WO2006057141A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2006057141A1
WO2006057141A1 PCT/JP2005/020109 JP2005020109W WO2006057141A1 WO 2006057141 A1 WO2006057141 A1 WO 2006057141A1 JP 2005020109 W JP2005020109 W JP 2005020109W WO 2006057141 A1 WO2006057141 A1 WO 2006057141A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
unit
air conditioner
heat exchanger
connection
Prior art date
Application number
PCT/JP2005/020109
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Wakamoto
Tomohiko Kasai
Jiro Okajima
Toshiyuki Nakamura
Kunio Tojo
Takashi Okazaki
Toshihiko Enomoto
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US11/719,775 priority Critical patent/US20090145151A1/en
Priority to JP2006547695A priority patent/JP4752765B2/en
Priority to EP05805432.1A priority patent/EP1816416B1/en
Priority to CN2005800404945A priority patent/CN101065623B/en
Publication of WO2006057141A1 publication Critical patent/WO2006057141A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner of a first mode of the invention has an outdoor unit, indoor units, and a relay section. The outdoor unit has an outdoor heat exchanger provided so as to fluidically communicate between a first and a second connection end, a compressor for discharging carbon dioxide or a refrigerant whose main component is carbon dioxide, and a first switching section for switching the direction of a refrigerant flowing in the outdoor heat exchanger. The indoor units each have an indoor heat exchanger installed so as to fluidically communicate between a first and a second piping connection section and each further have a first flow rate control section for controlling the quantity of a refrigerant flowing in the indoor heat exchanger. The relay section has second switching sections for selectively connecting the first piping connection sections of the indoor units to either of the first and the second connection end of the outdoor unit, first bypass piping for connection between the second pipe line connection section of each indoor unit and the second connection end of the outdoor unit, and a second flow rate control section provided in the first bypass piping.

