御装置90は、蒸発器として機能する第3熱交換器30の出口の過熱度が目標領域以内にあるか否かを判定する(ステップS7)。制御装置90は、第3熱交換器30の出口の過熱度が目標値以内にないと判定したとき、ステップS5において、再度、第1流量調整装置51の開度を調整する。 Next, the control device 90 determines whether or not the degree of superheat at the outlet of the third heat exchanger 30 functioning as an evaporator is within the target range (step S7). When the control device 90 determines that the degree of superheat at the outlet of the third heat exchanger 30 is not within the target value, in step S5, the opening degree of the first flow rate adjusting device 51 is adjusted again.
 このように、制御装置90は、第3熱交換器30の出口の過熱度が圧縮機1の回転数毎に設定された目標領域以内になるまで、ステップS5において、第1流量調整装置51の開度を繰り返し調整する。制御装置90は、第3熱交換器30の出口の過熱度が目標領域以内にあると判定したとき、処理を終了する。 In this way, the control device 90 keeps the first flow control device 51 in step S5 until the degree of superheat at the outlet of the third heat exchanger 30 is within the target region set for each rotation speed of the compressor 1. Repeatedly adjust the opening. When the controller 90 determines that the degree of superheat at the outlet of the third heat exchanger 30 is within the target range, the process ends.
 制御装置90は、圧縮機1の回転数が規定の回転数域に存在する場合、第1流量調整装置51の開度をゼロにすることで流路を閉塞し、ガス冷媒を第3熱交換器30に流すようにしてもよい。この場合、制御装置90は、圧縮機1の回転数が変化するたびにその回転数が規定の回転数域に入っているかを確認する。 When the rotation speed of the compressor 1 is in the specified rotation speed range, the control device 90 closes the flow path by setting the opening degree of the first flow rate adjusting device 51 to zero, and the gas refrigerant is subjected to the third heat exchange. You may make it flow to the vessel 30. In this case, the control device 90 checks whether the rotation speed of the compressor 1 is within a specified rotation speed range each time the rotation speed of the compressor 1 changes.
 以上、図6に示すフローチャートを用いて説明したとおり、制御装置90は、第1運転モードにおいて、第1温度センサー71の検出値と第2温度センサー72の検出値とに基づいて第3熱交換器30の過熱度を算出し、第1流量調整装置51の開度を調整することによって、第3熱交換器30の過熱度を制御する。 As described above using the flowchart shown in FIG. 6, the control device 90 performs the third heat exchange based on the detection value of the first temperature sensor 71 and the detection value of the second temperature sensor 72 in the first operation mode. The degree of superheat of the third heat exchanger 30 is controlled by calculating the degree of superheat of the heat exchanger 30 and adjusting the degree of opening of the first flow control device 51 .
 <第2運転モードにおける制御装置の制御>
 図7は、第2運転モードにおける制御装置90の制御を説明するためのフローチャートである。はじめに、制御装置90は、ステップS1の処理と同様に圧縮機1の回転数を変化させる(ステップS11)。
<Control of the control device in the second operation mode>
FIG. 7 is a flow chart for explaining the control of the control device 90 in the second operation mode. First, the control device 90 changes the rotation speed of the compressor 1 (step S11) as in the process of step S1.
 圧縮機1の回転数を変化させた場合、制御装置90は、圧縮機1の吐出温度が目標領域以内になるように、膨張装置3の開度を調整する(ステップS12)。圧縮機1の吐出温度は、たとえば、圧縮機1の吐出部分に設けた温度センサーの検出値に基づいて特定することができる。次に、制御装置90は、圧縮機1の吐出温度が目標領域以内にあるか否かを判定する(ステップS13)。制御装置90は、圧縮機1の吐出温度が目標領域以内にないと判定したとき、ステップS12において、再度、膨張装置3の開度を調整する。 When the rotation speed of the compressor 1 is changed, the control device 90 adjusts the opening degree of the expansion device 3 so that the discharge temperature of the compressor 1 is within the target range (step S12). The discharge temperature of the compressor 1 can be specified, for example, based on the detected value of a temperature sensor provided in the discharge portion of the compressor 1 . Next, the control device 90 determines whether or not the discharge temperature of the compressor 1 is within the target range (step S13). When the control device 90 determines that the discharge temperature of the compressor 1 is not within the target range, the opening degree of the expansion device 3 is adjusted again in step S12.
 制御装置90は、ステップS13において、圧縮機1の吐出温度が目標領域以内であると判定したとき、第1流量調整装置51の開度を調整する(ステップS14)。 When the control device 90 determines in step S13 that the discharge temperature of the compressor 1 is within the target range, it adjusts the opening degree of the first flow rate adjusting device 51 (step S14).
 次に、制御装置90は、凝縮器として機能する第3熱交換器30の出口の過冷却度を算出する(ステップS15)。このとき、制御装置90は、第1温度センサー71が検出した温度と第3温度センサー73が検出した温度とに基づいて第3熱交換器30の出口部分の過冷却度を算出する。 Next, the control device 90 calculates the degree of supercooling at the outlet of the third heat exchanger 30 that functions as a condenser (step S15). At this time, the controller 90 calculates the degree of subcooling at the outlet of the third heat exchanger 30 based on the temperature detected by the first temperature sensor 71 and the temperature detected by the third temperature sensor 73 .
 次に、制御装置90は、凝縮器として機能する第3熱交換器30の出口の過冷却度が圧縮機1の回転数毎に設定された目標領域以内にあるか否かを判定する(ステップS16)。制御装置90は、第3熱交換器30の出口の過冷却度が目標領域以内にないと判定したとき、ステップS14において、再度、第1流量調整装置51の開度を調整する。 Next, the control device 90 determines whether or not the degree of subcooling at the outlet of the third heat exchanger 30 functioning as a condenser is within a target range set for each rotation speed of the compressor 1 (step S16). When the control device 90 determines that the degree of subcooling at the outlet of the third heat exchanger 30 is not within the target range, in step S14, the opening degree of the first flow control device 51 is adjusted again.
 このように、制御装置90は、第3熱交換器30の出口の過冷却度が圧縮機1の回転数毎に設定された目標領域以内になるまで、ステップS14において、第1流量調整装置51の開度を繰り返し調整する。制御装置90は、第3熱交換器30の出口の過冷却度が目標領域以内にあると判定したとき、処理を終了する。 In this way, the control device 90 keeps the first flow rate adjusting device 51 Repeatedly adjust the opening of the When the controller 90 determines that the degree of subcooling at the outlet of the third heat exchanger 30 is within the target range, the process ends.
