WO2007020885A1 - Refrigerating apparatus - Google Patents

Refrigerating apparatus Download PDF

Info

Publication number
WO2007020885A1
WO2007020885A1 PCT/JP2006/315914 JP2006315914W WO2007020885A1 WO 2007020885 A1 WO2007020885 A1 WO 2007020885A1 JP 2006315914 W JP2006315914 W JP 2006315914W WO 2007020885 A1 WO2007020885 A1 WO 2007020885A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pipe
refrigeration
receiver
liquid
Prior art date
Application number
PCT/JP2006/315914
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Takegami
Azuma Kondo
Kenji Tanimoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US11/988,232 priority Critical patent/US20090077985A1/en
Priority to CN2006800298921A priority patent/CN101243294B/en
Priority to AU2006280834A priority patent/AU2006280834A1/en
Priority to EP06796352A priority patent/EP1916487A1/en
Publication of WO2007020885A1 publication Critical patent/WO2007020885A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/07Exceeding a certain pressure value in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a refrigeration apparatus, and in particular, a refrigeration apparatus having a plurality of use side heat exchanges for refrigeration / freezing and air conditioning, and capable of performing 100% heat recovery operation between each use side heat exchange. Is related to the position.
  • This refrigeration apparatus that performs a refrigeration cycle is known.
  • This refrigeration apparatus is widely used as an air conditioner for cooling and heating a room and a refrigerator for a showcase for refrigeration / freezing food.
  • Some of these refrigeration apparatuses perform both air conditioning and refrigeration / freezing (see, for example, Patent Document 1).
  • This refrigeration unit is installed in a convenience store, for example, and it is possible to cool the air conditioner and the showcase in the store by installing only one refrigeration unit.
  • the refrigeration apparatus is provided in a use side unit such as a refrigeration / refrigeration showcase or an air conditioning indoor unit! /
  • a use side heat exchangers refrigeration / refrigeration heat exchangers
  • heat exchange for air conditioning are parallel to the heat source side heat exchange (outdoor heat exchanger) of the heat source side unit (outdoor unit) installed outdoors, respectively, and the liquid side communication pipe and gas side communication pipe Connected by.
  • the refrigerant circuit has two systems of the first system side circuit for refrigeration and freezing and the second system side circuit for air conditioning, it is usually connected to each of the liquid line and the gas line. Two are used. On the other hand, there is also one in which two liquid lines share one liquid side connecting pipe to reduce the number of connecting pipes (see Patent Document 2).
  • the refrigerant circuit of this apparatus is configured as shown in FIG.
  • (101) is an outdoor unit
  • (102) is an indoor unit
  • (103) is a refrigerated showcase (refrigerated unit)
  • (104) is a refrigerated showcase (refrigerated unit).
  • the outdoor unit (101) is provided with a compression mechanism (105, 106), an outdoor heat exchanger (107), an outdoor expansion valve (108), and a receiver (109)
  • the indoor unit (102) has an indoor heat exchanger (air conditioner).
  • Heat exchange (110) and indoor An expansion valve (111) is provided.
  • the refrigeration showcase (103) is provided with a refrigeration heat exchanger (112) and a refrigeration expansion valve (113), and the refrigeration showcase (104) is provided with a refrigeration heat exchanger (114) and a refrigeration expansion valve (113). Expansion valve (115) and booster compressor (116) are provided.
  • the refrigerant circuit (120) of the refrigeration apparatus is configured such that the refrigerant circulates in the negative direction between the outdoor heat exchanger (107) and the refrigeration / refrigeration heat exchanger (112, 114).
  • a first system side circuit for refrigeration and freezing, and a second system side circuit for air conditioning configured so that refrigerant circulates reversibly between the outdoor heat exchange (107) and the indoor heat exchange (110). It has.
  • one liquid side connecting pipe (121) is shared as the liquid line of each system.
  • the outdoor heat exchanger (107) installed outdoors can be used as a heat source to perform indoor air conditioning and cooling of each showcase, and without using the outdoor heat exchanger (107).
  • the refrigerant circuit (120) forms a refrigerant circulation path that condenses in the indoor heat exchanger (110), evaporates in the refrigeration / refrigeration heat exchanger (112, 114), and returns to the compression mechanism (105, 106). Is done. In other words, at this time, the liquid refrigerant condensed in the indoor heat exchanger (110) does not flow from the receiver (109) to the heat source side heat exchanger (107), but instead of the refrigerated heat exchanger (112, 114).
  • the relief valve (117) is provided in the refrigerant passage from the liquid side communication pipe (121) to the receiver (109).
  • This relief knob (117) is connected to the liquid side connecting pipe (12”
  • This valve opens when the refrigerant pressure in 1) rises above a predetermined value, but remains closed until it reaches the predetermined value.
  • the operating pressure of the relief valve (117) is set to a pressure higher than the pressure of the liquid side connecting pipe (121) during the 100% heat recovery operation, so that the liquid refrigerant is received by the receiver (109 ), And the refrigerant flow in the refrigerant circuit (120) is stabilized even at low outside temperatures so that the refrigeration capacity does not decrease.
  • the outdoor heat exchanger (107) is capable of heating the refrigeration cycle where the evaporator serves as an evaporator.
  • the relief valve (117) has a suction pressure of the compressor (106). In order to act, the relief valve (117) opens. During cooling operation, the refrigerant should not flow through the passage with the relief valve (117)! /.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-280749
  • Patent Document 2 JP-A-2005-134103
  • the relief valve may open due to excessively high refrigerant pressure acting on the relief valve. In this case, too, the relief valve may enter the receiver. If the refrigerant flows more than necessary, the ability to cool the interior of each showcase will be reduced due to the lack of refrigerant as described above.
  • the present invention has been made in view of the strong point, and an object of the present invention is to provide a refrigeration system in which a plurality of utilization side heat exchanges are provided, and a plurality of liquid lines share a single liquid side communication pipe.
  • the shortage of refrigerant in the usage-side unit due to an increase in the amount of refrigerant in the receiver is prevented.
  • the first invention includes a heat source side unit (10) having a compression mechanism (11D, 11E), a heat source side heat exchanger (15), and a receiver (17), and a first use side heat exchanger (31 , 41), a first user-side unit (30, 40) having a second user-side heat exchanger (21), a second user-side unit (20), and each unit (10, 20, 30, 40) is connected to the gas side connecting pipe (51, 52) and the liquid side connecting pipe (53, 54, 55) to form the refrigerant circuit (50).
  • a first gas side communication pipe (51) connected to the heat source side unit (10) and the first usage side unit (30, 40), the heat source side unit (10) and the second usage side.
  • the refrigerant sent out from the compression mechanism (11D, 11E) flows through the second usage side unit (20), the first usage side unit (30, 40), and the compression mechanism.
  • a refrigerant circulation path returning to (11D, 11E) can be formed, and a refrigerant return mechanism (5) for returning the liquid refrigerant in the receiver (17) to the circulation path is provided.
  • the refrigerant return mechanism (5) introduces the high-pressure refrigerant discharged from the compression mechanism (11D, 11E) into the receiver (17).
  • An introduction pipe (71) is provided, and the liquid refrigerant in the receiver (17) is reduced by introducing the high-pressure refrigerant from the introduction pipe (71) into the receiver (17) and pressurizing the receiver (17). It returns to the circulation path through the collecting liquid pipe (53).
  • a third invention is the communication pipe (67) according to the first invention, wherein the refrigerant return mechanism (5) communicates the receiver (17) with the suction side of the compression mechanism (11D, 11E). ), The liquid refrigerant in the receiver (17) is sucked into the compression mechanism (11D, 11E) through the communication pipe (67) and returned to the circulation path.
  • the refrigerant return mechanism (5) includes the heat source side heat exchange.
  • a fifth invention is directed to any one of the first to fourth inventions, from the first use side heat exchanger (31, 41) to the suction side of the compression mechanism (11D, 11E).
  • a sixth aspect of the present invention is directed to any one of the first to fourth aspects of the present invention, wherein the superheat degree detecting means (75, 11) detects the superheat degree of the refrigerant discharged by the compression mechanism (11D, 11E). 76) and the refrigerant return mechanism (5) to return the refrigerant in the receiver (17) to the circulation path when the detected value of the discharge superheat degree detection means (75, 76) exceeds a predetermined value. And a control means (95) for controlling.
  • the seventh invention is the discharge refrigerant temperature detection means (76) for detecting the temperature of the refrigerant discharged by the compression mechanism (11D, 11E) in any one of the first to fourth inventions.
  • Control means (95) for controlling the refrigerant return mechanism (5) to return the refrigerant in the receiver (17) to the circulation path when the detected value of the discharged refrigerant temperature detection means (76) becomes a predetermined value or more. ).
  • the eighth invention includes a heat source side unit (10) having a compression mechanism (11D, 11E), a heat source side heat exchanger (15), and a receiver (17), and a first use side heat exchanger (31 , 41), a first user-side unit (30, 40) having a second user-side heat exchanger (21), a second user-side unit (20), and each unit (10, 20, 30, 40) is connected to the gas side connecting pipe (51, 52) and the liquid side connecting pipe (53, 54, 55) to form the refrigerant circuit (50).
  • a first gas side communication pipe (51) connected to the heat source side unit (10) and the first usage side unit (30, 40), the heat source side unit (10) and the second usage side.
  • the mechanism (12) switches from the first operation mode to the second operation mode, and the liquid refrigerant accumulated in the receiver (17) during the first operation mode passes through the collecting liquid pipe (53). 1 Return to the user unit (30, 40).
  • the refrigerant sent out by the compression mechanism (11D, 11E) flows from the second usage side unit (20) through the first usage side unit (30, 40) to the compression mechanism (11D, 11E).
  • the liquid refrigerant in the receiver (17) can be forcibly returned to the circulation path by the refrigerant return mechanism (5). That is, as described above, there is a case where the refrigerant flows into the receiver (17) even if it tries to prevent the refrigerant from flowing into the receiver (17). In such a case, the refrigerant amount in the circulation path decreases.
  • the liquid refrigerant in the receiver (17) is returned to the circulation path by the refrigerant return mechanism (5).
  • the high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) is introduced into the receiver (71) by the introduction pipe (71). 17).
  • a high-pressure gas refrigerant is introduced into the receiver (17)
  • the internal pressure rises and the liquid refrigerant inside is pushed out.
  • the liquid refrigerant whose receiver (17) force is also pushed out is returned to the circulation path through the collecting liquid pipe (53).
  • the ratio of the gas refrigerant having a low density increases, and the ratio of the liquid refrigerant having a high density decreases.
  • the communication pipe (67) connects the receiver (17) to the suction side of the compression mechanism (11D, 11E).
  • the receiver (17) communicates with the suction side of the compression mechanism (11D, 11E)
  • the liquid refrigerant inside is sucked into the compression mechanism (11D, 11E).
  • the liquid refrigerant in the receiver (17) is forcibly returned to the circulation path, the refrigerant amount in the receiver (17) is decreased, and the refrigerant quantity in the circulation path is increased.
  • the communication mechanism (13) when returning the liquid refrigerant in the receiver (17) to the circulation path, the communication mechanism (13) causes the receiver (17) to be compressed via the heat source side heat exchanger (15).
  • the high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) is communicated with the discharge side of 11D, 11E) and flows into the receiver (17).
  • a high-pressure gas refrigerant flows in the receiver (17)
  • the interior of the receiver (17) is pressurized and the liquid refrigerant is pushed out, as in the second aspect of the invention.
  • the liquid refrigerant pushed out from the receiver (17) is returned to the circulation path through the collecting liquid pipe (53).
  • the amount of refrigerant in the receiver (17) decreases and the amount of refrigerant in the circulation path increases.
  • the high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) is introduced into the receiver (17) through the heat source side heat exchanger (15).
  • the heat source side heat exchange (15) is used as a flow path for introducing the high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) to the receiver (17).
  • the refrigerant return mechanism when the degree of superheat of the refrigerant directed from the first use side heat exchanger (31, 41) to the suction side of the compression mechanism (11D, 11E) becomes equal to or greater than a predetermined value, the refrigerant return mechanism The liquid refrigerant in the receiver (17) is returned to the circulation path by (5).
  • the first usage-side heat exchanger (31, 41) the smaller the refrigerant flow rate, the smaller the region where the gas-liquid two-phase refrigerant flows and the larger the region where the single-phase gas refrigerant flows. 1
  • the degree of superheat of the refrigerant flowing out from the use side heat exchanger (31, 41) increases.
  • the superheat degree of the refrigerant flowing out from the first usage side heat exchanger (31, 41) reflects the refrigerant flow rate of the first usage side heat exchanger (31, 41), so that the suction superheat degree detection means If the detected value of (79, 81) is used, it is determined appropriately whether or not the first usage-side heat exchanger (31, 41) has insufficient power.
  • the liquid refrigerant in the receiver (17) is returned to the circulation path by the refrigerant return mechanism (5). It is doing so.
  • the refrigerant flow rate of the first usage side heat exchanger (31, 41) is small. The higher the degree of superheat of the refrigerant that flows out from the first use side heat exchanger (31, 41) and is sucked into the compression mechanism (11D, 11E).
  • the degree of superheat of the refrigerant discharged from the compression mechanism (11D, 11E) increases.
  • the superheat degree of the refrigerant discharged from the compression mechanism (11D, 11E) reflects the refrigerant flow rate of the first usage side heat exchanger (31, 41), so the discharge superheat degree detecting means (75, 76) If the detected value is used, it is determined appropriately whether or not the refrigerant is deficient in the first use side heat exchange (31, 41).
  • the refrigerant in the receiver (17) is returned to the circulation path by the refrigerant return mechanism (5). I have to.
  • the smaller the refrigerant flow rate in the first usage side heat exchanger (31, 41) the greater the degree of superheat of the refrigerant discharged from the compression mechanism (11D, 11E).
  • the degree of superheat of the refrigerant is large, the temperature becomes high.
  • the temperature of the refrigerant discharged by the compression mechanism (11D, 11E) reflects the refrigerant flow rate of the first usage-side heat exchanger (31, 41), and therefore the discharge refrigerant temperature detection means (76) If the detected value is used, whether or not the refrigerant is insufficient in the first usage-side heat exchanger (31, 41) is appropriately determined.
  • the operation state is switched from the first operation mode to the second operation mode by the mechanism (12).
  • the high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) flows into the receiver (17) and pressurizes the interior thereof.
  • the liquid refrigerant accumulated inside is pushed out.
  • the liquid coolant from which the receiver (17) force is also pushed out is returned to the first usage side unit (30, 40) through the collecting liquid pipe (53).
  • the liquid refrigerant in the receiver (17) is removed by the refrigerant return mechanism (5) in the operation state in which the circulation path is formed in which the refrigerant amount decreases when the refrigerant flows into the receiver (17). It is possible to return to the circulation path.
  • the amount of refrigerant flowing through each use side unit (20, 30, 40) increases. Therefore, before the refrigerant runs short in each user side unit (20, 30, 40), the liquid refrigerant in the receiver (17) is returned to the circulation path by the refrigerant return mechanism (5).
  • (30, 40) can prevent the shortage of cooling medium, and the temperature adjustment capability of each user side unit (20, 30, 40) is reduced. Can be avoided.
  • the compression mechanism (11D, 11E) sucks the liquid refrigerant in the receiver (17).
  • the suction superheat degree of the compression mechanism (11D, 11 E) is lowered. Accordingly, the refrigerant can be returned to the circulation path to eliminate the refrigerant shortage, and at the same time, the suction superheat degree can be suppressed and the input of the compression mechanism (11D, 11E) can be reduced.
  • the refrigerant circuit (50) has a refrigeration cycle as a flow path for introducing the high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) into the receiver (17).
  • Oh! / Utilizes heat source side heat exchange (15) that functions as an evaporator or condenser. That is, a part of the configuration of the refrigeration apparatus (1) is used as the refrigerant return mechanism (5). Therefore, the configuration of the refrigeration apparatus (1) having the refrigerant return mechanism (5) can be simplified.
  • the refrigerant return mechanism (5) is controlled based on the detection value of the suction superheat detection means (79, 81). Yes. Therefore, the liquid refrigerant in the receiver (17) can be returned to the circulation path at an appropriate timing before the first usage-side heat exchanger (31, 41) runs short of the refrigerant. A decrease in cooling capacity at (31, 41) can be reliably avoided.
  • whether or not the refrigerant is insufficient in the first usage-side heat exchanger (31, 41) is determined based on the degree of superheat power of the refrigerant discharged by the compression mechanism (11D, 11E). Focusing on the possibility, the refrigerant return mechanism (5) is controlled based on the detection value of the discharge superheat degree detection means (75, 76). Accordingly, the liquid refrigerant in the receiver (17) can be returned to the circulation path at an appropriate timing before the first usage-side heat exchanger (31, 41) runs short of the refrigerant. A decrease in cooling capacity at (31, 41) can be reliably avoided.
  • the seventh aspect of the invention it is possible to determine whether or not the first use-side heat exchanger (31, 41) has a shortage of refrigerant and whether the temperature force of the refrigerant discharged by the compression mechanism (11D, 11E) can be determined.
  • the refrigerant return mechanism (5) is controlled based on the detected value of the discharged refrigerant temperature detecting means (76). Therefore, before the refrigerant runs out in the first usage side heat exchanger (31, 41), an appropriate Since the liquid refrigerant in the receiver (17) can be returned to the circulation path by the ming, it is possible to reliably avoid the cooling capacity reduction in the first usage side heat exchange (31, 41).
  • the liquid refrigerant that has accumulated in the receiver (17) during the first operation mode is used as the first usage-side unit. It is possible to return to (3 0, 40). Therefore, according to the eighth aspect of the present invention, it is possible to prevent a shortage of the amount of refrigerant circulating between each use side unit (20, 30, 40) and the compression mechanism (11D, 11E) in the first operation mode. Therefore, it is possible to avoid a decrease in temperature adjustment capability in each of the use side units (20, 30, 40).
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a refrigerant circuit diagram showing the operation of the cooling operation in the first embodiment.
  • FIG. 3 is a refrigerant circuit diagram illustrating the operation of the refrigeration operation in the first embodiment.
  • FIG. 4 is a refrigerant circuit diagram showing the operation of the first cooling / freezing operation in the first embodiment.
  • FIG. 5 is a refrigerant circuit diagram showing the operation of the second cooling / freezing operation in the first embodiment.
  • FIG. 6 is a refrigerant circuit diagram showing an operation of heating operation in the first embodiment.
  • Fig. 7 is a refrigerant circuit diagram showing an operation in a state where the electromagnetic valve force S of the hot gas bypass pipe in the first heating / refrigeration operation in the first embodiment is closed.
  • FIG. 8 is a refrigerant circuit diagram illustrating an operation in which the solenoid valve of the hot gas bypass pipe in the first heating / refrigeration operation in the first embodiment is in an open state.
  • FIG. 9 is a refrigerant circuit diagram showing the operation of the second heating and refrigeration operation in Embodiment 1.
  • FIG. 10 is a refrigerant circuit diagram showing the operation of the third heating / refrigeration operation in the first embodiment.
  • FIG. 11 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 2 of the present invention.
  • FIG. 12 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 2 of the present invention.
  • FIG. 13 is a refrigerant circuit diagram of a conventional refrigeration apparatus. Explanation of symbols
  • Outdoor unit (heat source side unit)
  • Discharge temperature sensor Discharge superheat detection means, discharge refrigerant temperature detection means
  • Embodiment 1 of the present invention will be described.
  • a refrigerant circuit diagram of the refrigeration system (1) according to Embodiment 1 is shown in FIG.
  • This refrigeration apparatus (1) is provided in a convenience store for cooling a refrigerated showcase and a refrigerated showcase and for cooling and heating the store.
  • the refrigeration apparatus (1) includes an outdoor unit (heat source side unit) (10), an indoor unit (second usage side unit) (20), a refrigeration unit (first usage side unit) (30), and a refrigeration unit. (First use side unit) (40) and each unit (10, 20, 30, 40) is connected by gas side communication pipe (51, 52) and liquid side connection pipe (53, 54, 55) Thus, a refrigerant circuit (50) for performing a vapor compression refrigeration cycle is configured.
  • the gas side connecting pipe (51, 52) includes an outdoor unit (10), a refrigeration unit (30), and a refrigeration unit.
  • 1st gas side communication pipe (low pressure gas pipe) (51) connected to (40) and 2nd gas side communication pipe (52) connected to outdoor unit (10) and indoor unit (20) It is composed of
  • the liquid side communication pipes (53, 54, 55) are connected to the collecting liquid pipe (53) connected to the outdoor unit (10), and the collecting liquid pipe (53) is branched to refrigerating unit (30) and refrigeration unit ( 40) and a second branch liquid pipe (55) connected to the indoor unit (20) by branching the collecting liquid pipe (53).
  • the first branch liquid pipe (54) is connected to the refrigeration side first branch liquid pipe (54a) on the refrigeration unit (30) side and the refrigeration side first branch liquid pipe (54b) on the refrigeration unit (40) side. It is configured.
  • the outdoor unit of the liquid side communication pipe (53, 54, 55) (the collecting liquid pipe (53), which is a part of the 10 M rule, is used for the indoor unit (20) and the refrigeration / refrigeration unit (30, 40).
  • a three-pipe connection piping structure is used by sharing the same with the other.
  • the indoor unit (20) is configured to perform switching between a cooling operation and a heating operation, and is installed, for example, in a sales floor.
  • the refrigeration unit (30) is installed in a refrigerated showcase to cool the air inside the showcase.
  • the refrigeration unit (40) is installed in a refrigeration showcase to cool the air in the showcase. Chamber The knit (20), the refrigeration unit (30), and the refrigeration unit (40) are not shown in the figure, but in this embodiment 1, two indoor units (20) are connected in parallel, 30) is connected in parallel with 8 units, and one refrigeration unit (40) is connected.
  • the refrigerant circuit (50) includes an outdoor unit (10) that is a heat source side unit, a refrigeration unit (30) and a refrigeration unit (40) that are first use side units, and the refrigerant is Refrigerant is reversible, consisting of the first system side circuit (50A) for refrigeration 'freezing circulated in the-direction, the outdoor unit (10) that is the heat source side unit, and the indoor unit (20) that is the second usage side unit. And a second system side circuit (50B) for air conditioning.
  • the outdoor unit (10) includes an inverter compressor (11A) as a first compressor, a first non-inverter compressor (11B) as a second compressor, and a second non-inverter compression as a third compressor.
  • the outdoor heat exchanger (15) is, for example, a cross-fin type fin 'and' tube type heat exchanger ⁇ , and an outdoor fan (16) that is a heat source fan is arranged in close proximity.
  • Each of the compressors (11A, 11B, 11C) is constituted by, for example, a hermetic high-pressure dome type scroll compressor.
  • the inverter compressor (11A) is a variable capacity compressor whose capacity is variable stepwise or continuously by electric motor force S inverter control.
  • the first non-inverter compressor (11B) and the second non-inverter compressor (11C) are constant capacity compressors in which an electric motor is always driven at a constant rotational speed.
  • the inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C) constitute the compression mechanism (11D, 11E) of the refrigeration apparatus (1)
  • the compression mechanism (1 ID, 11E) includes a first system compression mechanism (11D) and a second system compression mechanism (11E).
  • the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compressor mechanism (11D), and the second non-in
  • the barter compressor (11C) constitutes the second system compression mechanism (11E)
  • the inverter compressor (11A) constitutes the first system compression mechanism (11D)
  • the first non-inverter compressor ( 11B) and the second non-inverter compressor (11C) constitute the second system compression mechanism (11E)
  • the inverter compressor (11A) is fixedly used for the first system side circuit (50A) for refrigeration / refrigeration
  • the second non-inverter compressor (11C) is fixedly used for the second system side circuit (50B) for air conditioning.
  • the first non-inverter compressor (11B) can be switched between the first system side circuit (50A) and the second system side circuit (50B).
  • Each of the discharge pipes (56a, 56b, 56c) of the inverter compressor (11A), the first non-inverter compressor (11B) and the second non-inverter compressor (11C) is a single high-pressure gas pipe. (Discharge piping) (57) connected.
  • the discharge pipe (56b) of the first non-inverter compressor (11B) and the discharge pipe (56c) of the second non-inverter compressor (11C) are provided with check valves (CV1, CV2), respectively. Yes.
  • the high-pressure gas pipe (57) is connected to the first port (P1) of the first four-way selector valve (12).
  • the gas side end of the outdoor heat exchanger (15) is connected to the second port (P2) of the first four-way switching valve (12) by the outdoor first gas pipe (58a).
  • a second gas side communication pipe (52) is connected to the third port (P3) of the first four-way selector valve (12) via the outdoor second gas pipe (58b).
  • the fourth port (P4) of the first four-way selector valve (12) is connected to the second four-way selector valve (13).
  • the first port (P1) of the second four-way selector valve (13) is connected to the discharge pipe (56c) of the second non-inverter compressor (11C) by the auxiliary gas pipe (59) !,
  • the second port (P2) of the second four-way selector valve (13) is configured as a closed port.
  • the third port (P3) of the second four-way selector valve (13) is connected to the fourth port (P4) of the first four-way selector valve (12) by a connecting pipe (60).
  • the suction pipe (61c) of the second non-inverter compressor (11C) is connected to the fourth port (P4) of the second four-way selector valve (13).
  • the second port (P2) is a closed port, so a three-way selector valve can be used instead.
  • the first four-way selector valve (12) has a first port (P1) and a second port (P2) communicating with each other, and a third port
  • the first port (P1) and the second port (P2) communicate with each other, and the third port (P3) and the fourth port (P4) communicate with each other.
  • the first state shown by the solid line in Fig. 1
  • the first port (P1) communicates with the third port (P3)
  • the second port (P2) communicates with the fourth port (P4). It can be switched to the state 2 (the state indicated by the broken line in FIG. 1).
  • a receiver (17) for storing liquid refrigerant is provided in the middle of the outdoor liquid pipe (62), and the other end of the outdoor liquid pipe (62) is connected to a group of liquid side communication pipes (53, 54, 55). Connected to the liquid pipe (53).
  • the receiver (17) includes a first inflow pipe (63a) that allows the refrigerant to flow from the heat source side heat exchanger (15), and the refrigerant to the liquid side connection pipe (53, 54, 55).
  • a first inflow pipe (63a) that allows the refrigerant to flow from the heat source side heat exchanger (15), and the refrigerant to the liquid side connection pipe (53, 54, 55).
  • the second inflow pipe (63c) that allows the inflow of refrigerant from the liquid side connection pipe (53, 54, 55), and the outdoor heat exchanger (15) It is connected to the heat source side heat exchanger (15) and the liquid side connecting pipes (53, 54, 55) via a second outlet pipe (63d) that allows the refrigerant to flow out.
  • the suction pipe (61a) of the inverter compressor (11A) is connected to the first gas side connecting pipe (51) via the low pressure gas pipe (64) of the first system side circuit (50A).
  • the suction pipe (61c) of the second non-inverter compressor (11C) is connected to the low pressure gas pipe (outdoor first 1) of the second system side circuit (50B) via the first and second four-way selector valves (12, 13). It is connected to the gas pipe (58a) or the outdoor second gas pipe (58b)).
  • the suction pipe (61b) of the first non-inverter compressor (11B) is connected to the suction pipe (61a) of the inverter compressor (11A) or the second non-inverter compression via the third four-way switching valve (14). Connected to the suction pipe (61c) of the machine (11C)!
  • branch pipe (61d) is connected to the suction pipe (61a) of the inverter compressor (11A), and the branch pipe is connected to the suction pipe (61c) of the second non-inverter compressor (11C). (61e) is connected!
  • the branch pipe (61d) of the suction pipe (61a) of the inverter compressor (11A) is connected to the first port (P1) of the third four-way selector valve (14) via the check valve (CV3)
  • the suction pipe (61b) of the first non-inverter compressor (11B) is connected to the second port (P2) of the third four-way selector valve (14)
  • the suction pipe of the second non-inverter compressor (11C) (
  • the branch pipe (61e) of 61c) is connected to the third port (P3) of the third four-way selector valve (14) via the check valve (CV4).
  • the check valves (CV3, CV4) provided on the branch pipes (61d, 61e) allow only directional refrigerant flow to the third four-way selector valve (14) and prohibit refrigerant flow in the reverse direction. To do.
  • the fourth port (P4) of the third four-way selector valve (14) is connected to a high pressure inlet pipe (not shown) for introducing the high pressure of the refrigerant circuit (50).
  • the first port (P1) and the second port (P2) communicate with each other, and the third port (P3) and the fourth port (P4) communicate with each other.
  • the state indicated by the solid line in Fig. 1) the second port (P1) and the fourth port (P4) communicate with each other, and the second port (P2) and the third port (P3) communicate with each other. It can be switched to the state (state shown by the broken line in Fig. 1).
  • the first gas side connecting pipe (51) and the second gas side connecting pipe (52) and the collecting liquid pipe (53) of the connecting liquid pipe (53, 54, 55) are connected to an outdoor unit ( 10) is extended to the outside, and in the outdoor unit (10), shut-off valves (18a, 18b, 18c) are provided correspondingly.
  • the outdoor liquid pipe (62) includes an auxiliary liquid pipe (65) (second outlet pipe (63d)) and a liquid branch pipe (66) (second inlet pipe ( 63c)) and are connected.
  • the auxiliary liquid pipe (65) is provided with an outdoor expansion valve (19), which is an expansion mechanism, in which refrigerant mainly flows during heating.
  • the auxiliary liquid pipe (65) has one end connected between the outdoor heat exchanger (15) and the receiver (17) (first inflow pipe (63a)) and the other end connected to the receiver (17) and the shut-off valve (18c). ). Between the connection point of the outdoor liquid pipe (62) with the auxiliary liquid pipe (65) on the outdoor heat exchange (15) side and the receiver (17), only the counter flow of refrigerant flows to the receiver (17). Allowable check valve (CV5) is provided.
  • the liquid branch pipe (66) is provided with a check valve (CV6) and a relief valve (117) in order from the closing valve (18c) side.
  • the check valve (CV6) allows only the refrigerant flow toward the receiver (17) as well as the closing valve (18c) side force.
  • the relief valve (117) opens automatically when the acting refrigerant pressure reaches a specified pressure (for example, 1.5 MPa), while the liquid branch pipe (66) is closed until the specified pressure is exceeded. It is something to hold.
  • One end of the liquid branch pipe (66) is connected between the check valve (CV5) and the receiver (17), and the other end is a closing valve with the auxiliary liquid pipe (65) in the outdoor liquid pipe (62). It is connected between the connection point on the (18c) side and the shut-off valve (18c).
  • the outdoor liquid pipe (62) is connected between the connection point on the closing valve (18c) side with the auxiliary liquid pipe (65) and the connection point on the closing valve (18c) side with the liquid branch pipe (66).
  • a check valve (CV7) is provided in the space (first outlet pipe (63b)). This check valve (CV7) allows only the flow of refrigerant from the receiver (17) to the closing valve (18c).
  • an inlet pipe is provided between the receiver (17) and the check valve (CV5) in the outdoor liquid pipe (62).
  • One end of a hot gas binos tube ( ⁇ ) is connected.
  • the other end of the hot gas no-pass pipe ( ⁇ ) is connected between the shutoff valve (18b) of the outdoor second gas pipe (58b) and the first four-way selector valve (12).
  • a valve (SV1) is provided.
  • the hot gas bypass pipe (71) and the solenoid valve (SV1) constitute the refrigerant return mechanism (5) according to the present invention! / Speak.
  • the liquid branch pipe (66) is connected with a liquid injection pipe (67) having one end connected to a connection portion between the suction pipe (61a) and the low pressure gas pipe (64). .
  • the other end of the liquid injection pipe (67) is connected between the check valve (CV6) and the relief knob (117).
  • the liquid injection pipe (67) is provided with an electric expansion valve (67a) for adjusting the flow rate.
  • the indoor unit (20) includes an indoor heat exchanger (air conditioning heat exchanger) (21) as a second usage side heat exchanger and an indoor expansion valve (22) as an expansion mechanism.
  • a second gas side connecting pipe (52) is connected to the gas side of the indoor heat exchanger (21).
  • the second branch liquid pipe (55) of the liquid side connecting pipe (53, 54, 55) is connected to the liquid side of the indoor heat exchanger (21) via the indoor expansion valve (22).
  • the indoor heat exchange (21) is, for example, a cross-fin type fin 'and' tube heat exchanger, and an indoor fan (23) that is a use side fan is disposed in close proximity.
  • the indoor expansion valve (22) is an electric expansion valve.
  • the refrigeration unit (30) includes a refrigeration heat exchanger (31) that is a first use side heat exchanger, and a refrigeration expansion valve (32) that is an expansion mechanism.
  • the liquid side of the refrigerated heat exchanger (31) is connected to the first branch liquid pipe (54) (54) (53, 54, 55) via the electromagnetic valve (SV2) and the refrigeration expansion valve (32).
  • the refrigeration side first branch liquid pipe (54a)) is connected.
  • This solenoid valve (SV2) is used to stop the flow of refrigerant during thermo-off (rest) operation.
  • the gas side of the refrigeration heat exchanger (31) is connected to a refrigeration branch gas pipe (51a) branched from the first gas side connecting pipe (51).
  • the refrigerated heat exchanger (31) communicates with the suction side of the inverter compressor (11A), while the indoor heat exchanger (21) sucks the second non-inverter compressor (11C) during the cooling operation. It communicates with the side.
  • the refrigerant pressure (evaporation pressure) of the refrigerated heat exchanger (31) is the same as that of the indoor heat exchanger (21). Lower than the medium pressure (evaporation pressure).