Description

明 細 書  Specification
空気調和装置  Air conditioner
技術分野  Technical field
[0001] 本発明は、一般に冷凍サイクルを利用した空気調和装置に関する。本発明は特に 、 1台の室外ユニットと複数台の室内ユニットを備え、複数の室全てを同時に冷房ま たは暖房するモードと、ある室を冷房すると同時に別の室を暖房するモードとを有す る多室形空気調和装置に関する。  [0001] The present invention generally relates to an air conditioner using a refrigeration cycle. In particular, the present invention includes a mode in which one outdoor unit and a plurality of indoor units are provided and all the plurality of rooms are simultaneously cooled or heated, and a mode in which one room is cooled and another room is simultaneously heated. This relates to a multi-room air conditioner.
背景技術  Background art
[0002] 圧縮機と室外熱交換器を有する室外ユニット、室内熱交換器をそれぞれ有する複 数台の室内ユニット、および、室外ユニットと室内ユニットを接続する中継部を備え、 複数の室全てを同時に冷房または暖房するモード (冷房運転モードおよび暖房運転 モード)、および、ある室を冷房すると同時に別の室を暖房するモード (冷房運転容 量が暖房運転容量より大きい冷房主体運転モードおよび暖房運転容量が冷房運転 容量より大きい暖房主体運転モード)を有する多室形空気調和装置が、特許文献 1 に開示されている。  [0002] An outdoor unit having a compressor and an outdoor heat exchanger, a plurality of indoor units each having an indoor heat exchanger, and a relay unit for connecting the outdoor unit and the indoor unit are provided. Cooling or heating mode (cooling operation mode and heating operation mode), and a mode in which one room is cooled and another room is heated at the same time (the cooling-main operation mode and the heating operation capacity are larger than the heating operation capacity) Patent Document 1 discloses a multi-room air conditioner having a heating-main operation mode larger than the cooling operation capacity.
[0003] この従来式の装置は、冷房主体運転モードにおいて、室外ユニットの室外熱交換 器により気液二相状態にした冷媒を冷媒蒸気と冷媒液に分離するための気液分離 装置を必要とする。気液分離装置の液相側の端部に一端が接続された第 1のバイパ ス配管は、他端側で分岐して各室内ユニットの流量制御装置に接続されている。冷 房を行う室の流量制御装置は、高圧の冷媒液を減圧して低温低圧の気液二相の冷 媒に変化させて室内熱交換器に供給する。また、冷媒蒸気は暖房する室の室内ュ ニットに供給される。  [0003] This conventional apparatus requires a gas-liquid separation device for separating the refrigerant that has been brought into the gas-liquid two-phase state by the outdoor heat exchanger of the outdoor unit into the refrigerant vapor and the refrigerant liquid in the cooling main operation mode. To do. The first bypass pipe, one end of which is connected to the liquid phase side end of the gas-liquid separator, is branched at the other end and connected to the flow control device of each indoor unit. The flow control device for the room that performs cooling depressurizes the high-pressure refrigerant liquid, changes it into a low-temperature low-pressure gas-liquid two-phase refrigerant, and supplies it to the indoor heat exchanger. The refrigerant vapor is supplied to the indoor unit of the room to be heated.
特許文献 1:特開平 9— 42804号公報  Patent Document 1: Japanese Patent Laid-Open No. 9-42804
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 気液分離装置力 流れ出た冷媒液は飽和液であるため、過冷却しな 、と、室内ュ ニットの流量制御装置に到るまでに僅かに減圧され気液二相の状態に変化し、該流 量制御装置で音や圧力脈動が発生する。これを抑制'防止するために、すなわち飽 和冷媒液を過冷却するために、上記第 1のバイパス配管に接続された第 2のバイパス 配管を併設し、気液分離装置力も出た冷媒液の一部を上記第 1のバイパス配管から 第 2のバイパス配管に流入させ、第 2のバイパス配管に介在する流量制御装置で減 圧して低温低圧の気液二相の冷媒を得、第 2のバイパス配管内の該冷媒により気液 分離装置から出た第 1のバイパス配管内の冷媒液を過冷却する。さらに、気液分離 装置において、冷媒蒸気に冷媒液が混入することがないよう、気液分離装置から流 れ出る冷媒液の流量を制御するために該装置に接続された上記配管に流量制御装 置が設けてある。 [0004] Gas-liquid separation device force Since the refrigerant liquid that has flowed out is a saturated liquid, it is slightly depressurized until it reaches the flow control device of the indoor unit and changes into a gas-liquid two-phase state without being supercooled. And the flow Sound and pressure pulsation occur in the quantity control device. In order to prevent or prevent this, that is, in order to supercool the saturated refrigerant liquid, a second bypass pipe connected to the first bypass pipe is additionally provided, and the refrigerant liquid that also has the gas-liquid separator power is provided. A part of the gas flows from the first bypass pipe into the second bypass pipe and is reduced by the flow control device interposed in the second bypass pipe to obtain a low-temperature and low-pressure gas-liquid two-phase refrigerant. The refrigerant liquid in the first bypass pipe coming out of the gas-liquid separator is supercooled by the refrigerant in the pipe. Further, in the gas-liquid separator, in order to control the flow rate of the refrigerant liquid flowing out from the gas-liquid separator so that the refrigerant liquid is not mixed into the refrigerant vapor, the flow control device is connected to the pipe connected to the apparatus. A device is provided.
[0005] このように、上記従来の空気調和装置では中継部の部品点数が非常に多い。また 、流量制御装置が多いために、室内熱交換器における冷暖房能力の制御が困難で ある。さらに、上述のような空気調和装置では、冷媒として地球温暖化係数 (地球温 暖化への影響を測る大きさで、二酸ィ匕炭素を基準( = 1)としたときの、温室効果ガス の地球温暖化をもたらす程度を示した数値)の高 、フロン系が用いられて 、る。  As described above, the conventional air conditioner has a very large number of parts in the relay section. In addition, since there are many flow control devices, it is difficult to control the cooling / heating capacity of the indoor heat exchanger. Furthermore, in the above-described air conditioner, the greenhouse effect gas as a refrigerant is measured based on the global warming potential (a measure of the effect on global warming, with carbon dioxide as the standard (= 1)). The numerical value indicating the degree of global warming is high, and chlorofluorocarbons are used.
[0006] そこで、本発明の 1つの態様は、冷媒として二酸化炭素または二酸化炭素を主成 分とする冷媒を用い、中継部の部品点数を大幅に削減するとともに、室内熱交 における冷暖房能力の制御を容易にした多室形空気調和装置を提供する。  [0006] Therefore, one aspect of the present invention uses carbon dioxide or a refrigerant mainly composed of carbon dioxide as the refrigerant, greatly reduces the number of parts in the relay section, and controls the heating and cooling capacity in indoor heat exchange. Provided is a multi-chamber air conditioner that facilitates the above.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するために、本発明の 1つの態様に係る空気調和装置は、室外ュ ニット、複数の室内ユニット、および室外ユニットと各室内ユニットを接続する中継部 を備える。室外ユニットは、第 1および第 2の接続端部の間を流体連通するように配設 された室外熱交換器、二酸化炭素または二酸化炭素を主成分とする冷媒を圧縮して 吐出する圧縮機、および室外熱交^^に流れる冷媒の方向を切り換える第 1の切換 部を有する。各室内ユニットは、第 1および第 2の配管接続部の間を流体連通するよ うに配設された室内熱交換器および室内熱交換器に流れる冷媒量を制御するため の第 1の流量制御部を有する。中継部は、室内ユニットのそれぞれの第 1の配管接続 部を室外ユニットの第 1および第 2の接続端部のいずれか一方に選択的に接続する ための複数の第 2の切換部、室内ユニットのそれぞれの第 2の配管接続部および室 外ユニットの第 2の接続端部の間を接続する第 1のノ ィパス配管、および第 1のバイ パス配管に介在する第 2の流量制御部を有する。 In order to achieve the above object, an air conditioner according to one aspect of the present invention includes an outdoor unit, a plurality of indoor units, and a relay unit that connects the outdoor unit and each indoor unit. The outdoor unit includes an outdoor heat exchanger disposed to fluidly communicate between the first and second connection ends, a compressor that compresses and discharges carbon dioxide or a refrigerant mainly composed of carbon dioxide, And a first switching unit that switches the direction of the refrigerant flowing in the outdoor heat exchanger. Each indoor unit includes an indoor heat exchanger arranged to fluidly communicate between the first and second pipe connections, and a first flow rate control unit for controlling the amount of refrigerant flowing through the indoor heat exchanger Have The relay unit includes a plurality of second switching units and indoor units for selectively connecting each first pipe connection of the indoor unit to one of the first and second connection ends of the outdoor unit. Each second plumbing connection and chamber A first no-pass pipe connecting between the second connection ends of the outer unit, and a second flow rate control unit interposed in the first bypass pipe.
発明の効果  The invention's effect
[0008] 本発明によれば、冷房主体運転モードにお!、て、冷媒は、圧縮機の冷媒吐出口、 第 1の切換部、室外熱交換器、および第 2の接続端部を介して、暖房運転を行う室内 ユニットに流入し、該室内ユニットの室内熱交換器で空気などを加熱する。その後、 冷媒は、冷房を行う室内ユニットに流入し、該室内ユニットの第 1の流量制御部を通 過して減圧された後、室内熱交換器で空気などを冷却し、第 1の接続端部に向かう。 二酸ィ匕炭素単体または二酸ィ匕炭素を主成分とする冷媒は、圧縮機の冷媒吐出口か ら冷房を行う室内ユニットの第 1の流量制御部に到るまで、超臨界状態が維持される ために、第 1の流量制御部で生じ得る音や圧力脈動の発生を抑制'防止できる。この ように、本発明によれば、冷媒の超臨界状態が維持されるため、従来の空気調和機 のように、気液分離装置およびこれに付随する構成部品を設ける必要がなぐ中継部 の部品点数を大幅に削減できる。また、従来の構成に比べて流量制御部の数が少な V、ために、室内熱交換器の冷暖房能力の制御が容易になる。  [0008] According to the present invention, in the cooling main operation mode, the refrigerant passes through the refrigerant discharge port of the compressor, the first switching unit, the outdoor heat exchanger, and the second connection end. Then, the air flows into the indoor unit that performs the heating operation, and the air is heated by the indoor heat exchanger of the indoor unit. After that, the refrigerant flows into the indoor unit that performs cooling, passes through the first flow rate control unit of the indoor unit, and is depressurized. Then, the refrigerant is cooled by the indoor heat exchanger, and the first connection terminal Head to the club. The supercritical state is maintained for the refrigerant composed mainly of diacid-carbon or simple substance of carbon dioxide until it reaches the first flow control part of the indoor unit that performs cooling from the refrigerant outlet of the compressor. Therefore, it is possible to suppress or prevent the generation of sound and pressure pulsation that may occur in the first flow control unit. As described above, according to the present invention, since the supercritical state of the refrigerant is maintained, it is necessary to provide a gas-liquid separation device and a component associated therewith as in a conventional air conditioner. The score can be greatly reduced. In addition, because the number of flow control units is less than the conventional configuration, V, the control of the cooling / heating capacity of the indoor heat exchanger becomes easy.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明に係る空気調和装置の実施の形態 1を示す冷媒回路図。 FIG. 1 is a refrigerant circuit diagram showing Embodiment 1 of an air-conditioning apparatus according to the present invention.
[図 2]図 1と同様の図であって、冷房運転モードにおける冷媒循環を示す。  FIG. 2 is a view similar to FIG. 1, showing refrigerant circulation in the cooling operation mode.
[図 3]図 1と同様の図であって、暖房運転モードにおける冷媒循環を示す。  FIG. 3 is a view similar to FIG. 1, showing refrigerant circulation in the heating operation mode.
[図 4]図 1と同様の図であって、冷房主体運転モードにおける冷媒循環を示す。  FIG. 4 is a view similar to FIG. 1, showing refrigerant circulation in the cooling main operation mode.
[図 5]図 1と同様の図であって、暖房主体運転モードにおける冷媒循環を示す。  FIG. 5 is a view similar to FIG. 1, showing refrigerant circulation in the heating main operation mode.
[図 6]図 2の冷媒循環の変遷を示す p— h線図(圧力ーェンタルピ線図)。  [Fig. 6] A ph diagram (pressure-enthalpy diagram) showing the transition of refrigerant circulation in Fig. 2.
[図 7]図 3の冷媒循環の変遷を示す p— h線図。  FIG. 7 is a ph diagram showing the transition of refrigerant circulation in FIG.
[図 8]図 4の冷媒循環の変遷を示す p— h線図。  FIG. 8 is a ph diagram showing the change of refrigerant circulation in FIG.
[図 9]図 5の冷媒循環の変遷を示す p— h線図。  FIG. 9 is a ph diagram showing the transition of refrigerant circulation in FIG.
[図 10]比較例として示す空気調和装置の冷媒回路図。  FIG. 10 is a refrigerant circuit diagram of an air conditioner shown as a comparative example.
[図 11]本発明に係る空気調和装置の実施の形態 2を示す冷媒回路図。  FIG. 11 is a refrigerant circuit diagram showing Embodiment 2 of the air-conditioning apparatus according to the present invention.