 以上、図7に示すフローチャートを用いて説明したとおり、制御装置90は、第2運転モードにおいて、第1温度センサー71の検出値と第3温度センサー73の検出値とに基づいて第3熱交換器30の過冷却度を算出し、第1流量調整装置51の開度を調整することによって、第3熱交換器30の過冷却度を制御する。 As described above using the flowchart shown in FIG. 7, the control device 90 performs the third heat exchange based on the detection value of the first temperature sensor 71 and the detection value of the third temperature sensor 73 in the second operation mode. The degree of supercooling of the third heat exchanger 30 is controlled by calculating the degree of supercooling of the heat exchanger 30 and adjusting the degree of opening of the first flow control device 51 .
 以上説明したように、実施の形態1に関わる冷凍サイクル装置100は、運転モードに応じて液冷媒またはガス冷媒を下流側の第3熱交換器30へ流すことによって運転能力を向上させている。したがって、冷凍サイクル装置100によれば、第1運転モード、第2運転モードのいずれにおいても、冷凍サイクルの運転効率を向上させることができる。換言すれば、冷凍サイクル装置100によれば、室外機側の第2熱交換器20および第3熱交換器30を蒸発器および凝縮器のいずれに機能させた場合にも気液分離器6を利用して運転効率を向上させることが可能となる。特に、非共沸混合冷媒を用いた場合に、冷凍サイクルの運転効率を向上させる効果を高めることができる。 As described above, the refrigeration cycle apparatus 100 according to Embodiment 1 improves the operating capacity by flowing liquid refrigerant or gas refrigerant to the third heat exchanger 30 on the downstream side according to the operation mode. Therefore, according to the refrigerating cycle apparatus 100, the operating efficiency of the refrigerating cycle can be improved in both the first operating mode and the second operating mode. In other words, according to the refrigeration cycle device 100, the gas-liquid separator 6 is used regardless of whether the second heat exchanger 20 and the third heat exchanger 30 on the outdoor unit side function as an evaporator or a condenser. It can be used to improve operational efficiency. In particular, when a non-azeotropic mixed refrigerant is used, the effect of improving the operating efficiency of the refrigeration cycle can be enhanced.
 実施の形態2.
 次に、図8を用いて実施の形態2を説明する。図8は、実施の形態2に関わる冷凍サイクル装置110の構成を示す冷媒回路図である。実施の形態2に関わる冷凍サイクル装置110は、実施の形態1に関わる冷凍サイクル装置100と比較して、切替装置の構成が異なる。実施の形態2に関わる冷凍サイクル装置110は、第1三方弁45および第2三方弁46により構成される切替装置400を備える。
Embodiment 2.
Next, Embodiment 2 will be described with reference to FIG. FIG. 8 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 110 according to the second embodiment. A refrigerating cycle device 110 according to the second embodiment differs from the refrigerating cycle device 100 according to the first embodiment in the configuration of a switching device. A refrigeration cycle device 110 according to the second embodiment includes a switching device 400 configured with a first three-way valve 45 and a second three-way valve 46 .
 第1三方弁45は、第4切替ポートP44と第2熱交換器20と第1合流点aとの間に設けられる。第1三方弁45は、第4切替ポートP44への接続先を第2熱交換器20と第1合流点aとの間で切り替える。 The first three-way valve 45 is provided between the fourth switching port P44, the second heat exchanger 20 and the first junction a. The first three-way valve 45 switches the connection destination to the fourth switching port P44 between the second heat exchanger 20 and the first confluence point a.
 第2三方弁46は、膨張装置3と第2熱交換器20と第2合流点bとの間に設けられる。第2三方弁46は、膨張装置3への接続先を第2熱交換器20と第2合流点bとの間で切り替える。 The second three-way valve 46 is provided between the expansion device 3, the second heat exchanger 20 and the second junction b. The second three-way valve 46 switches the connection destination to the expansion device 3 between the second heat exchanger 20 and the second junction b.
 制御装置90は、第1運転モードにおいて、図8の実線で示される流路が形成されるように、四方弁4、第1三方弁45、および第2三方弁46を制御する。これにより、冷媒は、図2に示した順序と同じ順序で冷媒回路を循環する。制御装置90は、第2運転モードにおいて、四方弁4を図3に示したとおりに制御するとともに、第1三方弁45および第2三方弁46の接続態様を図8の破線で示す態様に切り替える。これにより、冷媒は、図3に示した順序と同じ順序で冷媒回路を循環する。 The control device 90 controls the four-way valve 4, the first three-way valve 45, and the second three-way valve 46 so that the flow path indicated by the solid line in FIG. 8 is formed in the first operation mode. Thereby, the refrigerant circulates in the refrigerant circuit in the same order as shown in FIG. In the second operation mode, the control device 90 controls the four-way valve 4 as shown in FIG. 3, and switches the connection state of the first three-way valve 45 and the second three-way valve 46 to the state shown by the dashed line in FIG. . Thereby, the refrigerant circulates in the refrigerant circuit in the same order as shown in FIG.
 第1三方弁45は、実施の形態1に関わる冷凍サイクル装置100の第1逆止弁41および第2逆止弁42と同様の機能を有する。第2三方弁46は、実施の形態1に関わる冷凍サイクル装置100の第3逆止弁43および第4逆止弁44と同様の機能を有する。したがって、実施の形態2において、第1弁機構は、第1三方弁45により構成されており、第2弁機構は、第2三方弁46により構成されている。 The first three-way valve 45 has the same function as the first check valve 41 and the second check valve 42 of the refrigeration cycle device 100 according to the first embodiment. The second three-way valve 46 has the same function as the third check valve 43 and the fourth check valve 44 of the refrigeration cycle apparatus 100 according to the first embodiment. Therefore, in Embodiment 2, the first valve mechanism is composed of the first three-way valve 45 and the second valve mechanism is composed of the second three-way valve 46 .