  • the refrigerant evaporation temperature of the refrigeration heat exchanger (31) is, for example, 10 ° C
  • the refrigerant evaporation temperature of the indoor heat exchanger (21) is, for example, + 5 ° C.
  • the refrigerant circuit (50) forms a circuit for evaporation at different temperatures.
  • the refrigeration expansion valve (32) is a temperature-sensitive expansion valve, and a temperature-sensitive cylinder is attached to the gas side of the refrigeration heat exchanger (31). Therefore, the opening degree of the refrigeration expansion valve (32) is adjusted based on the refrigerant temperature on the outlet side of the refrigeration heat exchanger (31).
  • the refrigeration heat exchanger (31) is, for example, a fin-and-tube heat exchanger of a cross fin type, and a refrigeration fan (33) that is a cooling fan is arranged in close proximity! RU
  • the refrigeration unit (40) includes a refrigeration heat exchanger (41) as a first use side heat exchanger, a refrigeration expansion valve (42) as an expansion mechanism, and a booster compressor (43) as a refrigeration compressor. Get ready!
  • the liquid side of the refrigeration heat exchanger (41) is connected to the first branch liquid pipe (54) (54) (53) via the solenoid valve (SV3) and the refrigeration expansion valve (42).
  • the freezing-side first branch liquid pipe (54b) is connected.
  • the gas side of the refrigeration heat exchanger (41) and the suction side of the booster compressor (43) are connected gas pipes.
  • a freezing side branch gas pipe (51b) branched from the first gas side connecting pipe (51) is connected to the discharge side of the booster compressor (43).
  • the refrigeration branch gas pipe (51b) is provided with a check valve (CV8) and an oil separator (44). Between the oil separator ( 44 ) and the connecting gas pipe (68), an oil return pipe (69) having a capillary tube (45) is connected.
  • the refrigerant evaporation temperature of the refrigeration heat exchanger (41) is refrigerated heat exchanger.
  • the refrigerant is compressed in two stages with the compression mechanism (11D) of the first system so as to be lower than the refrigerant evaporation temperature of (31).
  • the refrigerant evaporation temperature of the refrigeration heat exchanger (41) is set to, for example, -35 ° C.
  • the refrigeration expansion valve (42) is a temperature-sensitive expansion valve, and a temperature-sensitive cylinder is attached to the gas side of the refrigeration heat exchanger (31).
  • the refrigeration heat exchanger (41) is, for example, a cross-fin type fin-and-tube heat exchanger, and a refrigeration fan (46), which is a cooling fan, is disposed close to the refrigeration heat exchanger (41).
  • the connecting gas pipe (68) on the suction side of the booster compressor (43), and between the oil separator (44) and the check valve (CV8) in the refrigeration side branch gas pipe (51b) Is connected to a bypass pipe (70) having a check valve (CV9).
  • the bypass pipe (70) is configured so that the refrigerant flows by bypassing the booster compressor (43) when the booster compressor (43) is stopped due to a failure or the like.
  • the refrigerant circuit (50) is provided with various sensors and various switches.
  • the high pressure gas pipe (57) of the outdoor unit (10) is provided with a high pressure sensor (75) for detecting high pressure refrigerant pressure and a discharge temperature sensor (76) for detecting high pressure refrigerant temperature.
  • the discharge pipe (56c) of the second non-inverter compressor (11C) is provided with a discharge temperature sensor (77) for detecting the high-pressure refrigerant temperature.
  • the discharge pipes (56a, 56b, 56c) of the inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C) have high pressure refrigerant pressure, respectively.
  • a pressure switch (78) for high-pressure protection is provided to open and stop the compressor (11A, 11B, 11C) when a predetermined value is reached.
  • Each suction pipe (61a, 61c) of the inverter compressor (11A) and the second non-inverter compressor (11C) includes a low pressure sensor (79, 80) for detecting a low pressure refrigerant pressure, and a low pressure refrigerant An intake temperature sensor (81, 82) for detecting the temperature is provided.
  • the low-pressure pressure sensor (79) and the suction temperature sensor (81) on the inverter compressor (11A) side constitute the suction superheat degree detection means according to the present invention.
  • the outdoor heat exchanger (15) is provided with an outdoor heat exchange sensor (83) for detecting an evaporation temperature or a condensation temperature which is a refrigerant temperature in the outdoor heat exchanger (15).
  • the outdoor unit (10) is provided with an outdoor air temperature sensor (84) for detecting the outdoor air temperature.
  • the indoor heat exchanger (21) is provided with an indoor heat exchange sensor (85) for detecting a condensation temperature or an evaporation temperature, which is a refrigerant temperature in the indoor heat exchanger (21), on the gas side.
  • a gas temperature sensor (86) for detecting the gas refrigerant temperature is provided.
  • the indoor unit (20) is provided with a room temperature sensor (87) for detecting the indoor air temperature.
  • the refrigeration unit (30) the refrigeration for detecting the temperature inside the refrigerated showcase.
  • a temperature sensor (88) is provided.
  • the refrigeration unit (40) is provided with a refrigeration temperature sensor (89) for detecting the internal temperature of the refrigeration showcase.
  • a pressure switch (90) for high pressure protection is provided on the discharge side of the booster compressor (43), which opens when the discharge refrigerant pressure reaches a predetermined value and stops the compressor (43).
  • Output signals of the various sensors and various switches are input to a controller (95) which is a control means.
  • the controller (95) is configured to control the operation of the refrigerant circuit (50) and to switch and control eight types of operation modes to be described later.
  • the controller (95) starts, stops, and controls the capacity of the inverter compressor (11A), and starts and stops the first non-inverter compressor (11B) and the second non-inverter compressor (11C).
  • it controls the degree of opening of the outdoor expansion valve (19) and indoor expansion valve (22), switches the four-way switching valves (12, 13, 14), and electrically expands the liquid injection pipe (67). It also controls the opening of the valve (67a).
  • controller (95) performs hot gas bypass pipes in the first heating and refrigeration operation to be described later.
  • the refrigerant delivered from the compression mechanism (11D) is transferred from the indoor unit (20) as the second usage side unit to the refrigeration unit (30) and the refrigeration unit (40) as the first usage side unit.
  • the following control is performed during the first heating and refrigeration operation in which a refrigerant circulation path is formed that circulates and returns to the compression mechanism (11D).
  • the controller (95) uses the detection value of the low pressure sensor (79) and the detection value of the suction temperature sensor (81) to use the refrigeration heat exchanger (31) as the first usage side heat exchanger. And the direction of the refrigeration heat exchange (41) to the suction side of the compression mechanism (11D) detects the degree of superheat of the refrigerant. Then, the controller (95) opens the solenoid valve (SV1) when the detected degree of superheat exceeds a predetermined value, and closes the solenoid valve (SV1) when the degree of superheat falls below a predetermined value.
  • the controller (95) uses the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41), which are the first use side heat exchangers, to determine whether the refrigerant is in the superheat degree of the refrigerant sucked into the compression mechanism (11D). Judging whether there is a shortage or not.
  • the controller (95) determines that the refrigerant is insufficient in refrigeration heat exchange (31) and refrigeration heat exchange (41), the solenoid valve (SV1) is used to return the refrigerant in the receiver (17) to the circulation path. ).
  • the second cooling and refrigeration operation which is the operation of the indoor unit (20), and the heating operation of the indoor unit (20), vi> the heating and refrigeration unit (30) and the refrigeration unit (40) ) Is cooled in the 100% heat recovery operation without using the outdoor heat exchanger (15), vii> in the first heating / freezing operation, when the heating capacity of the indoor unit (20) is excessive Viii> Performed when the heating capacity of the indoor unit (20) is insufficient in the first heating / freezing operation.
  • the third heating and refrigeration operation is possible.
  • This cooling operation is an operation in which only the indoor unit (20) is cooled.
  • the inverter compressor (11A) constitutes the first system compression mechanism (11D)
  • the first non-inverter compressor (11B) and the second non-inverter compressor ( 11C) constitutes the second compression mechanism (11E). Then, only the first non-inverter compressor (11B) and the second non-inverter compressor (11C) that are the second-system compression mechanism (11E) are driven.
  • the first four-way switching valve (12) and the second four-way switching valve (13) are each switched to the first state, and the third four-way switching valve (13).
  • the switching valve (14) switches to the second state.
  • the outdoor expansion valve (19), the electric expansion valve (67a) of the liquid injection pipe (67), the solenoid valve (SV1) of the hot gas bypass pipe (71), and the solenoid valve (SV2) of the refrigeration unit (30) And the solenoid valve (SV3) of the refrigeration unit (40) is closed.
  • the refrigerant discharged from (11C) flows from the first four-way switching valve (12) through the outdoor first gas pipe (58a) to the outdoor heat exchanger (15) and condenses.
  • the condensed liquid refrigerant flows through the outdoor liquid pipe (62), passes through the receiver (17), and the collecting liquid pipe (53) and the second branch liquid pipe (55) in the liquid side connecting pipe (53, 54, 55). It passes through the indoor expansion valve (22) through the indoor heat exchanger (21) and evaporates.
  • the evaporated gas refrigerant passes through the first four-way switching valve (12) and the second four-way switching valve (13) from the second gas side communication pipe (52) and the outdoor second gas pipe (58b) to the second non-inverter.
  • the first non-inverter compressor (11B) and the second non-inverter compressor (11C) are started and stopped according to the indoor cooling load, and the indoor expansion valve (22) The degree of opening is controlled. Only one compressor (11B, 11C) can be operated.
  • the refrigeration operation is an operation that only cools the refrigeration unit (30) and the refrigeration unit (40).
  • the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compression mechanism (11D)
  • the second non-inverter The compressor (11C) constitutes the second system compression mechanism (11E).
  • the inverter compressor (11A) and the first non-inverter compressor (11B) as the first system compression mechanism (11D) are driven, and the booster compressor (43) is also driven, while the second non-inverter is driven.
  • the compressor (11C) has stopped.
  • the first four-way switching valve (12), the second four-way switching valve (13), and the third four-way switching valve (14) are each in the first state as shown by the solid line in FIG. Switch to. Furthermore, the solenoid valve (SV2) of the refrigeration unit (30) and the solenoid valve (SV3) of the refrigeration unit (40) are opened, while the solenoid valve (SV1) of the hot gas bypass pipe (71) and the outdoor expansion valve (19) And the indoor expansion valve (22) is closed. Further, the electric expansion valve (67a) of the liquid injection pipe (67) is set to a predetermined opening so that a liquid refrigerant having a predetermined flow rate is set to be fully closed according to the operating state.
  • the refrigerant that has also discharged the power of the inverter compressor (11A) and the first non-inverter compressor (11B) passes through the outdoor first gas pipe (58a) from the first four-way switching valve (12). It flows to the heat exchanger (15) and condenses.
  • the condensed liquid refrigerant flows through the outdoor liquid pipe (62), passes through the receiver (17), and passes through the collecting liquid pipe (53) of the liquid side communication pipe (53, 54, 55) to the refrigeration side first branch liquid pipe (54a). ) And divert to the first branch liquid pipe (54b) on the freezing side.
  • the liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54a) flows through the refrigeration expansion valve (32) to the refrigeration heat exchanger (31), evaporates, and flows through the refrigeration-side branch gas pipe (51a).
  • the liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54b) flows through the refrigeration expansion valve (42) to the refrigeration heat exchanger (41) and evaporates.
  • the gas refrigerant evaporated in the refrigeration heat exchanger (41) is sucked and compressed by the booster compressor (43) and discharged to the refrigeration side branch gas pipe (51b).
  • the refrigerant pressure in the refrigeration heat exchanger (41) is sucked by the booster compressor (43), the refrigerant pressure is lower than the refrigerant pressure in the refrigeration heat exchanger (31).
  • the refrigerant temperature (evaporation temperature) in the refrigeration heat exchanger (41) is 35 ° C
  • the refrigerant temperature (evaporation temperature) in the refrigeration heat exchanger (31) is 10 ° C.
  • the first non-inverter compressor (11B) is started and stopped, the inverter compressor (11A) is started, Stop or perform capacity control and perform operation according to the refrigeration load.
  • control for increasing the capacity of the compression mechanism (11D) starts with the first non-inverter compressor.
  • the inverter compressor (11A) is driven with (11B) stopped. If the load further increases after the inverter compressor (11 A) has increased to the maximum capacity, the first non-inverter compressor (11B) is driven and at the same time the inverter compressor (11A) is reduced to the minimum capacity. Thereafter, when the load further increases, the capacity of the inverter compressor (11A) is increased while the first non-inverter compressor (11B) is started. In the compressor capacity reduction control, the reverse operation of this increase control is performed.
  • the degree of superheat of the opening of the refrigeration expansion valve (32) and the refrigeration expansion valve (42) is controlled by a temperature sensing cylinder. This point is the same in the following operations.
  • This first cooling / freezing operation is performed by the cooling / refrigeration unit (30) and the freezing unit of the indoor unit (20). This is an operation that simultaneously cools the knit (40).
  • the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compression mechanism (11D)
  • the second The non-inverter compressor (11C) constitutes the second system compression mechanism (11E).
  • the inverter compressor (11A), the first non-inverter compressor (11B) and the second non-inverter compressor (11C) are driven, and the booster compressor (43) is also driven.
  • the first four-way switching valve (12), the second four-way switching valve (13), and the third four-way switching valve (14) are each in the first state as shown by the solid line in FIG. Switch to. Furthermore, the solenoid valve (SV2) of the refrigeration unit (30) and the solenoid valve (SV3) of the refrigeration unit (40) are opened, while the solenoid valve (SV1) of the hot gas bypass pipe (71) and the outdoor expansion valve (19) Is closed. Also, the electric expansion valve (67a) of the liquid index pipe (67) is set to be fully closed or a predetermined flow rate of liquid refrigerant is allowed to flow to the suction side of the compression mechanism (11D) depending on the operating state. The predetermined opening is set.
  • the refrigerant discharged from the inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C) is joined by the high-pressure gas pipe (57), 1 Condenses by flowing through the first gas pipe (58a) outside the four-way selector valve (12) to the outdoor heat exchanger (15).
  • the condensed liquid refrigerant flows through the outdoor liquid pipe (62), and then flows through the receiver (17) to the collecting liquid pipe (53) of the liquid side connecting pipe (53, 54, 55).
  • a part of the liquid refrigerant flowing through the collecting liquid pipe (53) of the liquid side connecting pipe (53, 54, 55) is divided into the second branch liquid pipe (55), and the indoor expansion valve (22) It passes through the indoor heat exchanger (21) and evaporates.
  • the evaporated gas refrigerant passes through the first four-way switching valve (12) and the second four-way switching valve (13) from the second gas side communication pipe (52) and the outdoor second gas pipe (58b). ) And return to the second non-inverter compressor (11C).
  • the liquid refrigerant flowing through the collecting liquid pipe (53) of the liquid side connecting pipe (53, 54, 55) is refrigerated side first branch liquid pipe (54a) and refrigeration side first branch liquid pipe (54b).
  • the liquid refrigerant flowing through the refrigeration side first branch liquid pipe (54a) flows through the refrigeration expansion valve (32) to the refrigeration heat exchanger (31), evaporates, and flows through the refrigeration side branch gas pipe (51a).
  • the liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54b) flows through the refrigeration expansion valve (42) to the refrigeration heat exchanger (41) and evaporates.
  • the gas refrigerant evaporated in the refrigeration heat exchanger (41) is sucked and compressed by the booster compressor (43), and the refrigeration side It is discharged into the branch gas pipe (51b).
  • the second cooling / freezing operation is an operation when the cooling capacity of the indoor unit (20) is insufficient during the first cooling / refrigeration operation, and the first non-inverter compressor (11B) is switched to the air conditioning side. .
  • the setting during the second cooling / freezing operation is basically the same as that during the first cooling / freezing operation, but the third four-way selector valve (14) is switched to the second state. This is different from the first cooling / freezing operation.
  • the inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C ) Is condensed in the outdoor heat exchanger (15) and evaporated in the indoor heat exchanger (21), the refrigeration heat exchanger (31), and the refrigeration heat exchanger (41).
  • the refrigerant evaporated in the indoor heat exchanger (21) returns to the first non-inverter compressor (11B) and the second non-inverter compressor (11C), and the refrigerated heat exchanger (31) and the refrigeration
  • the refrigerant evaporated in the heat exchanger (41) returns to the inverter compressor (11A).
  • the use of two compressors (11B, 11C) on the air conditioning side will compensate for the lack of cooling capacity.
  • This heating operation is an operation in which only the indoor unit (20) is heated.
  • the inverter compressor (11A) constitutes the first system compression mechanism (11D)
  • the first non-inverter compressor (11B) and the second non-inverter compressor ( 11C) constitutes the second compression mechanism (11E). Then, only the first non-inverter compressor (11B) and the second non-inverter compressor (11C) that are the second-system compression mechanism (11E) are driven.
  • the first four-way selector valve (12) switches to the second state
  • the second four-way selector valve (13) switches to the first state
  • the third four-way selector valve (14) is in the second state Switch.
  • the solenoid valve of the refrigeration unit (40) (SV3) is closed.
  • the indoor expansion valve (22) is set to fully open, and the outdoor expansion valve (19) is controlled to a predetermined opening.
  • the refrigerant discharged from (11C) flows from the first four-way selector valve (12) through the outdoor second gas pipe (58b) and the second gas side connecting pipe (52) to the indoor heat exchanger (21) and condenses. To do.
  • the condensed liquid refrigerant flows through the second branch liquid pipe (55) force collecting liquid pipe (53) of the liquid side connecting pipe (53, 54, 55), and further passes through the liquid branch pipe (66) to the receiver ( It flows into 17). Thereafter, the liquid refrigerant flows through the outdoor expansion valve (19) of the auxiliary liquid pipe (65), flows through the outdoor heat exchanger (15), and evaporates.
  • the evaporated gas refrigerant is also supplied to the suction pipe (61c) of the second non-inverter compressor (11C) through the first four-way switching valve (12) and the second four-way switching valve (13). ) And return to the first non-inverter compressor (11B) and the second non-inverter compressor (11C). This circulation is repeated to heat the room.
  • the compressors (11B, 11C) can be operated alone.
  • the first heating / freezing operation is a 100% heat recovery operation in which the indoor unit (20) is heated and the refrigeration unit (30) and the refrigeration unit (40) are cooled without using the outdoor heat exchanger (15).
  • the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compression mechanism (11D), and the second non-refrigeration operation (11D).
  • the inverter compressor (11C) constitutes the second system compression mechanism (11E). Then, the inverter compressor (11A) and the first non-inverter compressor (11B) are driven, and the booster compressor (43) is also driven. The second non-inverter compressor (11C) is stopped.
  • the first four-way switching valve (12) switches to the second state, and the second four-way switching valve (13) and the third four-way switching valve (14 ) Switches to the first state.
  • the solenoid valve (SV2) of the refrigeration unit (30) and the solenoid valve (SV3) of the refrigeration unit (40) are opened, while the outdoor expansion valve (19) is closed.
  • the solenoid valve (SV1) of the hot gas bypass pipe (71) detects the detected value of the low pressure sensor (79) and the detected value of the suction temperature sensor (81). Opening / closing control is performed based on the degree of superheat of the refrigerant flowing through the suction pipe (61a).
  • the opening degree of the electric expansion valve (67a) of the liquid index pipe (67) is controlled based on the degree of superheat and the detected value of the discharge temperature sensor (76).
  • the refrigerant discharged from the inverter compressor (11A) and the first non-inverter compressor (11B) flows from the first four-way selector valve (12) to the outdoor second gas pipe (58b) and the second It flows through the gas side communication pipe (52) and flows into the indoor heat exchanger (21) for condensation.
  • the condensed liquid refrigerant is refrigerated from the second branch liquid pipe (55) of the liquid side communication pipe (53, 54, 55) to the first branch liquid pipe (54a) before the collecting liquid pipe (53). Shunt to the side first branch pipe (54b).
  • the liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54a) flows through the refrigeration expansion valve (32) to the refrigeration heat exchanger (31), evaporates, and flows through the refrigeration-side branch gas pipe (51a). . Further, the liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54b) flows through the refrigeration expansion valve (42) to the refrigeration heat exchanger (41) and evaporates. The gas refrigerant evaporated by the refrigeration heat exchange (41) is sucked and compressed by the booster compressor (43) and discharged to the refrigeration side branch gas pipe (51b).
  • the gas refrigerant evaporated in the refrigeration heat exchanger (31) and the gas refrigerant discharged from the booster compressor (43) are merged in the first gas side connecting pipe (51), and the low-pressure gas pipe (64 ) To return to the inverter compressor (11A) and the first non-inverter compressor (11B).
  • the inside of the store is heated, and at the same time, the inside of the refrigerated showcase and the freezer showcase is cooled.
  • the cooling capacity (evaporation heat amount) between the refrigeration unit (30) and the refrigeration unit (40) balances with the heating capacity (condensation heat amount) of the indoor unit (20). Heat recovery is performed.
  • the refrigerant sent out from the compression mechanism (11D) flows through the indoor unit (20), the refrigeration unit (30), and the refrigeration unit (40) and returns to the compression mechanism (11D).
  • a refrigerant circulation path is formed. In this circulation path, the refrigerant condensed in the indoor unit (20) flows directly into the refrigeration unit (30) and the refrigeration unit (40) without returning to the outdoor unit (10).
  • the pressure of the hydraulic fluid side connecting pipe (53, 54, 55) is set too high so that the relief valve (117) is closed. ) May exceed a predetermined pressure (for example, 1.5 MPa), and the relief valve (117) may open. Even if the relief valve (117) is closed, refrigerant leaks. There is also a case. In such a case, the refrigerant in the circulation path flows from the collecting liquid pipe (53) through the liquid branch pipe (66) to the receiver (17), and the refrigerant in the circulation path decreases.
  • the refrigerant flow rate gradually decreases in the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41), and the region through which the gas-liquid two-phase refrigerant flows decreases.
  • the region where the single-phase gas refrigerant flows increases, so that the refrigerant flows out of the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41) and is directed to the compression mechanism (11D).
  • the controller (95) has a superheat degree of the refrigerant flowing through the suction pipe (61a) detected based on the detected value of the low pressure sensor (79) and the detected value of the suction temperature sensor (81) above a predetermined value.
  • the solenoid valve (SV1) is opened.
  • the solenoid valve (SV1) opens, the high-pressure gas refrigerant discharged from the compressor mechanism (11D) is introduced into the receiver (17) through the hot gas no-pass pipe (71) as shown in FIG. 17) The internal pressure rises. As a result, the liquid coolant in the receiver (17) is forced out and returned from the collecting liquid pipe (53) to the circulation path.
  • the circulation path force gas refrigerant is supplied to the receiver (17), but the liquid refrigerant is pushed out.
  • the amount of refrigerant in the receiver (17) decreases and the amount of refrigerant in the circulation path increases.
  • the refrigerant shortage in the refrigeration unit (30) and the refrigeration unit (40) can be prevented, and a decrease in the cooling capacity in the refrigeration unit (30) and the refrigeration unit (40) can be avoided.
  • the controller (95) closes the solenoid valve (SV1) when the superheat degree of the refrigerant detected based on the detected value of the low pressure sensor (79) and the detected value of the suction temperature sensor (81) becomes less than a predetermined value.
  • the second heating / freezing operation is an operation performed when the heating capacity of the indoor unit (20) is excessive in the first heating / freezing operation.
  • the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compression mechanism (11D), and the second non-freezing operation is performed.
  • the inverter compressor (11C) constitutes the second system compression mechanism (11E). Then, the inverter compressor (11A) and the first non-inverter compressor (11B) are driven, and the booster compressor (43) is also driven. Second non-inverter compressor (11C) stopped is doing.
  • the second four-way switching valve (13) is switched to the second state as shown by the solid line in FIG. It is the same as heating and refrigeration operation.
  • the other refrigerant discharged from the inverter compressor (11A) and the first non-inverter compressor (11B) is the auxiliary gas pipe (59) force second four-way switching valve (13) and first four After passing through the path switching valve (12), it flows through the outdoor first gas pipe (58a) and condenses in the outdoor heat exchanger (15).
  • the condensed liquid refrigerant passes through the receiver (17) when flowing through the outdoor liquid pipe (62), passes through the collecting liquid pipe (53) of the liquid side connecting pipe (53, 54, 55), and then enters the first branch liquid pipe.
  • the refrigerant flows into the refrigeration-side first branch liquid pipe (54a) and the refrigeration-side first branch liquid pipe (54b)) and merges with the refrigerant from the second branch liquid pipe (55).
  • the liquid refrigerant flowing through the refrigeration side first branch liquid pipe (54a) flows to the refrigeration heat exchanger (31) and evaporates, and flows through the refrigeration side branch gas pipe (51a). Further, the liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54b) flows into the refrigeration heat exchanger (41), evaporates, is sucked into the booster compressor (43) and compressed, and is then supplied to the refrigeration-side branch gas pipe. (51b). The gas refrigerant evaporated in the refrigeration heat exchanger (31) and the booster compressor (43) force merged in the first gas side connecting pipe (51), and the low pressure gas pipe (64) is connected. Return to the inverter compressor (11A) and the first non-inverter compressor (11B).
  • the refrigerant repeats the above circulation, whereby the interior of the store is heated and the interiors of the refrigerated showcase and the refrigerated showcase are cooled at the same time.
  • the cooling capacity (evaporation heat amount) of the refrigeration unit (30) and the refrigeration unit (40) and the heating capacity (condensation heat amount) of the indoor unit (20) are not balanced, and excess condensation heat is transferred to the outdoor heat. It will be discharged outdoors by the exchanger (15).
  • This third heating / freezing operation is the same as that of the first heating / refrigeration operation. This operation is performed when power is insufficient.
  • the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compression mechanism (11D), and the second non-inverter operation
  • the compressor (11C) constitutes the second system compression mechanism (11E).
  • the inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C) are driven, and the booster compressor (43) is also driven.
  • the opening degree of the outdoor expansion valve (19) is controlled, the solenoid valve (SV1) is closed without being controlled to open and close, and the second non-inverter compressor (11C) is closed. Except for the fact that it is driven, the setting is the same as in the first heating and refrigeration operation.
  • the refrigerant discharged from the inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C) is the second gas as in the first heating / refrigeration operation. It flows to the indoor heat exchanger (21) through the side connecting pipe (52) and condenses.
  • the condensed liquid refrigerant flows from the second branch liquid pipe (55) to the first branch liquid pipe (54) (the refrigeration side first branch liquid pipe (54a) and the refrigeration side of the liquid side communication liquid pipe (53, 54, 55).
  • the first branch liquid pipe (54b)) and the collecting liquid pipe (53) are divided.
  • the liquid refrigerant flowing through the refrigeration side first branch liquid pipe (54a) flows to the refrigeration heat exchanger (31), evaporates, and flows through the refrigeration side branch gas pipe (51a).
  • the liquid coolant flowing through the refrigeration-side first branch liquid pipe (54b) flows to the refrigeration heat exchanger (41), evaporates, is sucked into the booster compressor (43), is compressed, and the refrigeration-side branch gas pipe (51b).
  • the gas refrigerant evaporated in the refrigeration heat exchanger (31) and the booster compressor (43) force The discharged gas refrigerant merges in the first gas side connecting pipe (51) and passes through the low-pressure gas pipe (64). Return to the inverter compressor (11A) and the first non-inverter compressor (11B).
  • the liquid refrigerant flowing through the collecting liquid pipe (53) flows through the liquid branch pipe (66) and flows into the receiver (17). It flows through the outdoor heat exchanger (15) via (19) and evaporates.
  • the evaporated gas refrigerant flows through the outdoor first gas pipe (58a), passes through the first four-way switching valve (12) and the second four-way switching valve (13), and the suction pipe of the second non-inverter compressor (11C). (61c) and return to the second non-inverter compressor (11C).
  • the refrigerant repeatedly circulates, so that the inside of the store is heated, and at the same time, the interiors of the refrigerated showcase and the refrigerated showcase are cooled.
  • the cooling capacity (evaporation heat amount) between the storage unit (30) and the refrigeration unit (40) and the heating capacity (condensation heat amount) of the indoor unit (20) are not balanced, and the lack of evaporative heat is exchanged with the outdoor heat exchanger (15). It ’s hard to get from.
  • the solenoid valve (SV1) of the hot gas bypass pipe (71) is used during the first heating / refrigeration operation in which the circulation path in which the refrigerant amount decreases when the refrigerant flows into the receiver (17) is formed.
  • the liquid refrigerant in the receiver (17) can be returned to the circulation path.
  • the amount of refrigerant flowing through the indoor unit (20), the refrigeration unit (30), and the refrigeration unit (40), which are the use side units increases.
  • each user side unit (20, 30 30 and 40) can prevent the refrigerant shortage.
  • the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41) determine whether or not the refrigeration unit (30) and the refrigeration unit (40) run out of refrigerant!
  • the hot gas bypass pipe based on the detected value of the low-pressure pressure sensor (79) and the detected value of the suction temperature sensor (81), focusing on the fact that it can be determined from the degree of superheat of the refrigerant going to the suction side of the compression mechanism (11D) (71) solenoid valve (SV1) is controlled. Accordingly, the liquid refrigerant in the receiver (17) can be returned to the circulation path at an appropriate timing before the refrigerant runs short in the refrigeration unit (30) and the refrigeration unit (40). A decrease in cooling capacity in the unit (40) can be reliably avoided.
  • FIG. 11 shows a refrigerant circuit diagram of the refrigeration apparatus (1) according to the second embodiment.
  • the refrigeration apparatus (1) of the second embodiment is different from the first embodiment in that the hot gas bypass pipe (71) and the solenoid valve (SV1) are not provided, and the second four-way that is a communication mechanism.
  • the switching valve (13) constitutes the refrigerant return mechanism (5).
  • the controller (95) detects the suction pipe (61a) detected by the low pressure sensor (79) and the suction temperature sensor (81). ), The second four-way selector valve (13) is switched to the second state.
  • the second four-way selector valve (13) When the second four-way selector valve (13) is set to the second state, a part of the high-pressure gas refrigerant discharged from the compression mechanism (11D) is supplied to the auxiliary gas pipe (59). After passing through the four-way switching valve (13) and the first four-way switching valve (12), it flows through the outdoor first gas pipe (58a), and further flows from the outdoor heat exchanger (15) through the outdoor liquid pipe (62) to the receiver. Enter (17). At that time, the outdoor fan (16) remains stopped. As a result, the internal pressure of the receiver (17) rises and the liquid refrigerant in the receiver (17) is forced out and returned from the collecting liquid pipe (53) to the circulation path.
  • the state in which the second four-way selector valve (13) is set to the second state in the first heating and refrigeration operation is the same operating state as the second heating and refrigeration operation of the first embodiment.
  • the second heating and refrigeration operation of Embodiment 1 is an operation performed to reduce the heating capacity of the indoor unit (20)
  • the first heating and refrigeration operation of Embodiment 2 is performed by the receiver (17 This operation is to forcibly return the liquid cooling medium in parenthesis to the circulation path.
  • the outdoor fan (16) is driven to condense the refrigerant by the outdoor heat exchange (15), but in the first heating / refrigeration operation of the second embodiment,
  • the outdoor heat exchanger (15) is only used as a flow path for introducing the high-pressure gas refrigerant discharged from the compression mechanism (11D) into the receiver (17).
  • the receiver (17) Since the liquid refrigerant is introduced and the amount of refrigerant in the receiver (17) is not easily reduced, the outdoor fan (16) is not driven.
  • the outdoor heat exchanger (15) is used as a flow path for introducing a high-pressure gas refrigerant into the receiver (17), so that the discharge side of the receiver (17) and the compression mechanism (11D)
  • the liquid refrigerant in the receiver (17) can be returned to the circulation path without providing a separate distribution path for connecting to the circulation path. This simplifies the configuration of the refrigeration apparatus (1).
  • Embodiment 3 of the present invention will be described.
  • a refrigerant circuit diagram of the refrigeration apparatus (1) according to Embodiment 3 is shown in FIG.
  • the refrigeration apparatus (1) of the third embodiment is provided with a hot gas bypass pipe (71) and a solenoid valve (SV1), and the point and the connection position of the liquid injection pipe (67) are the same as those of the first embodiment. Is different.
  • the liquid injection pipe (67) has one end at the connection between the suction pipe (61a) and the low pressure gas pipe (64).
  • the other end of the outdoor liquid pipe (62) is connected between the connection point of the auxiliary liquid pipe (65) on the side of the shut-off valve (18c) and the receiver (17).
  • the liquid injection pipe (67) is a communication pipe for communicating the receiver (17) to the suction side of the compression mechanism (11D), and constitutes a refrigerant return mechanism (5) together with the electric expansion valve (67a). ! / Speak.
  • the controller (95) distributes the suction pipe (61a) detected based on the detection value of the low pressure sensor (79) and the detection value of the suction temperature sensor (81).
  • the electric expansion valve (67a) is opened.
  • the receiver (17) communicates with the suction side of the compression mechanism (11D), so that the liquid refrigerant in the receiver (17) is forcibly sucked out by the compression mechanism (11D) and returned to the circulation path. It is.
  • Embodiment 3 when the liquid refrigerant in the receiver (17) is returned to the circulation path, the compression mechanism (11D) sucks the liquid refrigerant in the receiver (17), so that the compression mechanism (11D) Inhalation superheat is reduced. Therefore, the refrigerant can be returned to the circulation path to solve the shortage of refrigerant, and at the same time, the suction superheat degree can be suppressed and the input of the compression mechanism (11D) can be reduced.
  • the refrigerant return mechanism (5) is controlled based on the detected value of the controller (95) force low pressure sensor (79) and the detected value of the suction temperature sensor (81).