[図 12]図 11と同様の図であって、実施の形態 2の変形例を示す。 符号の説明 FIG. 12 is a view similar to FIG. 11 and shows a modification of the second embodiment. Explanation of symbols
[0010] 2 空気調和装置  [0010] 2 Air conditioner
4 室外ユニット  4 Outdoor unit
6P〜6R 室内ユニット  6P-6R indoor unit
8 中継部  8 Relay section
10 圧縮機  10 Compressor
10a 冷媒吐出口  10a Refrigerant outlet
10b 冷媒吸込口  10b Refrigerant inlet
12 熱交換器 (室外熱交換器)  12 Heat exchanger (outdoor heat exchanger)
16 第 1の切換部(四方切換弁)  16 1st switching part (4-way switching valve)
18a, 18b 第 1および第 2の配管(ユニット間配管)  18a, 18b First and second piping (inter-unit piping)
20a, 20b 第 1および第 2の接続端部  20a, 20b first and second connection ends
22P〜22R 第 2の切換部  22P to 22R Second switching section
26a, 26b 第 1および第 2の配管接続部  26a, 26b 1st and 2nd piping connections
28 熱交換器 (室内熱交換器)  28 Heat exchanger (indoor heat exchanger)
32P〜32R 流量制御弁 (第 1の流量制御部)  32P to 32R Flow control valve (First flow control unit)
34 第 1のバイパス配管  34 First bypass piping
36 流量制御弁 (第 2の流量制御部)  36 Flow control valve (second flow control unit)
52 流路切換部  52 Channel switching section
66 第 2のバイパス配管  66 Second bypass piping
68 流量制御弁 (第 3の流量制御部)  68 Flow control valve (third flow control unit)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、添付図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0012] 実施の形態 1. [0012] Embodiment 1.
図 1は、本発明に係る空気調和装置の実施の形態 1を示す。この空気調和装置 2 は、冷媒として二酸ィ匕炭素を用いるもので、室外ユニット 4、複数台の室内ユニット 6、 および室外ユニットと室内ユニットを接続する中継部 8を備える。本実施形態では、室 内ユニット 6の台数は、 3台(ユニット 6P, 6Q, 6R)であるが台数は 2以上であれば本 発明を限定しない。 FIG. 1 shows Embodiment 1 of an air-conditioning apparatus according to the present invention. The air conditioner 2 uses carbon dioxide as a refrigerant, and includes an outdoor unit 4, a plurality of indoor units 6, and a relay unit 8 that connects the outdoor units and the indoor units. In this embodiment, the number of indoor units 6 is three (units 6P, 6Q, 6R). The invention is not limited.
[0013] 空気調和装置 2は、室内ユニット 6P〜6Rが配置された室全てを冷房する冷房運転 モード、室全てを暖房する暖房運転モード、および、ある室を冷房すると同時に別の 室を暖房する 2つのモード (冷房主体運転モードおよび暖房主体運転モード)を有す る。  [0013] The air conditioner 2 has a cooling operation mode in which all the rooms in which the indoor units 6P to 6R are arranged are cooled, a heating operation mode in which all the rooms are heated, and a room is cooled and at the same time another room is heated. There are two modes (cooling main operation mode and heating main operation mode).
[0014] 室外ユニット 4は、冷媒を圧縮するための圧縮機 10、熱交換器 (室外熱交換器) 12 および第 1の切換部 (例えば、四方弁) 16を備え、これらは第 1および第 2の接続端 部 20a, 20bの間を流体連通するように配設されている。圧縮機 10の冷媒吐出口 10 aおよび冷媒吸込口 10bはそれぞれ、配管 14a, 14bを介して第 1の切換部 16に接 続されている。熱交翻12の一端 12aは、配管 14cを介して第 1の切換部 16に接続 されている。切換部 16にはまた、配管 14dが接続されている。配管 14dは、中継部 8 の配管 18aの一端が接続される室外ユニット 4の配管接続部 (第 1の接続端部) 20a まで延在している。熱交 の他端 12bは配管 14eに接続されている。配管 14e は、中継部 8の間配管 18bの一端が接続される室外ユニット 4の配管接続部 20bまで 延在している。すなわち、配管 18a, 18bは、室外ユニット 4と室内ユニット 6P〜6Rを 接続するためのユニット間配管である。  The outdoor unit 4 includes a compressor 10 for compressing a refrigerant, a heat exchanger (outdoor heat exchanger) 12 and a first switching unit (for example, a four-way valve) 16, which are the first and first units. The two connection ends 20a and 20b are arranged to be in fluid communication. The refrigerant discharge port 10a and the refrigerant suction port 10b of the compressor 10 are connected to the first switching unit 16 via pipes 14a and 14b, respectively. One end 12a of the heat exchanger 12 is connected to the first switching unit 16 via a pipe 14c. A pipe 14d is also connected to the switching unit 16. The pipe 14d extends to the pipe connection part (first connection end part) 20a of the outdoor unit 4 to which one end of the pipe 18a of the relay part 8 is connected. The other end 12b of the heat exchange is connected to the pipe 14e. The pipe 14e extends to the pipe connection part 20b of the outdoor unit 4 to which one end of the pipe 18b between the relay part 8 is connected. That is, the pipes 18a and 18b are inter-unit pipes for connecting the outdoor unit 4 and the indoor units 6P to 6R.
[0015] 切換部 16は、運転モードに応じて、第 1および第 2のフロー状態の間で、熱交換器 12に流れる冷媒の方向を切り換えられるように構成されている。第 1の状態では、図 2に示すように、配管接続部 20aを配管 14d, 14bを介して圧縮機 10の冷媒吸込口 1 Obに接続し、圧縮機 10の冷媒吐出口 10aを配管 14a, 14cを介して熱交 12の 一端 12aに接続し、このとき冷媒は熱交 の一端 12aから他端 12bへ、すなわ ち配管接続部 20aから 20bへと流れる。一方、第 2の状態では、図 3に示すように、熱 交翻 12の一端 12aを配管 14c, 14bを介して圧縮機 10の冷媒吸込口 10bに接続 し、圧縮機 10の冷媒吐出口 10aを配管 14a, 14dを介して配管接続部 20aに接続し 、このとき冷媒は熱交 の他端 12bから一端 12aへ、すなわち配管接続部 20b から 20aへと流れる。  [0015] The switching unit 16 is configured to be able to switch the direction of the refrigerant flowing in the heat exchanger 12 between the first and second flow states according to the operation mode. In the first state, as shown in FIG. 2, the pipe connecting portion 20a is connected to the refrigerant suction port 1 Ob of the compressor 10 via the pipes 14d and 14b, and the refrigerant discharge port 10a of the compressor 10 is connected to the pipes 14a and 14a. The refrigerant is connected to one end 12a of the heat exchanger 12 through 14c, and at this time, the refrigerant flows from one end 12a to the other end 12b of the heat exchanger, that is, from the pipe connecting portions 20a to 20b. On the other hand, in the second state, as shown in FIG. 3, one end 12a of the heat exchanger 12 is connected to the refrigerant suction port 10b of the compressor 10 via the pipes 14c and 14b, and the refrigerant discharge port 10a of the compressor 10 is connected. Is connected to the pipe connection portion 20a via the pipes 14a and 14d, and at this time, the refrigerant flows from the other end 12b of the heat exchange to the one end 12a, that is, from the pipe connection portions 20b to 20a.
[0016] 中継部 8は、 3つの連結口 24a, 24b, 24cを有する三方切換弁 22を室内ユニット 6 と同数だけ (本実施形態では、 22P, 22Q, 22Rの 3つ)備える。配管 18aは、配管接 続部 20aと接続される側と反対側が 3つに分岐しており各三方切換弁 22の連結口 2 4aに接続されている。同様に、配管 18bは、配管接続部 20bと接続される側と反対 側が 3つに分岐しており各三方切換弁 22の連結口 24bに接続されている。連結口 2 4cは、配管を介して対応する室内ユニット 6の第 1の配管接続部 26aに接続されてい る。 The relay unit 8 includes the same number of three-way switching valves 22 having three connection ports 24a, 24b, and 24c as the indoor unit 6 (three in this embodiment, 22P, 22Q, and 22R). Piping 18a The side opposite to the side connected to the connecting portion 20a is branched into three, and is connected to the connecting port 24a of each three-way switching valve 22. Similarly, the pipe 18b is branched into three on the opposite side to the side connected to the pipe connection portion 20b, and is connected to the connection port 24b of each three-way switching valve 22. The connection port 24c is connected to the first pipe connection part 26a of the corresponding indoor unit 6 through the pipe.
[0017] 各室内ユニット 6は、熱交換器 (室内熱交換器) 28と、流量制御弁 (第 1の流量制御 部) 32 (32P, 32Q, 32R)を備え、これらは第 1および第 2の配管接続部 26a, 26b の間を流体連通するように配設されている。とりわけ、熱交換器 28の一端 28aは、配 管を介して配管接続部 26aに接続され、その他端 28bは、配管 30を介して第 2の配 管接続部 26bと接続され、第 2の配管接続部 26bは中継部 8のバイパス配管 34と接 続される。各室内ユニット 6P, 6Q, 6Rの配管 30の途中には、配管 30を流れる冷媒 の流量を制御するための第 1の流量制御部 32 (32P, 32Q, 32R)が設けてある。  [0017] Each indoor unit 6 includes a heat exchanger (indoor heat exchanger) 28 and a flow control valve (first flow control unit) 32 (32P, 32Q, 32R). The pipe connection portions 26a and 26b are arranged in fluid communication. In particular, one end 28a of the heat exchanger 28 is connected to the pipe connection part 26a via a pipe, and the other end 28b is connected to the second pipe connection part 26b via a pipe 30 to be connected to the second pipe. The connection part 26b is connected to the bypass pipe 34 of the relay part 8. A first flow rate control unit 32 (32P, 32Q, 32R) for controlling the flow rate of the refrigerant flowing through the pipe 30 is provided in the middle of the pipe 30 of each indoor unit 6P, 6Q, 6R.
[0018] 中継部 8はまた、配管 18bの途中に一端が接続されるとともに、他端側において分 岐して各室内ユニット 6の配管接続部 26b (したがって流量制御装置 32)に接続され たバイパス配管 34を備える。ノ イノ ス配管 34の途中には、該配管を流れる冷媒の流 量を制御するための第 2の流量制御部 36が設けてある。  [0018] One end of the relay section 8 is connected in the middle of the pipe 18b, and a bypass connected to the pipe connection section 26b of each indoor unit 6 (and hence the flow control device 32) is branched at the other end side. Piping 34 is provided. A second flow rate control unit 36 for controlling the flow rate of the refrigerant flowing through the piping is provided in the middle of the noise piping 34.
[0019] 次に、力かる構成を備えた空気調和装置 2の各運転モードの動作を、冷媒の流れ 方向を示す図 2〜図 5および p— h線図(冷媒の圧力とェンタルビとの関係を示す線 図)である図 6〜図 9を用いて説明する。図 2〜図 5において、太線は運転時に冷媒 の移動が生じている配管を示し、括弧内の数字 [i] (i= l, 2, . . . )は、図 6〜図 9の 線図上の i点 (冷媒の各状態)に対応する配管部分を示す。  [0019] Next, the operation of each operation mode of the air conditioner 2 having a powerful configuration is shown in Figs. 2 to 5 and the ph diagram (relationship between the refrigerant pressure and the enthalbi) showing the flow direction of the refrigerant. This will be described with reference to FIGS. In Fig. 2 to Fig. 5, the thick line indicates the piping where the refrigerant has moved during operation, and the numbers [i] (i = l, 2,...) In parentheses are the diagrams in Fig. 6 to Fig. 9. The piping part corresponding to the upper point i (each state of the refrigerant) is shown.
[0020] 冷房運転モード(図 2および図 6)  [0020] Cooling operation mode (Fig. 2 and Fig. 6)
全ての室内ユニット 6P〜6Rが冷房運転を行う場合、切換部 16を第 1のフロー状態 (圧縮機 10の冷媒吐出口 10aを熱交換器 12の一端 12a、冷媒吸込口 10bを配管接 続部 20aに接続)に切り換え、流量制御弁 36の開度を全開にし、流量制御弁 32P〜 32Rの開度を絞る。また、各三方切換弁 22の連結口 24bを閉鎖し、連結口 24a, 24 cを開放する。この状態で、圧縮機 10の運転を開始する。  When all the indoor units 6P to 6R perform cooling operation, the switching unit 16 is in the first flow state (the refrigerant discharge port 10a of the compressor 10 is connected to one end 12a of the heat exchanger 12, and the refrigerant suction port 10b is connected to the pipe connection unit. Switch to 20a), fully open the flow control valve 36, and throttle the flow control valves 32P to 32R. Further, the connection port 24b of each three-way switching valve 22 is closed, and the connection ports 24a and 24c are opened. In this state, the operation of the compressor 10 is started.
[0021] まず、低温低圧の冷媒蒸気が圧縮機 10より圧縮され、高温高圧の冷媒となって吐 出される。圧縮機 10における冷媒の圧縮は、周囲との熱の出入はないものとして、図 6の p— h線図にて等エントロピ線 (点 [ 1]一点 [2] )で表される。 [0021] First, the low-temperature and low-pressure refrigerant vapor is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant. Is issued. The refrigerant compression in the compressor 10 is represented by an isentropic curve (point [1], point [2]) in the ph diagram of FIG. 6 assuming that heat does not enter and exit from the surroundings.
[0022] 圧縮機 10から吐出された高温高圧の冷媒は、切換部 16を通り、熱交換器 12で空 気などを加熱しながら温度が下がる。熱交換器 12での冷媒の変化は、ほぼ圧力一 定のもとで行われるが、熱交換器 12の圧力損失を考慮して、 p— h線図にてやや傾 いた水平線に近い線 (点 [2]—点 [3])で表される。二酸化炭素は、フロン系冷媒と 異なり、高圧では超臨界状態であるため凝縮することなぐ温度が下がりながら空気 を加熱する。 [0022] The high-temperature and high-pressure refrigerant discharged from the compressor 10 passes through the switching unit 16, and the temperature decreases while heating the air or the like in the heat exchanger 12. The change of the refrigerant in the heat exchanger 12 is performed under almost constant pressure, but considering the pressure loss of the heat exchanger 12, a line close to a slightly inclined horizontal line in the ph diagram ( It is represented by point [2] —point [3]). Unlike CFC-based refrigerants, carbon dioxide is supercritical at high pressure, so it heats the air as the temperature drops without condensing.