 実施の形態1に関わる第1弁機構は、第1逆止弁41および第2逆止弁42で構成されている。一方、実施の形態2に関わる第1弁機構は、第1三方弁45で構成されている。実施の形態1に関わる第2弁機構は、第3逆止弁43および第4逆止弁44で構成されている。一方、実施の形態2に関わる第2弁機構は、第2三方弁46で構成されている。したがって、実施の形態2によれば、実施の形態1に比較して、部品点数を減少することができる。 A first valve mechanism related to Embodiment 1 is composed of a first check valve 41 and a second check valve 42 . On the other hand, the first valve mechanism related to Embodiment 2 is composed of the first three-way valve 45 . A second valve mechanism related to Embodiment 1 is composed of a third check valve 43 and a fourth check valve 44 . On the other hand, the second valve mechanism related to Embodiment 2 is composed of the second three-way valve 46 . Therefore, according to the second embodiment, the number of parts can be reduced as compared with the first embodiment.
 実施の形態3.
 図9は、実施の形態3に関わる冷凍サイクル装置120の構成を示す冷媒回路図である。実施の形態3に関わる冷凍サイクル装置120は、実施の形態1に関わる冷凍サイクル装置100と比較して、第2流量調整装置52および第4温度センサー74をさらに備える。
Embodiment 3.
FIG. 9 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle device 120 according to Embodiment 3. As shown in FIG. The refrigerating cycle device 120 according to the third embodiment further includes a second flow rate adjusting device 52 and a fourth temperature sensor 74 compared to the refrigerating cycle device 100 according to the first embodiment.
 第2流量調整装置52は、気液分離器6において液状態の冷媒が排出される側と、第2合流点bとの間に設けられる。第4温度センサー74は、気液分離器6において液状態の冷媒が排出される側と第2流量調整装置52との間に設けられる。 The second flow regulating device 52 is provided between the side of the gas-liquid separator 6 where the liquid state refrigerant is discharged and the second junction b. The fourth temperature sensor 74 is provided between the liquid refrigerant discharge side of the gas-liquid separator 6 and the second flow control device 52 .
 このように、気液分離器6から液冷媒が排出される部分にも流量を調整できる機構を設けることによって、制御装置90は、気液分離器6から排出するガス冷媒量と液冷媒量とをより細かく調整することができる。 In this way, by providing a mechanism capable of adjusting the flow rate also in the portion where the liquid refrigerant is discharged from the gas-liquid separator 6, the control device 90 can control the amount of gas refrigerant discharged from the gas-liquid separator 6 and the amount of liquid refrigerant. can be adjusted more finely.
 また、第1温度センサー71の検出対象はガス冷媒の温度であるため、第1温度センサー71の検出値を用いて液冷媒の飽和温度を算出する場合、非共沸混合冷媒の温度勾配を加味する必要がある。しかし、実施の形態3に関わる冷凍サイクル装置120では、第4温度センサー74によって液冷媒の飽和温度を直接検出することができる。このため、制御装置90は、第3温度センサー73の検出値と第4温度センサー74の検出値とに基づいて、過冷却度をより精度よく算出することができる。 Further, since the detection target of the first temperature sensor 71 is the temperature of the gas refrigerant, when calculating the saturation temperature of the liquid refrigerant using the detection value of the first temperature sensor 71, the temperature gradient of the non-azeotropic refrigerant mixture is taken into account. There is a need to. However, in the refrigeration cycle device 120 according to the third embodiment, the fourth temperature sensor 74 can directly detect the saturation temperature of the liquid refrigerant. Therefore, the control device 90 can more accurately calculate the degree of supercooling based on the values detected by the third temperature sensor 73 and the values detected by the fourth temperature sensor 74 .
 図10は、実施の形態3に関わる第2運転モードにおける制御装置90の制御を説明するためのフローチャートである。図10に示すフローチャートは、ステップS14に変えてステップS24が設けられている点のみにおいて、図7に示すフローチャートと異なる。 FIG. 10 is a flow chart for explaining the control of the control device 90 in the second operation mode according to the third embodiment. The flowchart shown in FIG. 10 differs from the flowchart shown in FIG. 7 only in that step S24 is provided instead of step S14.
 図10のステップS21~ステップS23の各処理は、図7のステップS11~ステップS13の各処理と同様であるので、ここではその説明を繰り返さない。  Steps S21 to S23 of Fig. 10 are the same as steps S11 to S13 of Fig. 7, so the description thereof will not be repeated here.
 制御装置90は、ステップS24において、第1流量調整装置51および第2流量調整装置52の開度を調整する。 The control device 90 adjusts the opening degrees of the first flow rate adjusting device 51 and the second flow rate adjusting device 52 in step S24.
 次に、制御装置90は、凝縮器として機能する第3熱交換器30の出口の過冷却度を算出する(ステップS25)。このとき、制御装置90は、第3温度センサー73が検出した温度と第4温度センサー74が検出した温度とに基づいて第3熱交換器30の出口部分の過冷却度を算出する。これにより、制御装置90は、第1温度センサー71が検出した温度と第3温度センサー73が検出した温度とに基づいて第3熱交換器30の出口部分の過冷却度を算出する場合と比較して、過冷却度をより精度よく算出することができる。 Next, the control device 90 calculates the degree of subcooling at the outlet of the third heat exchanger 30 that functions as a condenser (step S25). At this time, the control device 90 calculates the degree of supercooling of the outlet portion of the third heat exchanger 30 based on the temperature detected by the third temperature sensor 73 and the temperature detected by the fourth temperature sensor 74 . As a result, the control device 90 calculates the degree of supercooling at the outlet portion of the third heat exchanger 30 based on the temperature detected by the first temperature sensor 71 and the temperature detected by the third temperature sensor 73. As a result, the degree of supercooling can be calculated more accurately.
 次に、制御装置90は、凝縮器として機能する第3熱交換器30の出口の過冷却度が圧縮機1の回転数毎に設定された目標領域以内にあるか否かを判定する(ステップS26)。制御装置90は、第3熱交換器30の出口の過冷却度が目標領域以内にないと判定したとき、ステップS24において、再度、第1流量調整装置51および第2流量調整装置52の開度を調整する。 Next, the control device 90 determines whether or not the degree of subcooling at the outlet of the third heat exchanger 30 functioning as a condenser is within a target range set for each rotation speed of the compressor 1 (step S26). When the control device 90 determines that the degree of supercooling at the outlet of the third heat exchanger 30 is not within the target region, in step S24, the opening degrees of the first flow rate adjusting device 51 and the second flow rate adjusting device 52 to adjust.