  • the refrigerant return mechanism (5) may be controlled based on the detection values of the high pressure sensor (75) and the discharge temperature sensor (76).
  • the controller (95) (17) The liquid refrigerant inside is returned to the circulation path.
  • the high pressure sensor (75) and the discharge temperature sensor (76) constitute discharge superheat degree detection means.
  • the controller (95) may control the refrigerant return mechanism (5) based on the detection value of the discharge temperature sensor (76) that detects the temperature of the refrigerant discharged by the compression mechanism (11D). Yo ...
  • the controller (95) performs an operation of returning the liquid refrigerant in the receiver (17) to the circulation path when the detection value of the discharge temperature sensor (76) becomes a predetermined value or more.
  • the discharge temperature sensor (76) constitutes discharge refrigerant temperature detection means.
  • the controller (95) may control the refrigerant return mechanism (5) based on the opening degree of the electric expansion valve (67a) of the liquid injection pipe (67).
  • a predetermined opening degree for example, 400 pulses or more in the case of an electric expansion valve with 480 pulses
  • the controller (95) sets the liquid refrigerant in the receiver (17). To return to the circulation path.
  • the controller (95) End the operation to return the coolant to the circulation path.
  • the electric expansion valve (67a) has a detection value of the discharge temperature sensor (76), a detection value of the low pressure sensor (79), and a detection value of the suction temperature sensor (81).
  • the opening degree is controlled based on the degree of superheat of the refrigerant in 61a).
  • the controller (95) may detect either the condition that the detected value of the discharge temperature sensor (76) is 90 ° C or higher, or the condition that the superheat degree of the refrigerant in the suction pipe (61a) is 5 ° C or higher. When is established, the opening of the electric expansion valve (67a) is increased.
  • the controller (95) controls the refrigerant return mechanism (5) based on the degree of superheat at the outlet of the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41) serving as an evaporator.
  • a temperature sensor and a pressure sensor are provided at the outlet of the refrigeration heat exchanger (31) and the outlet of the refrigeration heat exchanger (41).
  • the controller (95) has a duration of 10 minutes at which the refrigerant superheat degree is 10 ° C or higher at either the outlet of the refrigeration heat exchanger (31) or the outlet of the refrigeration heat exchanger (41). If exceeded, the liquid refrigerant in the receiver (17) is returned to the circulation path.
  • the controller (95) is in a state where the superheat of the refrigerant at the outlet is 7 ° C or less for an evaporator that has exceeded the duration of 10 minutes when the superheat of the refrigerant is 10 ° C or more. If the continuation time exceeds 1 minute, the operation of returning the liquid refrigerant in the receiver (17) to the circulation path is terminated.
  • the refrigerant return mechanism (5) is controlled by all refrigeration units (30) and refrigeration units. It is not necessary to carry out based on the degree of superheat of the refrigerant at the outlet of the evaporator in the refrigeration unit (40).
  • the unit at the outlet of the evaporator in a unit where liquid refrigerant is difficult to flow for example, a unit placed at a high place). Based on the degree of superheat of the refrigerant!
  • the controller (95) includes a refrigerant return mechanism based on the detection value of the high pressure sensor (75).
  • the refrigerant return mechanism (5) may be controlled.
  • the refrigerant return mechanism (5) since the high pressure of the refrigeration cycle varies depending on the temperature of the indoor space in which the indoor unit (20) is provided, the refrigerant return mechanism (5) has a function based on the saturation temperature at the pressure detected by the high pressure sensor (75). Take control.
  • the controller (95) returns the liquid refrigerant in the receiver (17) to the circulation path when the duration of the state where the difference between the saturation temperature and the temperature of the indoor space is 15 ° C or less exceeds 10 minutes. Perform the action.
  • the controller (95) ends the operation of returning the liquid refrigerant in the receiver (17) to the circulation path when the duration of the state where the temperature difference is 15 ° C or more exceeds 1 minute.
  • the controller (95) includes a refrigerant return mechanism based on the detection value of the low pressure sensor (79).
  • the controller (95) returns the liquid refrigerant in the receiver (17) to the circulation path if the duration of the state where the detection value of the low pressure sensor (79) is 0.15 MPa or less exceeds 10 minutes. Do. The controller (95) also transfers the liquid refrigerant in the receiver (17) to the circulation path when the detected value of the low pressure sensor (79) exceeds 0.2 MPa for more than 1 minute. End the return operation.
  • the controller (95) has a degree of superheat of the refrigerant from the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41) to the suction side of the compressor mechanism (11D), and the compression mechanism (11D) discharges The temperature of the refrigerant discharged from the compression mechanism (11D), the opening of the electric expansion valve (67a) of the liquid injection pipe (67), the degree of refrigerant superheat at the outlet of the evaporator, and the high pressure sensor (75 ) And the detection value of the low-pressure sensor (79) may control the refrigerant return mechanism (5) based on a plurality of conditions. In this case, when any one of the conditions is satisfied, an operation of returning the liquid refrigerant in the receiver (17) to the circulation path is performed.
  • the controller (95) may perform an operation of returning the liquid refrigerant in the receiver (17) to the circulation path when the first heating / refrigeration operation for 100% heat recovery continues for 30 minutes or more. Good.
  • the receiver (17) is at a low pressure and liquid refrigerant tends to accumulate, so if the first heating / freezing operation continues for 20 minutes or more, the receiver The operation of returning the liquid refrigerant in (17) to the circulation path may be performed.
  • controller (95) may forcibly terminate the operation when the operation of returning the liquid refrigerant in the receiver (17) to the circulation path exceeds 10 minutes.
  • the controller (95) The operating state may be switched by temporarily setting the first four-way selector valve (12), which is a mechanism, to the second state. At that time, the indoor expansion valve (22) is closed at the same time.
  • the conditions for switching the first four-way switching valve (12) to the second state are the same as those for performing the operation of returning the liquid refrigerant in the receiver (17) to the circulation path by the refrigerant return mechanism (5). It is.
  • the second operation mode in which the refrigerant circulates in the same flow as in the refrigeration operation is set.
  • the outdoor fan (16) remains stopped.
  • the high-pressure gas refrigerant discharged from the compression mechanism (11D) flows into the receiver (17) through the outdoor heat exchanger (15).
  • the internal pressure of the receiver (17) rises and the liquid refrigerant in the receiver (17) is forced out and returned to the collecting liquid pipe (53) force refrigeration unit (30) and refrigeration unit (40). .
  • liquid branch pipe (66) of the above embodiment may be provided with an electromagnetic valve instead of the relief valve (117).
  • the compression mechanism (11D, 11E) is configured by three compressors (11A, 11B, 11C) has been described.
  • the number of compressors can be changed as appropriate.
  • the present invention is useful for a refrigeration apparatus having a plurality of utilization side heat exchangers and capable of performing 100% heat recovery operation between the utilization side heat exchangers ⁇ . .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A refrigerating apparatus comprising a refrigerant return mechanism (5) for returning a liquid refrigerant in a receiver (17) to a circulation route. Accordingly, the liquid refrigerant in the receiver (17) can be forcibly returned to the circulation route in such an operating state that the circulation route for the refrigerant is formed to return the refrigerant fed from compression mechanisms (11D, 11E) from a second use side unit (20) to the compression mechanisms (11D, 11E) through first use side units (30, 40).

Description

明 細 書  Specification
冷凍装置  Refrigeration equipment
技術分野  Technical field
[0001] 本発明は、冷凍装置に関し、特に、冷蔵 ·冷凍用や空調用として複数の利用側熱 交 を有し、各利用側熱交 間で 100%熱回収運転を行うことのできる冷凍装 置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a refrigeration apparatus, and in particular, a refrigeration apparatus having a plurality of use side heat exchanges for refrigeration / freezing and air conditioning, and capable of performing 100% heat recovery operation between each use side heat exchange. Is related to the position.
背景技術  Background art
[0002] 従来より、冷凍サイクルを行う冷凍装置が知られている。この冷凍装置は、室内を冷 暖房する空調機や、食品等を冷蔵 ·冷凍するショーケース等の冷却機として広く利用 されている。この冷凍装置には、空調と冷蔵 ·冷凍の両方を行うものがある(例えば、 特許文献 1参照)。この冷凍装置は、例えばコンビニエンスストアに設置され、 1つの 冷凍装置を設置するだけで、店内の空調とショーケース等の冷却を行うことができる  Conventionally, a refrigeration apparatus that performs a refrigeration cycle is known. This refrigeration apparatus is widely used as an air conditioner for cooling and heating a room and a refrigerator for a showcase for refrigeration / freezing food. Some of these refrigeration apparatuses perform both air conditioning and refrigeration / freezing (see, for example, Patent Document 1). This refrigeration unit is installed in a convenience store, for example, and it is possible to cool the air conditioner and the showcase in the store by installing only one refrigeration unit.
[0003] 上記冷凍装置は、冷蔵 ·冷凍用のショーケースや空調用の室内機などの利用側ュ ニットに設けられて!/ヽる複数の利用側熱交換器 (冷蔵 ·冷凍用熱交換器や空調用熱 交翻)が、室外に設置される熱源側ユニット (室外ユニット)の熱源側熱交翻 (室 外熱交換器)に対して並列に、それぞれ液側連絡配管及びガス側連絡配管によって 接続されている。 [0003] The refrigeration apparatus is provided in a use side unit such as a refrigeration / refrigeration showcase or an air conditioning indoor unit! / Several use side heat exchangers (refrigeration / refrigeration heat exchangers) And heat exchange for air conditioning) are parallel to the heat source side heat exchange (outdoor heat exchanger) of the heat source side unit (outdoor unit) installed outdoors, respectively, and the liquid side communication pipe and gas side communication pipe Connected by.
[0004] ここで、冷媒回路が冷蔵'冷凍用の第 1系統側回路と空調用の第 2系統側回路の 2 系統を有する場合、通常は液ラインとガスラインのそれぞれにつ ヽて連絡配管が 2本 ずつ用いられている。一方、 2系統の液ラインで一本の液側連絡配管を共用し、連絡 配管の本数を減らすようにしたものもある(特許文献 2参照)。  [0004] Here, when the refrigerant circuit has two systems of the first system side circuit for refrigeration and freezing and the second system side circuit for air conditioning, it is usually connected to each of the liquid line and the gas line. Two are used. On the other hand, there is also one in which two liquid lines share one liquid side connecting pipe to reduce the number of connecting pipes (see Patent Document 2).
[0005] この装置の冷媒回路は、具体的には図 13に示すように構成されている。図におい て、 (101)は室外ユニット、 (102)は室内ユニット、 (103)は冷蔵用ショーケース(冷蔵 ユニット)、(104)は冷凍用ショーケース(冷凍ユニット)である。室外ユニット(101)に は圧縮機構 (105, 106)と室外熱交 (107)と室外膨張弁(108)とレシーバ(109)と が設けられ、室内ユニット(102)には室内熱交 (空調用熱交 (110)と室内 膨張弁(111)とが設けられている。また、冷蔵用ショーケース(103)には冷蔵用熱交 翻 (112)と冷蔵用膨張弁(113)とが設けられ、冷凍用ショーケース(104)には冷凍 用熱交 (114)と冷凍用膨張弁(115)とブースタ圧縮機(116)とが設けられて 、る [0005] Specifically, the refrigerant circuit of this apparatus is configured as shown in FIG. In the figure, (101) is an outdoor unit, (102) is an indoor unit, (103) is a refrigerated showcase (refrigerated unit), and (104) is a refrigerated showcase (refrigerated unit). The outdoor unit (101) is provided with a compression mechanism (105, 106), an outdoor heat exchanger (107), an outdoor expansion valve (108), and a receiver (109), and the indoor unit (102) has an indoor heat exchanger (air conditioner). Heat exchange (110) and indoor An expansion valve (111) is provided. The refrigeration showcase (103) is provided with a refrigeration heat exchanger (112) and a refrigeration expansion valve (113), and the refrigeration showcase (104) is provided with a refrigeration heat exchanger (114) and a refrigeration expansion valve (113). Expansion valve (115) and booster compressor (116) are provided.
[0006] この冷凍装置の冷媒回路(120)は、室外熱交換器 (107)と冷蔵 ·冷凍用熱交換器 ( 112, 114)との間で冷媒がー方向に循環するように構成された冷蔵 ·冷凍用の第 1系 統側回路と、室外熱交 (107)と室内熱交 (110)との間で冷媒が可逆に循環 するように構成された空調用の第 2系統側回路とを備えている。そして、各系統の液 ラインとして 1本の液側連絡配管(121)を共用している。 [0006] The refrigerant circuit (120) of the refrigeration apparatus is configured such that the refrigerant circulates in the negative direction between the outdoor heat exchanger (107) and the refrigeration / refrigeration heat exchanger (112, 114). A first system side circuit for refrigeration and freezing, and a second system side circuit for air conditioning configured so that refrigerant circulates reversibly between the outdoor heat exchange (107) and the indoor heat exchange (110). It has. And one liquid side connecting pipe (121) is shared as the liquid line of each system.
[0007] 上記の冷凍装置では、室外に設置される室外熱交 (107)を熱源として室内の 空調や各ショーケースの冷却を行う運転を行えるほか、上記室外熱交換器(107)を 使わずに、室内熱交翻(110)を凝縮器に、冷蔵,冷凍用熱交翻(112, 114)を蒸 発器にして、暖房と冷蔵 ·冷凍を 100%熱回収で行う運転が可能である。  [0007] In the above refrigeration system, the outdoor heat exchanger (107) installed outdoors can be used as a heat source to perform indoor air conditioning and cooling of each showcase, and without using the outdoor heat exchanger (107). In addition, it is possible to operate with 100% heat recovery for heating, refrigeration and freezing using indoor heat exchange (110) as a condenser and heat exchange for refrigeration and freezing (112, 114) as an evaporator. .
[0008] ところで、液側連絡配管(121)を一本にした上記冷媒回路(120)の構成において 1 00%熱回収運転を行う時には、圧縮機構(105, 106)から吐出された冷媒が、室内熱 交換器 (110)で凝縮した後、冷蔵,冷凍用熱交換器 (112, 114)で蒸発し、再び圧縮 機構(105, 106)に戻る冷媒の循環経路が冷媒回路(120)で形成される。つまり、この ときには、室内熱交 (110)で凝縮した液冷媒をレシーバ(109)から熱源側熱交 換器(107)の方向へは流さずに、冷蔵'冷凍用の熱交換器(112, 114)に導入するこ とが必要になる。  By the way, when performing a 100% heat recovery operation in the configuration of the refrigerant circuit (120) in which the liquid side communication pipe (121) is single, the refrigerant discharged from the compression mechanism (105, 106) The refrigerant circuit (120) forms a refrigerant circulation path that condenses in the indoor heat exchanger (110), evaporates in the refrigeration / refrigeration heat exchanger (112, 114), and returns to the compression mechanism (105, 106). Is done. In other words, at this time, the liquid refrigerant condensed in the indoor heat exchanger (110) does not flow from the receiver (109) to the heat source side heat exchanger (107), but instead of the refrigerated heat exchanger (112, 114).
[0009] しかし、例えば外気温度が低い時にはレシーバ(109)内の圧力が下がるため、液側 連絡配管(121)の内部の圧力も下がり、室内熱交 (110)から出た液冷媒が液側 連絡配管(121)からレシーバ(109)に流入しやすくなつて、冷蔵'冷凍用熱交 (l 12, 114)へ流れる冷媒流量が不足するおそれがある。そして、冷蔵'冷凍用熱交換 器(112, 114)の冷媒流量が不足すると、各ショーケース(103, 104)の庫内を冷却す る能力が低下してしまうことになる。  [0009] However, for example, when the outside air temperature is low, the pressure in the receiver (109) decreases, so the pressure in the liquid side communication pipe (121) also decreases, and the liquid refrigerant from the indoor heat exchanger (110) becomes liquid side. There is a risk that the flow rate of refrigerant flowing to the refrigeration heat storage (l 12, 114) will be insufficient because it tends to flow into the receiver (109) from the communication pipe (121). If the refrigerant flow rate of the refrigerated heat exchanger (112, 114) is insufficient, the ability to cool the interior of each showcase (103, 104) will be reduced.
[0010] そこで、上記冷凍装置では、液側連絡配管(121)からレシーバ(109)への冷媒通路 にリリーフバルブ(117)を設けている。このリリーフノ レブ(117)は、液側連絡配管(12 1)の冷媒圧力が所定値以上に上昇すると開くが、その所定値に達するまでは閉鎖さ れた状態を保つ弁である。そして、このリリーフバルブ(117)の作動圧力を 100%熱 回収運転時の液側連絡配管(121)の圧力よりも高い圧力に設定することにより、 100 %熱回収運転時に液冷媒がレシーバ(109)へ流入するのを防止し、低外気温時でも 冷媒回路(120)内の冷媒の流れを安定させて冷凍能力が低下しないようにしている。 [0010] Therefore, in the refrigeration apparatus, the relief valve (117) is provided in the refrigerant passage from the liquid side communication pipe (121) to the receiver (109). This relief knob (117) is connected to the liquid side connecting pipe (12 This valve opens when the refrigerant pressure in 1) rises above a predetermined value, but remains closed until it reaches the predetermined value. The operating pressure of the relief valve (117) is set to a pressure higher than the pressure of the liquid side connecting pipe (121) during the 100% heat recovery operation, so that the liquid refrigerant is received by the receiver (109 ), And the refrigerant flow in the refrigerant circuit (120) is stabilized even at low outside temperatures so that the refrigeration capacity does not decrease.
[0011] なお、上記冷凍装置では室外熱交換器(107)が蒸発器になる冷凍サイクルの暖房 運転も可能である力 そのときはリリーフバルブ(117)には圧縮機(106)の吸入圧が 作用するため、リリーフバルブ(117)は開口する。また、冷房運転時には、冷媒はリリ ーフバルブ(117)のある通路を流れな!/、。 [0011] It should be noted that in the above refrigeration apparatus, the outdoor heat exchanger (107) is capable of heating the refrigeration cycle where the evaporator serves as an evaporator. In that case, the relief valve (117) has a suction pressure of the compressor (106). In order to act, the relief valve (117) opens. During cooling operation, the refrigerant should not flow through the passage with the relief valve (117)! /.
特許文献 1:特開 2001— 280749号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-280749
特許文献 2 :特開 2005— 134103号公報  Patent Document 2: JP-A-2005-134103
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] ところで、上記装置では、リリーフバルブが閉じられていてもレシーバへの冷媒の流 入を完全に阻止することができない場合がある。具体的に、リリーフバルブで冷媒漏 れが発生する場合であり、この場合は、冷媒が徐々にレシーバへ流入し、 100%熱 回収運転中は流入した冷媒がレシーノからほとんど出ていかないので、レシーバ内 の冷媒量が増加する一方で、利用側ユニットである冷蔵 ·冷凍用熱交換器で冷媒が 不足する。そして、各ショーケースの庫内を冷却する能力が低下することが問題とな る。なお、このような問題は、リリーフバルブとは異なるタイプの弁機構 (例えば電磁弁 )を設けた場合でも同様に発生する。どのようなタイプの弁機構でも、比較的高圧の 冷媒が作用する場合は冷媒漏れを完全に解消することが難しい。 [0012] By the way, in the above-described apparatus, there are cases where the inflow of the refrigerant to the receiver cannot be completely prevented even when the relief valve is closed. Specifically, this is a case where refrigerant leaks at the relief valve. In this case, the refrigerant gradually flows into the receiver, and during the 100% heat recovery operation, almost no refrigerant flows out of the receiver. While the amount of refrigerant inside increases, there is a shortage of refrigerant in the refrigeration / freezing heat exchanger, which is the user side unit. The problem is that the ability to cool the interior of each showcase is reduced. Such a problem occurs similarly even when a valve mechanism (for example, a solenoid valve) of a type different from the relief valve is provided. Regardless of the type of valve mechanism, it is difficult to completely eliminate refrigerant leakage when a relatively high-pressure refrigerant is applied.
[0013] また、リリーフバルブは、レシーバへの冷媒の流入を阻止したい場合であってもリリ 一フノ レブに作用する冷媒圧力が高くなりすぎて開口する場合があり、この場合もレ シーバ内へ冷媒が必要以上に流入すると、上記と同様に冷媒不足により各ショーケ 一スの庫内を冷却する能力が低下してしまう。  [0013] In addition, even when it is desired to prevent the refrigerant from flowing into the receiver, the relief valve may open due to excessively high refrigerant pressure acting on the relief valve. In this case, too, the relief valve may enter the receiver. If the refrigerant flows more than necessary, the ability to cool the interior of each showcase will be reduced due to the lack of refrigerant as described above.
[0014] 本発明は、力かる点に鑑みてなされたものであり、その目的は、複数系統の利用側 熱交 を備えるとともに、複数の液ラインで一本の液側連絡配管を共用した冷凍 装置において、レシーバ内の冷媒量の増加に起因する利用側ユニットでの冷媒不足 を防止することである。 [0014] The present invention has been made in view of the strong point, and an object of the present invention is to provide a refrigeration system in which a plurality of utilization side heat exchanges are provided, and a plurality of liquid lines share a single liquid side communication pipe. In the device, the shortage of refrigerant in the usage-side unit due to an increase in the amount of refrigerant in the receiver is prevented.
課題を解決するための手段  Means for solving the problem
[0015] 第 1の発明は、圧縮機構 (11D, 11E)と熱源側熱交 (15)とレシーバ(17)とを有 する熱源側ユニット(10)と、第 1利用側熱交換器 (31, 41)を有する第 1利用側ュニッ ト (30, 40)と、第 2利用側熱交換器 (21)を有する第 2利用側ユニット (20)と、各ュニッ ト(10, 20, 30, 40)を接続して冷媒回路 (50)を構成するガス側連絡配管(51, 52)及 び液側連絡配管 (53, 54, 55)とを備え、上記ガス側連絡配管 (51, 52)が、上記熱源 側ユニット(10)と上記第 1利用側ユニット (30,40)とに接続された第 1ガス側連絡配管 (51)と、上記熱源側ユニット (10)と上記第 2利用側ユニット (20)とに接続された第 2ガ ス側連絡配管(52)とを備え、上記液側連絡配管(53, 54, 55)が、上記熱源側ュ-ッ ト(10)に接続された集合液管 (53)と、該集合液管 (53)から分岐して上記第 1利用側 ユニット (30, 40)に接続された第 1分岐液管 (54)と、該集合液管 (53)から分岐して上 記第 2利用側ユニット (20)に接続された第 2分岐液管 (55)とを備えた冷凍装置 (1)を 対象とする。そして、上記冷媒回路 (50)は、上記圧縮機構(11D, 11E)から送り出さ れた冷媒が上記第 2利用側ユニット (20)力 第 1利用側ユニット (30, 40)を流通し該 圧縮機構(11D, 11E)に戻る冷媒の循環経路が形成可能になっており、上記レシ一 バ(17)内の液冷媒を上記循環経路へ戻す冷媒戻し機構 (5)が設けられている。  [0015] The first invention includes a heat source side unit (10) having a compression mechanism (11D, 11E), a heat source side heat exchanger (15), and a receiver (17), and a first use side heat exchanger (31 , 41), a first user-side unit (30, 40) having a second user-side heat exchanger (21), a second user-side unit (20), and each unit (10, 20, 30, 40) is connected to the gas side connecting pipe (51, 52) and the liquid side connecting pipe (53, 54, 55) to form the refrigerant circuit (50). Includes a first gas side communication pipe (51) connected to the heat source side unit (10) and the first usage side unit (30, 40), the heat source side unit (10) and the second usage side. A second gas side connecting pipe (52) connected to the unit (20), and the liquid side connecting pipe (53, 54, 55) is connected to the heat source side pipe (10). Collected liquid pipe (53) and branched from the collected liquid pipe (53) to contact the first use side unit (30, 40). A first branch liquid pipe (54) and a second branch liquid pipe (55) branched from the collecting liquid pipe (53) and connected to the second usage side unit (20). For the device (1). In the refrigerant circuit (50), the refrigerant sent out from the compression mechanism (11D, 11E) flows through the second usage side unit (20), the first usage side unit (30, 40), and the compression mechanism. A refrigerant circulation path returning to (11D, 11E) can be formed, and a refrigerant return mechanism (5) for returning the liquid refrigerant in the receiver (17) to the circulation path is provided.
[0016] 第 2の発明は、第 1の発明において、上記冷媒戻し機構 (5)が、上記圧縮機構 (11 D, 11E)から吐出された高圧冷媒を上記レシーバ(17)へ導入するための導入管(71 )を備え、該導入管(71)から上記高圧冷媒を上記レシーバ(17)へ導入して該レシ一 バ(17)を加圧することによって該レシーバ(17)内の液冷媒を上記集合液管 (53)を通 じて上記循環経路へ戻す。  [0016] In a second invention according to the first invention, the refrigerant return mechanism (5) introduces the high-pressure refrigerant discharged from the compression mechanism (11D, 11E) into the receiver (17). An introduction pipe (71) is provided, and the liquid refrigerant in the receiver (17) is reduced by introducing the high-pressure refrigerant from the introduction pipe (71) into the receiver (17) and pressurizing the receiver (17). It returns to the circulation path through the collecting liquid pipe (53).
[0017] 第 3の発明は、第 1の発明において、上記冷媒戻し機構 (5)が、上記レシーバ(17) を上記圧縮機構(11D, 11E)の吸入側に連通させるための連通管(67)を備え、該連 通管(67)によって上記レシーバ(17)内の液冷媒を上記圧縮機構(11D, 11E)へ吸入 させて上記循環経路へ戻す。  [0017] A third invention is the communication pipe (67) according to the first invention, wherein the refrigerant return mechanism (5) communicates the receiver (17) with the suction side of the compression mechanism (11D, 11E). ), The liquid refrigerant in the receiver (17) is sucked into the compression mechanism (11D, 11E) through the communication pipe (67) and returned to the circulation path.
[0018] 第 4の発明は、第 1の発明において、上記冷媒戻し機構 (5)が、上記熱源側熱交換 器(15)を介して上記レシーバ(17)を上記圧縮機構(11D, 11E)の吐出側に連通させ るための連通機構(13)を備え、該連通機構(13)によって上記レシーバ(17)を上記 圧縮機構(11D, 11E)の吐出側に連通させて該圧縮機構(11D, 11E)が吐出した高 圧冷媒を該レシーバ(17)へ流入させることによって該レシーバ(17)内の液冷媒を上 記集合液管 (53)を通じて上記循環経路へ戻す。 [0018] In a fourth aspect based on the first aspect, the refrigerant return mechanism (5) includes the heat source side heat exchange. A communication mechanism (13) for communicating the receiver (17) to the discharge side of the compression mechanism (11D, 11E) via a container (15), and the receiver (17) Is connected to the discharge side of the compression mechanism (11D, 11E), and the high-pressure refrigerant discharged from the compression mechanism (11D, 11E) is caused to flow into the receiver (17), thereby liquid refrigerant in the receiver (17) Is returned to the circulation path through the collecting liquid pipe (53).
[0019] 第 5の発明は、第 1乃至第 4の発明の何れか 1つにおいて、上記第 1利用側熱交換 器 (31, 41)から上記圧縮機構(11D, 11E)の吸入側へ向力う冷媒の過熱度を検出す る吸入過熱度検出手段(79, 81)と、上記吸入過熱度検出手段(79, 81)の検出値が 所定値以上になると上記レシーバ( 17)内の冷媒を上記循環経路へ戻すように上記 冷媒戻し機構 (5)を制御する制御手段 (95)とを備えて!/、る。  [0019] A fifth invention is directed to any one of the first to fourth inventions, from the first use side heat exchanger (31, 41) to the suction side of the compression mechanism (11D, 11E). Refrigerant in the receiver (17) when the detected value of the suction superheat degree detection means (79, 81) and the suction superheat degree detection means (79, 81) exceeds a predetermined value. Control means (95) for controlling the refrigerant return mechanism (5) so as to return the refrigerant to the circulation path.
[0020] 第 6の発明は、第 1乃至第 4の発明の何れか 1つにおいて、上記圧縮機構(11D, 11 E)が吐出した冷媒の過熱度を検出する吐出過熱度検出手段(75, 76)と、上記吐出 過熱度検出手段(75, 76)の検出値が所定値以上になると上記レシーバ(17)内の冷 媒を上記循環経路へ戻すように上記冷媒戻し機構 (5)を制御する制御手段 (95)とを 備えている。  [0020] A sixth aspect of the present invention is directed to any one of the first to fourth aspects of the present invention, wherein the superheat degree detecting means (75, 11) detects the superheat degree of the refrigerant discharged by the compression mechanism (11D, 11E). 76) and the refrigerant return mechanism (5) to return the refrigerant in the receiver (17) to the circulation path when the detected value of the discharge superheat degree detection means (75, 76) exceeds a predetermined value. And a control means (95) for controlling.
[0021] 第 7の発明は、第 1乃至第 4の発明の何れか 1つにおいて、上記圧縮機構(11D, 11 E)が吐出した冷媒の温度を検出する吐出冷媒温度検出手段 (76)と、上記吐出冷媒 温度検出手段 (76)の検出値が所定値以上になると上記レシーバ(17)内の冷媒を上 記循環経路へ戻すように上記冷媒戻し機構 (5)を制御する制御手段 (95)とを備えて いる。  [0021] The seventh invention is the discharge refrigerant temperature detection means (76) for detecting the temperature of the refrigerant discharged by the compression mechanism (11D, 11E) in any one of the first to fourth inventions. Control means (95) for controlling the refrigerant return mechanism (5) to return the refrigerant in the receiver (17) to the circulation path when the detected value of the discharged refrigerant temperature detection means (76) becomes a predetermined value or more. ).
[0022] 第 8の発明は、圧縮機構 (11D, 11E)と熱源側熱交 (15)とレシーバ(17)とを有 する熱源側ユニット(10)と、第 1利用側熱交換器 (31, 41)を有する第 1利用側ュニッ ト (30, 40)と、第 2利用側熱交換器 (21)を有する第 2利用側ユニット (20)と、各ュニッ ト(10, 20, 30, 40)を接続して冷媒回路 (50)を構成するガス側連絡配管(51, 52)及 び液側連絡配管 (53, 54, 55)とを備え、上記ガス側連絡配管 (51, 52)が、上記熱源 側ユニット(10)と上記第 1利用側ユニット (30,40)とに接続された第 1ガス側連絡配管 (51)と、上記熱源側ユニット (10)と上記第 2利用側ユニット (20)とに接続された第 2ガ ス側連絡配管(52)とを備え、上記液側連絡配管(53, 54, 55)が、上記熱源側ュ-ッ ト(10)に接続された集合液管 (53)と、該集合液管 (53)から分岐して上記第 1利用側 ユニット (30, 40)に接続された第 1分岐液管 (54)と、該集合液管 (53)から分岐して上 記第 2利用側ユニット (20)に接続された第 2分岐液管 (55)とを備えた冷凍装置 (1)を 対象とする。そして、上記冷媒回路 (50)には、上記圧縮機構(11D, 11E)から送り出 された冷媒が上記第 2利用側ユニット (20)が上記第 2利用側ユニット (20)から第 1利 用側ユニット (30, 40)を流通し該圧縮機構(11D, 11E)に戻る第 1運転モードと、上記 圧縮機構 (1 ID, 11E)力 送り出された冷媒が上記熱源側熱交 (15)からレシ一 バ(17)に流入した後に第 1利用側ユニット (30, 40)を流通して該圧縮機構(11D, 11 E)に戻る第 2運転モードとを切り換える切 構 (12)が設けられ、上記切 構 (12 )によって第 1運転モードから第 2運転モードに切り換えて、該第 1運転モード中にレ シーバ(17)内に溜まった液冷媒を上記集合液管 (53)を通じて上記第 1利用側ュニ ット(30, 40)へ戻す。 [0022] The eighth invention includes a heat source side unit (10) having a compression mechanism (11D, 11E), a heat source side heat exchanger (15), and a receiver (17), and a first use side heat exchanger (31 , 41), a first user-side unit (30, 40) having a second user-side heat exchanger (21), a second user-side unit (20), and each unit (10, 20, 30, 40) is connected to the gas side connecting pipe (51, 52) and the liquid side connecting pipe (53, 54, 55) to form the refrigerant circuit (50). Includes a first gas side communication pipe (51) connected to the heat source side unit (10) and the first usage side unit (30, 40), the heat source side unit (10) and the second usage side. A second gas side connecting pipe (52) connected to the unit (20), and the liquid side connecting pipe (53, 54, 55) is connected to the heat source side pipe. A collecting liquid pipe (53) connected to the first (10), and a first branch liquid pipe (54) branched from the collecting liquid pipe (53) and connected to the first use side unit (30, 40). And a second branch liquid pipe (55) branched from the collecting liquid pipe (53) and connected to the second usage side unit (20). Then, the refrigerant sent from the compression mechanism (11D, 11E) is supplied to the refrigerant circuit (50) by the second usage side unit (20) from the second usage side unit (20). A first operation mode that flows through the side unit (30, 40) and returns to the compression mechanism (11D, 11E), and the compression mechanism (1 ID, 11E) force is sent from the heat source side heat exchanger (15). There is provided a mechanism (12) for switching between the second operation mode that flows into the receiver (17) and then flows through the first user side unit (30, 40) and returns to the compression mechanism (11D, 11 E). The mechanism (12) switches from the first operation mode to the second operation mode, and the liquid refrigerant accumulated in the receiver (17) during the first operation mode passes through the collecting liquid pipe (53). 1 Return to the user unit (30, 40).