[0023] 熱交 から出た高圧の冷媒は、配管接続部 20b、バイパス配管 34 (流量制御 弁 36は全開)を通り、分岐して各室内ユニット 6P〜6Rに流入し、流量制御弁 32P〜 32Rで絞り膨張 (減圧)され、低温低圧の気液二相状態になる。流量制御弁 32での 冷媒の変化は、ェンタルピ一定のもとで行われるものであり、 p— h線図にて垂直線( 点 [3]—点 [4])で表される。  [0023] The high-pressure refrigerant from the heat exchange passes through the pipe connection part 20b and the bypass pipe 34 (the flow control valve 36 is fully open), branches and flows into the indoor units 6P to 6R. It is throttled and expanded (decompressed) at 32R, resulting in a gas-liquid two-phase state at low temperature and pressure. The change of the refrigerant in the flow control valve 32 is performed under a constant enthalpy and is represented by a vertical line (point [3] -point [4]) in the ph diagram.
[0024] 気液二相状態の冷媒は、室内ユ ット 6の熱交 で空気などを冷却しながら、 低温低圧の冷媒蒸気に変化する。熱交換器 28での冷媒の変化は、ほぼ圧力一定の もとで行われるが、熱交換器 28の圧力損失を考慮して、 p—h線図にてやや傾いた 水平線に近 、線 (点 [4]一点 [ 1] )で表される。  [0024] The refrigerant in the gas-liquid two-phase state changes into low-temperature and low-pressure refrigerant vapor while cooling air or the like by heat exchange in the indoor unit 6. The change of the refrigerant in the heat exchanger 28 is performed under almost constant pressure, but considering the pressure loss of the heat exchanger 28, the line ( Point [4] is represented by one point [1]).
[0025] 各室内ユニット 6P〜6Rの熱交翻28から出た低温低圧の冷媒蒸気は、各三方切 換弁 22を通過後合流し、第 1の配管接続部 20a、第 1の切換部 16を通って圧縮機 1 0に戻る。  [0025] The low-temperature and low-pressure refrigerant vapors coming out of the heat exchange 28 of each indoor unit 6P to 6R merge after passing through each three-way switching valve 22, and the first pipe connection part 20a and the first switching part 16 are connected. Return to compressor 1 0.
[0026] なお、熱交換器 28から出た直後の冷媒蒸気に比べて、圧縮機 10に流入する冷媒 蒸気は配管を通るために若干圧力が低下するが、 p— h線図上で同じ点 [1]で表して ある。同様に、熱交換器 12から出た高圧の冷媒に比べて、流量制御弁 32に流入す る冷媒は配管を通るために若干圧力が低下するが、 p— h線図上で同じ点 [3]で表し てある。こうした配管を通ることによる冷媒の圧力の若干の低下および上述した熱交 換器 12、 28での圧力損失は、以下の暖房運転モード、冷房主体運転モード、暖房 主体運転モードについても同様であり、必要な場合を除いて説明を省略する。  [0026] Note that the refrigerant vapor flowing into the compressor 10 has a slightly lower pressure because it passes through the piping than the refrigerant vapor immediately after exiting the heat exchanger 28, but the same point on the ph diagram. It is represented by [1]. Similarly, the refrigerant flowing into the flow control valve 32 is slightly lower in pressure because it passes through the piping than the high-pressure refrigerant that has flowed out of the heat exchanger 12, but the same point on the ph diagram [3 ] The slight decrease in the refrigerant pressure caused by passing through these pipes and the pressure loss in the heat exchangers 12 and 28 described above are the same in the following heating operation mode, cooling main operation mode, and heating main operation mode. The description is omitted unless necessary.
[0027] 暖房運転モード(図 3および図 7) 全ての室内ユニット 6P〜6Rが暖房運転を行う場合、切換部 16を第 2のフロー状態 (圧縮機 10の冷媒吐出口 10aを配管接続部 20a、冷媒吸込口 10bを熱交換器 12の 一端 12aに接続)に切り換え、流量制御弁 36の開度を全開にし、流量制御弁 32P〜 32Rの開度を絞る。また、各三方切換弁 22の連結口 24bを閉鎖し、連結口 24a, 24 cを開放する。この状態で、圧縮機 10の運転を開始する。 [0027] Heating operation mode (Figures 3 and 7) When all the indoor units 6P to 6R perform heating operation, the switching unit 16 is in the second flow state (the refrigerant discharge port 10a of the compressor 10 is connected to the pipe connection unit 20a, the refrigerant suction port 10b is connected to one end 12a of the heat exchanger 12a. Connected), fully open the opening of the flow control valve 36, and reduce the opening of the flow control valves 32P to 32R. Further, the connection port 24b of each three-way switching valve 22 is closed, and the connection ports 24a and 24c are opened. In this state, the operation of the compressor 10 is started.
[0028] まず、低温低圧の冷媒蒸気 (点 [1])が圧縮機 10より圧縮され、高温高圧の冷媒と なって吐出される。圧縮機 10から吐出された高温高圧の冷媒 (点 [2])は、切換部 16 、配管接続部 20aを通った後、分岐して各三方切換弁 22を通り、各室内ユニット 6P 〜6Rの熱交翻28に流入する。冷媒は、熱交翻28で空気などを加熱して温度 が下がり(点 [3])、続いて、流量制御弁 32で減圧され、低温低圧の気液二相状態に 変化する(点 [4])。その後、各室内ユニット 6P〜6Rから出た冷媒は、バイパス配管 3 4で合流し、配管接続部 20bを通過し、熱交換器 12の他端 12bに流入する。気液二 相状態の冷媒は、熱交換器 12で空気などを冷却して低温低圧の冷媒蒸気に変化す る(点 [1])。その後、冷媒は、切換部 16を通り圧縮機 10に戻る。  [0028] First, the low-temperature and low-pressure refrigerant vapor (point [1]) is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant (point [2]) discharged from the compressor 10 passes through the switching unit 16 and the pipe connection unit 20a, branches, passes through the three-way switching valve 22, and passes through each of the indoor units 6P to 6R. It flows into heat exchange 28. The refrigerant heats air or the like by heat exchange 28 to lower its temperature (point [3]), and then is depressurized by the flow control valve 32 to change to a low-temperature low-pressure gas-liquid two-phase state (point [4] ]). Thereafter, the refrigerant that has come out of each of the indoor units 6P to 6R merges in the bypass pipe 34, passes through the pipe connection portion 20b, and flows into the other end 12b of the heat exchanger 12. The refrigerant in the gas-liquid two-phase state changes to low-temperature and low-pressure refrigerant vapor by cooling air or the like with the heat exchanger 12 (point [1]). Thereafter, the refrigerant passes through the switching unit 16 and returns to the compressor 10.
[0029] 冷房主体運転モード(図 4および図 8)  [0029] Cooling main operation mode (Fig. 4 and Fig. 8)
室内ユニット 6P, 6Qが冷房運転、室内ユニット 6Rが暖房運転を行う場合、切換部 16を第 1の状態 (圧縮機 10の冷媒吐出口 10aを熱交換器 12の一端 12a、冷媒吸込 口 10bを配管接続部 20aに接続)に切り換え、流量制御弁 36を閉鎖、流量制御弁 3 2P, 32Qの開度を絞り、流量制御弁 32Rを全開にする。また、三方切換弁 22P, 22 Qに関し連結口 24bを閉鎖、連結口 24a, 24cを開放する。三方切換弁 22Rに関し 連結口 24aを閉鎖、連結口 24b, 24cを開放する。この状態で、圧縮機 10の運転を 開始する。  When the indoor units 6P and 6Q perform cooling operation and the indoor unit 6R performs heating operation, the switching unit 16 is in the first state (the refrigerant discharge port 10a of the compressor 10 is connected to one end 12a of the heat exchanger 12 and the refrigerant suction port 10b is connected). Switch to pipe connection 20a), close the flow control valve 36, throttle the flow control valve 3 2P, 32Q, and fully open the flow control valve 32R. Further, the connection ports 24b are closed and the connection ports 24a and 24c are opened for the three-way switching valves 22P and 22Q. Regarding the three-way selector valve 22R, the connection port 24a is closed and the connection ports 24b and 24c are opened. In this state, operation of the compressor 10 is started.
[0030] まず、低温低圧の冷媒蒸気 (点 [1])が圧縮機 10より圧縮され、高温高圧の冷媒と なって吐出される。圧縮機 10から吐出された高温高圧の冷媒 (点 [2])は、切換部 16 を通り、熱交換器 12で空気などを加熱しながら温度が下がる(点 [3])。  [0030] First, the low-temperature and low-pressure refrigerant vapor (point [1]) is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant (point [2]) discharged from the compressor 10 passes through the switching unit 16 and decreases in temperature while heating air or the like in the heat exchanger 12 (point [3]).
[0031] 熱交換器 12から出た高圧の冷媒は、配管接続部 20b、三方切換弁 22Rを通り、室 内ユニット 6Rに流入し、熱交翻28で空気などを加熱してさらに温度が下がる(点 [ 4]) o冷媒は、続いて室内ユニット 6P, 6Qに流入し、流量制御弁 32P, 32Qで絞り 膨張 (減圧)され、低温低圧の気液二相状態になる (点 [5] )。この冷媒は、さらに熱 交翻 28で空気などを冷却して低温低圧の冷媒蒸気に変化する(点 [1])。 [0031] The high-pressure refrigerant discharged from the heat exchanger 12 passes through the pipe connection portion 20b and the three-way switching valve 22R, flows into the indoor unit 6R, and heats the air and the like by heat exchange 28, and the temperature further decreases. (Point [4]) o The refrigerant then flows into the indoor units 6P and 6Q and is throttled by the flow control valves 32P and 32Q. It expands (depressurizes) and enters a low-temperature and low-pressure gas-liquid two-phase state (point [5]). This refrigerant further cools the air and the like by heat exchange 28 and changes to low-temperature and low-pressure refrigerant vapor (point [1]).
[0032] 室内ユニット 6P, 6Qから出た冷媒は、三方切換弁 22P, 22Qを通過後に合流し、 配管接続部 20a、切換部 16を通り圧縮機 10に戻る。  [0032] Refrigerant from the indoor units 6P and 6Q merges after passing through the three-way switching valves 22P and 22Q, and returns to the compressor 10 through the pipe connection portion 20a and the switching portion 16.
[0033] 冷媒である二酸ィ匕炭素は、圧縮機 10の冷媒吐出口 10aから、切換部 16、熱交換 器 12、室内ユニット 6R、室内ユニット 6Pの流量制御弁 32Pまたは室内ユニット 6Qの 流量制御弁 32Qまでに到る流路において超臨界状態であるため(配管を通ることに より圧力が若干低下するものの超臨界状態が維持されるため)、室内ユニット 6P, 6Q の流量制御弁 32P, 32Qでの音や圧力脈動の発生を抑制 ·防止できる。  [0033] Carbon dioxide, which is a refrigerant, flows from the refrigerant discharge port 10a of the compressor 10 to the flow control valve 32P of the switching unit 16, the heat exchanger 12, the indoor unit 6R, the indoor unit 6P, or the indoor unit 6Q. Because the flow to the control valve 32Q is in a supercritical state (because the pressure is slightly reduced by passing through the piping, the supercritical state is maintained), the flow control valves 32P, Can suppress / prevent sound and pressure pulsation in 32Q.
[0034] ところで、フロン系冷媒を使用した従来の構成を備えた空気調和装置を比較例とし て図 10に示す。この装置 2'は、中継部 8'の配管 18bの途中に気液分離装置 40を 備えており、気液分離装置の液相側にノ ィパス配管 34が接続されている。  [0034] By the way, FIG. 10 shows a comparative example of an air conditioner having a conventional configuration using a fluorocarbon refrigerant. This device 2 ′ includes a gas-liquid separator 40 in the middle of the pipe 18b of the relay section 8 ′, and a no-pass pipe 34 is connected to the liquid phase side of the gas-liquid separator.
[0035] 従来式の空気調和機が冷房主体運転を行う場合、すなわち室内ユニット 6P, 6Q が冷房運転、室内ユニット 6Rが暖房運転を行う場合、切換部 16を第 1のフロー状態 (圧縮機 10の冷媒吐出口 10aを熱交換器 12の一端 12a、冷媒吸込口 10bを配管接 続部 20aに接続)に切り換え、流量制御弁 36、 32P, 32Qの開度を絞り、流量制御 弁 32Rを全開にする。また、三方切換弁 22P, 22Qに関し連結口 24bを閉鎖、連結 口 24a, 24cを開放する。三方切換弁 22Rに関し連結口 24aを閉鎖、連結口 24b, 2 4cを開放する。この状態で、圧縮機 10の運転を開始する。  [0035] When the conventional air conditioner performs the cooling main operation, that is, when the indoor units 6P and 6Q perform the cooling operation and the indoor unit 6R performs the heating operation, the switching unit 16 is set in the first flow state (compressor 10 The refrigerant discharge port 10a is switched to one end 12a of the heat exchanger 12 and the refrigerant suction port 10b is connected to the pipe connection 20a), the flow control valves 36, 32P and 32Q are throttled down, and the flow control valve 32R is fully opened. To. In addition, for the three-way switching valves 22P and 22Q, the connection port 24b is closed and the connection ports 24a and 24c are opened. With respect to the three-way switching valve 22R, the connection port 24a is closed and the connection ports 24b, 24c are opened. In this state, the operation of the compressor 10 is started.