 このように、制御装置90は、第3熱交換器30の出口の過冷却度が圧縮機1の回転数毎に設定された目標領域以内になるまで、ステップS24において、第1流量調整装置51および第2流量調整装置52の開度を繰り返し調整する。制御装置90は、第3熱交換器30の出口の過冷却度が目標領域以内にあると判定したとき、処理を終了する。 In this way, the control device 90 keeps the first flow rate adjusting device 51 and the opening degree of the second flow control device 52 is repeatedly adjusted. When the controller 90 determines that the degree of subcooling at the outlet of the third heat exchanger 30 is within the target range, the process ends.
 なお、実施の形態3では、第1弁機構を第1逆止弁41および第2逆止弁42で構成し、第2弁機構を第3逆止弁43および第4逆止弁44で構成している。しかしながら、第1弁機構を第1三方弁45で構成し、第2弁機構を第2三方弁46で構成してもよい。 In the third embodiment, the first valve mechanism is composed of the first check valve 41 and the second check valve 42, and the second valve mechanism is composed of the third check valve 43 and the fourth check valve 44. is doing. However, the first valve mechanism may be composed of the first three-way valve 45 and the second valve mechanism may be composed of the second three-way valve 46 .
 (まとめ)
 以下に、本実施の形態について総括する。
(summary)
The present embodiment will be summarized below.
 (1) 本開示は、冷凍サイクル装置に関する。冷凍サイクル装置(100)は、圧縮機(1)と、第1熱交換器(10)と、第2熱交換器(20)と、第3熱交換器(30)と、膨張装置(3)と、気液分離器(6)と、第1流量調整装置(51)と、冷媒循環経路を第1運転モードに対応する第1順路と第2運転モードに対応する第2順路との間で切り替えるように構成された切替装置(40)とを備える。第1順路において、冷媒は、圧縮機(1)、第1熱交換器(10)、膨張装置(3)、第2熱交換器(20)、気液分離器(6)の順に流れた後、気液分離器(6)から排出された液状態の冷媒は、第3熱交換器(30)に流入し、気液分離器(6)から排出されたガス状態の冷媒は、第1流量調整装置(51)を経由して、第3熱交換器(30)から排出された冷媒と第1合流点(a)で合流する。第1合流点(a)で合流した冷媒は、圧縮機(1)に流れる。第2順路において、冷媒は、圧縮機(1)、第2熱交換器(20)、気液分離器(6)の順に流れ、気液分離器(6)から排出されたガス状態の冷媒は、第1流量調整装置(51)を経由して、第3熱交換器(30)に流入し、気液分離器(6)から排出された液状態の冷媒は、第3熱交換器(30)から排出された冷媒と第2合流点(b)で合流し、第2合流点(b)で合流した冷媒は、膨張装置(3)、第1熱交換器(10)、圧縮機(1)の順に流れる。 (1) The present disclosure relates to a refrigeration cycle device. A refrigeration cycle device (100) includes a compressor (1), a first heat exchanger (10), a second heat exchanger (20), a third heat exchanger (30), and an expansion device (3). , the gas-liquid separator (6), the first flow rate adjusting device (51), and the refrigerant circulation path between the first route corresponding to the first operation mode and the second route corresponding to the second operation mode. a switching device (40) configured to switch. In the first route, the refrigerant flows through the compressor (1), the first heat exchanger (10), the expansion device (3), the second heat exchanger (20), and the gas-liquid separator (6) in this order. , the liquid state refrigerant discharged from the gas-liquid separator (6) flows into the third heat exchanger (30), and the gas state refrigerant discharged from the gas-liquid separator (6) flows into the first flow rate Via the adjusting device (51), it joins with the refrigerant discharged from the third heat exchanger (30) at the first junction (a). The refrigerant merged at the first junction (a) flows to the compressor (1). In the second route, the refrigerant flows through the compressor (1), the second heat exchanger (20), and the gas-liquid separator (6) in this order, and the gaseous refrigerant discharged from the gas-liquid separator (6) is , flows through the first flow rate adjusting device (51) into the third heat exchanger (30), and the liquid state refrigerant discharged from the gas-liquid separator (6) flows into the third heat exchanger (30 ) joins with the refrigerant discharged from the second junction (b), and the refrigerant joined at the second junction (b) passes through the expansion device (3), the first heat exchanger (10), the compressor (1 ).
 このような構成とすることにより、第1運転モード、第2運転モードのいずれにおいても、冷凍サイクルの運転効率を向上させることができる。換言すれば、熱交換器を蒸発器および凝縮器のいずれに機能させた場合にも気液分離器を利用して運転効率を向上させることが可能となる。特に、非共沸混合冷媒を用いた場合、冷凍サイクルの運転効率を向上させる効果を高めることができる。 With such a configuration, the operating efficiency of the refrigeration cycle can be improved in both the first operation mode and the second operation mode. In other words, even when the heat exchanger functions as either an evaporator or a condenser, it is possible to improve the operating efficiency by using the gas-liquid separator. In particular, when a non-azeotropic mixed refrigerant is used, the effect of improving the operating efficiency of the refrigeration cycle can be enhanced.