[0023] 一作用  [0023] One action
第 1の発明では、圧縮機構(11D, 11E)力 送り出された冷媒が第 2利用側ユニット (20)から第 1利用側ユニット(30,40)を流通して圧縮機構(11D, 11E)へ戻る冷媒の 循環経路が形成される運転状態において、レシーバ(17)内の液冷媒を上記冷媒戻 し機構 (5)によって循環経路へ強制的に戻すことが可能になっている。すなわち、上 述したように、レシーバ(17)への冷媒の流入を阻止しょうとしても冷媒がレシーバ(17 )へ流入してしまう場合があり、このような場合は循環経路の冷媒量が減少するが、こ の第 1の発明では、冷媒戻し機構 (5)によりレシーバ(17)内の液冷媒が循環経路へ 戻されるようにしている。  In the first invention, the refrigerant sent out by the compression mechanism (11D, 11E) flows from the second usage side unit (20) through the first usage side unit (30, 40) to the compression mechanism (11D, 11E). In an operating state in which a circulation path for the returning refrigerant is formed, the liquid refrigerant in the receiver (17) can be forcibly returned to the circulation path by the refrigerant return mechanism (5). That is, as described above, there is a case where the refrigerant flows into the receiver (17) even if it tries to prevent the refrigerant from flowing into the receiver (17). In such a case, the refrigerant amount in the circulation path decreases. However, in the first invention, the liquid refrigerant in the receiver (17) is returned to the circulation path by the refrigerant return mechanism (5).
[0024] 第 2の発明では、レシーバ(17)内の液冷媒を循環経路へ戻す際に、圧縮機構 (11 D, 11E)から吐出された高圧のガス冷媒が導入管(71)によってレシーバ(17)へ導入 される。レシーバ(17)は、高圧のガス冷媒が導入されると、その内圧が上昇して内部 の液冷媒が押し出される。そして、レシーバ(17)力も押し出された液冷媒は、集合液 管(53)を通じて循環経路へ戻される。これにより、レシーバ(17)内は、密度が小さい ガス冷媒の割合が増加し、密度が大きい液冷媒の割合が減少する。そして、レシ一 バ(17)内の冷媒量が減少し、循環経路の冷媒量が増加する。 [0025] 第 3の発明では、レシーバ(17)内の液冷媒を循環経路へ戻す際に、連通管 (67)に よってレシーバ(17)を圧縮機構(11D, 11E)の吸入側に連通させる。レシーバ(17)は 、圧縮機構(11D, 11E)の吸入側に連通すると、内部の液冷媒が圧縮機構(11D, 11 E)に吸入される。これにより、レシーバ(17)内の液冷媒が強制的に循環経路へ戻さ れ、レシーバ(17)内の冷媒量が減少して循環経路の冷媒量が増加する。 [0024] In the second invention, when returning the liquid refrigerant in the receiver (17) to the circulation path, the high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) is introduced into the receiver (71) by the introduction pipe (71). 17). When a high-pressure gas refrigerant is introduced into the receiver (17), the internal pressure rises and the liquid refrigerant inside is pushed out. Then, the liquid refrigerant whose receiver (17) force is also pushed out is returned to the circulation path through the collecting liquid pipe (53). As a result, in the receiver (17), the ratio of the gas refrigerant having a low density increases, and the ratio of the liquid refrigerant having a high density decreases. Then, the amount of refrigerant in the receiver (17) decreases, and the amount of refrigerant in the circulation path increases. In the third invention, when returning the liquid refrigerant in the receiver (17) to the circulation path, the communication pipe (67) connects the receiver (17) to the suction side of the compression mechanism (11D, 11E). . When the receiver (17) communicates with the suction side of the compression mechanism (11D, 11E), the liquid refrigerant inside is sucked into the compression mechanism (11D, 11E). As a result, the liquid refrigerant in the receiver (17) is forcibly returned to the circulation path, the refrigerant amount in the receiver (17) is decreased, and the refrigerant quantity in the circulation path is increased.
[0026] 第 4の発明では、レシーバ(17)内の液冷媒を循環経路へ戻す際に、連通機構(13) によって熱源側熱交換器 (15)を介してレシーバ(17)を圧縮機構 (11D, 11E)の吐出 側に連通させて圧縮機構(11D, 11E)が吐出した高圧のガス冷媒をレシーバ(17)へ 流入させる。レシーバ(17)は、高圧のガス冷媒が流入すると、上記第 2の発明と同様 に、その内部が加圧されて液冷媒が押し出される。そして、レシーバ(17)から押し出 された液冷媒は、集合液管(53)を通じて循環経路へ戻される。これにより、レシーバ (17)内の冷媒量が減少し、循環経路の冷媒量が増加する。  In the fourth invention, when returning the liquid refrigerant in the receiver (17) to the circulation path, the communication mechanism (13) causes the receiver (17) to be compressed via the heat source side heat exchanger (15). The high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) is communicated with the discharge side of 11D, 11E) and flows into the receiver (17). When a high-pressure gas refrigerant flows in the receiver (17), the interior of the receiver (17) is pressurized and the liquid refrigerant is pushed out, as in the second aspect of the invention. Then, the liquid refrigerant pushed out from the receiver (17) is returned to the circulation path through the collecting liquid pipe (53). As a result, the amount of refrigerant in the receiver (17) decreases and the amount of refrigerant in the circulation path increases.
[0027] また、圧縮機構 (11D, 11E)が吐出した高圧のガス冷媒が、熱源側熱交換器 (15)を 通じてレシーバ(17)へ導入される。この第 4の発明では、圧縮機構(11D, 11E)が吐 出した高圧のガス冷媒をレシーバ(17)へ導入するための流通経路として熱源側熱交 翻(15)を利用している。  [0027] The high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) is introduced into the receiver (17) through the heat source side heat exchanger (15). In the fourth aspect of the invention, the heat source side heat exchange (15) is used as a flow path for introducing the high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) to the receiver (17).
[0028] 第 5の発明では、第 1利用側熱交換器 (31, 41)から圧縮機構 (11D, 11E)の吸入側 へ向力う冷媒の過熱度が所定値以上になると、冷媒戻し機構 (5)によってレシーバ(1 7)内の液冷媒を循環経路へ戻すようにしている。ところで、第 1利用側熱交換器 (31, 41)では、冷媒流量が少ないほど、気液二相状態の冷媒が流れる領域が減少して単 相のガス冷媒が流れる領域が拡大するので、第 1利用側熱交換器 (31, 41)から流出 した冷媒の過熱度が大きくなる。つまり、第 1利用側熱交 (31, 41)から流出した 冷媒の過熱度は、第 1利用側熱交換器 (31, 41)の冷媒流量を反映しているので、吸 入過熱度検出手段 (79, 81)の検出値を用いれば第 1利用側熱交換器 (31, 41)で冷 媒が不足している力否かが適切に判断される。  [0028] In the fifth invention, when the degree of superheat of the refrigerant directed from the first use side heat exchanger (31, 41) to the suction side of the compression mechanism (11D, 11E) becomes equal to or greater than a predetermined value, the refrigerant return mechanism The liquid refrigerant in the receiver (17) is returned to the circulation path by (5). By the way, in the first usage-side heat exchanger (31, 41), the smaller the refrigerant flow rate, the smaller the region where the gas-liquid two-phase refrigerant flows and the larger the region where the single-phase gas refrigerant flows. 1 The degree of superheat of the refrigerant flowing out from the use side heat exchanger (31, 41) increases. In other words, the superheat degree of the refrigerant flowing out from the first usage side heat exchanger (31, 41) reflects the refrigerant flow rate of the first usage side heat exchanger (31, 41), so that the suction superheat degree detection means If the detected value of (79, 81) is used, it is determined appropriately whether or not the first usage-side heat exchanger (31, 41) has insufficient power.
[0029] 第 6の発明では、圧縮機構(11D, 11E)が吐出した冷媒の過熱度が所定値以上に なると、冷媒戻し機構 (5)によってレシーバ(17)内の液冷媒を循環経路へ戻すように している。ところで、上述したように、第 1利用側熱交換器 (31, 41)の冷媒流量が少な いほど、第 1利用側熱交 (31, 41)から流出して圧縮機構 (11D, 11E)へ吸入され る冷媒の過熱度が大きくなる。そして、圧縮機構(11D, 11E)へ吸入される冷媒の過 熱度が大きいほど、圧縮機構(11D, 11E)が吐出した冷媒の過熱度も大きくなる。つ まり、圧縮機構 (11D, 11E)が吐出した冷媒の過熱度は第 1利用側熱交換器 (31, 41) の冷媒流量を反映しているので、吐出過熱度検出手段(75, 76)の検出値を用いれ ば第 1利用側熱交 (31, 41)で冷媒が不足している力否かが適切に判断される。 [0029] In the sixth invention, when the superheat degree of the refrigerant discharged from the compression mechanism (11D, 11E) exceeds a predetermined value, the liquid refrigerant in the receiver (17) is returned to the circulation path by the refrigerant return mechanism (5). It is doing so. By the way, as described above, the refrigerant flow rate of the first usage side heat exchanger (31, 41) is small. The higher the degree of superheat of the refrigerant that flows out from the first use side heat exchanger (31, 41) and is sucked into the compression mechanism (11D, 11E). As the degree of superheat of the refrigerant sucked into the compression mechanism (11D, 11E) increases, the degree of superheat of the refrigerant discharged from the compression mechanism (11D, 11E) also increases. In other words, the superheat degree of the refrigerant discharged from the compression mechanism (11D, 11E) reflects the refrigerant flow rate of the first usage side heat exchanger (31, 41), so the discharge superheat degree detecting means (75, 76) If the detected value is used, it is determined appropriately whether or not the refrigerant is deficient in the first use side heat exchange (31, 41).
[0030] 第 7の発明では、圧縮機構(11D, 11E)が吐出した冷媒の温度が所定値以上になる と、冷媒戻し機構 (5)によってレシーバ(17)内の冷媒を循環経路へ戻すようにしてい る。ところで、上述したように、第 1利用側熱交換器 (31, 41)の冷媒流量が少ないほど 圧縮機構(11D, 11E)が吐出した冷媒の過熱度が大きくなる。そして、冷媒の過熱度 が大きいということはその温度が高くなる。つまり、圧縮機構(11D, 11E)が吐出した冷 媒の温度は、第 1利用側熱交換器 (31, 41)の冷媒流量を反映しているので、吐出冷 媒温度検出手段 (76)の検出値を用いれば第 1利用側熱交換器 (31, 41)で冷媒が不 足している力否かが適切に判断される。  [0030] In the seventh invention, when the temperature of the refrigerant discharged from the compression mechanism (11D, 11E) exceeds a predetermined value, the refrigerant in the receiver (17) is returned to the circulation path by the refrigerant return mechanism (5). I have to. By the way, as described above, the smaller the refrigerant flow rate in the first usage side heat exchanger (31, 41), the greater the degree of superheat of the refrigerant discharged from the compression mechanism (11D, 11E). And if the degree of superheat of the refrigerant is large, the temperature becomes high. That is, the temperature of the refrigerant discharged by the compression mechanism (11D, 11E) reflects the refrigerant flow rate of the first usage-side heat exchanger (31, 41), and therefore the discharge refrigerant temperature detection means (76) If the detected value is used, whether or not the refrigerant is insufficient in the first usage-side heat exchanger (31, 41) is appropriately determined.
[0031] 第 8の発明では、第 1運転モード中にレシーバ(17)内に液冷媒が溜まってくると、 切 構(12)によって運転状態が第 1運転モードから第 2運転モードに切り換えられ る。第 2運転モードでは、上記第 4の発明と同様に、圧縮機構(11D, 11E)が吐出した 高圧のガス冷媒がレシーバ(17)へ流入してその内部を加圧するので、第 1運転モー ド中に溜まった液冷媒が押し出される。そして、レシーバ(17)力も押し出された液冷 媒は、集合液管 (53)を通じて第 1利用側ユニット (30, 40)へ戻される。 [0031] In the eighth invention, when the liquid refrigerant accumulates in the receiver (17) during the first operation mode, the operation state is switched from the first operation mode to the second operation mode by the mechanism (12). The In the second operation mode, as in the fourth invention, the high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) flows into the receiver (17) and pressurizes the interior thereof. The liquid refrigerant accumulated inside is pushed out. Then, the liquid coolant from which the receiver (17) force is also pushed out is returned to the first usage side unit (30, 40) through the collecting liquid pipe (53).
発明の効果  The invention's effect
[0032] 本発明では、レシーバ(17)へ冷媒が流入すると冷媒量が減少する上記循環経路 が形成される運転状態において、レシーバ(17)内の液冷媒を冷媒戻し機構 (5)によ つて循環経路へ戻すことができるようにしている。レシーバ(17)内の液冷媒を循環経 路へ戻すと、各利用側ユニット(20, 30, 40)を流通する冷媒量が増加する。従って、 各利用側ユニット (20, 30, 40)で冷媒が不足する前に冷媒戻し機構 (5)でレシーバ( 17)内の液冷媒を循環経路へ戻すことよって、各利用側ユニット(20, 30, 40)での冷 媒不足を防止することでき、各利用側ユニット (20, 30, 40)での温度調節能力の低下 を回避することができる。 [0032] In the present invention, the liquid refrigerant in the receiver (17) is removed by the refrigerant return mechanism (5) in the operation state in which the circulation path is formed in which the refrigerant amount decreases when the refrigerant flows into the receiver (17). It is possible to return to the circulation path. When the liquid refrigerant in the receiver (17) is returned to the circulation path, the amount of refrigerant flowing through each use side unit (20, 30, 40) increases. Therefore, before the refrigerant runs short in each user side unit (20, 30, 40), the liquid refrigerant in the receiver (17) is returned to the circulation path by the refrigerant return mechanism (5). (30, 40) can prevent the shortage of cooling medium, and the temperature adjustment capability of each user side unit (20, 30, 40) is reduced. Can be avoided.
[0033] また、上記第 3の発明では、レシーバ(17)内の液冷媒を循環経路へ戻す際に、圧 縮機構(11D, 11E)がレシーバ(17)内の液冷媒を吸入するので、圧縮機構(11D, 11 E)の吸入過熱度が下げられる。従って、冷媒を循環経路へ戻して冷媒不足が解消 することができると同時に、吸入過熱度を抑えて圧縮機構(11D, 11E)の入力を削減 することができる。  [0033] Further, in the third invention, when the liquid refrigerant in the receiver (17) is returned to the circulation path, the compression mechanism (11D, 11E) sucks the liquid refrigerant in the receiver (17). The suction superheat degree of the compression mechanism (11D, 11 E) is lowered. Accordingly, the refrigerant can be returned to the circulation path to eliminate the refrigerant shortage, and at the same time, the suction superheat degree can be suppressed and the input of the compression mechanism (11D, 11E) can be reduced.
[0034] また、上記第 4の発明では、圧縮機構(11D, 11E)が吐出した高圧のガス冷媒をレ シーバ(17)へ導入するための流通経路として、冷媒回路 (50)の冷凍サイクルにお!/、 て蒸発器又は凝縮器としての機能を有する熱源側熱交 (15)を利用している。つ まり、冷凍装置 (1)の構成の一部を冷媒戻し機構 (5)として利用している。従って、冷 媒戻し機構 (5)を有する冷凍装置 (1)の構成を簡素化することができる。  [0034] In the fourth invention, the refrigerant circuit (50) has a refrigeration cycle as a flow path for introducing the high-pressure gas refrigerant discharged from the compression mechanism (11D, 11E) into the receiver (17). Oh! / Utilizes heat source side heat exchange (15) that functions as an evaporator or condenser. That is, a part of the configuration of the refrigeration apparatus (1) is used as the refrigerant return mechanism (5). Therefore, the configuration of the refrigeration apparatus (1) having the refrigerant return mechanism (5) can be simplified.
[0035] また、上記第 5の発明では、第 1利用側熱交換器 (31, 41)で冷媒が不足しているか 否かを第 1利用側熱交換器 (31, 41)から圧縮機構 (11D, 11E)の吸入側へ向かう冷 媒の過熱度力 判断できることに着目して、吸入過熱度検出手段 (79, 81)の検出値 に基づいて冷媒戻し機構 (5)を制御するようにしている。従って、第 1利用側熱交換 器 (31, 41)で冷媒が不足する前に適切なタイミングでレシーバ(17)内の液冷媒を循 環経路へ戻すことができるので、第 1利用側熱交 (31, 41)での冷却能力の低下 を確実に回避することができる。  [0035] In the fifth aspect of the invention, whether or not the refrigerant is insufficient in the first usage-side heat exchanger (31, 41) is determined from the first usage-side heat exchanger (31, 41) by the compression mechanism ( 11D, 11E) Focusing on the ability to determine the superheat power of the refrigerant toward the suction side, the refrigerant return mechanism (5) is controlled based on the detection value of the suction superheat detection means (79, 81). Yes. Therefore, the liquid refrigerant in the receiver (17) can be returned to the circulation path at an appropriate timing before the first usage-side heat exchanger (31, 41) runs short of the refrigerant. A decrease in cooling capacity at (31, 41) can be reliably avoided.
[0036] また、上記第 6の発明では、第 1利用側熱交換器 (31, 41)で冷媒が不足しているか 否かを圧縮機構(11D, 11E)が吐出した冷媒の過熱度力 判断できることに着目して 、吐出過熱度検出手段 (75, 76)の検出値に基づいて冷媒戻し機構 (5)を制御するよ うにしている。従って、第 1利用側熱交換器 (31, 41)で冷媒が不足する前に適切なタ イミングでレシーバ(17)内の液冷媒を循環経路へ戻すことができるので、第 1利用側 熱交 (31, 41)での冷却能力の低下を確実に回避することができる。  [0036] In the sixth aspect of the present invention, whether or not the refrigerant is insufficient in the first usage-side heat exchanger (31, 41) is determined based on the degree of superheat power of the refrigerant discharged by the compression mechanism (11D, 11E). Focusing on the possibility, the refrigerant return mechanism (5) is controlled based on the detection value of the discharge superheat degree detection means (75, 76). Accordingly, the liquid refrigerant in the receiver (17) can be returned to the circulation path at an appropriate timing before the first usage-side heat exchanger (31, 41) runs short of the refrigerant. A decrease in cooling capacity at (31, 41) can be reliably avoided.
[0037] また、上記第 7の発明では、第 1利用側熱交換器 (31, 41)で冷媒が不足しているか 否かを圧縮機構(11D, 11E)が吐出した冷媒の温度力 判断できることに着目して、 吐出冷媒温度検出手段 (76)の検出値に基づいて冷媒戻し機構 (5)を制御するよう にしている。従って、第 1利用側熱交換器 (31, 41)で冷媒が不足する前に適切なタイ ミングでレシーバ(17)内の液冷媒を循環経路へ戻すことができるので、第 1利用側熱 交 (31, 41)での冷却能力の低下を確実に回避することができる。 [0037] In the seventh aspect of the invention, it is possible to determine whether or not the first use-side heat exchanger (31, 41) has a shortage of refrigerant and whether the temperature force of the refrigerant discharged by the compression mechanism (11D, 11E) can be determined. Taking note of the above, the refrigerant return mechanism (5) is controlled based on the detected value of the discharged refrigerant temperature detecting means (76). Therefore, before the refrigerant runs out in the first usage side heat exchanger (31, 41), an appropriate Since the liquid refrigerant in the receiver (17) can be returned to the circulation path by the ming, it is possible to reliably avoid the cooling capacity reduction in the first usage side heat exchange (31, 41).
[0038] また、上記第 8の発明では、第 1運転モードから第 2運転モードに切り換えることによ つて、第 1運転モード中にレシーバ(17)内に溜まった液冷媒を第 1利用側ユニット (3 0, 40)へ戻すことができるようにしている。従って、この第 8の発明によれば、第 1運転 モードにおいて各利用側ユニット(20, 30, 40)と圧縮機構(11D, 11E)との間を循環 する冷媒量の不足を防止することできるので、各利用側ユニット(20, 30, 40)での温 度調節能力の低下を回避することができる。  [0038] In the eighth aspect of the invention, by switching from the first operation mode to the second operation mode, the liquid refrigerant that has accumulated in the receiver (17) during the first operation mode is used as the first usage-side unit. It is possible to return to (3 0, 40). Therefore, according to the eighth aspect of the present invention, it is possible to prevent a shortage of the amount of refrigerant circulating between each use side unit (20, 30, 40) and the compression mechanism (11D, 11E) in the first operation mode. Therefore, it is possible to avoid a decrease in temperature adjustment capability in each of the use side units (20, 30, 40).
図面の簡単な説明  Brief Description of Drawings
[0039] [図 1]図 1は、本発明の実施形態 1に係る冷凍装置の冷媒回路図である。  FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
[図 2]図 2は、実施形態 1における冷房運転の動作を示す冷媒回路図である。  FIG. 2 is a refrigerant circuit diagram showing the operation of the cooling operation in the first embodiment.
[図 3]図 3は、実施形態 1における冷凍運転の動作を示す冷媒回路図である。  FIG. 3 is a refrigerant circuit diagram illustrating the operation of the refrigeration operation in the first embodiment.
[図 4]図 4は、実施形態 1における第 1冷房冷凍運転の動作を示す冷媒回路図である  FIG. 4 is a refrigerant circuit diagram showing the operation of the first cooling / freezing operation in the first embodiment.
[図 5]図 5は、実施形態 1における第 2冷房冷凍運転の動作を示す冷媒回路図である FIG. 5 is a refrigerant circuit diagram showing the operation of the second cooling / freezing operation in the first embodiment.
[図 6]図 6は、実施形態 1における暖房運転の動作を示す冷媒回路図である。 FIG. 6 is a refrigerant circuit diagram showing an operation of heating operation in the first embodiment.
[図 7]図 7は、実施形態 1における第 1暖房冷凍運転のホットガスバイパス管の電磁弁 力 S閉鎖状態の動作を示す冷媒回路図である。  [Fig. 7] Fig. 7 is a refrigerant circuit diagram showing an operation in a state where the electromagnetic valve force S of the hot gas bypass pipe in the first heating / refrigeration operation in the first embodiment is closed.
[図 8]図 8は、実施形態 1における第 1暖房冷凍運転のホットガスバイパス管の電磁弁 が開口状態の動作を示す冷媒回路図である。  FIG. 8 is a refrigerant circuit diagram illustrating an operation in which the solenoid valve of the hot gas bypass pipe in the first heating / refrigeration operation in the first embodiment is in an open state.
[図 9]図 9は、実施形態 1における第 2暖房冷凍運転の動作を示す冷媒回路図である  FIG. 9 is a refrigerant circuit diagram showing the operation of the second heating and refrigeration operation in Embodiment 1.
[図 10]図 10は、実施形態 1における第 3暖房冷凍運転の動作を示す冷媒回路図で ある。 FIG. 10 is a refrigerant circuit diagram showing the operation of the third heating / refrigeration operation in the first embodiment.
[図 11]図 11は、本発明の実施形態 2に係る冷凍装置の冷媒回路図である。  FIG. 11 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 2 of the present invention.
[図 12]図 12は、本発明の実施形態 2に係る冷凍装置の冷媒回路図である。  FIG. 12 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 2 of the present invention.
[図 13]図 13は、従来の冷凍装置の冷媒回路図である。 符号の説明 FIG. 13 is a refrigerant circuit diagram of a conventional refrigeration apparatus. Explanation of symbols
1 冷凍装置  1 Refrigeration equipment
5 冷媒戻し機構  5 Refrigerant return mechanism
10 室外ユニット(熱源側ユニット)  10 Outdoor unit (heat source side unit)
11D 圧縮機構  11D compression mechanism
HE 圧縮機構  HE compression mechanism
13 第 2四路切換弁 (連通機構)  13 Second four-way selector valve (communication mechanism)
15 室外熱交換器 (熱源側熱交換器)  15 Outdoor heat exchanger (heat source side heat exchanger)
17 レシーノ  17 Resino
20 室内ユニット(第 2利用側ユニット)  20 Indoor unit (second user side unit)
21 室内熱交換器 (第 2利用側熱交換器)  21 Indoor heat exchanger (second-use heat exchanger)
30 冷蔵ユニット (第 i利用側ユニット)  30 Refrigeration unit (i-th use side unit)
31 冷蔵熱交換器 (第 1利用側熱交換器)  31 Refrigerated heat exchanger (first use side heat exchanger)
40 冷凍ユニット (第丄利用側ユニット)  40 Refrigeration unit (Unit No.1 side)
41 冷凍熱交換器 (第 1利用側熱交換器)  41 Refrigeration heat exchanger (first use side heat exchanger)
50 冷媒回路  50 Refrigerant circuit
50A 第 1系統側回路  50A first system side circuit
50B 第 2系統側回路  50B Second system side circuit
51 第 1ガス側連絡配管 (ガス側連絡配管)  51 1st gas side communication piping (gas side communication piping)
52 第 2ガス側連絡配管 (ガス側連絡配管)  52 Second gas side communication piping (Gas side communication piping)
53 集合液管 (液側連絡配管)  53 Collecting liquid pipe (Liquid side connecting pipe)
54 第 1分岐液管 (液側連絡配管)  54 1st branch liquid pipe (liquid side connection pipe)
55 第 2分岐液管 (液側連絡配管)  55 Second branch pipe (Liquid side connecting pipe)
67 液インジヱクシヨン管(連通管)  67 Liquid Ink Pipe (Communication Pipe)
71 ホットガスバイパス管(導入管)  71 Hot gas bypass pipe (introduction pipe)
75 高圧圧力センサ (吐出過熱度検出手段)  75 High pressure sensor (Discharge superheat detection means)
76 吐出温度センサ (吐出過熱度検出手段、吐出冷媒温度検出手段) 76 Discharge temperature sensor (Discharge superheat detection means, discharge refrigerant temperature detection means)
79 低圧圧力センサ (吸入過熱度検出手段) 81 吸入温度センサ(吸入過熱度検出手段) 79 Low pressure sensor (Suction superheat detection means) 81 Suction temperature sensor (Suction superheat detection means)
95 コントローラ (制御手段)  95 Controller (Control means)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0041] 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0042] 《発明の実施形態 1》 [Embodiment 1 of the Invention]
本発明の実施形態 1ついて説明する。この実施形態 1に係る冷凍装置(1)の冷媒 回路図を図 1に示す。この冷凍装置(1)は、コンビ-エンスストアに設けられ、冷蔵シ ョーケース及び冷凍ショーケースの冷却と店内の冷暖房とを行うためのものである。  Embodiment 1 of the present invention will be described. A refrigerant circuit diagram of the refrigeration system (1) according to Embodiment 1 is shown in FIG. This refrigeration apparatus (1) is provided in a convenience store for cooling a refrigerated showcase and a refrigerated showcase and for cooling and heating the store.
[0043] 上記冷凍装置(1)は、室外ユニット (熱源側ユニット)(10)と室内ユニット (第 2利用 側ユニット)(20)と冷蔵ユニット (第 1利用側ユニット)(30)と冷凍ユニット (第 1利用側 ユニット)(40)とを備え、各ユニット(10, 20, 30, 40)がガス側連絡配管(51, 52)及び 液側連絡配管 (53, 54, 55)で接続されて、蒸気圧縮式冷凍サイクルを行う冷媒回路 (50)が構成されている。 [0043] The refrigeration apparatus (1) includes an outdoor unit (heat source side unit) (10), an indoor unit (second usage side unit) (20), a refrigeration unit (first usage side unit) (30), and a refrigeration unit. (First use side unit) (40) and each unit (10, 20, 30, 40) is connected by gas side communication pipe (51, 52) and liquid side connection pipe (53, 54, 55) Thus, a refrigerant circuit (50) for performing a vapor compression refrigeration cycle is configured.
[0044] ガス側連絡配管(51, 52)は、室外ユニット(10)と冷蔵ユニット(30)及び冷凍ユニット  [0044] The gas side connecting pipe (51, 52) includes an outdoor unit (10), a refrigeration unit (30), and a refrigeration unit.
(40)とに接続された第 1ガス側連絡配管 (低圧ガス管)(51)と、室外ユニット(10)と室 内ユニット (20)とに接続された第 2ガス側連絡配管 (52)とから構成されて ヽる。液側 連絡配管 (53, 54, 55)は、室外ユニット(10)に接続された集合液管 (53)と、該集合 液管 (53)力 分岐して冷蔵ユニット (30)及び冷凍ユニット (40)に接続された第 1分岐 液管 (54)と、該集合液管 (53)力 分岐して室内ユニット (20)に接続された第 2分岐 液管 (55)とから構成されている。なお、第 1分岐液管 (54)は、冷蔵ユニット (30)側の 冷蔵側第 1分岐液管 (54a)と、冷凍ユニット (40)側の冷凍側第 1分岐液管 (54b)とか ら構成されている。本実施形態 1では、液側連絡配管(53, 54, 55)の室外ユニット(10 M則の部分である集合液管(53)を室内ユニット (20)用と冷蔵 ·冷凍ユニット (30, 40) 用とで共用することにより、 3管式の連絡配管構造が採用されている。  1st gas side communication pipe (low pressure gas pipe) (51) connected to (40) and 2nd gas side communication pipe (52) connected to outdoor unit (10) and indoor unit (20) It is composed of The liquid side communication pipes (53, 54, 55) are connected to the collecting liquid pipe (53) connected to the outdoor unit (10), and the collecting liquid pipe (53) is branched to refrigerating unit (30) and refrigeration unit ( 40) and a second branch liquid pipe (55) connected to the indoor unit (20) by branching the collecting liquid pipe (53). . The first branch liquid pipe (54) is connected to the refrigeration side first branch liquid pipe (54a) on the refrigeration unit (30) side and the refrigeration side first branch liquid pipe (54b) on the refrigeration unit (40) side. It is configured. In the first embodiment, the outdoor unit of the liquid side communication pipe (53, 54, 55) (the collecting liquid pipe (53), which is a part of the 10 M rule, is used for the indoor unit (20) and the refrigeration / refrigeration unit (30, 40). ) A three-pipe connection piping structure is used by sharing the same with the other.
[0045] 上記室内ユニット (20)は、冷房運転と暖房運転とを切り換えて行うように構成され、 例えば、売場などに設置される。また、上記冷蔵ユニット(30)は、冷蔵用のショーケ ースに設置されて該ショーケースの庫内空気を冷却する。上記冷凍ユニット (40)は、 冷凍用のショーケースに設置されて該ショーケースの庫内空気を冷却する。室内ュ ニット(20)と冷蔵ユニット(30)と冷凍ユニット (40)は、図では 1台ずつし力示していな いが、この実施形態 1では室内ユニット (20)が 2台並列に、冷蔵ユニット (30)が 8台並 列に、そして冷凍ユニット (40)が 1台接続されているものとする。 [0045] The indoor unit (20) is configured to perform switching between a cooling operation and a heating operation, and is installed, for example, in a sales floor. The refrigeration unit (30) is installed in a refrigerated showcase to cool the air inside the showcase. The refrigeration unit (40) is installed in a refrigeration showcase to cool the air in the showcase. Chamber The knit (20), the refrigeration unit (30), and the refrigeration unit (40) are not shown in the figure, but in this embodiment 1, two indoor units (20) are connected in parallel, 30) is connected in parallel with 8 units, and one refrigeration unit (40) is connected.
[0046] そして、冷媒回路 (50)は、熱源側ユニットである室外ユニット(10)と第 1利用側ュ- ットである冷蔵ユニット (30)及び冷凍ユニット (40)により構成されて冷媒がー方向へ 循環する冷蔵'冷凍用の第 1系統側回路 (50A)と、熱源側ユニットである室外ユニット (10)と第 2利用側ユニットである室内ユニット (20)により構成されて冷媒が可逆に循 環する空調用の第 2系統側回路 (50B)とを備えている。  [0046] The refrigerant circuit (50) includes an outdoor unit (10) that is a heat source side unit, a refrigeration unit (30) and a refrigeration unit (40) that are first use side units, and the refrigerant is Refrigerant is reversible, consisting of the first system side circuit (50A) for refrigeration 'freezing circulated in the-direction, the outdoor unit (10) that is the heat source side unit, and the indoor unit (20) that is the second usage side unit. And a second system side circuit (50B) for air conditioning.
[0047] 〈室外ユニット〉  [0047] <Outdoor unit>
上記室外ユニット(10)は、第 1圧縮機としてのインバータ圧縮機(11A)と、第 2圧縮 機としての第 1ノンインバータ圧縮機(11B)と、第 3圧縮機としての第 2ノンインバータ 圧縮機(11C)とを備えると共に、第 1四路切換弁(12)、第 2四路切換弁(13)、及び第 3四路切換弁(14)と、熱源側熱交換器である室外熱交換器 (15)とを備えている。な お、室外熱交換器(15)は、例えば、クロスフィン式のフィン 'アンド'チューブ型熱交 ^^であって、熱源ファンである室外ファン(16)が近接して配置されている。  The outdoor unit (10) includes an inverter compressor (11A) as a first compressor, a first non-inverter compressor (11B) as a second compressor, and a second non-inverter compression as a third compressor. A first four-way switching valve (12), a second four-way switching valve (13), and a third four-way switching valve (14), and an outdoor heat that is a heat source side heat exchanger And an exchanger (15). The outdoor heat exchanger (15) is, for example, a cross-fin type fin 'and' tube type heat exchanger ^, and an outdoor fan (16) that is a heat source fan is arranged in close proximity.