[0036] まず、低温低圧のフロン系の冷媒蒸気が圧縮機 10より圧縮され、高温高圧の冷媒 となって吐出される。圧縮機 10から吐出された高温高圧の冷媒は、切換部 16を通り 、(熱交翻に流入する冷媒は圧力が臨界点より小さいため)熱交翻 12で空気な どを加熱しながら一部が凝縮して、高圧の気液二相状態に変化する。熱交換器 12か ら出た気液二相状態の冷媒は、気液分離装置 40に流入する。気液分離装置 40に 流入した高圧の冷媒蒸気は、三方切換弁 22Rを通過後、室内ユニット 6Rの熱交換 器で空気などを加熱して凝縮し、高圧の冷媒液に変化する。その後、冷媒液は、全 開の流量制御弁 32Rを通る。一方、気液分離装置 40に流入した高圧の冷媒液は、 流量制御弁 36を通った後、室内ユニット 6R力もの冷媒液と合流し、室内ユニット 6P , 6Qに流入する。冷媒液は、各ユニット 6Ρ, 6Qにおいて、流量制御弁 32Ρ, 32Qに て絞り膨張 (減圧)されて低温低圧の気液二相状態に変化し、さらに熱交 28で 空気などを冷却して低温低圧の冷媒蒸気となる。その後、室内ユニット 6Ρ, 6Qから 出た低温低圧の冷媒蒸気は、三方切換弁 22Ρ, 22Qを出た後合流し、切換部 16を 通って圧縮機 10に戻る。 First, the low-temperature and low-pressure fluorocarbon refrigerant vapor is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressor 10 passes through the switching unit 16 and partially heats the air and the like by heat exchange 12 (because the refrigerant flowing into the heat exchange has a pressure lower than the critical point). Condenses and changes to a high-pressure gas-liquid two-phase state. The gas-liquid two-phase refrigerant exiting from the heat exchanger 12 flows into the gas-liquid separator 40. The high-pressure refrigerant vapor that has flowed into the gas-liquid separator 40 passes through the three-way switching valve 22R, condenses by heating air or the like in the heat exchanger of the indoor unit 6R, and changes to a high-pressure refrigerant liquid. Thereafter, the refrigerant liquid passes through the fully opened flow control valve 32R. On the other hand, the high-pressure refrigerant liquid that has flowed into the gas-liquid separator 40 passes through the flow control valve 36 and then merges with the refrigerant liquid of the indoor unit 6R, and the indoor unit 6P , Flows into 6Q. In each unit 6Ρ and 6Q, the refrigerant liquid is throttled and expanded (decompressed) by the flow control valves 32Ρ and 32Q to change to a low-temperature and low-pressure gas-liquid two-phase state. It becomes low-pressure refrigerant vapor. Thereafter, the low-temperature and low-pressure refrigerant vapors coming out of the indoor units 6Ρ and 6Q join after passing through the three-way switching valves 22Ρ and 22Q, and return to the compressor 10 through the switching unit 16.
[0037] 流量制御弁 36は、気液分離装置 40から室内ユニット 6Rに流入する冷媒蒸気に冷 媒液が混入することがないよう、気液分離装置から流出する冷媒液の流量を制御す るが、流量制御弁 36を通過する際に冷媒液が減圧される。また、バイパス配管 34を 通る間に冷媒液が減圧される。気液分離装置 40から流出する冷媒液は飽和液であ るため、減圧により気液二相の状態になると室内ユニット 6Ρ, 6Qの流量制御弁 33Ρ , 32Qに流入する際に音や圧力脈動が発生する。  [0037] The flow rate control valve 36 controls the flow rate of the refrigerant liquid flowing out from the gas-liquid separator so that the refrigerant liquid does not enter the refrigerant vapor flowing into the indoor unit 6R from the gas-liquid separator 40. However, when passing through the flow control valve 36, the refrigerant liquid is depressurized. Further, the refrigerant liquid is depressurized while passing through the bypass pipe 34. Since the refrigerant liquid flowing out of the gas-liquid separator 40 is a saturated liquid, if it becomes a gas-liquid two-phase state due to decompression, sound and pressure pulsations will occur when it flows into the flow control valves 33Ρ and 32Q of the indoor units 6Ρ and 6Q. appear.
[0038] そこで、空気調和装置 2'では、気液分離装置 40から流出する冷媒液を過冷却す る構成を設ける必要がある。具体的に、一端を流量制御弁 36の(冷房主体運転モー ドにおいて第 1のバイパス配管 34を流れる冷媒の流れ方向に関し)下流側に、他端 をユニット配管 18aに接続した第 2のバイパス移管 42を設ける。また、上記一端の近 傍に流量制御弁 44を設け、これによりバイパス配管 34から一部バイパス配管 42に 流れた冷媒を絞り膨張 (減圧)して低温低圧の気液二相状態の冷媒を得るようにする 。バイパス配管 42は、内部を流れる低温低圧の気液二相状態の冷媒により、バイパ ス配管 34の気液分離装置 40と流量制御弁 36の間の部分および流量制御弁 36と上 記一端との間の部分を通る冷媒を過冷却する。  Therefore, in the air conditioner 2 ′, it is necessary to provide a configuration for supercooling the refrigerant liquid flowing out from the gas-liquid separator 40. Specifically, the second bypass transfer has one end connected to the downstream side of the flow control valve 36 (with respect to the flow direction of the refrigerant flowing through the first bypass pipe 34 in the cooling main operation mode) and the other end connected to the unit pipe 18a. 42 is provided. In addition, a flow control valve 44 is provided near the one end so that the refrigerant flowing from the bypass pipe 34 to a part of the bypass pipe 42 is throttled (expanded) to obtain a low-temperature and low-pressure gas-liquid two-phase refrigerant. To do so. The bypass pipe 42 is composed of a low-temperature and low-pressure gas-liquid two-phase refrigerant flowing in the interior of the bypass pipe 34 between the gas-liquid separation device 40 and the flow control valve 36 and between the flow control valve 36 and the one end. Supercool the refrigerant passing through the part in between.
[0039] このように、フロン系冷媒を用いると、冷房主体運転モードを行う目的で中継部 8' の構成部品が非常に多くなる。  [0039] As described above, when the chlorofluorocarbon refrigerant is used, the number of components of the relay unit 8 'is very large for the purpose of performing the cooling main operation mode.
[0040] これに対し、本実施形態では、冷媒として二酸ィ匕炭素を用いるため、気液分離装置 を利用することなぐ中継部 8の部品点数を大幅に削減できる。また、流量制御弁の 数が少ないために室内熱交換器 32P〜32Rにおける冷暖房能力の制御が容易であ る。  [0040] On the other hand, in the present embodiment, since carbon dioxide is used as the refrigerant, the number of parts of the relay unit 8 without using the gas-liquid separator can be greatly reduced. In addition, since the number of flow control valves is small, it is easy to control the cooling / heating capacity of the indoor heat exchangers 32P to 32R.
[0041] なお、上記の本実施形態の冷房主体運転モードでは、流量制御弁 36を閉鎖し、す ベての冷媒が暖房を行う室内ユニット 6Rを流れる動作について説明した力 流量の 増加は冷媒音の発生や配管の腐食を発生するため、流量制御弁 36を制御して、冷 媒の一部が第 1のバイパス配管 34を通り、室内ユニット 6Rを迂回するように冷媒を流 してちよい。 [0041] In the cooling main operation mode of the present embodiment, the flow rate control valve 36 is closed, and the operation of the force flow rate described for the operation in which all the refrigerant flows through the indoor unit 6R for heating is performed. The increase generates refrigerant noise and pipe corrosion, so the flow control valve 36 is controlled so that a part of the refrigerant flows through the first bypass pipe 34 and flows through the indoor unit 6R. You can do it.
[0042] 暖房主体運転モード(図 5および図 9)  [0042] Heating-main operation mode (Figures 5 and 9)
室内ユニット 6P, 6Qが暖房運転、室内ユニット 6Rが冷房運転を行う場合、切換部 16を第 2のフロー状態 (圧縮機 10の冷媒吐出口 10aを配管接続部 20a、冷媒吸込 口 10bを熱交換器 12の一端 12aに接続)に切り換え、流量制御弁 36の開度を絞り、 流量制御弁 32P, 32Qを全開にし、流量制御弁 32Rの開度を絞る。また、三方切換 弁 22P, 22Qに関し連結口 24bを閉鎖、連結口 24a, 24cを開放する。三方切換弁 2 2Rに関し連結口 24aを閉鎖、連結口 24b, 24cを開放する。この状態で、圧縮機 10 の運転を開始する。  When the indoor units 6P and 6Q perform heating operation and the indoor unit 6R performs cooling operation, the switching unit 16 is in the second flow state (the refrigerant discharge port 10a of the compressor 10 is connected to the pipe connection unit 20a, and the refrigerant suction port 10b is heat-exchanged. Switch to the one end 12a of the device 12), throttle the flow control valve 36, fully open the flow control valves 32P and 32Q, and throttle the flow control valve 32R. In addition, the connection port 24b is closed and the connection ports 24a and 24c are opened for the three-way switching valves 22P and 22Q. Three-way selector valve 2 For 2R, close the connecting port 24a and open the connecting ports 24b and 24c. In this state, operation of the compressor 10 is started.
[0043] まず、低温低圧の冷媒蒸気 (点 [1])が圧縮機 10より圧縮され、高温高圧の冷媒と なって吐出される。圧縮機 10から吐出された高温高圧の冷媒 (点 [2])は、切換部 16 、配管接続部 20aを通った後、分岐して三方切換弁 22P, 22Qを通り、室内ユニット 6P, 6Qの熱交翻28に流入する。冷媒は、熱交翻28で空気などを加熱して温 度が下がる(点 [3])。室内ユニット 6P, 6Qの熱交換器 28を通過した冷媒は、全開の 流量制御弁 32P, 32Qを通った後、一部は室内ユニット 6R、残りはバイパス配管 34 を通 。  [0043] First, the low-temperature and low-pressure refrigerant vapor (point [1]) is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant (point [2]) discharged from the compressor 10 passes through the switching unit 16 and the pipe connection unit 20a, then branches and passes through the three-way switching valves 22P and 22Q, and passes through the indoor units 6P and 6Q. It flows into heat exchange 28. Refrigerant heats air or the like with heat exchanger 28 and drops in temperature (point [3]). The refrigerant that has passed through the heat exchangers 28 of the indoor units 6P and 6Q passes through the fully open flow control valves 32P and 32Q, and then partly passes through the indoor unit 6R and the rest through the bypass pipe 34.
[0044] 室内ユニット 6Rに流入した冷媒は、流量制御弁 32Rで絞り膨張 (減圧)され、低温 低圧の気液二相の状態に変化する(点 [4] )。この冷媒は、続いて室内ユニット 6Rの 熱交換器 28で空気などを冷却し一部または全部が蒸発し (点 [5])、三方切換弁 22 Rに流入する。これに限らないが、図 9の例では、熱交翻28を出た冷媒 (点 [5])は 、乾き度が 1. 0に近い気液二相の状態である。  [0044] The refrigerant flowing into the indoor unit 6R is throttled and expanded (depressurized) by the flow control valve 32R, and changes to a low-temperature and low-pressure gas-liquid two-phase state (point [4]). Subsequently, the refrigerant cools air or the like in the heat exchanger 28 of the indoor unit 6R, evaporates part or all (point [5]), and flows into the three-way switching valve 22R. Although not limited to this, in the example of FIG. 9, the refrigerant (point [5]) that has exited the heat exchange 28 is in a gas-liquid two-phase state with a dryness close to 1.0.
[0045] 一方、室内ユニット 6Rに流入しな力つた残りの冷媒 (点 [3])は、バイパス配管 34を 通り、流量制御弁 36により絞り膨張 (減圧)され、低温低圧の気液二相の状態になる (点 [6])。これに限らないが、図 9の例では、流量制御弁 36を出た冷媒 (点 [6])は、 熱交翻 28を出た冷媒 (点 [5] )より圧力が若干小さ!/、。  [0045] On the other hand, the remaining refrigerant (point [3]) that did not flow into the indoor unit 6R passes through the bypass pipe 34 and is throttled and expanded (decompressed) by the flow control valve 36, so that the low-temperature and low-pressure gas-liquid two-phase (Point [6]). Although not limited to this, in the example of FIG. 9, the refrigerant (point [6]) exiting the flow control valve 36 has a slightly lower pressure than the refrigerant exiting the heat exchanger 28 (point [5])! /.
[0046] 流量制御弁 36を出た冷媒は、(バイパス配管 34の配管 18bとの接続端部で)三方 切換弁 22Rを出た冷媒と合流し、気液二相の冷媒となる(点 [7] )。この冷媒は、室外 ユニット 4の接続端部 20bを通り、熱交換器 12に流入する。気液二相状態の冷媒は、 熱交翻 12で空気などを冷却して低温低圧の冷媒蒸気に変化する (点 [1])。その 後、冷媒は、切換部 16を通り圧縮機 10に戻る。 [0046] The refrigerant exiting the flow control valve 36 is three-way (at the end of the bypass pipe 34 connected to the pipe 18b). The refrigerant that has exited the switching valve 22R merges into a gas-liquid two-phase refrigerant (point [7]). This refrigerant passes through the connection end 20b of the outdoor unit 4 and flows into the heat exchanger 12. The refrigerant in the gas-liquid two-phase state changes to low-temperature and low-pressure refrigerant vapor by cooling air and the like by heat exchange 12 (point [1]). Thereafter, the refrigerant returns to the compressor 10 through the switching unit 16.
[0047] このように、本実施形態の空気調和機は、暖房主体運転モードにぉ 、て、流量制 御弁 36を制御することで、冷房運転を行う室内ユニット 6Rに流入する冷媒の流量を 制御でき、したがって運転効率を高めることができる。  [0047] Thus, the air conditioner of the present embodiment controls the flow rate control valve 36 in the heating main operation mode, thereby controlling the flow rate of the refrigerant flowing into the indoor unit 6R that performs the cooling operation. Can be controlled, and therefore the driving efficiency can be increased.
[0048] 実施の形態 2.  [0048] Embodiment 2.