 (2) 切替装置(40)は、四方弁(4)と、第1弁機構(41、42)と、第2弁機構(43、44)とを備える。四方弁(4)は、第1切替ポート(P41)、第2切替ポート(P42)、第3切替ポート(P43)、および第4切替ポート(P44)を有し、第1切替ポート(P41)に圧縮機(1)の吐出口が接続され、第2切替ポート(P42)に圧縮機(1)の吸入口が接続される。四方弁(4)は、第1運転モードにおいて、第1切替ポート(P41)と第3切替ポート(P43)とを連通させ、第2切替ポート(P42)と第4切替ポート(P44)とを連通させ、第2運転モードにおいて、第1切替ポート(P41)と第4切替ポート(P44)とを連通させ、第2切替ポート(P42)と第3切替ポート(P43)とを連通させる。第1弁機構(41、42)は、第1運転モードにおいて、第1合流点(a)から第4切替ポート(P44)への冷媒の流れを開放し、膨張装置(3)から第4切替ポート(P44)への冷媒の流れを遮断し、第2運転モードにおいて、第4切替ポート(P44)から第2熱交換器(20)への冷媒の流れを開放し、第4切替ポート(P44)から第1合流点(a)の冷媒の流れを遮断し、第2弁機構(43、44)は、第1運転モードにおいて、膨張装置(3)から第2熱交換器(20)への冷媒の流れを開放し、膨張装置(3)から第2合流点(b)への冷媒の流れを遮断し、第2運転モードにおいて、第2合流点(b)から膨張装置(3)への冷媒の流れを開放し、第4切替ポート(P44)から膨張装置(3)への冷媒の流れを遮断する。 (2) The switching device (40) includes a four-way valve (4), first valve mechanisms (41, 42), and second valve mechanisms (43, 44). The four-way valve (4) has a first switching port (P41), a second switching port (P42), a third switching port (P43), and a fourth switching port (P44). is connected to the discharge port of the compressor (1), and the second switching port (P42) is connected to the suction port of the compressor (1). The four-way valve (4) communicates the first switching port (P41) and the third switching port (P43) and communicates the second switching port (P42) and the fourth switching port (P44) in the first operation mode. In the second operation mode, the first switching port (P41) and the fourth switching port (P44) are communicated, and the second switching port (P42) and the third switching port (P43) are communicated. The first valve mechanism (41, 42) opens the flow of refrigerant from the first junction (a) to the fourth switching port (P44) in the first operation mode, and the expansion device (3) to the fourth switching port (P44). Blocking the flow of refrigerant to the port (P44), opening the flow of refrigerant from the fourth switching port (P44) to the second heat exchanger (20) in the second operation mode, ) to the first junction (a), and the second valve mechanism (43, 44) blocks the flow of refrigerant from the expansion device (3) to the second heat exchanger (20) in the first mode of operation. opening the flow of refrigerant and blocking the flow of refrigerant from the expansion device (3) to the second junction (b); The refrigerant flow is opened and the refrigerant flow from the fourth switching port (P44) to the expansion device (3) is cut off.
 (3) 第1弁機構(41、42)は、第4切替ポート(P44)と第1合流点(a)との間に設けられ、第4切替ポート(P44)から第1合流点(a)へ向かう冷媒の流れを遮断する第1逆止弁(41)と、膨張装置(3)と第4切替ポート(P44)と第2熱交換器(20)との間に設けられ、膨張装置(3)から第4切替ポート(P44)への冷媒の流れを遮断する第2逆止弁(42)とを備える。第2弁機構(43、44)は、第4切替ポート(P44)と膨張装置(3)と第2熱交換器(20)との間に設けられ、第4切替ポート(P44)から膨張装置(3)への冷媒の流れを遮断する第3逆止弁(43)と、膨張装置と第2合流点(b)との間に設けられ、膨張装置(3)から第2合流点(b)への冷媒の流れを遮断する第4逆止弁(44)とを備える。 (3) The first valve mechanism (41, 42) is provided between the fourth switching port (P44) and the first junction (a), and the fourth switching port (P44) to the first junction (a) ), and is provided between the expansion device (3), the fourth switching port (P44), and the second heat exchanger (20). A second check valve (42) for blocking the flow of refrigerant from (3) to the fourth switching port (P44). The second valve mechanism (43, 44) is provided between the fourth switching port (P44), the expansion device (3) and the second heat exchanger (20), and the expansion device is connected to the fourth switching port (P44). A third check valve (43) that cuts off the flow of refrigerant to (3) is provided between the expansion device and the second junction (b), and is provided between the expansion device (3) and the second junction (b). ) and a fourth check valve (44) for blocking the flow of refrigerant to (44).
 (4) 第1弁機構は、第1三方弁(45)により構成されてもよい。第2弁機構は、第2三方弁(46)により構成されてもよい。第1三方弁(45)は、第4切替ポート(P44)と第2熱交換器(20)と第1合流点(a)との間に設けられ、第4切替ポート(P44)への接続先を第2熱交換器(20)と第1合流点(a)との間で切り替える。第2三方弁(46)は、膨張装置(3)と第2熱交換器(20)と第2合流点(b)との間に設けられ、膨張装置(3)への接続先を第2熱交換器(20)と第2合流点(b)との間で切り替える。 (4) The first valve mechanism may be composed of a first three-way valve (45). The second valve mechanism may comprise a second three-way valve (46). The first three-way valve (45) is provided between the fourth switching port (P44), the second heat exchanger (20) and the first junction (a), and is connected to the fourth switching port (P44). Switching ahead between the second heat exchanger (20) and the first junction (a). A second three-way valve (46) is provided between the expansion device (3), the second heat exchanger (20) and the second junction (b), and connects the expansion device (3) to the second Switching between the heat exchanger (20) and the second junction (b).
 (5) 冷凍サイクル装置は、気液分離器(6)においてガス状態の冷媒が排出される側(P62)と第1流量調整装置(51)との間に設けた第1温度センサー(71)と、第3熱交換器(30)と第1合流点(a)との間に設けた第2温度センサー(72)と、第1流量調整装置(51)を制御する制御装置(90)とをさらに備える。制御装置(90)は、第1運転モードにおいて、第1温度センサー(71)の検出値と第2温度センサー(72)の検出値とに基づいて第3熱交換器(30)の過熱度を算出し(ステップS6)、第1流量調整装置(51)の開度を調整することによって、第3熱交換器(30)の過熱度を制御する(ステップS5~ステップS7)。 (5) The refrigerating cycle device has a first temperature sensor (71) provided between the gas-liquid separator (6) where the gaseous refrigerant is discharged (P62) and the first flow rate adjusting device (51). , a second temperature sensor (72) provided between the third heat exchanger (30) and the first junction (a), and a control device (90) for controlling the first flow control device (51) further provide. In the first operation mode, the controller (90) determines the degree of superheat of the third heat exchanger (30) based on the detected value of the first temperature sensor (71) and the detected value of the second temperature sensor (72). The degree of superheat of the third heat exchanger (30) is controlled by calculating (step S6) and adjusting the degree of opening of the first flow control device (51) (steps S5 to S7).