[0048] 上記各圧縮機(11A, 11B, 11C)は、例えば、密閉型の高圧ドーム型スクロール圧 縮機で構成されている。上記インバータ圧縮機(11A)は、電動機力 Sインバータ制御さ れて容量が段階的又は連続的に可変となる可変容量圧縮機である。上記第 1ノンィ ンバータ圧縮機(11B)及び第 2ノンインバータ圧縮機(11C)は、電動機が常に一定 回転数で駆動する定容量圧縮機である。  [0048] Each of the compressors (11A, 11B, 11C) is constituted by, for example, a hermetic high-pressure dome type scroll compressor. The inverter compressor (11A) is a variable capacity compressor whose capacity is variable stepwise or continuously by electric motor force S inverter control. The first non-inverter compressor (11B) and the second non-inverter compressor (11C) are constant capacity compressors in which an electric motor is always driven at a constant rotational speed.
[0049] 上記インバータ圧縮機(11A)と第 1ノンインバータ圧縮機(11B)と第 2ノンインバータ 圧縮機(11C)は、この冷凍装置(1)の圧縮機構 (11D, 11E)を構成し、該圧縮機構 (1 ID, 11E)は、第 1系統の圧縮機構 (11D)と第 2系統の圧縮機構 (11E)とから構成され ている。具体的に、圧縮機構(11D, 11E)は、運転時に、インバータ圧縮機(11A)と第 1ノンインバータ圧縮機(11B)とが第 1系統の圧縮機構(11D)を構成し、第 2ノンイン バータ圧縮機(11C)が第 2系統の圧縮機構 (11E)を構成する場合と、インバータ圧 縮機(11A)が第 1系統の圧縮機構 (11D)を構成し、第 1ノンインバータ圧縮機(11B) と第 2ノンインバータ圧縮機 (11C)とが第 2系統の圧縮機構 (11E)を構成する場合と 力 Sある。つまり、インバータ圧縮機(11A)が冷蔵 ·冷凍用の第 1系統側回路 (50A)に、 第 2ノンインバータ圧縮機(11C)が空調用の第 2系統側回路 (50B)に固定的に用い られる一方、第 1ノンインバータ圧縮機(11B)は第 1系統側回路 (50A)と第 2系統側 回路 (50B)に切り換えて用いることができるようになって!/、る。 [0049] The inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C) constitute the compression mechanism (11D, 11E) of the refrigeration apparatus (1), The compression mechanism (1 ID, 11E) includes a first system compression mechanism (11D) and a second system compression mechanism (11E). Specifically, when the compressor mechanism (11D, 11E) is in operation, the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compressor mechanism (11D), and the second non-in When the barter compressor (11C) constitutes the second system compression mechanism (11E), the inverter compressor (11A) constitutes the first system compression mechanism (11D), and the first non-inverter compressor ( 11B) and the second non-inverter compressor (11C) constitute the second system compression mechanism (11E) There is power S. In other words, the inverter compressor (11A) is fixedly used for the first system side circuit (50A) for refrigeration / refrigeration, and the second non-inverter compressor (11C) is fixedly used for the second system side circuit (50B) for air conditioning. On the other hand, the first non-inverter compressor (11B) can be switched between the first system side circuit (50A) and the second system side circuit (50B).
[0050] 上記インバータ圧縮機(11A)、第 1ノンインバータ圧縮機(11B)及び第 2ノンインバ ータ圧縮機(11C)の各吐出管(56a, 56b, 56c)は、 1本の高圧ガス管(吐出配管)(57 )に接続されている。上記第 1ノンインバータ圧縮機(11B)の吐出管 (56b)及び第 2ノ ンインバータ圧縮機(11C)の吐出管(56c)には、それぞれ逆止弁 (CV1, CV2)が設 けられている。 [0050] Each of the discharge pipes (56a, 56b, 56c) of the inverter compressor (11A), the first non-inverter compressor (11B) and the second non-inverter compressor (11C) is a single high-pressure gas pipe. (Discharge piping) (57) connected. The discharge pipe (56b) of the first non-inverter compressor (11B) and the discharge pipe (56c) of the second non-inverter compressor (11C) are provided with check valves (CV1, CV2), respectively. Yes.
[0051] 上記高圧ガス管 (57)は第 1四路切換弁(12)の第 1ポート (P1)に接続されて!ヽる。  [0051] The high-pressure gas pipe (57) is connected to the first port (P1) of the first four-way selector valve (12).
上記室外熱交換器(15)のガス側端部は、室外第 1ガス管 (58a)によって第 1四路切 換弁(12)の第 2ポート (P2)に接続されて!、る。第 1四路切換弁(12)の第 3ポート (P3) には、室外第 2ガス管 (58b)を介して第 2ガス側連絡配管 (52)が接続されている。第 1四路切換弁(12)の第 4ポート (P4)は、第 2四路切換弁(13)に接続されて!ヽる。  The gas side end of the outdoor heat exchanger (15) is connected to the second port (P2) of the first four-way switching valve (12) by the outdoor first gas pipe (58a). A second gas side communication pipe (52) is connected to the third port (P3) of the first four-way selector valve (12) via the outdoor second gas pipe (58b). The fourth port (P4) of the first four-way selector valve (12) is connected to the second four-way selector valve (13).
[0052] 上記第 2四路切換弁(13)の第 1ポート (P1)は、補助ガス管 (59)によって第 2ノンィ ンバータ圧縮機(11C)の吐出管 (56c)に接続されて!、る。第 2四路切換弁(13)の第 2 ポート (P2)は、閉塞された閉鎖ポートに構成されている。第 2四路切換弁(13)の第 3 ポート (P3)は、接続管 (60)によって上記第 1四路切換弁(12)の第 4ポート (P4)に接 続されている。また、第 2四路切換弁(13)の第 4ポート(P4)には、第 2ノンインバータ 圧縮機(11C)の吸入管 (61c)が接続されている。第 2四路切換弁(13)は、第 2ポート (P2)が閉鎖ポートであるため、代わりに三路切換弁を用いてもょ 、。  [0052] The first port (P1) of the second four-way selector valve (13) is connected to the discharge pipe (56c) of the second non-inverter compressor (11C) by the auxiliary gas pipe (59) !, The The second port (P2) of the second four-way selector valve (13) is configured as a closed port. The third port (P3) of the second four-way selector valve (13) is connected to the fourth port (P4) of the first four-way selector valve (12) by a connecting pipe (60). The suction pipe (61c) of the second non-inverter compressor (11C) is connected to the fourth port (P4) of the second four-way selector valve (13). For the second four-way selector valve (13), the second port (P2) is a closed port, so a three-way selector valve can be used instead.
[0053] 上記第 1四路切換弁(12)は、第 1ポート (P1)と第 2ポート (P2)が連通し、第 3ポート  [0053] The first four-way selector valve (12) has a first port (P1) and a second port (P2) communicating with each other, and a third port
(P3)と第 4ポート (P4)が連通する第 1の状態(図 1に実線で示す状態)と、第 1ポート ( P1)と第 3ポート (P3)が連通し、第 2ポート (P2)と第 4ポート (P4)が連通する第 2の状 態(図 1に破線で示す状態)とに切り換え可能に構成されて ヽる。  (P3) communicates with the 4th port (P4) in the first state (shown by the solid line in Fig. 1), the 1st port (P1) and the 3rd port (P3) communicate with the 2nd port (P2 ) And the 4th port (P4) can be switched to the 2nd state (state shown by the broken line in Fig. 1).
[0054] また、上記第 2四路切換弁(13)も、第 1ポート (P1)と第 2ポート (P2)が連通し、第 3 ポート (P3)と第 4ポート (P4)が連通する第 1の状態(図 1に実線で示す状態)と、第 1 ポート (P1)と第 3ポート (P3)が連通し、第 2ポート (P2)と第 4ポート (P4)が連通する第 2の状態(図 1に破線で示す状態)とに切り換え可能に構成されて 、る。 [0054] In the second four-way selector valve (13), the first port (P1) and the second port (P2) communicate with each other, and the third port (P3) and the fourth port (P4) communicate with each other. In the first state (shown by the solid line in Fig. 1), the first port (P1) communicates with the third port (P3), and the second port (P2) communicates with the fourth port (P4). It can be switched to the state 2 (the state indicated by the broken line in FIG. 1).
[0055] 上記室外熱交換器(15)の液側端部には、液ラインである室外液管 (62)の一端が 接続されている。室外液管(62)の途中には、液冷媒を貯留するためのレシーバ(17) が設けられ、室外液管 (62)の他端は、液側連絡配管 (53, 54, 55)の集合液管 (53)と 接続されている。 [0055] One end of an outdoor liquid pipe (62), which is a liquid line, is connected to the liquid side end of the outdoor heat exchanger (15). A receiver (17) for storing liquid refrigerant is provided in the middle of the outdoor liquid pipe (62), and the other end of the outdoor liquid pipe (62) is connected to a group of liquid side communication pipes (53, 54, 55). Connected to the liquid pipe (53).
[0056] 上記レシーバ(17)は、熱源側熱交換器 (15)からの冷媒の流入を許容する第 1流入 管 (63a)と、液側連絡配管 (53, 54, 55)への冷媒の流出を許容する第 1流出管 (63b) と、液側連絡配管 (53, 54, 55)からの冷媒の流入を許容する第 2流入管 (63c)と、室 外熱交換器 (15)への冷媒の流出を許容する第 2流出管 (63d)とを介して熱源側熱交 翻(15)と液側連絡配管 (53, 54, 55)に接続されている。  [0056] The receiver (17) includes a first inflow pipe (63a) that allows the refrigerant to flow from the heat source side heat exchanger (15), and the refrigerant to the liquid side connection pipe (53, 54, 55). To the first outflow pipe (63b) that allows the outflow, the second inflow pipe (63c) that allows the inflow of refrigerant from the liquid side connection pipe (53, 54, 55), and the outdoor heat exchanger (15) It is connected to the heat source side heat exchanger (15) and the liquid side connecting pipes (53, 54, 55) via a second outlet pipe (63d) that allows the refrigerant to flow out.
[0057] 上記インバータ圧縮機(11A)の吸入管 (61a)は、第 1系統側回路 (50A)の低圧ガス 管 (64)を介して第 1ガス側連絡配管 (51)に接続されている。第 2ノンインバータ圧縮 機(11C)の吸入管 (61c)は、第 1,第 2四路切換弁(12, 13)を介して第 2系統側回路 (50B)の低圧ガス管(室外第 1ガス管(58a)または室外第 2ガス管(58b) )に接続され ている。また、第 1ノンインバータ圧縮機(11B)の吸入管 (61b)は、第 3四路切換弁(1 4)を介してインバータ圧縮機(11A)の吸入管 (61a)または第 2ノンインバータ圧縮機 ( 11C)の吸入管(61c)に接続されて!、る。  [0057] The suction pipe (61a) of the inverter compressor (11A) is connected to the first gas side connecting pipe (51) via the low pressure gas pipe (64) of the first system side circuit (50A). . The suction pipe (61c) of the second non-inverter compressor (11C) is connected to the low pressure gas pipe (outdoor first 1) of the second system side circuit (50B) via the first and second four-way selector valves (12, 13). It is connected to the gas pipe (58a) or the outdoor second gas pipe (58b)). The suction pipe (61b) of the first non-inverter compressor (11B) is connected to the suction pipe (61a) of the inverter compressor (11A) or the second non-inverter compression via the third four-way switching valve (14). Connected to the suction pipe (61c) of the machine (11C)!
[0058] 具体的には、インバータ圧縮機(11A)の吸入管 (61a)には分岐管 (61d)が接続され 、第 2ノンインバータ圧縮機(11C)の吸入管 (61c)には分岐管 (61e)が接続されて!ヽ る。そして、インバータ圧縮機(11A)の吸入管(61a)の分岐管(61d)が逆止弁 (CV3) を介して第 3四路切換弁(14)の第 1ポート (P1)に接続され、第 1ノンインバータ圧縮 機(11B)の吸入管 (61b)が第 3四路切換弁(14)の第 2ポート (P2)に接続され、第 2ノ ンインバータ圧縮機(11C)の吸入管(61c)の分岐管(61e)が逆止弁 (CV4)を介して 第 3四路切換弁(14)の第 3ポート (P3)に接続されている。上記分岐管 (61d, 61e)に 設けられている逆止弁 (CV3, CV4)は、第 3四路切換弁(14)へ向力 冷媒流れのみ を許容し、逆方向への冷媒流れを禁止するものである。また、第 3四路切換弁(14)の 第 4ポート (P4)には、図示していないが冷媒回路 (50)の高圧圧力を導入するための 高圧導入管が接続されて ヽる。 [0059] 上記第 3四路切換弁(14)は、第 1ポート (P1)と第 2ポート (P2)が連通し、第 3ポート (P3)と第 4ポート (P4)が連通する第 1の状態(図 1に実線で示す状態)と、第 1ポート ( P1)と第 4ポート (P4)が連通し、第 2ポート (P2)と第 3ポート(P3)が連通する第 2の状 態(図 1に破線で示す状態)とに切り換え可能に構成されて ヽる。 Specifically, the branch pipe (61d) is connected to the suction pipe (61a) of the inverter compressor (11A), and the branch pipe is connected to the suction pipe (61c) of the second non-inverter compressor (11C). (61e) is connected! Then, the branch pipe (61d) of the suction pipe (61a) of the inverter compressor (11A) is connected to the first port (P1) of the third four-way selector valve (14) via the check valve (CV3), The suction pipe (61b) of the first non-inverter compressor (11B) is connected to the second port (P2) of the third four-way selector valve (14), and the suction pipe of the second non-inverter compressor (11C) ( The branch pipe (61e) of 61c) is connected to the third port (P3) of the third four-way selector valve (14) via the check valve (CV4). The check valves (CV3, CV4) provided on the branch pipes (61d, 61e) allow only directional refrigerant flow to the third four-way selector valve (14) and prohibit refrigerant flow in the reverse direction. To do. The fourth port (P4) of the third four-way selector valve (14) is connected to a high pressure inlet pipe (not shown) for introducing the high pressure of the refrigerant circuit (50). [0059] In the third four-way selector valve (14), the first port (P1) and the second port (P2) communicate with each other, and the third port (P3) and the fourth port (P4) communicate with each other. (The state indicated by the solid line in Fig. 1), the second port (P1) and the fourth port (P4) communicate with each other, and the second port (P2) and the third port (P3) communicate with each other. It can be switched to the state (state shown by the broken line in Fig. 1).
[0060] 第 1ガス側連絡配管 (51)及び第 2ガス側連絡配管 (52)と、上記連絡液管 (53, 54, 55)の集合液管 (53)とは、室外ユ ット(10)から外部に延長され、室外ユ ット(10) 内にはこれらに対応して閉鎖弁(18a, 18b, 18c)が設けられている。  [0060] The first gas side connecting pipe (51) and the second gas side connecting pipe (52) and the collecting liquid pipe (53) of the connecting liquid pipe (53, 54, 55) are connected to an outdoor unit ( 10) is extended to the outside, and in the outdoor unit (10), shut-off valves (18a, 18b, 18c) are provided correspondingly.
[0061] 上記室外液管 (62)には、共にレシーバ(17)をバイパスする補助液管 (65) (第 2流 出管 (63d) )と液分岐管 (66) (第 2流入管 (63c) )とが接続されて 、る。補助液管 (65) は、主として暖房時に冷媒が流れ、膨張機構である室外膨張弁(19)が設けられてい る。補助液管 (65)は、一端が室外熱交翻(15)とレシーバ(17)との間 (第 1流入管( 63a) )に接続され、他端がレシーバ(17)と閉鎖弁(18c)との間に接続されている。室 外液管 (62)における補助液管 (65)との室外熱交 (15)側の接続点とレシーバ(1 7)との間には、レシーバ(17)に向力ぅ冷媒流れのみを許容する逆止弁 (CV5)が設け られている。  [0061] The outdoor liquid pipe (62) includes an auxiliary liquid pipe (65) (second outlet pipe (63d)) and a liquid branch pipe (66) (second inlet pipe ( 63c)) and are connected. The auxiliary liquid pipe (65) is provided with an outdoor expansion valve (19), which is an expansion mechanism, in which refrigerant mainly flows during heating. The auxiliary liquid pipe (65) has one end connected between the outdoor heat exchanger (15) and the receiver (17) (first inflow pipe (63a)) and the other end connected to the receiver (17) and the shut-off valve (18c). ). Between the connection point of the outdoor liquid pipe (62) with the auxiliary liquid pipe (65) on the outdoor heat exchange (15) side and the receiver (17), only the counter flow of refrigerant flows to the receiver (17). Allowable check valve (CV5) is provided.
[0062] また、液分岐管(66)は、閉鎖弁(18c)側から順に逆止弁 (CV6)とリリーフバルブ(11 7)とが設けられている。逆止弁 (CV6)は、閉鎖弁(18c)側力もレシーバ(17)へ向かう 冷媒流れのみを許容するものである。また、リリーフバルブ(117)は、作用する冷媒圧 力が所定圧力(例えば 1. 5MPa)になると自動的に開く一方、逆にその所定圧力を 越えるまでは液分岐管 (66)を閉鎖した状態に保持するものである。液分岐管 (66)は 、一端が逆止弁 (CV5)とレシーバ(17)との間に接続され、他端が室外液管 (62)にお ける補助液管 (65)との閉鎖弁 (18c)側の接続点と閉鎖弁 (18c)との間に接続されて いる。  [0062] The liquid branch pipe (66) is provided with a check valve (CV6) and a relief valve (117) in order from the closing valve (18c) side. The check valve (CV6) allows only the refrigerant flow toward the receiver (17) as well as the closing valve (18c) side force. The relief valve (117) opens automatically when the acting refrigerant pressure reaches a specified pressure (for example, 1.5 MPa), while the liquid branch pipe (66) is closed until the specified pressure is exceeded. It is something to hold. One end of the liquid branch pipe (66) is connected between the check valve (CV5) and the receiver (17), and the other end is a closing valve with the auxiliary liquid pipe (65) in the outdoor liquid pipe (62). It is connected between the connection point on the (18c) side and the shut-off valve (18c).
[0063] また、室外液管 (62)は、補助液管 (65)との閉鎖弁 (18c)側の接続点と液分岐管 (66 )との閉鎖弁 (18c)側の接続点との間 (第 1流出管 (63b) )に逆止弁 (CV7)が設けられ ている。この逆止弁(CV7)は、レシーバ(17)力も閉鎖弁(18c)へ向力ぅ冷媒流れのみ を許容するものである。  [0063] Further, the outdoor liquid pipe (62) is connected between the connection point on the closing valve (18c) side with the auxiliary liquid pipe (65) and the connection point on the closing valve (18c) side with the liquid branch pipe (66). A check valve (CV7) is provided in the space (first outlet pipe (63b)). This check valve (CV7) allows only the flow of refrigerant from the receiver (17) to the closing valve (18c).
[0064] また、室外液管(62)におけるレシーバ(17)と逆止弁 (CV5)との間には、導入管で あるホットガスバイノス管(Π)の一端が接続されて 、る。ホットガスノィパス管(Π)は 、その他端が室外第 2ガス管 (58b)の閉鎖弁(18b)と第 1四路切換弁(12)との間に接 続され、その途中には電磁弁 (SV1)が設けられている。ホットガスバイパス管(71)と 電磁弁 (SV1)とは、本発明に係る冷媒戻し機構 (5)を構成して!/ヽる。 [0064] Further, an inlet pipe is provided between the receiver (17) and the check valve (CV5) in the outdoor liquid pipe (62). One end of a hot gas binos tube (Π) is connected. The other end of the hot gas no-pass pipe (Π) is connected between the shutoff valve (18b) of the outdoor second gas pipe (58b) and the first four-way selector valve (12). A valve (SV1) is provided. The hot gas bypass pipe (71) and the solenoid valve (SV1) constitute the refrigerant return mechanism (5) according to the present invention! / Speak.
[0065] また、液分岐管 (66)には、一端が吸入管 (61a)と低圧ガス管 (64)との接続部に接 続された液インジェクション管(67)が接続されて!ヽる。液インジェクション管 (67)の他 端は、逆止弁(CV6)とリリーフノ レブ(117)との間に接続されている。この液インジェ クシヨン管 (67)には、流量調整用の電動膨張弁 (67a)が設けられて 、る。  [0065] Further, the liquid branch pipe (66) is connected with a liquid injection pipe (67) having one end connected to a connection portion between the suction pipe (61a) and the low pressure gas pipe (64). . The other end of the liquid injection pipe (67) is connected between the check valve (CV6) and the relief knob (117). The liquid injection pipe (67) is provided with an electric expansion valve (67a) for adjusting the flow rate.
[0066] 〈室内ユニット〉  [0066] <Indoor unit>
上記室内ユニット (20)は、第 2利用側熱交換器である室内熱交換器 (空調熱交換 器)(21)と膨張機構である室内膨張弁 (22)とを備えている。上記室内熱交 (21) のガス側は、第 2ガス側連絡配管 (52)が接続されている。一方、上記室内熱交換器( 21)の液側は、室内膨張弁 (22)を介して液側連絡配管 (53, 54, 55)の第 2分岐液管 (55)が接続されている。なお、上記室内熱交翻 (21)は、例えば、クロスフィン式の フィン 'アンド'チューブ型熱交換器であって、利用側ファンである室内ファン (23)が 近接して配置されている。また、室内膨張弁 (22)は、電動膨張弁により構成されてい る。  The indoor unit (20) includes an indoor heat exchanger (air conditioning heat exchanger) (21) as a second usage side heat exchanger and an indoor expansion valve (22) as an expansion mechanism. A second gas side connecting pipe (52) is connected to the gas side of the indoor heat exchanger (21). On the other hand, the second branch liquid pipe (55) of the liquid side connecting pipe (53, 54, 55) is connected to the liquid side of the indoor heat exchanger (21) via the indoor expansion valve (22). The indoor heat exchange (21) is, for example, a cross-fin type fin 'and' tube heat exchanger, and an indoor fan (23) that is a use side fan is disposed in close proximity. The indoor expansion valve (22) is an electric expansion valve.
[0067] 〈冷蔵ユニット〉  [0067] <Refrigerated unit>
上記冷蔵ユニット (30)は、第 1利用側熱交換器である冷蔵熱交換器 (31)と、膨張 機構である冷蔵膨張弁 (32)とを備えている。上記冷蔵熱交 (31)の液側は、電 磁弁 (SV2)及び冷蔵膨張弁 (32)を介して、液側連絡配管 (53, 54, 55)の第 1分岐液 管 (54) (冷蔵側第 1分岐液管 (54a) )が接続されている。この電磁弁 (SV2)は、サー モオフ (休止)運転時に冷媒の流れを止めるために用いられるものである。一方、上 記冷蔵熱交換器 (31)のガス側は、第 1ガス側連絡配管 (51)から分岐した冷蔵側分 岐ガス管 (51a)が接続されて!、る。  The refrigeration unit (30) includes a refrigeration heat exchanger (31) that is a first use side heat exchanger, and a refrigeration expansion valve (32) that is an expansion mechanism. The liquid side of the refrigerated heat exchanger (31) is connected to the first branch liquid pipe (54) (54) (53, 54, 55) via the electromagnetic valve (SV2) and the refrigeration expansion valve (32). The refrigeration side first branch liquid pipe (54a)) is connected. This solenoid valve (SV2) is used to stop the flow of refrigerant during thermo-off (rest) operation. On the other hand, the gas side of the refrigeration heat exchanger (31) is connected to a refrigeration branch gas pipe (51a) branched from the first gas side connecting pipe (51).
[0068] 冷蔵熱交 (31)は、インバータ圧縮機(11A)の吸込側に連通する一方、上記室 内熱交換器 (21)は、冷房運転時に第 2ノンインバータ圧縮機(11C)の吸込側に連通 している。上記冷蔵熱交翻 (31)の冷媒圧力 (蒸発圧力)は室内熱交翻 (21)の冷 媒圧力 (蒸発圧力)より低くなる。具体的には、上記冷蔵熱交換器 (31)の冷媒蒸発温 度は、例えば、 10°Cとなり、室内熱交換器 (21)の冷媒蒸発温度は、例えば、 + 5 °Cとなって、冷媒回路 (50)が異温度蒸発の回路を構成している。 [0068] The refrigerated heat exchanger (31) communicates with the suction side of the inverter compressor (11A), while the indoor heat exchanger (21) sucks the second non-inverter compressor (11C) during the cooling operation. It communicates with the side. The refrigerant pressure (evaporation pressure) of the refrigerated heat exchanger (31) is the same as that of the indoor heat exchanger (21). Lower than the medium pressure (evaporation pressure). Specifically, the refrigerant evaporation temperature of the refrigeration heat exchanger (31) is, for example, 10 ° C, and the refrigerant evaporation temperature of the indoor heat exchanger (21) is, for example, + 5 ° C. The refrigerant circuit (50) forms a circuit for evaporation at different temperatures.
[0069] なお、上記冷蔵膨張弁 (32)は、感温式膨張弁であって、感温筒が冷蔵熱交換器 ( 31)のガス側に取り付けられている。したがって、冷蔵膨張弁 (32)は、冷蔵熱交換器( 31)の出口側の冷媒温度に基づいて開度が調整される。上記冷蔵熱交換器 (31)は 、例えば、クロスフィン式のフィン 'アンド'チューブ型熱交換器であって、冷却ファン である冷蔵ファン (33)が近接して配置されて!、る。  [0069] The refrigeration expansion valve (32) is a temperature-sensitive expansion valve, and a temperature-sensitive cylinder is attached to the gas side of the refrigeration heat exchanger (31). Therefore, the opening degree of the refrigeration expansion valve (32) is adjusted based on the refrigerant temperature on the outlet side of the refrigeration heat exchanger (31). The refrigeration heat exchanger (31) is, for example, a fin-and-tube heat exchanger of a cross fin type, and a refrigeration fan (33) that is a cooling fan is arranged in close proximity! RU
[0070] 〈冷凍ユニット〉  [0070] <Refrigeration unit>
上記冷凍ユニット (40)は、第 1利用側熱交換器である冷凍熱交換器 (41)と膨張機 構である冷凍膨張弁 (42)と冷凍圧縮機であるブースタ圧縮機 (43)とを備えて!/ヽる。 上記冷凍熱交換器 (41)の液側は、電磁弁 (SV3)及び冷凍膨張弁 (42)を介して、液 側連絡配管 (53, 54, 55)の第 1分岐液管 (54) (冷凍側第 1分岐液管 (54b) )が接続さ れている。  The refrigeration unit (40) includes a refrigeration heat exchanger (41) as a first use side heat exchanger, a refrigeration expansion valve (42) as an expansion mechanism, and a booster compressor (43) as a refrigeration compressor. Get ready! The liquid side of the refrigeration heat exchanger (41) is connected to the first branch liquid pipe (54) (54) (53) via the solenoid valve (SV3) and the refrigeration expansion valve (42). The freezing-side first branch liquid pipe (54b) is connected.
[0071] 上記冷凍熱交換器 (41)のガス側とブースタ圧縮機 (43)の吸込側とは、接続ガス管  [0071] The gas side of the refrigeration heat exchanger (41) and the suction side of the booster compressor (43) are connected gas pipes.
(68)によって接続されている。ブースタ圧縮機 (43)の吐出側には、第 1ガス側連絡 配管 (51)から分岐した冷凍側分岐ガス管 (51b)が接続されて!ヽる。冷凍側分岐ガス 管(51b)には、逆止弁(CV8)とオイルセパレータ (44)とが設けられて 、る。オイルセ パレータ (44)と接続ガス管(68)との間には、キヤビラリチューブ (45)を有する油戻し 管 (69)が接続されている。 (68) connected. A freezing side branch gas pipe (51b) branched from the first gas side connecting pipe (51) is connected to the discharge side of the booster compressor (43). The refrigeration branch gas pipe (51b) is provided with a check valve (CV8) and an oil separator (44). Between the oil separator ( 44 ) and the connecting gas pipe (68), an oil return pipe (69) having a capillary tube (45) is connected.
[0072] 上記ブースタ圧縮機 (43)は、冷凍熱交換器 (41)の冷媒蒸発温度が冷蔵熱交換器  [0072] In the booster compressor (43), the refrigerant evaporation temperature of the refrigeration heat exchanger (41) is refrigerated heat exchanger.
(31)の冷媒蒸発温度より低くなるように第 1系統の圧縮機構 (11D)との間で冷媒を 2 段圧縮している。上記冷凍熱交換器 (41)の冷媒蒸発温度は、例えば、—35°Cに設 定されている。  The refrigerant is compressed in two stages with the compression mechanism (11D) of the first system so as to be lower than the refrigerant evaporation temperature of (31). The refrigerant evaporation temperature of the refrigeration heat exchanger (41) is set to, for example, -35 ° C.
[0073] なお、上記冷凍膨張弁 (42)は、感温式膨張弁であって、感温筒が冷蔵熱交換器 ( 31)のガス側に取り付けられている。上記冷凍熱交 (41)は、例えば、クロスフィン 式のフィン ·アンド ·チューブ型熱交換器であって、冷却ファンである冷凍ファン (46) が近接して配置されている。 [0074] また、上記ブースタ圧縮機 (43)の吸込側である接続ガス管 (68)と、冷凍側分岐ガ ス管(51b)におけるオイルセパレータ(44)と逆止弁(CV8)の間とには、逆止弁(CV9) を有するバイパス管(70)が接続されて!、る。該バイパス管(70)は、ブースタ圧縮機 (4 3)の故障等の停止時に該ブースタ圧縮機 (43)をバイパスして冷媒が流れるように構 成されている。 [0073] The refrigeration expansion valve (42) is a temperature-sensitive expansion valve, and a temperature-sensitive cylinder is attached to the gas side of the refrigeration heat exchanger (31). The refrigeration heat exchanger (41) is, for example, a cross-fin type fin-and-tube heat exchanger, and a refrigeration fan (46), which is a cooling fan, is disposed close to the refrigeration heat exchanger (41). [0074] Further, the connecting gas pipe (68) on the suction side of the booster compressor (43), and between the oil separator (44) and the check valve (CV8) in the refrigeration side branch gas pipe (51b) Is connected to a bypass pipe (70) having a check valve (CV9). The bypass pipe (70) is configured so that the refrigerant flows by bypassing the booster compressor (43) when the booster compressor (43) is stopped due to a failure or the like.
[0075] 〈制御系統〉  [0075] <Control system>
上記冷媒回路 (50)には、各種センサ及び各種スィッチが設けられている。上記室 外ユニット(10)の高圧ガス管 (57)には、高圧冷媒圧力を検出する高圧圧力センサ (7 5)と、高圧冷媒温度を検出する吐出温度センサ(76)とが設けられている。上記第 2ノ ンインバータ圧縮機(11C)の吐出管 (56c)には、高圧冷媒温度を検出する吐出温度 センサ(77)が設けられている。また、上記インバータ圧縮機(11A)、第 1ノンインバー タ圧縮機(11B)及び第 2ノンインバータ圧縮機(11C)の各吐出管 (56a, 56b, 56c)に は、それぞれ、高圧冷媒圧力が所定値になると開いて圧縮機(11A, 11B, 11C)を停 止させる高圧保護用の圧力スィッチ (78)が設けられている。  The refrigerant circuit (50) is provided with various sensors and various switches. The high pressure gas pipe (57) of the outdoor unit (10) is provided with a high pressure sensor (75) for detecting high pressure refrigerant pressure and a discharge temperature sensor (76) for detecting high pressure refrigerant temperature. . The discharge pipe (56c) of the second non-inverter compressor (11C) is provided with a discharge temperature sensor (77) for detecting the high-pressure refrigerant temperature. The discharge pipes (56a, 56b, 56c) of the inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C) have high pressure refrigerant pressure, respectively. A pressure switch (78) for high-pressure protection is provided to open and stop the compressor (11A, 11B, 11C) when a predetermined value is reached.
[0076] 上記インバータ圧縮機(11A)及び第 2ノンインバータ圧縮機(11C)の各吸入管 (61a , 61c)には、低圧冷媒圧力を検出する低圧圧力センサ(79, 80)と、低圧冷媒温度を 検出する吸入温度センサ (81, 82)とが設けられている。インバータ圧縮機(11A)側の 低圧圧力センサ(79)及び吸入温度センサ (81)は、本発明に係る吸入過熱度検出手 段を構成している。  [0076] Each suction pipe (61a, 61c) of the inverter compressor (11A) and the second non-inverter compressor (11C) includes a low pressure sensor (79, 80) for detecting a low pressure refrigerant pressure, and a low pressure refrigerant An intake temperature sensor (81, 82) for detecting the temperature is provided. The low-pressure pressure sensor (79) and the suction temperature sensor (81) on the inverter compressor (11A) side constitute the suction superheat degree detection means according to the present invention.
[0077] 上記室外熱交換器(15)には、室外熱交換器(15)における冷媒温度である蒸発温 度又は凝縮温度を検出する室外熱交換センサ (83)が設けられている。また、上記室 外ユニット(10)には、室外空気温度を検出する外気温センサ(84)が設けられて 、る  [0077] The outdoor heat exchanger (15) is provided with an outdoor heat exchange sensor (83) for detecting an evaporation temperature or a condensation temperature which is a refrigerant temperature in the outdoor heat exchanger (15). The outdoor unit (10) is provided with an outdoor air temperature sensor (84) for detecting the outdoor air temperature.
[0078] 上記室内熱交換器 (21)には、室内熱交換器 (21)における冷媒温度である凝縮温 度又は蒸発温度を検出する室内熱交換センサ (85)が設けられると共に、ガス側にガ ス冷媒温度を検出するガス温センサ (86)が設けられている。また、上記室内ユニット( 20)には、室内空気温度を検出する室温センサ (87)が設けられている。 [0078] The indoor heat exchanger (21) is provided with an indoor heat exchange sensor (85) for detecting a condensation temperature or an evaporation temperature, which is a refrigerant temperature in the indoor heat exchanger (21), on the gas side. A gas temperature sensor (86) for detecting the gas refrigerant temperature is provided. The indoor unit (20) is provided with a room temperature sensor (87) for detecting the indoor air temperature.