図 11は、本発明に係る空気調和装置の実施の形態 2を示す。この空気調和装置 2 Aは、実施の形態 1の空気調和装置 2の構成にカ卩えて、室外ユニット 4Aに流路切換 部 52を備えている。流路切換部 52は、運転モードによらずに常に、冷媒である二酸 化炭素が配管接続部 20bを介して室外ユニット 4A力 中継部 8Aに流れ、配管接続 部 20aを介して中継部力も室外ユニットに流れるようにするためのものである。  FIG. 11 shows a second embodiment of the air-conditioning apparatus according to the present invention. This air conditioner 2A includes a flow path switching unit 52 in the outdoor unit 4A in addition to the configuration of the air conditioner 2 of the first embodiment. Regardless of the operation mode, the flow path switching unit 52 always causes the refrigerant carbon dioxide to flow to the outdoor unit 4A force relay unit 8A via the pipe connection unit 20b, and also to connect the relay unit force via the pipe connection unit 20a. It is for flowing to the outdoor unit.
[0049] 具体的に、流路切換部 52は、切換部 16と配管接続部 20aを接続する配管 14dの 途中、および、熱交翻 12と配管接続部 20bを接続する配管 14eの途中に、それぞ れ逆止弁 54、 56を備える。逆止弁 54は、配管接続部 20aから切換部 16へのみ冷媒 の流通を許容する。一方、逆止弁 56は、熱交換器 12から配管接続部 20bへのみ冷 媒の流通を許容する。  [0049] Specifically, the flow path switching unit 52 is in the middle of the pipe 14d connecting the switching unit 16 and the pipe connection part 20a and in the middle of the pipe 14e connecting the heat exchange 12 and the pipe connection part 20b. Each has check valves 54 and 56. The check valve 54 allows the refrigerant to flow only from the pipe connection portion 20a to the switching portion 16. On the other hand, the check valve 56 allows the coolant to flow only from the heat exchanger 12 to the pipe connection portion 20b.
[0050] 流路切換部 52はまた、一端が切換部 16と逆止弁 54の間の配管 14d部分、他端が 逆止弁 56と配管接続部 20bの間の配管 14eの中間点に接続されたバイパス配管 58 を備える。ノ ィパス配管 58の途中には、切換部 16から配管接続部 20bへのみ冷媒 の流通を許容する逆止弁 60が設けてある。流路切換部 52はさらに、一端が配管接 続部 20aと逆止弁 54の間の配管 14dの中間点、他端が逆止弁 56と熱交換器 12の 間の配管 14e部分に接続されたバイパス配管 62を備える。バイパス配管 62の途中 には、配管接続部 20aから熱交換器 12へのみ冷媒の流通を許容する逆止弁 64が 設けてある。  [0050] The flow path switching unit 52 also has one end connected to the pipe 14d portion between the switching unit 16 and the check valve 54, and the other end connected to an intermediate point of the pipe 14e between the check valve 56 and the pipe connection unit 20b. The bypass pipe 58 is provided. In the middle of the no-pass pipe 58, a check valve 60 that allows the refrigerant to flow only from the switching part 16 to the pipe connection part 20b is provided. The flow path switching unit 52 is further connected at one end to the midpoint of the pipe 14d between the pipe connection part 20a and the check valve 54 and at the other end to the pipe 14e part between the check valve 56 and the heat exchanger 12. A bypass pipe 62 is provided. In the middle of the bypass pipe 62, a check valve 64 that allows the refrigerant to flow only from the pipe connection portion 20a to the heat exchanger 12 is provided.
[0051] 中継機 8Aは、第 1のバイパス配管 34 (の流量制御弁 36と分岐部分との間)と、配 管 18aとの間を接続する第 2のノ ィパス配管 66をさらに備える。第 2のバイパス配管 6 6の途中には、該配管を流れる冷媒の流量を制御するための第 3の流量制御部 68が 設けてある。 [0051] The relay 8A further includes a second bypass pipe 66 that connects the first bypass pipe 34 (between the flow control valve 36 and the branch portion) and the pipe 18a. Second bypass pipe 6 In the middle of 6, a third flow rate control unit 68 for controlling the flow rate of the refrigerant flowing through the pipe is provided.
[0052] 次に、力かる構成を備えた空気調和装置 2Aの各運転モードの動作を説明する。  [0052] Next, the operation of each operation mode of the air conditioner 2A having a powerful configuration will be described.
[0053] 冷房運転モード  [0053] Cooling operation mode
全ての室内ユニット 6P〜6Rが冷房運転を行う場合、切換部 16を第 1のフロー状態 (圧縮機 10の冷媒吐出口 10aを熱交換器 12の一端 12a、冷媒吸込口 10bを配管接 続部 20aに接続)に切り換え、流量制御弁 36の開度を全開にし、流量制御弁 32P〜 32Rの開度を絞り、流量制御弁 68を閉鎖する。また、各三方切換弁 22の連結口 24 bを閉鎖し、連結口 24a, 24cを開放する。この状態で、圧縮機 10の運転を開始する  When all the indoor units 6P to 6R perform cooling operation, the switching unit 16 is in the first flow state (the refrigerant discharge port 10a of the compressor 10 is connected to one end 12a of the heat exchanger 12, and the refrigerant suction port 10b is connected to the pipe connection unit. Switch to 20a), fully open the flow control valve 36, throttle the flow control valves 32P to 32R, and close the flow control valve 68. Further, the connection port 24b of each three-way switching valve 22 is closed, and the connection ports 24a and 24c are opened. In this state, start operation of the compressor 10
[0054] まず、低温低圧の冷媒蒸気が圧縮機 10より圧縮され、高温高圧の冷媒となって吐 出される。圧縮機 10から吐出された高温高圧の冷媒は、切換部 16を通り、熱交翻 12で空気などを加熱しながら温度が下がる (凝縮はしない)。熱交 から出た 高圧の冷媒は、逆止弁 56、配管接続部 20b、バイパス配管 34 (流量制御弁 36は全 開)を通り、分岐して各室内ユニット 6P〜6Rに流入し、流量制御弁 32P〜32Rで絞 り膨張 (減圧)され、低温低圧の気液二相状態になる。気液二相状態の冷媒は、室内 ユニット 6の熱交 で空気などを冷却しながら、低温低圧の冷媒蒸気に変化す る。各室内ユニット 6P〜6Rの熱交換器 28から出た低温低圧の冷媒蒸気は、各三方 切換弁 22を通過後合流し、配管接続部 20aを通る。配管接続部 20aにある冷媒は、 熱交^^ 12と逆止弁 64の間にある冷媒より低圧となっているため、自動的に逆止弁 54を通過し、その後、切換部 16を通って圧縮機 10に戻る。 [0054] First, the low-temperature and low-pressure refrigerant vapor is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressor 10 passes through the switching unit 16 and falls in temperature (not condensed) while heating air or the like by heat exchange 12. The high-pressure refrigerant from the heat exchange passes through the check valve 56, the pipe connection 20b, and the bypass pipe 34 (the flow control valve 36 is fully open), branches and flows into the indoor units 6P to 6R for flow control. It is expanded (depressurized) by throttling with valves 32P to 32R, resulting in a low-temperature and low-pressure gas-liquid two-phase state. The refrigerant in the gas-liquid two-phase state changes to low-temperature and low-pressure refrigerant vapor while cooling air or the like by heat exchange in the indoor unit 6. The low-temperature and low-pressure refrigerant vapors coming out of the heat exchangers 28 of the indoor units 6P to 6R merge after passing through the three-way switching valve 22 and pass through the pipe connection part 20a. Since the refrigerant in the pipe connection 20a has a lower pressure than the refrigerant between the heat exchanger 12 and the check valve 64, it automatically passes through the check valve 54 and then passes through the switching unit 16. Return to compressor 10.
[0055] 暖房運転モード  [0055] Heating operation mode
全ての室内ユニット 6P〜6Rが暖房運転を行う場合、切換部 16を第 2のフロー状態 (圧縮機 10の冷媒吐出口 10aを配管接続部 20a、冷媒吸込口 10bを熱交換器 12の 一端 12aに接続)に切り換え、流量制御弁 36を閉鎖し、流量制御弁 32P〜32Rの開 度を絞り、流量制御弁 68を全開にする。また、各三方切換弁 22の連結口 24aを閉鎖 し、連結口 24b, 24cを開放する。この状態で、圧縮機 10の運転を開始する。  When all the indoor units 6P to 6R perform heating operation, the switching unit 16 is in the second flow state (the refrigerant discharge port 10a of the compressor 10 is connected to the pipe connection unit 20a, the refrigerant suction port 10b is connected to one end 12a of the heat exchanger 12a. Switch to), close the flow control valve 36, throttle the flow control valves 32P to 32R, and fully open the flow control valve 68. Further, the connection port 24a of each three-way switching valve 22 is closed, and the connection ports 24b and 24c are opened. In this state, the operation of the compressor 10 is started.
[0056] まず、低温低圧の冷媒蒸気が圧縮機 10より圧縮され、高温高圧の冷媒となって吐 出される。圧縮機 10から吐出された高温高圧の冷媒は、切換部 16、逆止弁 60、配 管接続部 20bを通った後、分岐して各三方切換弁 22を通り、熱交換器 28に流入す る。冷媒は、熱交 で空気などを加熱して温度が下がり、続いて、流量制御弁 3 2で減圧され、低温低圧の気液二相状態に変化する。その後、各室内ユニット 6P〜6 Rから出た冷媒は、第 1のバイパス配管 34で合流し、流量制御弁 68、第 2のバイパス 配管 66、および配管接続部 20aを通過する。配管接続部 20aにある冷媒は、切換部 16と逆止弁 54の間にある冷媒より低圧となっているため、自動的に逆止弁 64を通過 し、熱交換器 12に他端 12bから流入する。気液二相状態の冷媒は、熱交換器 12で 空気などを冷却して低温低圧の冷媒蒸気に変化する。その後、冷媒は、切換部 16を 通り圧縮機 10に戻る。 [0056] First, the low-temperature and low-pressure refrigerant vapor is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant. Is issued. The high-temperature and high-pressure refrigerant discharged from the compressor 10 passes through the switching unit 16, the check valve 60, and the piping connection unit 20b, then branches, passes through the three-way switching valve 22, and flows into the heat exchanger 28. The The refrigerant heats air or the like by heat exchange to lower the temperature, and then is depressurized by the flow control valve 32 to change to a low-temperature and low-pressure gas-liquid two-phase state. Thereafter, the refrigerant discharged from each of the indoor units 6P to 6R joins in the first bypass pipe 34, and passes through the flow control valve 68, the second bypass pipe 66, and the pipe connection portion 20a. Since the refrigerant in the pipe connection part 20a is at a lower pressure than the refrigerant between the switching part 16 and the check valve 54, it automatically passes through the check valve 64 and enters the heat exchanger 12 from the other end 12b. Inflow. The refrigerant in the gas-liquid two-phase state is converted into low-temperature and low-pressure refrigerant vapor by cooling air or the like with the heat exchanger 12. Thereafter, the refrigerant returns to the compressor 10 through the switching unit 16.
[0057] 冷房主体運転モード [0057] Cooling main operation mode
室内ユニット 6P, 6Qが冷房運転、室内ユニット 6Rが暖房運転を行う場合、切換部 16を第 1のフロー状態 (圧縮機 10の冷媒吐出口 10aを熱交換器 12の一端 12a、冷 媒吸込口 10bを配管接続部 20aに接続)に切り換え、流量制御弁 36、 68を閉鎖、流 量制御弁 32P, 32Qの開度を絞り、流量制御弁 32Rを全開にする。また、三方切換 弁 22P, 22Qに関し連結口 24bを閉鎖、連結口 24a, 24cを開放する。三方切換弁 2 2Rに関し連結口 24aを閉鎖、連結口 24b, 24cを開放する。この状態で、圧縮機 10 の運転を開始する。  When the indoor units 6P and 6Q perform cooling operation and the indoor unit 6R performs heating operation, the switching unit 16 is in the first flow state (the refrigerant discharge port 10a of the compressor 10 is connected to one end 12a of the heat exchanger 12, and the cooling medium suction port). 10b is connected to pipe connection 20a), flow control valves 36 and 68 are closed, flow control valves 32P and 32Q are closed, and flow control valve 32R is fully opened. In addition, the connection port 24b is closed and the connection ports 24a and 24c are opened for the three-way switching valves 22P and 22Q. Three-way selector valve 2 For 2R, close the connecting port 24a and open the connecting ports 24b and 24c. In this state, operation of the compressor 10 is started.
[0058] まず、低温低圧の冷媒蒸気が圧縮機 10より圧縮され、高温高圧の冷媒となって吐 出される。圧縮機 10から吐出された高温高圧の冷媒は、切換部 16を通り、熱交翻 12で空気などを加熱しながら温度が下がる。熱交 から出た高圧の冷媒は、 逆止弁 56、配管接続部 20b、三方切換弁 22Rを通り、室内ユニット 6Rに流入し、熱 交翻 28で空気などを加熱してさらに温度が下がる。冷媒は、続いて室内ユニット 6 P, 6Qに流入し、流量制御弁 32P, 32Qで絞り膨張 (減圧)され、低温低圧の気液二 相状態になる。この冷媒は、さらに熱交翻 28で空気などを冷却して低温低圧の冷 媒蒸気に変化する。室内ユニット 6P, 6Qから出た冷媒は、三方切換弁 22P, 22Qを 通過後に合流し、配管接続部 20aを通過する。配管接続部 20aにある冷媒は、切換 部 16と逆止弁 54の間にある冷媒より低圧となっているため、自動的に逆止弁 54を通 過することになり、切換部 16を通り圧縮機 10に戻る。 First, the low-temperature and low-pressure refrigerant vapor is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressor 10 passes through the switching unit 16 and decreases in temperature while heating air or the like by heat exchange 12. The high-pressure refrigerant that has flowed out of the heat exchange flows into the indoor unit 6R through the check valve 56, the pipe connection 20b, and the three-way switching valve 22R, and heats the air by heat exchange 28 to further lower the temperature. The refrigerant then flows into the indoor units 6P and 6Q, and is expanded (decompressed) by the flow control valves 32P and 32Q to enter a low-temperature and low-pressure gas-liquid two-phase state. This refrigerant further cools the air and the like by heat exchange 28 and changes to low-temperature and low-pressure refrigerant vapor. The refrigerant from the indoor units 6P and 6Q merges after passing through the three-way switching valves 22P and 22Q, and passes through the pipe connection portion 20a. Since the refrigerant in the pipe connection part 20a is at a lower pressure than the refrigerant between the switching part 16 and the check valve 54, it automatically passes through the check valve 54. Therefore, it returns to the compressor 10 through the switching unit 16.