 (6) 冷凍サイクル装置は、第3熱交換器(30)と第2合流点(b)との間に設けた第3温度センサー(73)をさらに備えてもよい。制御装置(90)は、第2運転モードにおいて、第1温度センサー(71)の検出値と第3温度センサー(73)の検出値とに基づいて第3熱交換器(30)の過冷却度を算出し(ステップS15)、第1流量調整装置(51)の開度を調整することによって、第3熱交換器(30)の過冷却度を制御する(ステップS14~ステップS16)。 (6) The refrigeration cycle device may further include a third temperature sensor (73) provided between the third heat exchanger (30) and the second junction (b). In the second operation mode, the controller (90) adjusts the degree of supercooling of the third heat exchanger (30) based on the detected value of the first temperature sensor (71) and the detected value of the third temperature sensor (73). is calculated (step S15), and the degree of supercooling of the third heat exchanger (30) is controlled by adjusting the opening degree of the first flow control device (51) (steps S14 to S16).
 (7) 冷凍サイクル装置は、気液分離器(6)において液状態の冷媒が排出される側(P63)と、第2合流点(b)との間に設けた第2流量調整装置(52)と、第3熱交換器(30)と第2合流点(b)との間に設けた第3温度センサー(73)と、気液分離器(6)において液状態の冷媒が排出される側(P63)と第2流量調整装置(52)との間に設けた第4温度センサー(74)とをさらに備えてもよい。制御装置(90)は、第2運転モードにおいて、第3温度センサー(73)の検出値と第4温度センサー(74)の検出値とに基づいて第3熱交換器(30)の過冷却度を算出し(ステップS25)、第1流量調整装置(51)および第2流量調整装置(52)の開度を調整することによって、第3熱交換器(30)の過冷却度を制御する(ステップS24~ステップS26)。 (7) The refrigeration cycle device includes a second flow rate adjusting device (52 ), the third temperature sensor (73) provided between the third heat exchanger (30) and the second junction (b), and the gas-liquid separator (6), the liquid refrigerant is discharged A fourth temperature sensor (74) provided between the side (P63) and the second flow control device (52) may further be provided. In the second operation mode, the controller (90) adjusts the degree of supercooling of the third heat exchanger (30) based on the values detected by the third temperature sensor (73) and the values detected by the fourth temperature sensor (74). is calculated (step S25), and the degree of supercooling of the third heat exchanger (30) is controlled by adjusting the opening degrees of the first flow rate adjusting device (51) and the second flow rate adjusting device (52) ( Steps S24 to S26).
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1 圧縮機、3 膨張装置、4 四方弁、6 気液分離器、10 第1熱交換器、20 第2熱交換器、30 第3熱交換器、40 切替装置、41 第1逆止弁、42 第2逆止弁、43 第3逆止弁、44 第4逆止弁、45 第1三方弁、46 第2三方弁、51 第1流量調整装置、52 第2流量調整装置、71 第1温度センサー、72 第2温度センサー、73 第3温度センサー、74 第4温度センサー、90 制御装置、91 プロセッサ、92 メモリ、100,110,120 冷凍サイクル装置、400 切替装置、P1 第1ポート、P2 第2ポート、P3 第3ポート、P4 第4ポート、P41 第1切替ポート、P42 第2切替ポート、P43 第3切替ポート、P44 第4切替ポート、P61 流入ポート、P62 ガス排出ポート、P63 液排出ポート。 1 compressor, 3 expansion device, 4 four-way valve, 6 gas-liquid separator, 10 first heat exchanger, 20 second heat exchanger, 30 third heat exchanger, 40 switching device, 41 first check valve, 42 Second check valve, 43 Third check valve, 44 Fourth check valve, 45 First three-way valve, 46 Second three-way valve, 51 First flow control device, 52 Second flow control device, 71 First Temperature sensor 72 Second temperature sensor 73 Third temperature sensor 74 Fourth temperature sensor 90 Control device 91 Processor 92 Memory 100, 110, 120 Refrigeration cycle device 400 Switching device P1 First port P2 2nd port, P3 3rd port, P4 4th port, P41 1st switching port, P42 2nd switching port, P43 3rd switching port, P44 4th switching port, P61 inflow port, P62 gas discharge port, P63 liquid discharge port.

Claims (7)

  1.  冷凍サイクル装置であって、
     圧縮機と、
     第1熱交換器と、
     第2熱交換器と、
     第3熱交換器と、
     膨張装置と、
     気液分離器と、
     第1流量調整装置と、
     冷媒循環経路を第1運転モードに対応する第1順路と第2運転モードに対応する第2順路との間で切り替えるように構成された切替装置とを備え、
     前記第1順路において、
      冷媒は、前記圧縮機、前記第1熱交換器、前記膨張装置、前記第2熱交換器、前記気液分離器の順に流れ、
      前記気液分離器から排出された液状態の前記冷媒は、前記第3熱交換器に流入し、
      前記気液分離器から排出されたガス状態の前記冷媒は、前記第1流量調整装置を経由して、前記第3熱交換器から排出された前記冷媒と第1合流点で合流し、
      前記第1合流点で合流した前記冷媒は、前記圧縮機に流れ、
     前記第2順路において、
      前記冷媒は、前記圧縮機、前記第2熱交換器、前記気液分離器の順に流れ、
      前記気液分離器から排出されたガス状態の前記冷媒は、前記第1流量調整装置を経由して、前記第3熱交換器に流入し、
      前記気液分離器から排出された液状態の前記冷媒は、前記第3熱交換器から排出された前記冷媒と第2合流点で合流し、
      前記第2合流点で合流した前記冷媒は、前記膨張装置、前記第1熱交換器、前記圧縮機の順に流れる、冷凍サイクル装置。
    A refrigeration cycle device,
    a compressor;
    a first heat exchanger;
    a second heat exchanger;
    a third heat exchanger;
    an inflator;
    a gas-liquid separator;
    a first flow regulator;
    a switching device configured to switch the refrigerant circulation path between a first route corresponding to the first operation mode and a second route corresponding to the second operation mode,
    In the first route,
    refrigerant flows through the compressor, the first heat exchanger, the expansion device, the second heat exchanger, and the gas-liquid separator in this order;
    The liquid refrigerant discharged from the gas-liquid separator flows into the third heat exchanger,
    The gaseous refrigerant discharged from the gas-liquid separator passes through the first flow control device and joins the refrigerant discharged from the third heat exchanger at a first junction,
    The refrigerant merged at the first junction flows into the compressor,
    In the second route,
    the refrigerant flows through the compressor, the second heat exchanger, and the gas-liquid separator in this order;
    The gaseous refrigerant discharged from the gas-liquid separator flows into the third heat exchanger via the first flow rate adjusting device,
    The liquid refrigerant discharged from the gas-liquid separator joins the refrigerant discharged from the third heat exchanger at a second junction,
    The refrigeration cycle device, wherein the refrigerant merged at the second junction flows through the expansion device, the first heat exchanger, and the compressor in this order.