[0079] 上記冷蔵ユニット (30)には、冷蔵用のショーケース内の庫内温度を検出する冷蔵 温度センサ(88)が設けられている。上記冷凍ユニット(40)には、冷凍用のショーケー ス内の庫内温度を検出する冷凍温度センサ(89)が設けられている。また、ブースタ 圧縮機 (43)の吐出側には、吐出冷媒圧力が所定値になると開 、て該圧縮機 (43)を 停止させる高圧保護用の圧力スィッチ (90)が設けられている。 [0079] In the refrigeration unit (30), the refrigeration for detecting the temperature inside the refrigerated showcase. A temperature sensor (88) is provided. The refrigeration unit (40) is provided with a refrigeration temperature sensor (89) for detecting the internal temperature of the refrigeration showcase. In addition, a pressure switch (90) for high pressure protection is provided on the discharge side of the booster compressor (43), which opens when the discharge refrigerant pressure reaches a predetermined value and stops the compressor (43).
[0080] 上記各種センサ及び各種スィッチの出力信号は、制御手段であるコントローラ(95) に入力される。このコントローラ(95)は、冷媒回路 (50)の運転を制御し、後述する 8種 類の運転モードを切り換えて制御するように構成されている。そして、コントローラ (95 )は、運転時に、インバータ圧縮機(11A)の起動、停止及び容量制御や、第 1ノンイン バータ圧縮機(11B)及び第 2ノンインバータ圧縮機(11C)の起動及び停止、さらには 室外膨張弁(19)及び室内膨張弁 (22)の開度調節などに関して制御を行うとともに、 各四路切換弁(12, 13, 14)の切り換えや液インジェクション管 (67)の電動膨張弁 (67 a)の開度制御なども行う。  [0080] Output signals of the various sensors and various switches are input to a controller (95) which is a control means. The controller (95) is configured to control the operation of the refrigerant circuit (50) and to switch and control eight types of operation modes to be described later. During operation, the controller (95) starts, stops, and controls the capacity of the inverter compressor (11A), and starts and stops the first non-inverter compressor (11B) and the second non-inverter compressor (11C). In addition, it controls the degree of opening of the outdoor expansion valve (19) and indoor expansion valve (22), switches the four-way switching valves (12, 13, 14), and electrically expands the liquid injection pipe (67). It also controls the opening of the valve (67a).
[0081] また、コントローラ (95)は、後述する第 1暖房冷凍運転の際に、ホットガスバイパス管  [0081] In addition, the controller (95) performs hot gas bypass pipes in the first heating and refrigeration operation to be described later.
(71)の電磁弁 (SV1)についての開閉制御も行う。具体的には、圧縮機構(11D)から 送り出された冷媒が第 2利用側ユニットである室内ユニット (20)から第 1利用側ュ-ッ トである冷蔵ユニット(30)及び冷凍ユニット (40)を流通して圧縮機構(11D)に戻る冷 媒の循環経路が形成される第 1暖房冷凍運転時に、以下のような制御を行う。  Also performs open / close control for solenoid valve (SV1) in (71). Specifically, the refrigerant delivered from the compression mechanism (11D) is transferred from the indoor unit (20) as the second usage side unit to the refrigeration unit (30) and the refrigeration unit (40) as the first usage side unit. The following control is performed during the first heating and refrigeration operation in which a refrigerant circulation path is formed that circulates and returns to the compression mechanism (11D).
[0082] まず、コントローラ(95)は、低圧圧力センサ(79)の検出値及び吸入温度センサ(81 )の検出値を用いて、第 1利用側熱交換器である冷蔵熱交換器 (31)及び冷凍熱交 (41)から圧縮機構 (11D)の吸入側へ向力 冷媒の過熱度を検出する。そして、 コントローラ (95)は、この検出した過熱度が所定値以上になると、電磁弁 (SV1)を開 口し、過熱度が所定値未満になると電磁弁 (SV1)を閉鎖する。  First, the controller (95) uses the detection value of the low pressure sensor (79) and the detection value of the suction temperature sensor (81) to use the refrigeration heat exchanger (31) as the first usage side heat exchanger. And the direction of the refrigeration heat exchange (41) to the suction side of the compression mechanism (11D) detects the degree of superheat of the refrigerant. Then, the controller (95) opens the solenoid valve (SV1) when the detected degree of superheat exceeds a predetermined value, and closes the solenoid valve (SV1) when the degree of superheat falls below a predetermined value.
[0083] コントローラ (95)は、圧縮機構(11D)へ吸入される冷媒の過熱度から第 1利用側熱 交換器である冷蔵熱交換器 (31)及び冷凍熱交換器 (41)で冷媒が不足して ヽるか否 かを判断している。コントローラ (95)は、冷蔵熱交翻 (31)及び冷凍熱交翻 (41) で冷媒が不足していると判断すると、レシーバ(17)内の冷媒を循環経路へ戻すため に電磁弁 (SV1)を開口する。  [0083] The controller (95) uses the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41), which are the first use side heat exchangers, to determine whether the refrigerant is in the superheat degree of the refrigerant sucked into the compression mechanism (11D). Judging whether there is a shortage or not. When the controller (95) determines that the refrigerant is insufficient in refrigeration heat exchange (31) and refrigeration heat exchange (41), the solenoid valve (SV1) is used to return the refrigerant in the receiver (17) to the circulation path. ).
[0084] 運転動作 次に、冷凍装置(1)が行う運転動作について各運転毎に説明する。この実施形態 1 では、 8種類の運転モードを設定することができるように構成されている。具体的には 、く i〉室内ユニット(20)の冷房のみを行う冷房運転、く ii〉冷蔵ユニット(30)と冷凍ュ- ット(40)の冷却のみを行う冷凍運転、く iii〉室内ユニット(20)の冷房と冷蔵ユニット (30 )及び冷凍ユニット (40)の冷却とを同時に行う第 1冷房冷凍運転、く iv〉第 1冷房冷凍 運転時の室内ユニット(20)の冷房能力が不足した場合の運転である第 2冷房冷凍運 転、く v〉室内ユニット (20)の暖房のみを行う暖房運転、く vi〉室内ユニット(20)の暖房と 冷蔵ユニット (30)及び冷凍ユニット (40)の冷却を室外熱交換器(15)を用いずに 100 %熱回収運転で行う第 1暖房冷凍運転、く vii〉第 1暖房冷凍運転で室内ユニット(20) の暖房能力が余るときに行う第 2暖房冷凍運転、そしてく viii〉第 1暖房冷凍運転で室 内ユニット (20)の暖房能力が不足するときに行う第 3暖房冷凍運転が可能に構成さ れている。 [0084] Driving action Next, the operation performed by the refrigeration apparatus (1) will be described for each operation. In the first embodiment, eight types of operation modes can be set. Specifically, i) Cooling operation that only cools the indoor unit (20), Kuii> Refrigerating operation that only cools the refrigeration unit (30) and the refrigerator unit (40), Kui> Indoor The first cooling / freezing operation that simultaneously cools the unit (20) and the refrigeration unit (30) and the refrigeration unit (40), and iv> the cooling capacity of the indoor unit (20) is insufficient during the first cooling / freezing operation. The second cooling and refrigeration operation, which is the operation of the indoor unit (20), and the heating operation of the indoor unit (20), vi> the heating and refrigeration unit (30) and the refrigeration unit (40) ) Is cooled in the 100% heat recovery operation without using the outdoor heat exchanger (15), vii> in the first heating / freezing operation, when the heating capacity of the indoor unit (20) is excessive Viii> Performed when the heating capacity of the indoor unit (20) is insufficient in the first heating / freezing operation. The third heating and refrigeration operation is possible.
[0085] 以下、個々の運転の動作について具体的に説明する。  Hereinafter, the operation of each operation will be specifically described.
[0086] 〈冷房運転〉  [0086] <Cooling operation>
この冷房運転は、室内ユニット (20)の冷房のみを行う運転である。この冷房運転時 は、図 2に示すように、インバータ圧縮機(11A)が第 1系統の圧縮機構(11D)を構成 し、第 1ノンインバータ圧縮機(11B)と第 2ノンインバータ圧縮機(11C)とが第 2系統の 圧縮機構 (11E)を構成する。そして、第 2系統の圧縮機構 (11E)である第 1ノンインバ ータ圧縮機(11B)及び第 2ノンインバータ圧縮機(11C)のみを駆動する。  This cooling operation is an operation in which only the indoor unit (20) is cooled. During this cooling operation, as shown in FIG. 2, the inverter compressor (11A) constitutes the first system compression mechanism (11D), and the first non-inverter compressor (11B) and the second non-inverter compressor ( 11C) constitutes the second compression mechanism (11E). Then, only the first non-inverter compressor (11B) and the second non-inverter compressor (11C) that are the second-system compression mechanism (11E) are driven.
[0087] また、図 2に実線で示すように、第 1四路切換弁(12)及び第 2四路切換弁(13)はそ れぞれ第 1の状態に切り換わり、第 3四路切換弁(14)は第 2の状態に切り換わる。ま た、室外膨張弁(19)、液インジェクション管 (67)の電動膨張弁 (67a)、ホットガスバイ パス管(71)の電磁弁 (SV1)、冷蔵ユニット (30)の電磁弁 (SV2)及び冷凍ユニット (40 )の電磁弁(SV3)は閉鎖して ヽる。  [0087] As shown by the solid line in FIG. 2, the first four-way switching valve (12) and the second four-way switching valve (13) are each switched to the first state, and the third four-way switching valve (13). The switching valve (14) switches to the second state. Also, the outdoor expansion valve (19), the electric expansion valve (67a) of the liquid injection pipe (67), the solenoid valve (SV1) of the hot gas bypass pipe (71), and the solenoid valve (SV2) of the refrigeration unit (30) And the solenoid valve (SV3) of the refrigeration unit (40) is closed.
[0088] この状態において、第 1ノンインバータ圧縮機(11B)及び第 2ノンインバータ圧縮機  [0088] In this state, the first non-inverter compressor (11B) and the second non-inverter compressor
(11C)から吐出した冷媒は、第 1四路切換弁(12)から室外第 1ガス管 (58a)を経て室 外熱交換器 (15)に流れて凝縮する。凝縮した液冷媒は、室外液管 (62)を流れ、レシ ーバ(17)を経て液側連絡配管 (53, 54, 55)の集合液管 (53)及び第 2分岐液管 (55) を通って室内膨張弁 (22)から室内熱交換器 (21)に流れて蒸発する。蒸発したガス 冷媒は、第 2ガス側連絡配管 (52)及び室外第 2ガス管 (58b)から第 1四路切換弁(12 )及び第 2四路切換弁(13)を経て第 2ノンインバータ圧縮機(11C)の吸入管 (61c)を 流れる。この低圧のガス冷媒の一部は第 2ノンインバータ圧縮機(11C)に戻り、残りの ガス冷媒は第 2ノンインバータ圧縮機(11C)の吸入管 (61c)から分岐管 (61e)に分流 し、第 3四路切換弁(14)を通って第 1ノンインバータ圧縮機(11B)に戻る。冷媒が以 上の循環を繰り返すことで、店内の冷房が行われる。 The refrigerant discharged from (11C) flows from the first four-way switching valve (12) through the outdoor first gas pipe (58a) to the outdoor heat exchanger (15) and condenses. The condensed liquid refrigerant flows through the outdoor liquid pipe (62), passes through the receiver (17), and the collecting liquid pipe (53) and the second branch liquid pipe (55) in the liquid side connecting pipe (53, 54, 55). It passes through the indoor expansion valve (22) through the indoor heat exchanger (21) and evaporates. The evaporated gas refrigerant passes through the first four-way switching valve (12) and the second four-way switching valve (13) from the second gas side communication pipe (52) and the outdoor second gas pipe (58b) to the second non-inverter. Flows through the suction pipe (61c) of the compressor (11C). Part of this low-pressure gas refrigerant returns to the second non-inverter compressor (11C), and the remaining gas refrigerant is diverted from the suction pipe (61c) to the branch pipe (61e) of the second non-inverter compressor (11C). Return to the first non-inverter compressor (11B) through the third four-way selector valve (14). As the refrigerant repeats the above circulation, the inside of the store is cooled.
[0089] なお、この運転状態では、室内の冷房負荷に応じて、第 1ノンインバータ圧縮機(11 B)と第 2ノンインバータ圧縮機(11C)の起動と停止や、室内膨張弁 (22)の開度など が制御される。圧縮機(11B、 11C)は 1台のみを運転することも可能である。  [0089] In this operating state, the first non-inverter compressor (11B) and the second non-inverter compressor (11C) are started and stopped according to the indoor cooling load, and the indoor expansion valve (22) The degree of opening is controlled. Only one compressor (11B, 11C) can be operated.
[0090] 〈冷凍運転〉  [0090] <Refrigeration operation>
冷凍運転は、冷蔵ユニット (30)と冷凍ユニット (40)の冷却のみを行う運転である。こ の冷凍運転時は、図 3に示すように、インバータ圧縮機(11A)と第 1ノンインバータ圧 縮機(11B)とが第 1系統の圧縮機構 (11D)を構成し、第 2ノンインバータ圧縮機(11C )が第 2系統の圧縮機構 (11E)を構成する。そして、第 1系統の圧縮機構 (11D)であ るインバータ圧縮機(11A)及び第 1ノンインバータ圧縮機(11B)を駆動すると共に、 ブースタ圧縮機 (43)も駆動する一方、第 2ノンインバータ圧縮機(11C)は停止してい る。  The refrigeration operation is an operation that only cools the refrigeration unit (30) and the refrigeration unit (40). During this refrigeration operation, as shown in Fig. 3, the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compression mechanism (11D), and the second non-inverter The compressor (11C) constitutes the second system compression mechanism (11E). The inverter compressor (11A) and the first non-inverter compressor (11B) as the first system compression mechanism (11D) are driven, and the booster compressor (43) is also driven, while the second non-inverter is driven. The compressor (11C) has stopped.
[0091] また、第 1四路切換弁(12)、第 2四路切換弁(13)及び第 3四路切換弁(14)は、図 3 に実線で示すように、それぞれ第 1の状態に切り換わる。さらに、冷蔵ユニット (30)の 電磁弁(SV2)及び冷凍ユニット (40)の電磁弁(SV3)が開口される一方、ホットガスバ ィパス管 (71)の電磁弁 (SV1)、室外膨張弁(19)及び室内膨張弁 (22)が閉鎖して 、 る。また、液インジェクション管 (67)の電動膨張弁 (67a)は、運転状態に応じて、全閉 に設定される力 所定流量の液冷媒を流すように所定開度に設定される。  [0091] The first four-way switching valve (12), the second four-way switching valve (13), and the third four-way switching valve (14) are each in the first state as shown by the solid line in FIG. Switch to. Furthermore, the solenoid valve (SV2) of the refrigeration unit (30) and the solenoid valve (SV3) of the refrigeration unit (40) are opened, while the solenoid valve (SV1) of the hot gas bypass pipe (71) and the outdoor expansion valve (19) And the indoor expansion valve (22) is closed. Further, the electric expansion valve (67a) of the liquid injection pipe (67) is set to a predetermined opening so that a liquid refrigerant having a predetermined flow rate is set to be fully closed according to the operating state.
[0092] この状態において、インバータ圧縮機(11A)及び第 1ノンインバータ圧縮機(11B) 力も吐出した冷媒は、第 1四路切換弁(12)から室外第 1ガス管 (58a)を経て室外熱交 換器(15)に流れて凝縮する。凝縮した液冷媒は、室外液管 (62)を流れ、レシーバ(1 7)を経て液側連絡配管 (53, 54, 55)の集合液管 (53)から冷蔵側第 1分岐液管 (54a) と冷凍側第 1分岐液管 (54b)に分流する。 [0092] In this state, the refrigerant that has also discharged the power of the inverter compressor (11A) and the first non-inverter compressor (11B) passes through the outdoor first gas pipe (58a) from the first four-way switching valve (12). It flows to the heat exchanger (15) and condenses. The condensed liquid refrigerant flows through the outdoor liquid pipe (62), passes through the receiver (17), and passes through the collecting liquid pipe (53) of the liquid side communication pipe (53, 54, 55) to the refrigeration side first branch liquid pipe (54a). ) And divert to the first branch liquid pipe (54b) on the freezing side.
[0093] 冷蔵側第 1分岐液管 (54a)を流れる液冷媒は、冷蔵膨張弁 (32)を経て冷蔵熱交換 器 (31)に流れて蒸発し、冷蔵側分岐ガス管 (51a)を流れる。一方、冷凍側第 1分岐 液管 (54b)を流れる液冷媒は、冷凍膨張弁 (42)を経て冷凍熱交換器 (41)に流れて 蒸発する。この冷凍熱交換器 (41)で蒸発したガス冷媒は、ブースタ圧縮機 (43)に吸 引されて圧縮され、冷凍側分岐ガス管 (51b)に吐出される。  [0093] The liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54a) flows through the refrigeration expansion valve (32) to the refrigeration heat exchanger (31), evaporates, and flows through the refrigeration-side branch gas pipe (51a). . On the other hand, the liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54b) flows through the refrigeration expansion valve (42) to the refrigeration heat exchanger (41) and evaporates. The gas refrigerant evaporated in the refrigeration heat exchanger (41) is sucked and compressed by the booster compressor (43) and discharged to the refrigeration side branch gas pipe (51b).
[0094] 上記冷蔵熱交換器 (31)で蒸発したガス冷媒とブースタ圧縮機 (43)から吐出された ガス冷媒とは、第 1ガス側連絡配管 (51)で合流し、低圧ガス管 (64)を通ってインバー タ圧縮機(11A)及び第 1ノンインバータ圧縮機(11B)に戻る。冷媒が以上の循環を繰 り返すことで、冷蔵用ショーケースと冷凍用ショーケースの庫内が冷却される。  [0094] The gas refrigerant evaporated in the refrigeration heat exchanger (31) and the gas refrigerant discharged from the booster compressor (43) are merged in the first gas side communication pipe (51), and the low-pressure gas pipe (64 ) To return to the inverter compressor (11A) and the first non-inverter compressor (11B). By repeating the above circulation of the refrigerant, the inside of the refrigerator showcase and the freezer showcase is cooled.
[0095] 上記冷凍熱交換器 (41)における冷媒圧力は、ブースタ圧縮機 (43)で吸引されるの で、冷蔵熱交換器 (31)における冷媒圧力より低圧となる。この結果、例えば、冷凍熱 交換器 (41)における冷媒温度 (蒸発温度)が 35°Cとなり、冷蔵熱交換器 (31)にお ける冷媒温度 (蒸発温度)が 10°Cとなる。  [0095] Since the refrigerant pressure in the refrigeration heat exchanger (41) is sucked by the booster compressor (43), the refrigerant pressure is lower than the refrigerant pressure in the refrigeration heat exchanger (31). As a result, for example, the refrigerant temperature (evaporation temperature) in the refrigeration heat exchanger (41) is 35 ° C, and the refrigerant temperature (evaporation temperature) in the refrigeration heat exchanger (31) is 10 ° C.
[0096] この冷凍運転時には、例えば低圧圧力センサ(79)が検出する低圧冷媒圧力(LP) に基づいて第 1ノンインバータ圧縮機(11B)の起動と停止やインバータ圧縮機(11A) の起動、停止または容量制御を行い、冷凍負荷に応じた運転を行う。  [0096] During this refrigeration operation, for example, based on the low-pressure refrigerant pressure (LP) detected by the low-pressure sensor (79), the first non-inverter compressor (11B) is started and stopped, the inverter compressor (11A) is started, Stop or perform capacity control and perform operation according to the refrigeration load.
[0097] 例えば、圧縮機構(11D)の容量を増大する制御は、まず第 1ノンインバータ圧縮機  [0097] For example, the control for increasing the capacity of the compression mechanism (11D) starts with the first non-inverter compressor.
(11B)が停止した状態でインバータ圧縮機(11A)を駆動する。インバータ圧縮機(11 A)が最大容量に上昇した後にさらに負荷が増大すると、第 1ノンインバータ圧縮機(1 1B)を駆動すると同時にインバータ圧縮機(11A)を最低容量に減少させる。その後、 さらに負荷が増加すると、第 1ノンインバータ圧縮機(11B)を起動したままでインバー タ圧縮機(11A)の容量を上昇させる。圧縮機容量の減少制御では、この増大制御と 逆の動作が行われる。  The inverter compressor (11A) is driven with (11B) stopped. If the load further increases after the inverter compressor (11 A) has increased to the maximum capacity, the first non-inverter compressor (11B) is driven and at the same time the inverter compressor (11A) is reduced to the minimum capacity. Thereafter, when the load further increases, the capacity of the inverter compressor (11A) is increased while the first non-inverter compressor (11B) is started. In the compressor capacity reduction control, the reverse operation of this increase control is performed.
[0098] また、上記冷蔵膨張弁 (32)及び冷凍膨張弁 (42)の開度は、感温筒による過熱度 制御が行われる。この点は、以下の各運転でも同じである。  [0098] Further, the degree of superheat of the opening of the refrigeration expansion valve (32) and the refrigeration expansion valve (42) is controlled by a temperature sensing cylinder. This point is the same in the following operations.
[0099] 〈第 1冷房冷凍運転〉 [0099] <First cooling / freezing operation>
この第 1冷房冷凍運転は、室内ユニット (20)の冷房と冷蔵ユニット(30)及び冷凍ュ ニット (40)の冷却とを同時に行う運転である。この第 1冷房冷凍運転時は、図 4に示 すように、インバータ圧縮機(11A)と第 1ノンインバータ圧縮機(11B)とが第 1系統の 圧縮機構 (11D)を構成し、第 2ノンインバータ圧縮機(11C)が第 2系統の圧縮機構 (1 1E)を構成する。そして、インバータ圧縮機(11A)、第 1ノンインバータ圧縮機(11B) 及び第 2ノンインバータ圧縮機(11C)を駆動すると共に、ブースタ圧縮機 (43)も駆動 する。 This first cooling / freezing operation is performed by the cooling / refrigeration unit (30) and the freezing unit of the indoor unit (20). This is an operation that simultaneously cools the knit (40). During this first cooling / freezing operation, as shown in FIG. 4, the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compression mechanism (11D), and the second The non-inverter compressor (11C) constitutes the second system compression mechanism (11E). The inverter compressor (11A), the first non-inverter compressor (11B) and the second non-inverter compressor (11C) are driven, and the booster compressor (43) is also driven.
[0100] また、第 1四路切換弁(12)、第 2四路切換弁(13)及び第 3四路切換弁(14)は、図 4 に実線で示すように、それぞれ第 1の状態に切り換わる。さらに、冷蔵ユニット (30)の 電磁弁(SV2)及び冷凍ユニット (40)の電磁弁(SV3)が開口される一方、ホットガスバ ィパス管 (71)の電磁弁 (SV1)と室外膨張弁(19)は閉鎖している。また、液インジヱク シヨン管 (67)の電動膨張弁 (67a)は、運転状態に応じて、全閉に設定されるか、圧縮 機構(11D)の吸入側に所定流量の液冷媒を流すように所定開度に設定される。  [0100] The first four-way switching valve (12), the second four-way switching valve (13), and the third four-way switching valve (14) are each in the first state as shown by the solid line in FIG. Switch to. Furthermore, the solenoid valve (SV2) of the refrigeration unit (30) and the solenoid valve (SV3) of the refrigeration unit (40) are opened, while the solenoid valve (SV1) of the hot gas bypass pipe (71) and the outdoor expansion valve (19) Is closed. Also, the electric expansion valve (67a) of the liquid index pipe (67) is set to be fully closed or a predetermined flow rate of liquid refrigerant is allowed to flow to the suction side of the compression mechanism (11D) depending on the operating state. The predetermined opening is set.
[0101] この状態において、インバータ圧縮機(11A)と第 1ノンインバータ圧縮機(11B)と第 2ノンインバータ圧縮機(11C)から吐出した冷媒は、高圧ガス管 (57)で合流し、第 1 四路切換弁(12)カゝら室外第 1ガス管 (58a)を経て室外熱交換器 (15)に流れて凝縮 する。凝縮した液冷媒は、室外液管 (62)を流れ、レシーバ(17)を経て液側連絡配管 (53, 54, 55)の集合液管(53)に流れる。  [0101] In this state, the refrigerant discharged from the inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C) is joined by the high-pressure gas pipe (57), 1 Condenses by flowing through the first gas pipe (58a) outside the four-way selector valve (12) to the outdoor heat exchanger (15). The condensed liquid refrigerant flows through the outdoor liquid pipe (62), and then flows through the receiver (17) to the collecting liquid pipe (53) of the liquid side connecting pipe (53, 54, 55).
[0102] 上記液側連絡配管 (53, 54, 55)の集合液管 (53)を流れる液冷媒は、一部が第 2分 岐液管 (55)に分流し、室内膨張弁 (22)を経て室内熱交換器 (21)に流れて蒸発する 。蒸発したガス冷媒は、第 2ガス側連絡配管 (52)及び室外第 2ガス管 (58b)から第 1 四路切換弁(12)及び第 2四路切換弁(13)を経て吸入管 (61c)を流れ、第 2ノンイン バータ圧縮機(11C)に戻る。  [0102] A part of the liquid refrigerant flowing through the collecting liquid pipe (53) of the liquid side connecting pipe (53, 54, 55) is divided into the second branch liquid pipe (55), and the indoor expansion valve (22) It passes through the indoor heat exchanger (21) and evaporates. The evaporated gas refrigerant passes through the first four-way switching valve (12) and the second four-way switching valve (13) from the second gas side communication pipe (52) and the outdoor second gas pipe (58b). ) And return to the second non-inverter compressor (11C).
[0103] 一方、上記液側連絡配管 (53, 54, 55)の集合液管 (53)を流れる液冷媒は、冷蔵側 第 1分岐液管 (54a)と冷凍側第 1分岐液管 (54b)に分流する。冷蔵側第 1分岐液管 (5 4a)を流れる液冷媒は、冷蔵膨張弁 (32)を経て冷蔵熱交換器 (31)に流れて蒸発し、 冷蔵側分岐ガス管 (51a)を流れる。また、冷凍側第 1分岐液管 (54b)を流れる液冷媒 は、冷凍膨張弁 (42)を経て冷凍熱交換器 (41)に流れて蒸発する。この冷凍熱交換 器 (41)で蒸発したガス冷媒は、ブースタ圧縮機 (43)に吸引されて圧縮され、冷凍側 分岐ガス管(51b)に吐出される。 On the other hand, the liquid refrigerant flowing through the collecting liquid pipe (53) of the liquid side connecting pipe (53, 54, 55) is refrigerated side first branch liquid pipe (54a) and refrigeration side first branch liquid pipe (54b). ). The liquid refrigerant flowing through the refrigeration side first branch liquid pipe (54a) flows through the refrigeration expansion valve (32) to the refrigeration heat exchanger (31), evaporates, and flows through the refrigeration side branch gas pipe (51a). Further, the liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54b) flows through the refrigeration expansion valve (42) to the refrigeration heat exchanger (41) and evaporates. The gas refrigerant evaporated in the refrigeration heat exchanger (41) is sucked and compressed by the booster compressor (43), and the refrigeration side It is discharged into the branch gas pipe (51b).
[0104] 上記冷蔵熱交換器 (31)で蒸発したガス冷媒とブースタ圧縮機 (43)から吐出された ガス冷媒とは、第 1ガス側連絡配管 (51)で合流し、低圧ガス管 (64)を通ってインバー タ圧縮機(11A)及び第 1ノンインバータ圧縮機(11B)に戻る。  [0104] The gas refrigerant evaporated in the refrigeration heat exchanger (31) and the gas refrigerant discharged from the booster compressor (43) merge in the first gas side connecting pipe (51), and the low-pressure gas pipe (64 ) To return to the inverter compressor (11A) and the first non-inverter compressor (11B).
[0105] 冷媒が以上のように循環を繰り返すことにより、店内が冷房されると同時に、冷蔵用 ショーケースと冷凍用ショーケースの庫内が冷却される。  [0105] By repeating the circulation of the refrigerant as described above, the inside of the store is cooled, and at the same time, the inside of the refrigerated showcase and the freezer showcase is cooled.
[0106] 〈第 2冷房冷凍運転〉  [0106] <Second cooling / freezing operation>
第 2冷房冷凍運転は、上記第 1冷房冷凍運転時の室内ユニット (20)の冷房能力が 不足した場合の運転であり、第 1ノンインバータ圧縮機(11B)を空調側に切り換えた 運転である。この第 2冷房冷凍運転時の設定は、図 5に示すように、基本的に第 1冷 房冷凍運転時と同様であるが、第 3四路切換弁(14)が第 2の状態に切り換わる点が 第 1冷房冷凍運転と異なる。  The second cooling / freezing operation is an operation when the cooling capacity of the indoor unit (20) is insufficient during the first cooling / refrigeration operation, and the first non-inverter compressor (11B) is switched to the air conditioning side. . As shown in FIG. 5, the setting during the second cooling / freezing operation is basically the same as that during the first cooling / freezing operation, but the third four-way selector valve (14) is switched to the second state. This is different from the first cooling / freezing operation.
[0107] したがって、この第 2冷房冷凍運転時においては、第 1冷房冷凍運転と同様に、ィ ンバータ圧縮機(11A)、第 1ノンインバータ圧縮機(11B)及び第 2ノンインバータ圧縮 機 (11C)から吐出した冷媒は、室外熱交 (15)で凝縮し、室内熱交 (21)と冷 蔵熱交 (31)と冷凍熱交 (41)で蒸発する。  Accordingly, during the second cooling / freezing operation, similarly to the first cooling / freezing operation, the inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C ) Is condensed in the outdoor heat exchanger (15) and evaporated in the indoor heat exchanger (21), the refrigeration heat exchanger (31), and the refrigeration heat exchanger (41).
[0108] そして、上記室内熱交換器 (21)で蒸発した冷媒は、第 1ノンインバータ圧縮機(11B )及び第 2ノンインバータ圧縮機(11C)に戻り、冷蔵熱交換器 (31)及び冷凍熱交換 器 (41)で蒸発した冷媒は、インバータ圧縮機(11A)に戻ることになる。空調側に 2台 の圧縮機(11B, 11C)を使うことで、冷房能力の不足が補われる。  Then, the refrigerant evaporated in the indoor heat exchanger (21) returns to the first non-inverter compressor (11B) and the second non-inverter compressor (11C), and the refrigerated heat exchanger (31) and the refrigeration The refrigerant evaporated in the heat exchanger (41) returns to the inverter compressor (11A). The use of two compressors (11B, 11C) on the air conditioning side will compensate for the lack of cooling capacity.
[0109] 〈暖房運転〉  [0109] <Heating operation>
この暖房運転は、室内ユニット (20)の暖房のみを行う運転である。この暖房運転時 は、図 6に示すように、インバータ圧縮機(11A)が第 1系統の圧縮機構(11D)を構成 し、第 1ノンインバータ圧縮機(11B)と第 2ノンインバータ圧縮機(11C)とが第 2系統の 圧縮機構 (11E)を構成する。そして、第 2系統の圧縮機構 (11E)である第 1ノンインバ ータ圧縮機(11B)及び第 2ノンインバータ圧縮機(11C)のみを駆動する。  This heating operation is an operation in which only the indoor unit (20) is heated. During this heating operation, as shown in FIG. 6, the inverter compressor (11A) constitutes the first system compression mechanism (11D), and the first non-inverter compressor (11B) and the second non-inverter compressor ( 11C) constitutes the second compression mechanism (11E). Then, only the first non-inverter compressor (11B) and the second non-inverter compressor (11C) that are the second-system compression mechanism (11E) are driven.
[0110] また、図 6に実線で示すように、第 1四路切換弁(12)は第 2の状態に切り換わり、第 2四路切換弁(13)は第 1の状態に切り換わり、第 3四路切換弁(14)は第 2の状態に 切り換わる。一方、液インジェクション管(67)の電動膨張弁 (67a)、ホットガスバイパス 管(71)の電磁弁 (SV1)、冷蔵ユニット (30)の電磁弁 (SV2)及び冷凍ユニット (40)の 電磁弁 (SV3)は閉鎖している。さらに、室内膨張弁 (22)は全開に設定され、上記室 外膨張弁(19)は所定開度に制御されている。 [0110] Further, as shown by the solid line in FIG. 6, the first four-way selector valve (12) switches to the second state, the second four-way selector valve (13) switches to the first state, The third four-way selector valve (14) is in the second state Switch. On the other hand, the electric expansion valve (67a) of the liquid injection pipe (67), the solenoid valve (SV1) of the hot gas bypass pipe (71), the solenoid valve (SV2) of the refrigeration unit (30), and the solenoid valve of the refrigeration unit (40) (SV3) is closed. Further, the indoor expansion valve (22) is set to fully open, and the outdoor expansion valve (19) is controlled to a predetermined opening.