[0059] なお、実施の形態 2の冷房主体運転モードでは、流量制御弁 36を閉鎖し、すべて の冷媒が暖房を行う室内ユニット 6Rを流れる動作について説明した力 流量の増加 は冷媒音の発生や配管の腐食を発生するため、流量制御弁 36を制御して、冷媒の 一部が第 1のバイパス配管 34を通り、室内ユニット 6Rを迂回するように冷媒を流して ちょい。 [0059] In the cooling main operation mode of the second embodiment, the flow control valve 36 is closed, and the force described for the operation in which all the refrigerant flows through the indoor unit 6R that performs heating is increased. In order to cause corrosion of the pipe, control the flow control valve 36 and flow the refrigerant so that a part of the refrigerant passes through the first bypass pipe 34 and bypasses the indoor unit 6R.
[0060] 暖房主体運転モード  [0060] Heating main operation mode
室内ユニット 6P, 6Qが暖房運転、室内ユニット 6Rが冷房運転を行う場合、切換部 16を第 2のフロー状態 (圧縮機 10の冷媒吐出口 10aを配管接続部 20a、冷媒吸込 口 10bを熱交換器 12の一端 12aに接続)に切り換え、流量制御弁 36を閉鎖し、流量 制御弁 32P, 32Qを全開にし、流量制御弁 32R、 68の開度を絞る。また、三方切換 弁 22P, 22Qに関し連結口 24aを閉鎖、連結口 24b, 24cを開放する。三方切換弁 2 2Rに関し連結口 24bを閉鎖、連結口 24a, 24cを開放する。この状態で、圧縮機 10 の運転を開始する。  When the indoor units 6P and 6Q perform heating operation and the indoor unit 6R performs cooling operation, the switching unit 16 is in the second flow state (the refrigerant discharge port 10a of the compressor 10 is connected to the pipe connection unit 20a, and the refrigerant suction port 10b is heat-exchanged. The flow control valve 36 is closed, the flow control valves 32P and 32Q are fully opened, and the flow control valves 32R and 68 are opened. Further, the connection port 24a is closed and the connection ports 24b and 24c are opened for the three-way switching valves 22P and 22Q. Three-way selector valve 2 For 2R, close connection port 24b and open connection ports 24a and 24c. In this state, operation of the compressor 10 is started.
[0061] まず、低温低圧の冷媒蒸気が圧縮機 10より圧縮され、高温高圧の冷媒となって吐 出される。圧縮機 10から吐出された高温高圧の冷媒は、切換部 16、逆止弁 60、配 管接続部 20bを通った後、分岐して三方切換弁 22P, 22Qを通り、室内ユニット 6P, 6Qの熱交翻28に流入する。冷媒は、熱交翻28で空気などを加熱して温度が 下がる。室内ユニット 6P, 6Qの熱交^^ 28を通過した冷媒は、全開の流量制御弁 3 2P, 32Qを通った後、一部は室内ユニット 6R、残りはバイパス配管 34を通る。  First, the low-temperature and low-pressure refrigerant vapor is compressed by the compressor 10 and discharged as a high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressor 10 passes through the switching unit 16, the check valve 60, and the piping connection unit 20b, then branches and passes through the three-way switching valves 22P and 22Q, and passes through the indoor units 6P and 6Q. It flows into heat exchange 28. The refrigerant heats air or the like by heat exchange 28 and decreases its temperature. The refrigerant that has passed through the heat exchangers 28 of the indoor units 6P and 6Q passes through the fully-open flow control valves 32P and 32Q, and then partially passes through the indoor unit 6R and the rest through the bypass pipe 34.
[0062] 室内ユニット 6Rに流入した冷媒は、流量制御弁 32Rで絞り膨張 (減圧)され、低温 低圧の気液二相の状態に変化する。この冷媒は、続いて室内ユニット 6Rの熱交換 器 28で空気などを冷却し一部または全部が蒸発し、三方切換弁 22Rに流入する。  [0062] The refrigerant that has flowed into the indoor unit 6R is expanded (depressurized) by the flow control valve 32R, and changes to a low-temperature low-pressure gas-liquid two-phase state. Subsequently, the refrigerant cools air or the like in the heat exchanger 28 of the indoor unit 6R, evaporates part or all of it, and flows into the three-way switching valve 22R.
[0063] 一方、室内ユニット 6Rに流入しなかった残りの冷媒は、バイパス配管 34力もバイパ ス配管 66に流入し、流量制御弁 68により絞り膨張 (減圧)され、低温低圧の気液二 相の状態になる。流量制御弁 68を出た冷媒は、(バイパス配管 66の配管 18aとの接 続端部で)三方切換弁 22Rを出た冷媒と合流し、気液二相状態の冷媒となり、室外 ユニット 4の接続端部 20aを通過する。配管接続部 20aにある冷媒は、切換部 16と逆 止弁 54の間にある冷媒より低圧となっているため、自動的に逆止弁 64を通過し、熱 交換器 12に他端 12bから流入する。気液二相状態の冷媒は、熱交換器 12で空気な どを冷却して低温低圧の冷媒蒸気に変化する。その後、冷媒は、切換部 16を通り圧 縮機 10に戻る。 [0063] On the other hand, the remaining refrigerant that has not flowed into the indoor unit 6R also flows into the bypass pipe 66 with the bypass pipe 34 force, and is throttled and expanded (decompressed) by the flow control valve 68 to generate a low-temperature and low-pressure gas-liquid two-phase. It becomes a state. The refrigerant that exits the flow control valve 68 merges with the refrigerant that exits the three-way selector valve 22R (at the end of the bypass pipe 66 connected to the pipe 18a) to become a refrigerant in a gas-liquid two-phase state. Pass through connection end 20a. The refrigerant in the pipe connection part 20a is opposite to the switching part 16. Since the pressure is lower than that of the refrigerant between the check valves 54, the refrigerant automatically passes through the check valve 64 and flows into the heat exchanger 12 from the other end 12 b. The refrigerant in the gas-liquid two-phase state is converted into low-temperature and low-pressure refrigerant vapor by cooling air or the like with the heat exchanger 12. Thereafter, the refrigerant passes through the switching unit 16 and returns to the compressor 10.
[0064] 本実施形態によれば、実施の形態 1の効果にカ卩えて、室外ユニット 4Aと室内ュ-ッ ト 6P〜6Rを接続する中継部 8Aの 2つのユニット間配管のうち一方の配管 18bに高 圧の冷媒のみ、他方の配管 18aに低圧の冷媒のみが流れるために、配管 18aの肉 厚を低減できる。  [0064] According to the present embodiment, in consideration of the effects of the first embodiment, one of the two inter-unit piping of the relay unit 8A that connects the outdoor unit 4A and the indoor units 6P to 6R. Since only the high-pressure refrigerant flows through 18b and only the low-pressure refrigerant flows through the other pipe 18a, the thickness of the pipe 18a can be reduced.
[0065] 本実施の形態 2では、 3方切換弁を用いた形態について説明した力 図 12に示す ように一対 (2台)の二方切換弁 22, 23を設けてもよい。すなわち、一方の二方切換 弁 22は、一端が配管 18aおよび第 2のバイパス配管 66に接続され、他端が各室内 ユニット 6P〜6Rに接続されている。他方の二方切換弁 23は、一端が配管 18bに接 続され、他端が各室内ユニット 6P〜6Rに接続されている。こうして、実施の形態 2と 同様、配管 18a, 18b (および二方切換弁 22, 23)に流れる冷媒の方向を運転モー ドによらず常に一定方向になるようにすることができる。  [0065] In the second embodiment, a pair of (two) two-way switching valves 22, 23 may be provided as shown in FIG. That is, one two-way switching valve 22 has one end connected to the pipe 18a and the second bypass pipe 66, and the other end connected to each of the indoor units 6P to 6R. The other two-way switching valve 23 has one end connected to the pipe 18b and the other end connected to each of the indoor units 6P to 6R. Thus, as in the second embodiment, the direction of the refrigerant flowing through the pipes 18a and 18b (and the two-way switching valves 22 and 23) can always be a constant direction regardless of the operation mode.
[0066] 以上、本発明の具体的実施の形態について説明した力 これらに限定せず、本発 明の範疇および精神を逸脱することなぐさまざまに変形または変更可能である。例 えば、各室内ユニット 6P〜6Rに対応して設けられ、熱交換器 28の端部 28aを配管 1 8aまたは配管 18bに選択的に接続するための切換部は、三方切換弁 22P〜22R以 外で構成してもよい。  [0066] The power described in the specific embodiments of the present invention is not limited to these, and various modifications or changes can be made without departing from the scope and spirit of the present invention. For example, the switching unit provided corresponding to each indoor unit 6P to 6R and selectively connecting the end 28a of the heat exchanger 28 to the pipe 18a or the pipe 18b is a three-way switching valve 22P to 22R or more. You may comprise outside.
[0067] また、実施の形態 2において、運転モードによらずに冷媒が配管接続部 20bを介し て室外ユニット 4Aから中継部 8Aに流れ、配管接続部 20aを介して中継部 8Aから室 外ユニット 4Aに流れるようにするための流路切換部 52は、図の構成に限定されない 。すなわち、流路切換部として、切換部 16により圧縮機 10の冷媒吐出口 10aが熱交 換器 12の一端 12aに接続し且つ冷媒吸込口 10bが配管接続部 20aに接続された場 合に (第 1のフロー状態)、熱交換器 12の他端 12bから出た冷媒に関し配管接続部 2 Oaへの流通を禁止し且つ配管接続部 20bへの流通を行うとともに、配管接続部 20a 力も室外ユニット 4Aに流入した冷媒に関し熱交換器 12の他端 12bへの流通を禁止 し且つ圧縮機の冷媒吸込口への流通を行う。流路切換部はさらに、切換部 16により 圧縮機 10の冷媒吐出口 10aが配管接続部 20aに接続し且つ冷媒吸込口 10bが熱 交 の一端 12aに接続された場合に (第 2のフロー状態)、圧縮機 10から吐出 された冷媒に関し配管接続部 20aへの流通を禁止し且つ配管接続部 20bへの流通 を行うとともに、配管接続部 20aから室外ユニット 4Aに流入した冷媒に関し圧縮機の 冷媒吐出口への流通を禁止し且つ熱交換器 12の他端 12bへの流通を行う構成は 本発明の範囲内に含まれる。 [0067] Further, in the second embodiment, the refrigerant flows from the outdoor unit 4A to the relay unit 8A via the pipe connection part 20b regardless of the operation mode, and from the relay part 8A to the outdoor unit via the pipe connection part 20a. The flow path switching unit 52 for allowing the flow to 4A is not limited to the configuration shown in the figure. That is, when the refrigerant discharge port 10a of the compressor 10 is connected to one end 12a of the heat exchanger 12 and the refrigerant suction port 10b is connected to the pipe connection portion 20a as a flow path switching unit ( In the first flow state), the refrigerant flowing out from the other end 12b of the heat exchanger 12 is prohibited from flowing to the pipe connecting part 2 Oa and to the pipe connecting part 20b. Prohibit distribution of refrigerant flowing into 4A to the other end 12b of the heat exchanger 12 And it distribute | circulates to the refrigerant | coolant suction inlet of a compressor. The flow path switching unit is further connected when the switching unit 16 connects the refrigerant discharge port 10a of the compressor 10 to the pipe connection unit 20a and the refrigerant suction port 10b to one end 12a of the heat exchanger (second flow state). ), The refrigerant discharged from the compressor 10 is prohibited from flowing to the pipe connecting part 20a and is distributed to the pipe connecting part 20b, and the refrigerant flowing into the outdoor unit 4A from the pipe connecting part 20a is refrigerant of the compressor. A configuration that prohibits the flow to the discharge port and the flow to the other end 12b of the heat exchanger 12 is included within the scope of the present invention.
[0068] さらに、上記実施形態では冷媒として二酸ィ匕炭素単体を用いたが、二酸化炭素を 主成分とする冷媒を用いてもょ ヽ。  [0068] Furthermore, in the above-described embodiment, a simple substance of carbon dioxide and carbon is used as the refrigerant, but a refrigerant mainly containing carbon dioxide may be used.
[0069] 本発明において、室内ユニットおよび室外ユニットの「ユニット」は、必ずしも全ての 構成要素が同一のハウジング内またはハウジング外壁に設けられることを意味するも のではない。例えば、室内ユニット 4の流量制御弁 32を室内熱交換器 28が収容され たハウジングとは別の箇所に配置しても、力かる構成は本発明の範囲内に含まれる。 また、室外ユニット中に室外熱交換器や圧縮機からなるセットを複数設け、各セットか ら流出する冷媒を合流させて一方のユニット間配管に流すとともに、他方のユニット 間配管からの冷媒を分岐して各セットに流入させるようにしてもよ!、。  In the present invention, the “unit” of the indoor unit and the outdoor unit does not necessarily mean that all the components are provided in the same housing or the outer wall of the housing. For example, even if the flow control valve 32 of the indoor unit 4 is disposed at a location different from the housing in which the indoor heat exchanger 28 is accommodated, a configuration that works is included within the scope of the present invention. In addition, multiple sets of outdoor heat exchangers and compressors are provided in the outdoor unit, and the refrigerant flowing out from each set is merged to flow through one inter-unit piping, and the refrigerant from the other inter-unit piping is branched. Then you can let it flow into each set!