  2.  前記切替装置は、
      四方弁と、
      第1弁機構と、
      第2弁機構とを備え、
     前記四方弁は、第1切替ポート、第2切替ポート、第3切替ポート、および第4切替ポートを有し、前記第1切替ポートに前記圧縮機の吐出口が接続され、前記第2切替ポートに前記圧縮機の吸入口が接続され、
     前記四方弁は、
      前記第1運転モードにおいて、前記第1切替ポートと前記第3切替ポートとを連通させ、前記第2切替ポートと前記第4切替ポートとを連通させ、
      前記第2運転モードにおいて、前記第1切替ポートと前記第4切替ポートとを連通させ、前記第2切替ポートと前記第3切替ポートとを連通させ、
     前記第1弁機構は、
      前記第1運転モードにおいて、前記第1合流点から前記第4切替ポートへの前記冷媒の流れを開放し、前記膨張装置から前記第4切替ポートへの前記冷媒の流れを遮断し、
      前記第2運転モードにおいて、前記第4切替ポートから前記第2熱交換器への前記冷媒の流れを開放し、前記第4切替ポートから前記第1合流点の前記冷媒の流れを遮断し、
     前記第2弁機構は、
      前記第1運転モードにおいて、前記膨張装置から前記第2熱交換器への前記冷媒の流れを開放し、前記膨張装置から前記第2合流点への前記冷媒の流れを遮断し、
      前記第2運転モードにおいて、前記第2合流点から前記膨張装置への前記冷媒の流れを開放し、前記第4切替ポートから前記膨張装置への前記冷媒の流れを遮断する、請求項1に記載の冷凍サイクル装置。
    The switching device
    a four-way valve;
    a first valve mechanism;
    and a second valve mechanism,
    The four-way valve has a first switching port, a second switching port, a third switching port, and a fourth switching port, the first switching port is connected to the discharge port of the compressor, and the second switching port The suction port of the compressor is connected to
    The four-way valve is
    in the first operation mode, communicating between the first switching port and the third switching port and communicating between the second switching port and the fourth switching port;
    in the second operation mode, communicating between the first switching port and the fourth switching port and communicating between the second switching port and the third switching port;
    The first valve mechanism is
    in the first operation mode, opening the refrigerant flow from the first junction to the fourth switching port and blocking the refrigerant flow from the expansion device to the fourth switching port;
    in the second operation mode, opening the flow of the refrigerant from the fourth switching port to the second heat exchanger and blocking the flow of the refrigerant from the fourth switching port to the first junction;
    The second valve mechanism is
    in the first mode of operation, opening the refrigerant flow from the expansion device to the second heat exchanger and interrupting the refrigerant flow from the expansion device to the second junction;
    2. The method of claim 1, wherein in the second mode of operation, the refrigerant flow from the second junction to the expansion device is opened and the refrigerant flow from the fourth switching port to the expansion device is blocked. refrigeration cycle equipment.
  3.  前記第1弁機構は、
      前記第4切替ポートと前記第1合流点との間に設けられ、前記第4切替ポートから前記第1合流点へ向かう前記冷媒の流れを遮断する第1逆止弁と、
      前記膨張装置と前記第4切替ポートと前記第2熱交換器との間に設けられ、前記膨張装置から前記第4切替ポートへの前記冷媒の流れを遮断する第2逆止弁とを備え、
     前記第2弁機構は、
      前記第4切替ポートと前記膨張装置と前記第2熱交換器との間に設けられ、前記第4切替ポートから前記膨張装置への前記冷媒の流れを遮断する第3逆止弁と、
      前記膨張装置と前記第2合流点との間に設けられ、前記膨張装置から前記第2合流点への前記冷媒の流れを遮断する第4逆止弁とを備える、請求項2に記載の冷凍サイクル装置。
    The first valve mechanism is
    a first check valve provided between the fourth switching port and the first junction for blocking the flow of the refrigerant from the fourth switching port to the first junction;
    a second check valve provided between the expansion device, the fourth switching port, and the second heat exchanger and blocking the flow of the refrigerant from the expansion device to the fourth switching port;
    The second valve mechanism is
    a third check valve provided between the fourth switching port, the expansion device, and the second heat exchanger and blocking the flow of the refrigerant from the fourth switching port to the expansion device;
    3. The refrigeration of claim 2, further comprising a fourth check valve provided between said expansion device and said second junction for blocking flow of said refrigerant from said expansion device to said second junction. cycle equipment.
  4.  前記第1弁機構は、第1三方弁により構成されており、
     前記第2弁機構は、第2三方弁により構成されており、
     前記第1三方弁は、前記第4切替ポートと前記第2熱交換器と前記第1合流点との間に設けられ、前記第4切替ポートへの接続先を前記第2熱交換器と前記第1合流点とに切り替え、
     前記第2三方弁は、前記膨張装置と前記第2熱交換器と前記第2合流点との間に設けられ、前記膨張装置への接続先を前記第2熱交換器と前記第2合流点との間で切り替える、請求項2に記載の冷凍サイクル装置。
    The first valve mechanism is composed of a first three-way valve,
    The second valve mechanism is composed of a second three-way valve,
    The first three-way valve is provided between the fourth switching port, the second heat exchanger, and the first junction, and connects the fourth switching port to the second heat exchanger and the first three-way valve. switch to the first confluence,
    The second three-way valve is provided between the expansion device, the second heat exchanger, and the second junction, and connects the expansion device to the second heat exchanger and the second junction. 3. The refrigeration cycle apparatus according to claim 2, which switches between and.