[0111] この状態にお 1、て、第 1ノンインバータ圧縮機(11B)及び第 2ノンインバータ圧縮機 [0111] In this state, the first non-inverter compressor (11B) and the second non-inverter compressor
(11C)から吐出した冷媒は、第 1四路切換弁(12)から室外第 2ガス管 (58b)及び第 2 ガス側連絡配管 (52)を経て室内熱交換器 (21)に流れて凝縮する。凝縮した液冷媒 は、液側連絡配管 (53, 54, 55)の第 2分岐液管 (55)力 集合液管 (53)を流れ、さら に液分岐管(66)を通過し、レシーバ(17)に流入する。その後、上記液冷媒は、補助 液管 (65)の室外膨張弁(19)を経て室外熱交換器 (15)を流れて蒸発する。蒸発した ガス冷媒は、室外第 1ガス管 (58a)力も第 1四路切換弁(12)及び第 2四路切換弁(13 )を経て第 2ノンインバータ圧縮機(11C)の吸入管 (61c)を流れ、第 1ノンインバータ 圧縮機(11B)及び第 2ノンインバータ圧縮機(11C)に戻る。この循環を繰り返し、室内 が暖房される。  The refrigerant discharged from (11C) flows from the first four-way selector valve (12) through the outdoor second gas pipe (58b) and the second gas side connecting pipe (52) to the indoor heat exchanger (21) and condenses. To do. The condensed liquid refrigerant flows through the second branch liquid pipe (55) force collecting liquid pipe (53) of the liquid side connecting pipe (53, 54, 55), and further passes through the liquid branch pipe (66) to the receiver ( It flows into 17). Thereafter, the liquid refrigerant flows through the outdoor expansion valve (19) of the auxiliary liquid pipe (65), flows through the outdoor heat exchanger (15), and evaporates. The evaporated gas refrigerant is also supplied to the suction pipe (61c) of the second non-inverter compressor (11C) through the first four-way switching valve (12) and the second four-way switching valve (13). ) And return to the first non-inverter compressor (11B) and the second non-inverter compressor (11C). This circulation is repeated to heat the room.
[0112] なお、冷房運転と同様、圧縮機(11B, 11C)は 1台で運転することも可能である。  [0112] As with the cooling operation, the compressors (11B, 11C) can be operated alone.
[0113] 〈第 1暖房冷凍運転〉  [0113] <First heating and refrigeration operation>
この第 1暖房冷凍運転は、室外熱交換器(15)を用いず、室内ユニット (20)の暖房と 冷蔵ユニット (30)及び冷凍ユニット (40)の冷却を行う 100%熱回収運転である。この 第 1暖房冷凍運転は、図 7に示すように、インバータ圧縮機(11A)と第 1ノンインバー タ圧縮機(11B)とが第 1系統の圧縮機構 (11D)を構成し、第 2ノンインバータ圧縮機( 11C)が第 2系統の圧縮機構 (11E)を構成する。そして、インバータ圧縮機(11A)及び 第 1ノンインバータ圧縮機(11B)を駆動すると共に、ブースタ圧縮機 (43)も駆動する。 第 2ノンインバータ圧縮機(11C)は、停止している。  The first heating / freezing operation is a 100% heat recovery operation in which the indoor unit (20) is heated and the refrigeration unit (30) and the refrigeration unit (40) are cooled without using the outdoor heat exchanger (15). In this first heating and refrigeration operation, as shown in FIG. 7, the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compression mechanism (11D), and the second non-refrigeration operation (11D). The inverter compressor (11C) constitutes the second system compression mechanism (11E). Then, the inverter compressor (11A) and the first non-inverter compressor (11B) are driven, and the booster compressor (43) is also driven. The second non-inverter compressor (11C) is stopped.
[0114] また、図 7に実線で示すように、第 1四路切換弁(12)は第 2の状態に切り換わり、第 2四路切換弁(13)及び第 3四路切換弁(14)は第 1の状態に切り換わる。さらに、冷蔵 ユニット (30)の電磁弁 (SV2)及び冷凍ユニット (40)の電磁弁 (SV3)が開口する一方 、室外膨張弁(19)が閉鎖している。また、ホットガスバイパス管(71)の電磁弁 (SV1) は、低圧圧力センサ(79)の検出値及び吸入温度センサ(81)の検出値力 検出した 吸入管(61a)を流通する冷媒の過熱度に基づいて開閉制御されている。また、液イン ジ クシヨン管(67)の電動膨張弁 (67a)は、上記過熱度と吐出温度センサ(76)の検 出値とに基づ!/、て開度が制御されて 、る。 [0114] As shown by a solid line in FIG. 7, the first four-way switching valve (12) switches to the second state, and the second four-way switching valve (13) and the third four-way switching valve (14 ) Switches to the first state. Further, the solenoid valve (SV2) of the refrigeration unit (30) and the solenoid valve (SV3) of the refrigeration unit (40) are opened, while the outdoor expansion valve (19) is closed. Also, the solenoid valve (SV1) of the hot gas bypass pipe (71) detects the detected value of the low pressure sensor (79) and the detected value of the suction temperature sensor (81). Opening / closing control is performed based on the degree of superheat of the refrigerant flowing through the suction pipe (61a). Further, the opening degree of the electric expansion valve (67a) of the liquid index pipe (67) is controlled based on the degree of superheat and the detected value of the discharge temperature sensor (76).
[0115] この状態において、インバータ圧縮機(11A)と第 1ノンインバータ圧縮機(11B)から 吐出した冷媒は、第 1四路切換弁(12)から室外第 2ガス管 (58b)及び第 2ガス側連絡 配管 (52)を経て室内熱交換器 (21)に流れて凝縮する。凝縮した液冷媒は、液側連 絡配管 (53, 54, 55)の第 2分岐液管 (55)から集合液管 (53)の手前で冷蔵側第 1分 岐液管 (54a)と冷凍側第 1分岐液管 (54b)に分流する。  [0115] In this state, the refrigerant discharged from the inverter compressor (11A) and the first non-inverter compressor (11B) flows from the first four-way selector valve (12) to the outdoor second gas pipe (58b) and the second It flows through the gas side communication pipe (52) and flows into the indoor heat exchanger (21) for condensation. The condensed liquid refrigerant is refrigerated from the second branch liquid pipe (55) of the liquid side communication pipe (53, 54, 55) to the first branch liquid pipe (54a) before the collecting liquid pipe (53). Shunt to the side first branch pipe (54b).
[0116] 冷蔵側第 1分岐液管 (54a)を流れる液冷媒は、冷蔵膨張弁 (32)を経て冷蔵熱交換 器 (31)に流れて蒸発し、冷蔵側分岐ガス管 (51a)を流れる。また、冷凍側第 1分岐液 管 (54b)を流れる液冷媒は、冷凍膨張弁 (42)を経て冷凍熱交換器 (41)に流れて蒸 発する。この冷凍熱交翻 (41)で蒸発したガス冷媒は、ブースタ圧縮機 (43)に吸引 されて圧縮され、冷凍側分岐ガス管 (51b)に吐出される。  [0116] The liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54a) flows through the refrigeration expansion valve (32) to the refrigeration heat exchanger (31), evaporates, and flows through the refrigeration-side branch gas pipe (51a). . Further, the liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54b) flows through the refrigeration expansion valve (42) to the refrigeration heat exchanger (41) and evaporates. The gas refrigerant evaporated by the refrigeration heat exchange (41) is sucked and compressed by the booster compressor (43) and discharged to the refrigeration side branch gas pipe (51b).
[0117] 上記冷蔵熱交換器 (31)で蒸発したガス冷媒とブースタ圧縮機 (43)から吐出された ガス冷媒とは、第 1ガス側連絡配管 (51)で合流し、低圧ガス管 (64)を通ってインバー タ圧縮機(11A)及び第 1ノンインバータ圧縮機(11B)に戻る。冷媒が以上の循環を繰 り返すことで、店内が暖房されると同時に、冷蔵用ショーケースと冷凍用ショーケース の庫内が冷却される。この第 1暖房冷凍運転中は、冷蔵ユニット(30)と冷凍ユニット( 40)との冷却能力(蒸発熱量)と、室内ユニット (20)の暖房能力(凝縮熱量)とがバラン スし、 100%の熱回収が行われる。このように第 1暖房冷凍運転では、圧縮機構(11D )から送り出された冷媒が室内ユニット (20)力 冷蔵ユニット(30)及び冷凍ユニット (4 0)を流通して圧縮機構(11D)に戻る冷媒の循環経路が形成される。この循環経路に おいて、室内ユニット (20)で凝縮した冷媒は、室外ユニット(10)へは戻らずに冷蔵ュ ニット (30)及び冷凍ユニット (40)へ直接流入することになる。  [0117] The gas refrigerant evaporated in the refrigeration heat exchanger (31) and the gas refrigerant discharged from the booster compressor (43) are merged in the first gas side connecting pipe (51), and the low-pressure gas pipe (64 ) To return to the inverter compressor (11A) and the first non-inverter compressor (11B). By repeating the above circulation of the refrigerant, the inside of the store is heated, and at the same time, the inside of the refrigerated showcase and the freezer showcase is cooled. During this first heating and refrigeration operation, the cooling capacity (evaporation heat amount) between the refrigeration unit (30) and the refrigeration unit (40) balances with the heating capacity (condensation heat amount) of the indoor unit (20). Heat recovery is performed. Thus, in the first heating / freezing operation, the refrigerant sent out from the compression mechanism (11D) flows through the indoor unit (20), the refrigeration unit (30), and the refrigeration unit (40) and returns to the compression mechanism (11D). A refrigerant circulation path is formed. In this circulation path, the refrigerant condensed in the indoor unit (20) flows directly into the refrigeration unit (30) and the refrigeration unit (40) without returning to the outdoor unit (10).
[0118] なお、この第 1暖房冷凍運転中は、リリーフバルブ(117)が閉鎖されるようにしている 力 液側連絡配管(53, 54, 55)の圧力が高くなり過ぎてリリーフバルブ(117)に作用 する冷媒圧力が所定圧力(例えば 1. 5MPa)を上回り、リリーフバルブ(117)が開口 する場合がある。また、リリーフバルブ(117)が閉じられていても、冷媒漏れが発生す る場合もある。このような場合、循環経路の冷媒が集合液管 (53)から液分岐管 (66) を通ってレシーバ(17)へ流入し、循環経路の冷媒が減少していく。循環経路の冷媒 が減少していくと、冷蔵熱交換器 (31)及び冷凍熱交換器 (41)では、冷媒流量が徐 々に少なくなり、気液二相状態の冷媒が流れる領域が減少して単相のガス冷媒が流 れる領域が拡大するので、冷蔵熱交換器 (31)及び冷凍熱交換器 (41)から流出して 圧縮機構 (11D)へ向力 冷媒の過熱度が徐々に大きくなる。 [0118] During the first heating / freezing operation, the pressure of the hydraulic fluid side connecting pipe (53, 54, 55) is set too high so that the relief valve (117) is closed. ) May exceed a predetermined pressure (for example, 1.5 MPa), and the relief valve (117) may open. Even if the relief valve (117) is closed, refrigerant leaks. There is also a case. In such a case, the refrigerant in the circulation path flows from the collecting liquid pipe (53) through the liquid branch pipe (66) to the receiver (17), and the refrigerant in the circulation path decreases. As the refrigerant in the circulation path decreases, the refrigerant flow rate gradually decreases in the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41), and the region through which the gas-liquid two-phase refrigerant flows decreases. As a result, the region where the single-phase gas refrigerant flows increases, so that the refrigerant flows out of the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41) and is directed to the compression mechanism (11D). Become.
[0119] コントローラ (95)は、低圧圧力センサ(79)の検出値及び吸入温度センサ (81)の検 出値に基づいて検出した吸入管 (61a)を流通する冷媒の過熱度が所定値以上にな ると電磁弁 (SV1)を開口する。電磁弁 (SV1)が開口すると、図 8に示すように、圧縮機 構(11D)が吐出した高圧のガス冷媒がホットガスノ ィパス管(71)を通ってレシーバ(1 7)へ導入され、レシーバ(17)の内圧が上昇する。これにより、レシーバ(17)内の液冷 媒が強制的に押し出されて集合液管 (53)から循環経路へ戻される。レシーバ(17)へ は、循環経路力 ガス冷媒が供給されるが、液冷媒が押し出されるので、結果として レシーバ(17)内の冷媒量は減少し、循環経路の冷媒量は増加する。これにより、冷 蔵ユニット (30)及び冷凍ユニット (40)での冷媒不足を防止することでき、冷蔵ユニット (30)及び冷凍ユニット (40)での冷却能力の低下を回避することができる。  [0119] The controller (95) has a superheat degree of the refrigerant flowing through the suction pipe (61a) detected based on the detected value of the low pressure sensor (79) and the detected value of the suction temperature sensor (81) above a predetermined value. When it becomes, the solenoid valve (SV1) is opened. When the solenoid valve (SV1) opens, the high-pressure gas refrigerant discharged from the compressor mechanism (11D) is introduced into the receiver (17) through the hot gas no-pass pipe (71) as shown in FIG. 17) The internal pressure rises. As a result, the liquid coolant in the receiver (17) is forced out and returned from the collecting liquid pipe (53) to the circulation path. The circulation path force gas refrigerant is supplied to the receiver (17), but the liquid refrigerant is pushed out. As a result, the amount of refrigerant in the receiver (17) decreases and the amount of refrigerant in the circulation path increases. As a result, the refrigerant shortage in the refrigeration unit (30) and the refrigeration unit (40) can be prevented, and a decrease in the cooling capacity in the refrigeration unit (30) and the refrigeration unit (40) can be avoided.
[0120] また、レシーバ(17)内の液冷媒が循環経路へ戻されて循環経路の冷媒量が増加 していくと、吸入管(61a)を流通する冷媒の過熱度が徐々に減少していく。そして、コ ントローラ(95)は、低圧圧力センサ(79)の検出値及び吸入温度センサ (81)の検出 値に基づいて検出した冷媒の過熱度が所定値未満になると電磁弁 (SV1)を閉鎖す る。  [0120] When the liquid refrigerant in the receiver (17) is returned to the circulation path and the amount of refrigerant in the circulation path increases, the degree of superheat of the refrigerant flowing through the suction pipe (61a) gradually decreases. Go. Then, the controller (95) closes the solenoid valve (SV1) when the superheat degree of the refrigerant detected based on the detected value of the low pressure sensor (79) and the detected value of the suction temperature sensor (81) becomes less than a predetermined value. The
[0121] 〈第 2暖房冷凍運転〉  [0121] <Second heating / freezing operation>
この第 2暖房冷凍運転は、上記第 1暖房冷凍運転では室内ユニット (20)の暖房能 力が余るときに行われる運転である。この第 2暖房冷凍運転時は、図 9に示すように、 インバータ圧縮機(11A)と第 1ノンインバータ圧縮機(11B)とが第 1系統の圧縮機構( 11D)を構成し、第 2ノンインバータ圧縮機(11C)が第 2系統の圧縮機構 (11E)を構成 する。そして、インバータ圧縮機(11A)及び第 1ノンインバータ圧縮機(11B)を駆動す ると共に、ブースタ圧縮機 (43)も駆動する。第 2ノンインバータ圧縮機(11C)は、停止 している。 The second heating / freezing operation is an operation performed when the heating capacity of the indoor unit (20) is excessive in the first heating / freezing operation. During this second heating and refrigeration operation, as shown in FIG. 9, the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compression mechanism (11D), and the second non-freezing operation is performed. The inverter compressor (11C) constitutes the second system compression mechanism (11E). Then, the inverter compressor (11A) and the first non-inverter compressor (11B) are driven, and the booster compressor (43) is also driven. Second non-inverter compressor (11C) stopped is doing.
[0122] この第 2暖房冷凍運転は、第 2四路切換弁(13)が図 9の実線で示すように第 2の状 態に切り換わっている他は、弁の設定などは上記第 1暖房冷凍運転と同じである。  [0122] In the second heating and refrigeration operation, the second four-way switching valve (13) is switched to the second state as shown by the solid line in FIG. It is the same as heating and refrigeration operation.
[0123] したがって、インバータ圧縮機(11A)と第 1ノンインバータ圧縮機(11B)から吐出し た冷媒の一部は、上記第 1暖房冷凍運転と同様に室内熱交換器 (21)に流れて凝縮 する。凝縮した液冷媒は、液側連絡配管 (53, 54, 55)の第 2分岐液管 (55)から集合 液管 (53)の手前で第 1分岐液管 (54) (冷蔵側第 1分岐液管 (54a)及び冷凍側第 1分 岐液管 (54b) )へ流れる。  [0123] Therefore, a part of the refrigerant discharged from the inverter compressor (11A) and the first non-inverter compressor (11B) flows to the indoor heat exchanger (21) in the same manner as in the first heating and refrigeration operation. Condensate. The condensed liquid refrigerant flows from the second branch liquid pipe (55) of the liquid side connecting pipe (53, 54, 55) to the first branch liquid pipe (54) (first branch of the refrigeration side) before the collecting liquid pipe (53). It flows to the liquid pipe (54a) and the freezing side first branch liquid pipe (54b)).
[0124] 一方、上記インバータ圧縮機(11A)と第 1ノンインバータ圧縮機(11B)から吐出した 他の冷媒は、補助ガス管 (59)力 第 2四路切換弁(13)及び第 1四路切換弁(12)を 経て室外第 1ガス管 (58a)を流れ、室外熱交換器(15)で凝縮する。この凝縮した液 冷媒は、室外液管(62)を流れるときにレシーバ(17)を通り、液側連絡配管(53, 54, 5 5)の集合液管 (53)を経て第 1分岐液管 (54) (冷蔵側第 1分岐液管 (54a)及び冷凍側 第 1分岐液管 (54b) )へ流れて第 2分岐液管 (55)からの冷媒と合流する。  [0124] On the other hand, the other refrigerant discharged from the inverter compressor (11A) and the first non-inverter compressor (11B) is the auxiliary gas pipe (59) force second four-way switching valve (13) and first four After passing through the path switching valve (12), it flows through the outdoor first gas pipe (58a) and condenses in the outdoor heat exchanger (15). The condensed liquid refrigerant passes through the receiver (17) when flowing through the outdoor liquid pipe (62), passes through the collecting liquid pipe (53) of the liquid side connecting pipe (53, 54, 55), and then enters the first branch liquid pipe. (54) The refrigerant flows into the refrigeration-side first branch liquid pipe (54a) and the refrigeration-side first branch liquid pipe (54b)) and merges with the refrigerant from the second branch liquid pipe (55).
[0125] その後、上記冷蔵側第 1分岐液管 (54a)を流れる液冷媒は冷蔵熱交換器 (31)に流 れて蒸発し、冷蔵側分岐ガス管 (51a)を流れる。また、冷凍側第 1分岐液管 (54b)を 流れる液冷媒は、冷凍熱交換器 (41)に流れて蒸発し、ブースタ圧縮機 (43)に吸入さ れて圧縮され、冷凍側分岐ガス管 (51b)に吐出される。上記冷蔵熱交換器 (31)で蒸 発したガス冷媒とブースタ圧縮機 (43)力 吐出されたガス冷媒とは、第 1ガス側連絡 配管 (51)で合流し、低圧ガス管 (64)を通ってインバータ圧縮機(11A)及び第 1ノンィ ンバータ圧縮機(11B)に戻る。  Thereafter, the liquid refrigerant flowing through the refrigeration side first branch liquid pipe (54a) flows to the refrigeration heat exchanger (31) and evaporates, and flows through the refrigeration side branch gas pipe (51a). Further, the liquid refrigerant flowing through the refrigeration-side first branch liquid pipe (54b) flows into the refrigeration heat exchanger (41), evaporates, is sucked into the booster compressor (43) and compressed, and is then supplied to the refrigeration-side branch gas pipe. (51b). The gas refrigerant evaporated in the refrigeration heat exchanger (31) and the booster compressor (43) force merged in the first gas side connecting pipe (51), and the low pressure gas pipe (64) is connected. Return to the inverter compressor (11A) and the first non-inverter compressor (11B).
[0126] この第 2暖房冷凍運転時には、冷媒が以上の循環を繰り返すことで、店内が暖房さ れると同時に、冷蔵用ショーケースと冷凍用ショーケースの庫内が冷却される。このと き、冷蔵ユニット (30)と冷凍ユニット (40)との冷却能力(蒸発熱量)と、室内ユニット (2 0)の暖房能力 (凝縮熱量)とはバランスせず、余る凝縮熱を室外熱交換器 (15)で室 外に放出することになる。  [0126] During the second heating / refrigeration operation, the refrigerant repeats the above circulation, whereby the interior of the store is heated and the interiors of the refrigerated showcase and the refrigerated showcase are cooled at the same time. At this time, the cooling capacity (evaporation heat amount) of the refrigeration unit (30) and the refrigeration unit (40) and the heating capacity (condensation heat amount) of the indoor unit (20) are not balanced, and excess condensation heat is transferred to the outdoor heat. It will be discharged outdoors by the exchanger (15).
[0127] 〈第 3暖房冷凍運転〉  [0127] <Third heating / freezing operation>
この第 3暖房冷凍運転は、上記第 1暖房冷凍運転では室内ユニット (20)の暖房能 力が不足するときに行う運転である。この第 3暖房冷凍運転は、図 10に示すように、 インバータ圧縮機(11A)と第 1ノンインバータ圧縮機(11B)とが第 1系統の圧縮機構( 11D)を構成し、第 2ノンインバータ圧縮機(11C)が第 2系統の圧縮機構 (11E)を構成 する。そして、上記インバータ圧縮機(11A)、第 1ノンインバータ圧縮機(11B)、及び 第 2ノンインバータ圧縮機(11C)を駆動すると共に、ブースタ圧縮機 (43)も駆動する This third heating / freezing operation is the same as that of the first heating / refrigeration operation. This operation is performed when power is insufficient. In this third heating and refrigeration operation, as shown in FIG. 10, the inverter compressor (11A) and the first non-inverter compressor (11B) constitute the first system compression mechanism (11D), and the second non-inverter operation The compressor (11C) constitutes the second system compression mechanism (11E). The inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C) are driven, and the booster compressor (43) is also driven.
[0128] この第 3暖房冷凍運転は、室外膨張弁(19)の開度が制御されて、電磁弁 (SV1)が 開閉制御されずに閉鎖されて、第 2ノンインバータ圧縮機(11C)が駆動されている点 の他は、設定は上記第 1暖房冷凍運転と同じである。 [0128] In the third heating and refrigeration operation, the opening degree of the outdoor expansion valve (19) is controlled, the solenoid valve (SV1) is closed without being controlled to open and close, and the second non-inverter compressor (11C) is closed. Except for the fact that it is driven, the setting is the same as in the first heating and refrigeration operation.
[0129] したがって、インバータ圧縮機(11A)と第 1ノンインバータ圧縮機(11B)と第 2ノンィ ンバータ圧縮機(11C)から吐出した冷媒は、上記第 1暖房冷凍運転と同様に第 2ガ ス側連絡配管 (52)を経て室内熱交換器 (21)に流れて凝縮する。凝縮した液冷媒は 、液側連絡液管 (53, 54, 55)の第 2分岐液管 (55)から第 1分岐液管 (54) (冷蔵側第 1分岐液管 (54a)及び冷凍側第 1分岐液管 (54b) )と集合液管 (53)とに分流する。  [0129] Therefore, the refrigerant discharged from the inverter compressor (11A), the first non-inverter compressor (11B), and the second non-inverter compressor (11C) is the second gas as in the first heating / refrigeration operation. It flows to the indoor heat exchanger (21) through the side connecting pipe (52) and condenses. The condensed liquid refrigerant flows from the second branch liquid pipe (55) to the first branch liquid pipe (54) (the refrigeration side first branch liquid pipe (54a) and the refrigeration side of the liquid side communication liquid pipe (53, 54, 55). The first branch liquid pipe (54b)) and the collecting liquid pipe (53) are divided.
[0130] 冷蔵側第 1分岐液管 (54a)を流れる液冷媒は、冷蔵熱交翻 (31)に流れて蒸発し 、冷蔵側分岐ガス管 (51a)を流れる。また、冷凍側第 1分岐液管 (54b)を流れる液冷 媒は、冷凍熱交 (41)に流れて蒸発し、ブースタ圧縮機 (43)に吸入されて圧縮さ れ、冷凍側分岐ガス管 (51b)に吐出される。上記冷蔵熱交換器 (31)で蒸発したガス 冷媒とブースタ圧縮機 (43)力 吐出されたガス冷媒とは、第 1ガス側連絡配管 (51) で合流し、低圧ガス管(64)を通ってインバータ圧縮機(11A)及び第 1ノンインバータ 圧縮機(11B)に戻る。  [0130] The liquid refrigerant flowing through the refrigeration side first branch liquid pipe (54a) flows to the refrigeration heat exchanger (31), evaporates, and flows through the refrigeration side branch gas pipe (51a). The liquid coolant flowing through the refrigeration-side first branch liquid pipe (54b) flows to the refrigeration heat exchanger (41), evaporates, is sucked into the booster compressor (43), is compressed, and the refrigeration-side branch gas pipe (51b). The gas refrigerant evaporated in the refrigeration heat exchanger (31) and the booster compressor (43) force The discharged gas refrigerant merges in the first gas side connecting pipe (51) and passes through the low-pressure gas pipe (64). Return to the inverter compressor (11A) and the first non-inverter compressor (11B).
[0131] 一方、室内熱交換器 (21)で凝縮した後、集合液管 (53)を流れる液冷媒は、液分岐 管 (66)を流れてレシーバ(17)に流入し、さらに室外膨張弁(19)を経て室外熱交換 器(15)を流れ、蒸発する。蒸発したガス冷媒は、室外第 1ガス管 (58a)を流れ、第 1 四路切換弁(12)及び第 2四路切換弁(13)を経て第 2ノンインバータ圧縮機(11C)の 吸入管 (61c)を流れ、該第 2ノンインバータ圧縮機(11C)に戻る。  [0131] On the other hand, after condensing in the indoor heat exchanger (21), the liquid refrigerant flowing through the collecting liquid pipe (53) flows through the liquid branch pipe (66) and flows into the receiver (17). It flows through the outdoor heat exchanger (15) via (19) and evaporates. The evaporated gas refrigerant flows through the outdoor first gas pipe (58a), passes through the first four-way switching valve (12) and the second four-way switching valve (13), and the suction pipe of the second non-inverter compressor (11C). (61c) and return to the second non-inverter compressor (11C).
[0132] この第 3暖房冷凍運転時には、冷媒が循環を繰り返すことで、店内が暖房されると 同時に、冷蔵用ショーケースと冷凍用ショーケースの庫内が冷却される。このとき、冷 蔵ユニット (30)と冷凍ユニット (40)との冷却能力(蒸発熱量)と、室内ユニット (20)の 暖房能力 (凝縮熱量)とはバランスせず、不足する蒸発熱を室外熱交 (15)から 得ること〖こなる。 [0132] During the third heating / freezing operation, the refrigerant repeatedly circulates, so that the inside of the store is heated, and at the same time, the interiors of the refrigerated showcase and the refrigerated showcase are cooled. At this time, The cooling capacity (evaporation heat amount) between the storage unit (30) and the refrigeration unit (40) and the heating capacity (condensation heat amount) of the indoor unit (20) are not balanced, and the lack of evaporative heat is exchanged with the outdoor heat exchanger (15). It ’s hard to get from.
[0133] 一実施形態 1の効果  [0133] Effect of Embodiment 1
本実施形態 1では、レシーバ(17)へ冷媒が流入すると冷媒量が減少する上記循環 経路が形成される第 1暖房冷凍運転にぉ 、て、ホットガスバイパス管(71)の電磁弁( SV1)を開口することでレシーバ(17)内の液冷媒を循環経路へ戻すことができるよう にしている。レシーバ(17)内の液冷媒を循環経路へ戻すと、利用側ユニットである室 内ユニット (20)、冷蔵ユニット (30)、及び冷凍ユニット (40)を流通する冷媒量が増加 する。従って、各利用側ユニット (20, 30, 40)で冷媒が不足する前に冷媒戻し機構 (5 )でレシーバ(17)内の液冷媒を循環経路へ戻すことよって、各利用側ユニット (20, 30 , 40)での冷媒不足を防止することできる。  In the first embodiment, the solenoid valve (SV1) of the hot gas bypass pipe (71) is used during the first heating / refrigeration operation in which the circulation path in which the refrigerant amount decreases when the refrigerant flows into the receiver (17) is formed. By opening the, the liquid refrigerant in the receiver (17) can be returned to the circulation path. When the liquid refrigerant in the receiver (17) is returned to the circulation path, the amount of refrigerant flowing through the indoor unit (20), the refrigeration unit (30), and the refrigeration unit (40), which are the use side units, increases. Therefore, by returning the liquid refrigerant in the receiver (17) to the circulation path by the refrigerant return mechanism (5) before the refrigerant runs short in each user side unit (20, 30, 40), each user side unit (20, 30 30 and 40) can prevent the refrigerant shortage.
[0134] また、本実施形態 1では、冷蔵ユニット(30)及び冷凍ユニット (40)で冷媒が不足し て!ヽるか否かを冷蔵熱交換器 (31)及び冷凍熱交換器 (41)から圧縮機構 (11D)の吸 入側へ向かう冷媒の過熱度から判断できることに着目して、低圧圧力センサ(79)の 検出値及び吸入温度センサ(81)の検出値に基づいてホットガスバイパス管(71)の電 磁弁 (SV1)を制御するようにしている。従って、冷蔵ユニット (30)及び冷凍ユニット (4 0)で冷媒が不足する前に適切なタイミングでレシーバ(17)内の液冷媒を循環経路へ 戻すことができるので、冷蔵ユニット(30)及び冷凍ユニット (40)での冷却能力の低下 を確実に回避することができる。  [0134] In the first embodiment, the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41) determine whether or not the refrigeration unit (30) and the refrigeration unit (40) run out of refrigerant! The hot gas bypass pipe based on the detected value of the low-pressure pressure sensor (79) and the detected value of the suction temperature sensor (81), focusing on the fact that it can be determined from the degree of superheat of the refrigerant going to the suction side of the compression mechanism (11D) (71) solenoid valve (SV1) is controlled. Accordingly, the liquid refrigerant in the receiver (17) can be returned to the circulation path at an appropriate timing before the refrigerant runs short in the refrigeration unit (30) and the refrigeration unit (40). A decrease in cooling capacity in the unit (40) can be reliably avoided.
[0135] 《発明の実施形態 2》  << Embodiment 2 of the Invention >>
本発明の実施形態 2ついて説明する。この実施形態 2に係る冷凍装置(1)の冷媒 回路図を図 11に示す。この実施形態 2の冷凍装置(1)は、ホットガスバイパス管(71) 及び電磁弁 (SV1)が設けられていない点で上記実施形態 1とは異なっており、連通 機構である第 2四路切換弁 (13)が冷媒戻し機構 (5)を構成している。  Embodiment 2 of the present invention will be described. FIG. 11 shows a refrigerant circuit diagram of the refrigeration apparatus (1) according to the second embodiment. The refrigeration apparatus (1) of the second embodiment is different from the first embodiment in that the hot gas bypass pipe (71) and the solenoid valve (SV1) are not provided, and the second four-way that is a communication mechanism. The switching valve (13) constitutes the refrigerant return mechanism (5).
[0136] 第 1暖房冷凍運転において、レシーバ(17)内の液冷媒を循環経路へ戻す動作に ついて説明する。この実施形態 2の冷凍装置(1)では、コントローラ (95)が、低圧圧 力センサ(79)の検出値及び吸入温度センサ(81)の検出値力 検出した吸入管(61a )を流通する冷媒の過熱度が所定値以上になると、第 2四路切換弁(13)を第 2の状 態に切り換える。 [0136] An operation for returning the liquid refrigerant in the receiver (17) to the circulation path in the first heating / freezing operation will be described. In the refrigeration apparatus (1) of the second embodiment, the controller (95) detects the suction pipe (61a) detected by the low pressure sensor (79) and the suction temperature sensor (81). ), The second four-way selector valve (13) is switched to the second state.
[0137] 第 2四路切換弁(13)が第 2の状態に設定されると、圧縮機構(11D)が吐出した高 圧のガス冷媒の一部が、補助ガス管 (59)力 第 2四路切換弁(13)及び第 1四路切換 弁(12)を経て室外第 1ガス管 (58a)を流通し、さらに室外熱交 (15)から室外液 管(62)を流通してレシーバ(17)へ流入する。その際、室外ファン(16)は停止したま まである。これにより、レシーバ(17)の内圧が上昇し、レシーバ(17)内の液冷媒が強 制的に押し出されて集合液管 (53)から循環経路へ戻される。  [0137] When the second four-way selector valve (13) is set to the second state, a part of the high-pressure gas refrigerant discharged from the compression mechanism (11D) is supplied to the auxiliary gas pipe (59). After passing through the four-way switching valve (13) and the first four-way switching valve (12), it flows through the outdoor first gas pipe (58a), and further flows from the outdoor heat exchanger (15) through the outdoor liquid pipe (62) to the receiver. Enter (17). At that time, the outdoor fan (16) remains stopped. As a result, the internal pressure of the receiver (17) rises and the liquid refrigerant in the receiver (17) is forced out and returned from the collecting liquid pipe (53) to the circulation path.
[0138] なお、第 1暖房冷凍運転において第 2四路切換弁(13)が第 2の状態に設定された 状態は、実施形態 1の第 2暖房冷凍運転と同じ運転状態である。しかし、実施形態 1 の第 2暖房冷凍運転は、室内ユニット (20)の暖房能力を低下させるために行う運転 であるのに対して、この実施形態 2の第 1暖房冷凍運転は、レシーバ(17)内の液冷 媒を強制的に循環経路へ戻すための運転である。そして、実施形態 1の第 2暖房冷 凍運転では、室外熱交^^ (15)で冷媒を凝縮させるために室外ファン(16)を駆動さ せるが、実施形態 2の第 1暖房冷凍運転では、圧縮機構(11D)が吐出した高圧のガ ス冷媒をレシーバ(17)へ導入するための流通経路として室外熱交 (15)を利用 しているだけであり、冷媒が凝縮するとレシーバ(17)へ液冷媒が導入されてレシーバ (17)内の冷媒量が減少しにくいので室外ファン(16)を駆動させない。  [0138] Note that the state in which the second four-way selector valve (13) is set to the second state in the first heating and refrigeration operation is the same operating state as the second heating and refrigeration operation of the first embodiment. However, the second heating and refrigeration operation of Embodiment 1 is an operation performed to reduce the heating capacity of the indoor unit (20), whereas the first heating and refrigeration operation of Embodiment 2 is performed by the receiver (17 This operation is to forcibly return the liquid cooling medium in parenthesis to the circulation path. In the second heating / freezing operation of the first embodiment, the outdoor fan (16) is driven to condense the refrigerant by the outdoor heat exchange (15), but in the first heating / refrigeration operation of the second embodiment, The outdoor heat exchanger (15) is only used as a flow path for introducing the high-pressure gas refrigerant discharged from the compression mechanism (11D) into the receiver (17). When the refrigerant condenses, the receiver (17) Since the liquid refrigerant is introduced and the amount of refrigerant in the receiver (17) is not easily reduced, the outdoor fan (16) is not driven.