Claims

請求の範囲 The scope of the claims
[1] 空気調和装置であって、  [1] An air conditioner,
第 1および第 2の接続端部の間を流体連通するように配設された室外熱交換器、二 酸ィ匕炭素または二酸ィ匕炭素を主成分とする冷媒を圧縮して吐出する圧縮機、および 室外熱交^^に流れる冷媒の方向を切り換える第 1の切換部を有する室外ユニットと 第 1および第 2の配管接続部の間を流体連通するように配設された室内熱交換器 および室内熱交換器に流れる冷媒量を制御するための第 1の流量制御部を有する 複数の室内ユニットと、  An outdoor heat exchanger disposed so as to be in fluid communication between the first and second connection ends, compression that compresses and discharges the refrigerant mainly composed of diacid-carbon or diacid-carbon. And an indoor heat exchanger arranged to fluidly communicate between the outdoor unit having a first switching unit that switches the direction of the refrigerant flowing in the outdoor heat exchanger and the first and second pipe connection units And a plurality of indoor units having a first flow rate control unit for controlling the amount of refrigerant flowing through the indoor heat exchanger,
室内ユニットのそれぞれの第 1の配管接続部を室外ユニットの第 1および第 2の接 続端部のいずれか一方に選択的に接続するための複数の第 2の切換部、室内ュ- ットのそれぞれの第 2の配管接続部および室外ユニットの第 2の接続端部の間を接続 する第 1のノ ィパス配管、および第 1のバイパス配管に介在する第 2の流量制御部を 有する中継部とを備えたことを特徴とする空気調和装置。  A plurality of second switching sections for selectively connecting each first pipe connection section of the indoor unit to one of the first and second connection end sections of the outdoor unit; Each of the second pipe connection portions of the outdoor unit and the second connection end portion of the outdoor unit, and a relay portion having a second flow rate control portion interposed in the first bypass piping. And an air conditioner.
[2] 請求項 1に記載の空気調和装置であって、 [2] The air conditioner according to claim 1,
圧縮機は、冷媒吸込口および冷媒吐出口を有し、  The compressor has a refrigerant suction port and a refrigerant discharge port,
第 1の切換部は、空気調和装置の運転モードに応じて、冷媒吐出口を室外熱交換 器の一端に接続し、かつ冷媒吸込口を第 1の接続端部に接続する第 1の状態と、冷 媒吐出口を第 1の接続端部に接続し、かつ冷媒吸込口を室外熱交換器の上記一端 に接続する第 2の状態の間で切り換えることを特徴とする空気調和装置。  The first switching unit has a first state in which the refrigerant discharge port is connected to one end of the outdoor heat exchanger and the refrigerant suction port is connected to the first connection end according to the operation mode of the air conditioner. An air conditioner that switches between a second state in which the refrigerant discharge port is connected to the first connection end and the refrigerant suction port is connected to the one end of the outdoor heat exchanger.
[3] 請求項 2に記載の空気調和装置であって、 [3] The air conditioner according to claim 2,
冷媒は、第 1の切換部が第 1および第 2の状態にあるとき、超臨界状態で凝縮する ことなぐそれぞれ室外熱交^^および室内熱交 内の空気を加熱することを特 徴とする空気調和装置。  The refrigerant is characterized in that, when the first switching unit is in the first and second states, it heats the outdoor heat exchange and the air in the indoor heat exchange without condensing in the supercritical state, respectively. Air conditioner.
[4] 請求項 1に記載の空気調和装置であって、 [4] The air conditioner according to claim 1,
第 1の切換部が第 1の状態にあるとき、室外熱交換器からの冷媒を第 2の接続端部 へ案内し、第 1の接続端部からの冷媒を圧縮機の冷媒吸込口へ案内し、第 1の切換 部が第 2の状態にあるとき、圧縮機の冷媒吐出口からの冷媒を第 2の接続端部へ案 内し、第 1の接続端部力 の冷媒を室外熱交^^へ案内する流路切換部と、 室外ユニットの第 1の接続端部および第 1のバイパス配管の間を流体連通するよう に配設された第 2のノ ィパス配管と、 When the first switching unit is in the first state, the refrigerant from the outdoor heat exchanger is guided to the second connection end, and the refrigerant from the first connection end is guided to the refrigerant suction port of the compressor. When the first switching unit is in the second state, the refrigerant from the refrigerant discharge port of the compressor is proposed to the second connection end. The flow path switching unit that guides the refrigerant having the first connection end force to the outdoor heat exchanger ^ and the first connection end of the outdoor unit and the first bypass pipe are in fluid communication. A second noisy pipe installed;
第 2のバイパス配管に介在する第 3の流量制御部とをさらに備えたことを特徴とする 空気調和装置。  An air conditioner further comprising: a third flow rate control unit interposed in the second bypass pipe.
[5] 請求項 4に記載の空気調和装置であって、 [5] The air conditioner according to claim 4,
流路切換部は、第 1の接続端部および圧縮機の間の第 1の流路に介在する第 1の 逆止弁と、第 2の接続端部および室外熱交換器の間の第 2の流路に介在する第 2の 逆止弁と、第 1の接続端部および室外熱交換器の間の第 3の流路に介在する第 3の 逆止弁と、第 2の接続端部および圧縮機の間の第 4の流路に介在する第 4の逆止弁 とを有することを特徴とする空気調和装置。  The flow path switching unit includes a first check valve interposed in the first flow path between the first connection end and the compressor, and a second connection between the second connection end and the outdoor heat exchanger. A second check valve interposed in the first flow path, a third check valve interposed in the third flow path between the first connection end and the outdoor heat exchanger, and a second connection end And a fourth check valve interposed in a fourth flow path between the compressors.
[6] 請求項 4に記載の空気調和装置であって、 [6] The air conditioner according to claim 4,
第 2の切換部は、第 1および第 2のユニット間配管を介してそれぞれ室外ユニットの 第 1および第 2の接続端部に接続され、  The second switching unit is connected to the first and second connection ends of the outdoor unit via the first and second inter-unit piping, respectively.
第 1のユニット間配管が第 2のユニット間配管より薄い肉厚を有する配管力もなるこ とを特徴とする空気調和装置。  An air conditioner characterized in that the first inter-unit piping also has a piping force that is thinner than the second inter-unit piping.
[7] 請求項 1に記載の空気調和装置であって、 [7] The air conditioner according to claim 1,
第 1の切換部および第 2の切換部のそれぞれは、互いに独立して作動可能である ことを特徴とする空気調和装置。  Each of the first switching unit and the second switching unit can be operated independently of each other.
[8] 請求項 1に記載の空気調和装置であって、 [8] The air conditioner according to claim 1,
第 1の切換部は、四方切換弁力 なることを特徴とする空気調和装置。  The air conditioner characterized in that the first switching unit is a four-way switching valve force.
[9] 請求項 1に記載の空気調和装置であって、 [9] The air conditioner according to claim 1,
第 2の切換部のそれぞれは、室外ユニットの第 1および第 2の接続端部ならびに室 内ユニットの第 1の配管接続部に接続された三方切換弁力 なることを特徴とする空 気調和装置。  Each of the second switching portions is a three-way switching valve force connected to the first and second connection ends of the outdoor unit and the first piping connection portion of the indoor unit. .
[10] 請求項 1に記載の空気調和装置であって、  [10] The air conditioner according to claim 1,
第 2の切換部のそれぞれは、室外ユニットの第 1の接続端部および室内ユニットの 第 1の配管接続部に接続された第 1の二方切換弁と、室外ユニットの第 2の接続端部 および室内ユニットの第 1の配管接続部に接続された第 2の二方切換弁とからなるこ とを特徴とする空気調和装置。 Each of the second switching units includes a first two-way switching valve connected to the first connection end of the outdoor unit and the first pipe connection of the indoor unit, and a second connection end of the outdoor unit. And an air conditioner comprising: a second two-way switching valve connected to the first pipe connection of the indoor unit.
PCT/JP2005/020109 2004-11-25 2005-11-01 Air conditioner WO2006057141A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/719,775 US20090145151A1 (en) 2004-11-25 2005-11-01 Air conditioner
JP2006547695A JP4752765B2 (en) 2004-11-25 2005-11-01 Air conditioner
EP05805432.1A EP1816416B1 (en) 2004-11-25 2005-11-01 Air conditioner
CN2005800404945A CN101065623B (en) 2004-11-25 2005-11-01 Air conditioner device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-340889 2004-11-25
JP2004340889 2004-11-25

Publications (1)

Publication Number Publication Date
WO2006057141A1 true WO2006057141A1 (en) 2006-06-01

Family

ID=36497883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020109 WO2006057141A1 (en) 2004-11-25 2005-11-01 Air conditioner

Country Status (5)

Country Link
US (1) US20090145151A1 (en)
EP (1) EP1816416B1 (en)
JP (1) JP4752765B2 (en)
CN (1) CN101065623B (en)
WO (1) WO2006057141A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052882A (en) * 2008-12-11 2009-03-12 Daikin Ind Ltd Air conditioning system
JP2009277080A (en) * 2008-05-15 2009-11-26 Fuji Electric Retail Systems Co Ltd Vending machine
WO2011048695A1 (en) 2009-10-23 2011-04-28 三菱電機株式会社 Air conditioning device
WO2011052049A1 (en) * 2009-10-28 2011-05-05 三菱電機株式会社 Air conditioning device
CN102597656A (en) * 2009-10-29 2012-07-18 三菱电机株式会社 Air conditioning device
CN102713469B (en) * 2009-11-30 2014-11-05 三菱电机株式会社 Air-conditioning device
US9364944B2 (en) 2009-11-02 2016-06-14 Makita Corporation Power tool

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103470A1 (en) * 2008-02-21 2009-08-27 Carrier Corporation Refrigerating system
JPWO2010050006A1 (en) * 2008-10-29 2012-03-29 三菱電機株式会社 Air conditioner
ES2810011T3 (en) * 2009-10-19 2021-03-08 Mitsubishi Electric Corp Heat medium conversion machine and air conditioning system
CN102597660B (en) * 2009-10-28 2015-05-06 三菱电机株式会社 Air conditioning device
US8844301B2 (en) * 2010-02-10 2014-09-30 Mitsubishi Electric Corporation Air-conditioning apparatus
CN103080668B (en) * 2010-09-10 2015-05-06 三菱电机株式会社 Air-conditioning device
WO2012066608A1 (en) * 2010-11-19 2012-05-24 三菱電機株式会社 Air conditioner
WO2012104893A1 (en) * 2011-01-31 2012-08-09 三菱電機株式会社 Air-conditioning device
GB2504036B (en) * 2011-05-23 2018-02-21 Mitsubishi Electric Corp Air-conditioning apparatus
US9958171B2 (en) * 2012-03-27 2018-05-01 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6003635B2 (en) * 2012-12-28 2016-10-05 ダイキン工業株式会社 AIR CONDITIONER AND AIR CONDITIONER CONSTRUCTION METHOD
KR20150012498A (en) * 2013-07-25 2015-02-04 삼성전자주식회사 Heat pump and flow path switching apparatus
CN104713264B (en) * 2013-12-11 2017-05-03 重庆美的通用制冷设备有限公司 Air source heat pump set
CN105737333B (en) * 2016-02-22 2018-09-07 广东美的暖通设备有限公司 Multi-line system and its mode switch control method
CN111033151A (en) * 2017-09-05 2020-04-17 大金工业株式会社 Air conditioning system or refrigerant branching unit
KR20200114031A (en) * 2019-03-27 2020-10-07 엘지전자 주식회사 An air conditioning apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217759A (en) * 1990-12-18 1992-08-07 Matsushita Refrig Co Ltd Multiroom type air-conditioner
JP2522371B2 (en) * 1988-06-07 1996-08-07 三菱電機株式会社 Air conditioner

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920008504B1 (en) * 1988-10-17 1992-09-30 미쓰비시전기주식회사 Air conditioner
JPH0743187B2 (en) * 1988-10-28 1995-05-15 三菱電機株式会社 Air conditioner
JPH0754217B2 (en) * 1989-10-06 1995-06-07 三菱電機株式会社 Air conditioner
AU636215B2 (en) * 1990-04-23 1993-04-22 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
JPH05302765A (en) * 1992-04-27 1993-11-16 Matsushita Refrig Co Ltd Multi-chamber type air conditioner
JP2002048421A (en) * 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd Refrigerating cycle system
NO20014258D0 (en) * 2001-09-03 2001-09-03 Sinvent As Cooling and heating system
KR100437804B1 (en) * 2002-06-12 2004-06-30 엘지전자 주식회사 Multi-type air conditioner for cooling/heating the same time and method for controlling the same
JP2004218964A (en) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd Refrigerating plant
JP2004226018A (en) * 2003-01-24 2004-08-12 Sanyo Electric Co Ltd Refrigeration unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522371B2 (en) * 1988-06-07 1996-08-07 三菱電機株式会社 Air conditioner
JPH04217759A (en) * 1990-12-18 1992-08-07 Matsushita Refrig Co Ltd Multiroom type air-conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1816416A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277080A (en) * 2008-05-15 2009-11-26 Fuji Electric Retail Systems Co Ltd Vending machine
JP2009052882A (en) * 2008-12-11 2009-03-12 Daikin Ind Ltd Air conditioning system
WO2011048695A1 (en) 2009-10-23 2011-04-28 三菱電機株式会社 Air conditioning device
US9476618B2 (en) 2009-10-23 2016-10-25 Mitsubishi Electric Corporation Air conditioning apparatus
JP5312606B2 (en) * 2009-10-28 2013-10-09 三菱電機株式会社 Air conditioner
CN102597661A (en) * 2009-10-28 2012-07-18 三菱电机株式会社 Air conditioning device
CN102597661B (en) * 2009-10-28 2014-10-01 三菱电机株式会社 Air conditioning device
US9303904B2 (en) 2009-10-28 2016-04-05 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2011052049A1 (en) * 2009-10-28 2011-05-05 三菱電機株式会社 Air conditioning device
CN102597656A (en) * 2009-10-29 2012-07-18 三菱电机株式会社 Air conditioning device
CN102597656B (en) * 2009-10-29 2014-10-15 三菱电机株式会社 Air conditioning device
US9364944B2 (en) 2009-11-02 2016-06-14 Makita Corporation Power tool
CN102713469B (en) * 2009-11-30 2014-11-05 三菱电机株式会社 Air-conditioning device

Also Published As

Publication number Publication date
CN101065623B (en) 2013-05-22
JPWO2006057141A1 (en) 2008-06-05
US20090145151A1 (en) 2009-06-11
JP4752765B2 (en) 2011-08-17
EP1816416B1 (en) 2019-06-19
CN101065623A (en) 2007-10-31
EP1816416A1 (en) 2007-08-08
EP1816416A4 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4752765B2 (en) Air conditioner
EP1980802B1 (en) Refrigeration system
WO2014020651A1 (en) Air-conditioning device
WO2008032645A1 (en) Refrigeration device
JP2008513725A (en) Heat pump with reheat and economizer functions
US7257964B2 (en) Air conditioner
JP4375171B2 (en) Refrigeration equipment
WO2013171783A1 (en) Multi-room air conditioner
WO2007020885A1 (en) Refrigerating apparatus
JPWO2019053876A1 (en) Air conditioner
WO2018078810A1 (en) Air conditioner
JP4832954B2 (en) Air conditioner
JP2004324947A (en) Air conditioning system
JPH10220893A (en) Heat pump device
JP2001241797A (en) Refrigerating cycle
JP4037863B2 (en) Air conditioner
JPH10176869A (en) Refrigeration cycle device
JP2616523B2 (en) Air conditioner
JP2010014308A (en) Refrigerating device
WO2012127834A1 (en) Refrigeration cycle device
JP7423819B2 (en) Refrigeration cycle equipment
JP4708371B2 (en) Air conditioner
US11397015B2 (en) Air conditioning apparatus
JP2007163011A (en) Refrigeration unit
JPH04347466A (en) Air conditioner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547695

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005805432

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580040494.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11719775

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005805432

Country of ref document: EP