  5.  前記気液分離器においてガス状態の前記冷媒が排出される側と前記第1流量調整装置との間に設けた第1温度センサーと、
     前記第3熱交換器と前記第1合流点との間に設けた第2温度センサーと、
     前記第1流量調整装置を制御する制御装置とをさらに備え、
     前記制御装置は、
      前記第1運転モードにおいて、前記第1温度センサーの検出値と前記第2温度センサーの検出値とに基づいて前記第3熱交換器の過熱度を算出し、
      前記第1流量調整装置の開度を調整することによって、前記第3熱交換器の前記過熱度を制御する、請求項1~請求項4のいずれか1項に記載の冷凍サイクル装置。
    a first temperature sensor provided between the side of the gas-liquid separator from which the gaseous refrigerant is discharged and the first flow rate adjusting device;
    a second temperature sensor provided between the third heat exchanger and the first junction;
    A control device that controls the first flow rate adjustment device,
    The control device is
    In the first operation mode, calculating the degree of superheat of the third heat exchanger based on the detected value of the first temperature sensor and the detected value of the second temperature sensor,
    The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the degree of superheat of the third heat exchanger is controlled by adjusting the degree of opening of the first flow control device.
  6.  前記第3熱交換器と前記第2合流点との間に設けた第3温度センサーをさらに備え、
     前記制御装置は、
      前記第2運転モードにおいて、前記第1温度センサーの検出値と前記第3温度センサーの検出値とに基づいて前記第3熱交換器の過冷却度を算出し、
      前記第1流量調整装置の開度を調整することによって、前記第3熱交換器の前記過冷却度を制御する、請求項5に記載の冷凍サイクル装置。
    further comprising a third temperature sensor provided between the third heat exchanger and the second junction;
    The control device is
    In the second operation mode, calculating the degree of supercooling of the third heat exchanger based on the detected value of the first temperature sensor and the detected value of the third temperature sensor,
    6. The refrigeration cycle apparatus according to claim 5, wherein said degree of subcooling of said third heat exchanger is controlled by adjusting the degree of opening of said first flow control device.
  7.  前記気液分離器において液状態の前記冷媒が排出される側と、前記第2合流点との間に設けた第2流量調整装置と、
     前記第3熱交換器と前記第2合流点との間に設けた第3温度センサーと、
     前記気液分離器において液状態の前記冷媒が排出される側と前記第2流量調整装置との間に設けた第4温度センサーとをさらに備え、
     前記制御装置は、
      前記第2運転モードにおいて、前記第3温度センサーの検出値と前記第4温度センサーの検出値とに基づいて前記第3熱交換器の過冷却度を算出し、
      前記第1流量調整装置および前記第2流量調整装置の開度を調整することによって、前記第3熱交換器の過冷却度を制御する、請求項5に記載の冷凍サイクル装置。
    a second flow regulating device provided between a side of the gas-liquid separator from which the refrigerant in a liquid state is discharged and the second junction;
    a third temperature sensor provided between the third heat exchanger and the second junction;
    a fourth temperature sensor provided between the gas-liquid separator on which the refrigerant in liquid state is discharged and the second flow rate adjusting device;
    The control device is
    In the second operation mode, calculating the degree of subcooling of the third heat exchanger based on the detected value of the third temperature sensor and the detected value of the fourth temperature sensor,
    6. The refrigeration cycle apparatus according to claim 5, wherein the degree of subcooling of said third heat exchanger is controlled by adjusting opening degrees of said first flow rate adjusting device and said second flow rate adjusting device.
PCT/JP2021/012114 2021-03-24 2021-03-24 Refrigeration cycle device WO2022201336A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180095839.6A CN116981894A (en) 2021-03-24 2021-03-24 Refrigeration cycle device
PCT/JP2021/012114 WO2022201336A1 (en) 2021-03-24 2021-03-24 Refrigeration cycle device
JP2023508236A JPWO2022201336A1 (en) 2021-03-24 2021-03-24
EP21932946.3A EP4317847A4 (en) 2021-03-24 2021-03-24 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012114 WO2022201336A1 (en) 2021-03-24 2021-03-24 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022201336A1 true WO2022201336A1 (en) 2022-09-29

Family

ID=83396449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012114 WO2022201336A1 (en) 2021-03-24 2021-03-24 Refrigeration cycle device

Country Status (4)

Country Link
EP (1) EP4317847A4 (en)
JP (1) JPWO2022201336A1 (en)
CN (1) CN116981894A (en)
WO (1) WO2022201336A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225644U (en) 1985-07-31 1987-02-17
JP2005300067A (en) * 2004-04-14 2005-10-27 Denso Corp Ejector cycle
JP2019158308A (en) * 2018-03-16 2019-09-19 三菱電機株式会社 Refrigeration cycle device
WO2021024443A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106685A (en) * 2001-09-28 2003-04-09 Mitsubishi Electric Corp Refrigerating and air conditioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225644U (en) 1985-07-31 1987-02-17
JP2005300067A (en) * 2004-04-14 2005-10-27 Denso Corp Ejector cycle
JP2019158308A (en) * 2018-03-16 2019-09-19 三菱電機株式会社 Refrigeration cycle device
WO2021024443A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Refrigeration cycle device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4317847A4

Also Published As

Publication number Publication date
EP4317847A4 (en) 2024-05-01
EP4317847A1 (en) 2024-02-07
JPWO2022201336A1 (en) 2022-09-29
CN116981894A (en) 2023-10-31

Similar Documents

Publication Publication Date Title
US8047011B2 (en) Refrigeration system
AU660124B2 (en) Air conditioning apparatus
US9683768B2 (en) Air-conditioning apparatus
US11320170B2 (en) Heat pump cycle
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
US9958171B2 (en) Air-conditioning apparatus
KR100764339B1 (en) Supercooling apparatus
EP2375188B1 (en) Air conditioner
JP5213817B2 (en) Air conditioner
JP5355016B2 (en) Refrigeration equipment and heat source machine
JP2006284035A (en) Air conditioner and its control method
JPH11142010A (en) Refrigeration air conditioner
US20150075194A1 (en) Air-conditioning apparatus
JP6448780B2 (en) Air conditioner
WO2022201336A1 (en) Refrigeration cycle device
JP3140923B2 (en) Refrigerant circulation system and refrigeration / air conditioner
JP2009293887A (en) Refrigerating device
JP2004020070A (en) Heat pump type cold-hot water heater
JP7294027B2 (en) air conditioner
JP7055239B2 (en) Air conditioner
WO2017068649A1 (en) Heat pump system
JPH04214153A (en) Refrigerating cycle device
JP2013217602A (en) Heat source device, refrigeration air conditioner, and control device
WO2023223539A1 (en) Air conditioning device
JPH10306949A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508236

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180095839.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021932946

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021932946

Country of ref document: EP

Effective date: 20231024