[0139] 本実施形態 2では、室外熱交換器(15)を高圧のガス冷媒をレシーバ(17)へ導入 する流通経路として利用することで、レシーバ(17)と圧縮機構(11D)の吐出側とを接 続する流通経路を別途に設けることなぐレシーバ(17)内の液冷媒を循環経路へ戻 すことができるようにしている。これにより、冷凍装置(1)の構成が簡素化される。  [0139] In Embodiment 2, the outdoor heat exchanger (15) is used as a flow path for introducing a high-pressure gas refrigerant into the receiver (17), so that the discharge side of the receiver (17) and the compression mechanism (11D) The liquid refrigerant in the receiver (17) can be returned to the circulation path without providing a separate distribution path for connecting to the circulation path. This simplifies the configuration of the refrigeration apparatus (1).
[0140] 《発明の実施形態 3》  << Embodiment 3 of the Invention >>
本発明の実施形態 3ついて説明する。この実施形態 3に係る冷凍装置(1)の冷媒 回路図を図 12に示す。この実施形態 3の冷凍装置(1)は、ホットガスバイパス管(71) 及び電磁弁 (SV1)が設けられて 、な 、点と、液インジェクション管 (67)の接続位置と が上記実施形態 1とは異なっている。  Embodiment 3 of the present invention will be described. A refrigerant circuit diagram of the refrigeration apparatus (1) according to Embodiment 3 is shown in FIG. The refrigeration apparatus (1) of the third embodiment is provided with a hot gas bypass pipe (71) and a solenoid valve (SV1), and the point and the connection position of the liquid injection pipe (67) are the same as those of the first embodiment. Is different.
[0141] 液インジェクション管 (67)は、一端が吸入管 (61a)と低圧ガス管 (64)との接続部に 接続され、他端が室外液管 (62)における補助液管 (65)との閉鎖弁(18c)側の接続 点とレシーバ(17)と間に接続されている。液インジェクション管(67)は、レシーバ(17) を圧縮機構(11D)の吸入側に連通されるための連通管であり、電動膨張弁 (67a)と 共に冷媒戻し機構 (5)を構成して!/ヽる。 [0141] The liquid injection pipe (67) has one end at the connection between the suction pipe (61a) and the low pressure gas pipe (64). The other end of the outdoor liquid pipe (62) is connected between the connection point of the auxiliary liquid pipe (65) on the side of the shut-off valve (18c) and the receiver (17). The liquid injection pipe (67) is a communication pipe for communicating the receiver (17) to the suction side of the compression mechanism (11D), and constitutes a refrigerant return mechanism (5) together with the electric expansion valve (67a). ! / Speak.
[0142] 第 1暖房冷凍運転において、レシーバ(17)内の液冷媒を循環経路へ戻す動作に ついて説明する。この実施形態 3の冷凍装置(1)では、コントローラ (95)が、低圧圧 力センサ(79)の検出値及び吸入温度センサ(81)の検出値に基づいて検出した吸入 管 (61a)を流通する冷媒の過熱度が所定値以上になると、電動膨張弁 (67a)を開口 する。これにより、レシーバ(17)と圧縮機構(11D)の吸入側とは連通するので、レシ ーバ(17)内の液冷媒は圧縮機構(11D)によって強制的に吸い出されて循環経路に 戻される。 [0142] The operation of returning the liquid refrigerant in the receiver (17) to the circulation path in the first heating / freezing operation will be described. In the refrigeration apparatus (1) of Embodiment 3, the controller (95) distributes the suction pipe (61a) detected based on the detection value of the low pressure sensor (79) and the detection value of the suction temperature sensor (81). When the superheat degree of the refrigerant to be reached exceeds a predetermined value, the electric expansion valve (67a) is opened. As a result, the receiver (17) communicates with the suction side of the compression mechanism (11D), so that the liquid refrigerant in the receiver (17) is forcibly sucked out by the compression mechanism (11D) and returned to the circulation path. It is.
[0143] なお、上記実施形態 1や実施形態 2の冷凍装置(1)では、第 1暖房冷凍運転で電 動膨張弁 (67a)を開口しても、集合液管 (53)内は高圧であるため、レシーバ(17)内 の液冷媒はレシーバ( 17)力 流出しな 、。  [0143] In the refrigeration apparatus (1) of Embodiment 1 and Embodiment 2 described above, even if the electric expansion valve (67a) is opened in the first heating and refrigeration operation, the pressure in the collecting liquid pipe (53) is high. Therefore, the liquid refrigerant in the receiver (17) does not flow out of the receiver (17).
[0144] 本実施形態 3では、レシーバ(17)内の液冷媒を循環経路へ戻す際に、圧縮機構( 11D)がレシーバ(17)内の液冷媒を吸入するので、圧縮機構(11D)の吸入過熱度が 下げられる。従って、冷媒を循環経路へ戻して冷媒不足が解消することができると同 時に、吸入過熱度を抑えて圧縮機構(11D)の入力を削減することができる。  [0144] In Embodiment 3, when the liquid refrigerant in the receiver (17) is returned to the circulation path, the compression mechanism (11D) sucks the liquid refrigerant in the receiver (17), so that the compression mechanism (11D) Inhalation superheat is reduced. Therefore, the refrigerant can be returned to the circulation path to solve the shortage of refrigerant, and at the same time, the suction superheat degree can be suppressed and the input of the compression mechanism (11D) can be reduced.
[0145] 《その他の実施形態》  [0145] << Other Embodiments >>
上記実施形態にっ 、ては、以下のような構成としてもょ 、。  According to the above embodiment, the following configuration may be adopted.
[0146] 上記実施形態では、コントローラ (95)力 低圧圧力センサ(79)の検出値及び吸入 温度センサ (81)の検出値に基づ 、て冷媒戻し機構 (5)を制御して 、るが、高圧圧力 センサ(75)及び吐出温度センサ(76)の検出値に基づいて冷媒戻し機構 (5)を制御 するようにしてもよい。コントローラ(95)は、高圧圧力センサ(75)の検出値及び吐出 温度センサ(76)の検出値に基づいて計算した圧縮機構(11D)が吐出した冷媒の過 熱度が所定値以上になると、レシーバ(17)内の液冷媒を循環経路へ戻す動作を行う 。高圧圧力センサ(75)及び吐出温度センサ (76)は、吐出過熱度検出手段を構成し ている。 [0147] また、コントローラ (95)は、圧縮機構(11D)が吐出した冷媒の温度を検出する吐出 温度センサ(76)の検出値に基づ 、て冷媒戻し機構 (5)を制御してもよ 、。コントロー ラ(95)は、吐出温度センサ(76)の検出値が所定値以上になると、レシーバ(17)内の 液冷媒を循環経路へ戻す動作を行う。吐出温度センサ (76)は、吐出冷媒温度検出 手段を構成している。 In the above embodiment, the refrigerant return mechanism (5) is controlled based on the detected value of the controller (95) force low pressure sensor (79) and the detected value of the suction temperature sensor (81). The refrigerant return mechanism (5) may be controlled based on the detection values of the high pressure sensor (75) and the discharge temperature sensor (76). When the degree of superheat of the refrigerant discharged by the compression mechanism (11D) calculated based on the detected value of the high pressure sensor (75) and the detected value of the discharge temperature sensor (76) exceeds a predetermined value, the controller (95) (17) The liquid refrigerant inside is returned to the circulation path. The high pressure sensor (75) and the discharge temperature sensor (76) constitute discharge superheat degree detection means. [0147] Further, the controller (95) may control the refrigerant return mechanism (5) based on the detection value of the discharge temperature sensor (76) that detects the temperature of the refrigerant discharged by the compression mechanism (11D). Yo ... The controller (95) performs an operation of returning the liquid refrigerant in the receiver (17) to the circulation path when the detection value of the discharge temperature sensor (76) becomes a predetermined value or more. The discharge temperature sensor (76) constitutes discharge refrigerant temperature detection means.
[0148] また、コントローラ (95)は、液インジェクション管 (67)の電動膨張弁 (67a)の開度に 基づいて冷媒戻し機構 (5)を制御するようにしてもよい。コントローラ (95)は、電動膨 張弁 (67a)の開度が所定の開度以上 (例えば、 480パルスの電動膨張弁の場合は 4 00パルス以上)になると、レシーバ(17)内の液冷媒を循環経路へ戻す動作を行う。 また、コントローラ (95)は、電動膨張弁 (67a)の開度が所定の開度以下 (例えば、 48 0パルスの電動膨張弁の場合は 350パルス以下)になると、レシーバ(17)内の液冷 媒を循環経路へ戻す動作を終了させる。  [0148] Further, the controller (95) may control the refrigerant return mechanism (5) based on the opening degree of the electric expansion valve (67a) of the liquid injection pipe (67). When the opening degree of the electric expansion valve (67a) exceeds a predetermined opening degree (for example, 400 pulses or more in the case of an electric expansion valve with 480 pulses), the controller (95) sets the liquid refrigerant in the receiver (17). To return to the circulation path. When the opening of the electric expansion valve (67a) falls below a predetermined opening (for example, 350 pulses or less in the case of a 480 pulse electric expansion valve), the controller (95) End the operation to return the coolant to the circulation path.
[0149] なお、電動膨張弁 (67a)は、吐出温度センサ(76)の検出値と、低圧圧力センサ(79 )の検出値及び吸入温度センサ (81)の検出値力 検出される吸入管(61a)における 冷媒の過熱度とに基づいて開度制御されている。例えば、コントローラ (95)は、吐出 温度センサ(76)の検出値が 90°C以上になる条件か、吸入管(61a)における冷媒の 過熱度が 5°C以上になる条件の何れかの条件が成立すると、電動膨張弁 (67a)の開 度を大きくする。  [0149] The electric expansion valve (67a) has a detection value of the discharge temperature sensor (76), a detection value of the low pressure sensor (79), and a detection value of the suction temperature sensor (81). The opening degree is controlled based on the degree of superheat of the refrigerant in 61a). For example, the controller (95) may detect either the condition that the detected value of the discharge temperature sensor (76) is 90 ° C or higher, or the condition that the superheat degree of the refrigerant in the suction pipe (61a) is 5 ° C or higher. When is established, the opening of the electric expansion valve (67a) is increased.
[0150] また、コントローラ (95)は、蒸発器となる冷蔵熱交換器 (31)及び冷凍熱交換器 (41) の出口の過熱度に基づ 、て冷媒戻し機構 (5)を制御するようにしてもよ!、。この場合 、過熱度を検出するために冷蔵熱交換器 (31)の出口や冷凍熱交換器 (41)の出口 に温度センサ及び圧力センサを設ける。例えば、コントローラ (95)は、冷蔵熱交翻 (31)の出口か冷凍熱交換器 (41)の出口の何れかで、冷媒の過熱度が 10°C以上に なる状態の継続時間が 10分を超えると、レシーバ(17)内の液冷媒を循環経路へ戻 す動作を行う。また、コントローラ (95)は、冷媒の過熱度が 10°C以上になる状態の継 続時間が 10分を超えた蒸発器について、その出口の冷媒の過熱度が 7°C以下にな る状態の継続時間が 1分を超えると、レシーバ(17)内の液冷媒を循環経路へ戻す動 作を終了させる。なお、冷媒戻し機構 (5)を制御は、全ての冷蔵ユニット (30)及び冷 凍ユニット (40)における蒸発器の出口の冷媒の過熱度に基づいて行う必要はなぐ 液冷媒が流入しにくい状態のユニット (例えば、高い所に配置されたユニット)におけ る蒸発器の出口の冷媒の過熱度に基づ!/、て行えばよ!/、。 [0150] Further, the controller (95) controls the refrigerant return mechanism (5) based on the degree of superheat at the outlet of the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41) serving as an evaporator. Anyway! In this case, in order to detect the degree of superheat, a temperature sensor and a pressure sensor are provided at the outlet of the refrigeration heat exchanger (31) and the outlet of the refrigeration heat exchanger (41). For example, the controller (95) has a duration of 10 minutes at which the refrigerant superheat degree is 10 ° C or higher at either the outlet of the refrigeration heat exchanger (31) or the outlet of the refrigeration heat exchanger (41). If exceeded, the liquid refrigerant in the receiver (17) is returned to the circulation path. In addition, the controller (95) is in a state where the superheat of the refrigerant at the outlet is 7 ° C or less for an evaporator that has exceeded the duration of 10 minutes when the superheat of the refrigerant is 10 ° C or more. If the continuation time exceeds 1 minute, the operation of returning the liquid refrigerant in the receiver (17) to the circulation path is terminated. The refrigerant return mechanism (5) is controlled by all refrigeration units (30) and refrigeration units. It is not necessary to carry out based on the degree of superheat of the refrigerant at the outlet of the evaporator in the refrigeration unit (40). The unit at the outlet of the evaporator in a unit where liquid refrigerant is difficult to flow (for example, a unit placed at a high place). Based on the degree of superheat of the refrigerant!
[0151] また、コントローラ (95)は、高圧圧力センサ(75)の検出値に基づいて冷媒戻し機構  [0151] Further, the controller (95) includes a refrigerant return mechanism based on the detection value of the high pressure sensor (75).
(5)を制御するようにしてもよい。この場合、冷凍サイクルの高圧圧力は室内ユニット( 20)が設けられた室内空間の温度によって変化するので、高圧圧力センサ(75)での 検出圧力における飽和温度に基づいて冷媒戻し機構 (5)の制御を行う。例えば、コ ントローラ(95)は、飽和温度と室内空間の温度との差が 15°C以下になる状態の継続 時間が 10分を超えると、レシーバ(17)内の液冷媒を循環経路へ戻す動作を行う。ま た、コントローラ (95)は、上記温度の差が 15°C以上になる状態の継続時間が 1分を 超えると、レシーバ(17)内の液冷媒を循環経路へ戻す動作を終了させる。  (5) may be controlled. In this case, since the high pressure of the refrigeration cycle varies depending on the temperature of the indoor space in which the indoor unit (20) is provided, the refrigerant return mechanism (5) has a function based on the saturation temperature at the pressure detected by the high pressure sensor (75). Take control. For example, the controller (95) returns the liquid refrigerant in the receiver (17) to the circulation path when the duration of the state where the difference between the saturation temperature and the temperature of the indoor space is 15 ° C or less exceeds 10 minutes. Perform the action. The controller (95) ends the operation of returning the liquid refrigerant in the receiver (17) to the circulation path when the duration of the state where the temperature difference is 15 ° C or more exceeds 1 minute.
[0152] また、コントローラ (95)は、低圧圧力センサ(79)の検出値に基づいて冷媒戻し機構  [0152] Further, the controller (95) includes a refrigerant return mechanism based on the detection value of the low pressure sensor (79).
(5)を制御するようにしてもよい。例えば、コントローラ (95)は、低圧圧力センサ(79) の検出値が 0. 15MPa以下になる状態の継続時間が 10分を超えると、レシーバ(17 )内の液冷媒を循環経路へ戻す動作を行う。また、コントローラ (95)は、低圧圧力セ ンサ(79)の検出値が 0. 2MPa以上になる状態の継続時間が 1分を超えると、レシ一 バ(17)内の液冷媒を循環経路へ戻す動作を終了させる。  (5) may be controlled. For example, the controller (95) returns the liquid refrigerant in the receiver (17) to the circulation path if the duration of the state where the detection value of the low pressure sensor (79) is 0.15 MPa or less exceeds 10 minutes. Do. The controller (95) also transfers the liquid refrigerant in the receiver (17) to the circulation path when the detected value of the low pressure sensor (79) exceeds 0.2 MPa for more than 1 minute. End the return operation.
[0153] なお、コントローラ (95)は、冷蔵熱交換器 (31)及び冷凍熱交換器 (41)から圧縮機 構 (11D)の吸入側へ向かう冷媒の過熱度、圧縮機構 (11D)が吐出した冷媒の過熱 度、圧縮機構(11D)が吐出した冷媒の温度、液インジェクション管 (67)の電動膨張 弁 (67a)の開度、蒸発器の出口の冷媒の過熱度、高圧圧力センサ (75)の検出値、及 び低圧圧力センサ(79)の検出値のうちの複数の条件に基づいて冷媒戻し機構 (5) の制御を制御するようにしてもよい。この場合、何れかの条件が成立すると、レシーバ (17)内の液冷媒を循環経路へ戻す動作を行う。  [0153] The controller (95) has a degree of superheat of the refrigerant from the refrigeration heat exchanger (31) and the refrigeration heat exchanger (41) to the suction side of the compressor mechanism (11D), and the compression mechanism (11D) discharges The temperature of the refrigerant discharged from the compression mechanism (11D), the opening of the electric expansion valve (67a) of the liquid injection pipe (67), the degree of refrigerant superheat at the outlet of the evaporator, and the high pressure sensor (75 ) And the detection value of the low-pressure sensor (79) may control the refrigerant return mechanism (5) based on a plurality of conditions. In this case, when any one of the conditions is satisfied, an operation of returning the liquid refrigerant in the receiver (17) to the circulation path is performed.
[0154] また、コントローラ (95)は、 100%熱回収を行う第 1暖房冷凍運転が 30分以上 «続 すると、レシーバ(17)内の液冷媒を循環経路へ戻す動作を行うようにしてもよい。な お、外気が低温 (例えば 10°C以下)である場合は、レシーバ(17)内が低圧になつ て液冷媒が溜まりやすいので、第 1暖房冷凍運転が 20分以上継続すると、レシーバ (17)内の液冷媒を循環経路へ戻す動作を行うようにしてもよい。 [0154] In addition, the controller (95) may perform an operation of returning the liquid refrigerant in the receiver (17) to the circulation path when the first heating / refrigeration operation for 100% heat recovery continues for 30 minutes or more. Good. When the outside air is at a low temperature (for example, 10 ° C or less), the receiver (17) is at a low pressure and liquid refrigerant tends to accumulate, so if the first heating / freezing operation continues for 20 minutes or more, the receiver The operation of returning the liquid refrigerant in (17) to the circulation path may be performed.
[0155] また、コントローラ (95)は、レシーバ(17)内の液冷媒を循環経路へ戻す動作が 10 分を超えると、この動作を強制的に終了させるようにしてもよい。 [0155] Further, the controller (95) may forcibly terminate the operation when the operation of returning the liquid refrigerant in the receiver (17) to the circulation path exceeds 10 minutes.
[0156] また、上記実施形態について、 100%熱回収を行う第 1暖房冷凍運転 (第 1運転モ ード)中にレシーバ(17)内に液冷媒が溜まってくると、コントローラ (95)が切 構で ある第 1四路切換弁(12)を一時的に第 2の状態に設定して運転状態を切り換えるよう にしてもよい。その際は、同時に室内膨張弁 (22)を閉鎖する。この場合、第 1四路切 換弁(12)を第 2の状態に切り換える条件は、上記冷媒戻し機構 (5)によってレシーバ (17)内の液冷媒を循環経路へ戻す動作を行う時と同じ条件である。第 1四路切換弁 (12)が第 2の状態に設定されると、上記冷凍運転と同じ流れで冷媒が循環する第 2 運転モードになる。但し、冷凍運転とは異なり室外ファン(16)は停止したままにする。 これにより、圧縮機構(11D)から吐出された高圧のガス冷媒が室外熱交 (15)を 通ってレシーバ(17)へ流入する。そして、レシーバ(17)の内圧が上昇し、レシーバ(1 7)内の液冷媒が強制的に押し出されて集合液管 (53)力 冷蔵ユニット (30)及び冷 凍ユニット (40)へ戻される。 [0156] In the above embodiment, if liquid refrigerant is accumulated in the receiver (17) during the first heating / freezing operation (first operation mode) in which 100% heat recovery is performed, the controller (95) The operating state may be switched by temporarily setting the first four-way selector valve (12), which is a mechanism, to the second state. At that time, the indoor expansion valve (22) is closed at the same time. In this case, the conditions for switching the first four-way switching valve (12) to the second state are the same as those for performing the operation of returning the liquid refrigerant in the receiver (17) to the circulation path by the refrigerant return mechanism (5). It is. When the first four-way selector valve (12) is set to the second state, the second operation mode in which the refrigerant circulates in the same flow as in the refrigeration operation is set. However, unlike the freezing operation, the outdoor fan (16) remains stopped. As a result, the high-pressure gas refrigerant discharged from the compression mechanism (11D) flows into the receiver (17) through the outdoor heat exchanger (15). Then, the internal pressure of the receiver (17) rises and the liquid refrigerant in the receiver (17) is forced out and returned to the collecting liquid pipe (53) force refrigeration unit (30) and refrigeration unit (40). .
[0157] また、上記実施形態の液分岐管(66)には、リリーフバルブ(117)の代わりに電磁弁 を設けてもよい。 [0157] Further, the liquid branch pipe (66) of the above embodiment may be provided with an electromagnetic valve instead of the relief valve (117).
[0158] また、上記実施形態では、 1台の室外ユニット(10)に対して、室内ユニット (20)を 2 台、冷蔵ユニット (30)を 8台、冷凍ユニット (40)を 1台設けた例について説明したが、 各利用側ユニット (20, 30, 40)の台数は、 100%熱回収運転が可能な限りは適宜変 更してちよい。  [0158] In the above embodiment, two indoor units (20), eight refrigeration units (30), and one refrigeration unit (40) are provided for one outdoor unit (10). Although an example has been explained, the number of units on the usage side (20, 30, 40) may be changed as long as 100% heat recovery operation is possible.
[0159] また、上記実施形態では圧縮機構(11D, 11E)を 3台の圧縮機(11A, 11B, 11C)で 構成した例について説明したが、圧縮機の台数も適宜変更可能である。  In the above embodiment, the example in which the compression mechanism (11D, 11E) is configured by three compressors (11A, 11B, 11C) has been described. However, the number of compressors can be changed as appropriate.
[0160] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。  [0160] It should be noted that the above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0161] 以上説明したように、本発明は、複数系統の利用側熱交換器を有し、各利用側熱 交 ^^間で 100%熱回収運転を行うことのできる冷凍装置について有用である。 [0161] As described above, the present invention is useful for a refrigeration apparatus having a plurality of utilization side heat exchangers and capable of performing 100% heat recovery operation between the utilization side heat exchangers ^^. .

Claims

請求の範囲 The scope of the claims
[1] 圧縮機構 (11D, HE)と熱源側熱交 (15)とレシーバ(17)とを有する熱源側ュ- ット(10)と、第 1利用側熱交換器 (31, 41)を有する第 1利用側ユニット (30, 40)と、第 2利用側熱交 (21)を有する第 2利用側ユニット(20)と、各ユニット(10, 20, 30, 4 0)を接続して冷媒回路 (50)を構成するガス側連絡配管 (51, 52)及び液側連絡配管 (53, 54, 55)とを備え、  [1] A heat source side unit (10) having a compression mechanism (11D, HE), a heat source side heat exchanger (15), and a receiver (17), and a first use side heat exchanger (31, 41) The first user side unit (30, 40) having the second user side unit (20) having the second user side heat exchanger (21) and each unit (10, 20, 30, 40) are connected. Gas side connecting pipe (51, 52) and liquid side connecting pipe (53, 54, 55) constituting the refrigerant circuit (50),
上記ガス側連絡配管 (51, 52)が、上記熱源側ユニット(10)と上記第 1利用側ュ-ッ ト (30,40)とに接続された第 1ガス側連絡配管 (51)と、上記熱源側ユニット (10)と上記 第 2利用側ユニット (20)とに接続された第 2ガス側連絡配管 (52)とを備え、  The gas side communication pipe (51, 52) is connected to the heat source side unit (10) and the first use side unit (30, 40); A second gas side communication pipe (52) connected to the heat source side unit (10) and the second usage side unit (20),
上記液側連絡配管 (53, 54, 55)が、上記熱源側ユニット(10)に接続された集合液 管 (53)と、該集合液管 (53)力 分岐して上記第 1利用側ユニット (30, 40)に接続され た第 1分岐液管 (54)と、該集合液管 (53)から分岐して上記第 2利用側ユニット (20) に接続された第 2分岐液管 (55)とを備えた冷凍装置であって、  The liquid side communication pipe (53, 54, 55) is connected to the collecting liquid pipe (53) connected to the heat source side unit (10), and the collecting liquid pipe (53) is branched into the first usage side unit. A first branch liquid pipe (54) connected to (30, 40), and a second branch liquid pipe (55) branched from the collecting liquid pipe (53) and connected to the second usage side unit (20). )
上記冷媒回路 (50)は、上記圧縮機構(11D, 11E)力 送り出された冷媒が上記第 2 利用側ユニット (20)から第 1利用側ユニット(30, 40)を流通し該圧縮機構(11D, 11E) に戻る冷媒の循環経路が形成可能になっており、  In the refrigerant circuit (50), the refrigerant sent out by the compression mechanism (11D, 11E) flows from the second usage-side unit (20) to the first usage-side unit (30, 40), and the compression mechanism (11D , 11E), a refrigerant circulation path can be formed,
上記レシーバ(17)内の液冷媒を上記循環経路へ戻す冷媒戻し機構 (5)が設けら れて!ヽることを特徴とする冷凍装置。  A refrigeration apparatus comprising a refrigerant return mechanism (5) for returning the liquid refrigerant in the receiver (17) to the circulation path.
[2] 請求項 1において、 [2] In claim 1,
上記冷媒戻し機構 (5)は、上記圧縮機構 (11D, 11E)力も吐出された高圧冷媒を上 記レシーバ(17)へ導入するための導入管(71)を備え、該導入管(71)から上記高圧 冷媒を上記レシーバ(17)へ導入して該レシーバ(17)を加圧することによって該レシ ーバ(17)内の液冷媒を上記集合液管 (53)を通じて上記循環経路へ戻すことを特徴 とする冷凍装置。  The refrigerant return mechanism (5) includes an introduction pipe (71) for introducing the high-pressure refrigerant discharged from the compression mechanism (11D, 11E) force into the receiver (17), from the introduction pipe (71). The liquid refrigerant in the receiver (17) is returned to the circulation path through the collecting liquid pipe (53) by introducing the high-pressure refrigerant into the receiver (17) and pressurizing the receiver (17). The refrigeration equipment.
[3] 請求項 1において、 [3] In claim 1,
上記冷媒戻し機構 (5)は、上記レシーバ(17)を上記圧縮機構 (11D, 11E)の吸入 側に連通させるための連通管(67)を備え、該連通管(67)によって上記レシーバ(17) 内の液冷媒を上記圧縮機構(11D, 11E)へ吸入させて上記循環経路へ戻すことを特 徴とする冷凍装置。 The refrigerant return mechanism (5) includes a communication pipe (67) for communicating the receiver (17) to the suction side of the compression mechanism (11D, 11E). The communication pipe (67) allows the receiver (17 ) The liquid refrigerant inside is sucked into the compression mechanism (11D, 11E) and returned to the circulation path. Refrigeration equipment.
[4] 請求項 1において、  [4] In claim 1,
上記冷媒戻し機構 (5)は、上記熱源側熱交換器 (15)を介して上記レシーバ (17)を 上記圧縮機構(11D, 11E)の吐出側に連通させるための連通機構(13)を備え、該連 通機構(13)によって上記レシーバ(17)を上記圧縮機構(11D, 11E)の吐出側に連通 させて該圧縮機構(11D, 11E)が吐出した高圧冷媒を該レシーバ(17)へ流入させる ことによって該レシーバ(17)内の液冷媒を上記集合液管(53)を通じて上記循環経 路へ戻すことを特徴とする冷凍装置。  The refrigerant return mechanism (5) includes a communication mechanism (13) for communicating the receiver (17) to the discharge side of the compression mechanism (11D, 11E) via the heat source side heat exchanger (15). The communication mechanism (13) connects the receiver (17) to the discharge side of the compression mechanism (11D, 11E), and the high-pressure refrigerant discharged by the compression mechanism (11D, 11E) is sent to the receiver (17). The refrigeration apparatus characterized in that the liquid refrigerant in the receiver (17) is returned to the circulation path through the collecting liquid pipe (53) by flowing in.
[5] 請求項 1乃至 4の何れか 1つにおいて、 [5] In any one of claims 1 to 4,
上記第 1利用側熱交換器 (31, 41)から上記圧縮機構 (11D, 11E)の吸入側へ向か う冷媒の過熱度を検出する吸入過熱度検出手段 (79, 81)と、  Suction superheat degree detection means (79, 81) for detecting the degree of superheat of the refrigerant from the first use side heat exchanger (31, 41) to the suction side of the compression mechanism (11D, 11E);
上記吸入過熱度検出手段(79, 81)の検出値が所定値以上になると上記レシーバ( 17)内の冷媒を上記循環経路へ戻すように上記冷媒戻し機構 (5)を制御する制御手 段 (95)とを備えて!/ヽることを特徴とする冷凍装置。  A control means (5) for controlling the refrigerant return mechanism (5) to return the refrigerant in the receiver (17) to the circulation path when the detection value of the suction superheat degree detection means (79, 81) becomes a predetermined value or more. 95) and a refrigeration apparatus characterized by being beaten!
[6] 請求項 1乃至 4の何れか 1つにおいて、 [6] In any one of claims 1 to 4,
上記圧縮機構 (11D, 11E)が吐出した冷媒の過熱度を検出する吐出過熱度検出手 段(75, 76)と、  A discharge superheat degree detection means (75, 76) for detecting the superheat degree of the refrigerant discharged by the compression mechanism (11D, 11E);
上記吐出過熱度検出手段(75, 76)の検出値が所定値以上になると上記レシーバ( 17)内の冷媒を上記循環経路へ戻すように上記冷媒戻し機構 (5)を制御する制御手 段 (95)とを備えて!/ヽることを特徴とする冷凍装置。  A control means (5) for controlling the refrigerant return mechanism (5) to return the refrigerant in the receiver (17) to the circulation path when the detection value of the discharge superheat degree detection means (75, 76) exceeds a predetermined value. 95) and a refrigeration apparatus characterized by being beaten!
[7] 請求項 1乃至 4の何れか 1つにおいて、 [7] In any one of claims 1 to 4,
上記圧縮機構 (11D, 11E)が吐出した冷媒の温度を検出する吐出冷媒温度検出手 段 (76)と、  A discharge refrigerant temperature detection means (76) for detecting the temperature of the refrigerant discharged by the compression mechanism (11D, 11E);
上記吐出冷媒温度検出手段 (76)の検出値が所定値以上になると上記レシーバ(1 7)内の冷媒を上記循環経路へ戻すように上記冷媒戻し機構 (5)を制御する制御手 段 (95)とを備えて!/ヽることを特徴とする冷凍装置。  A control means (95) for controlling the refrigerant return mechanism (5) to return the refrigerant in the receiver (17) to the circulation path when the detected value of the discharged refrigerant temperature detecting means (76) becomes a predetermined value or more. ).
[8] 圧縮機構 (11D, 11E)と熱源側熱交 (15)とレシーバ(17)とを有する熱源側ュ- ット(10)と、第 1利用側熱交換器 (31, 41)を有する第 1利用側ユニット (30, 40)と、第 2利用側熱交 (21)を有する第 2利用側ユニット(20)と、各ユニット(10, 20, 30, 4 0)を接続して冷媒回路 (50)を構成するガス側連絡配管 (51, 52)及び液側連絡配管 (53, 54, 55)とを備え、 [8] A heat source side unit (10) having a compression mechanism (11D, 11E), a heat source side heat exchanger (15), and a receiver (17), and a first use side heat exchanger (31, 41) A first usage unit (30, 40) having a first 2Gas side communication pipe (51) connecting the second usage side unit (20) with usage side heat exchange (21) and each unit (10, 20, 30, 40) to form the refrigerant circuit (50) , 52) and liquid side connecting piping (53, 54, 55),
上記ガス側連絡配管 (51, 52)が、上記熱源側ユニット(10)と上記第 1利用側ュ-ッ ト (30,40)とに接続された第 1ガス側連絡配管 (51)と、上記熱源側ユニット (10)と上記 第 2利用側ユニット (20)とに接続された第 2ガス側連絡配管 (52)とを備え、  The gas side communication pipe (51, 52) is connected to the heat source side unit (10) and the first use side unit (30, 40); A second gas side communication pipe (52) connected to the heat source side unit (10) and the second usage side unit (20),
上記液側連絡配管 (53, 54, 55)が、上記熱源側ユニット(10)に接続された集合液 管 (53)と、該集合液管 (53)力 分岐して上記第 1利用側ユニット (30, 40)に接続され た第 1分岐液管 (54)と、該集合液管 (53)から分岐して上記第 2利用側ユニット (20) に接続された第 2分岐液管 (55)とを備えた冷凍装置であって、  The liquid side communication pipe (53, 54, 55) is connected to the collecting liquid pipe (53) connected to the heat source side unit (10), and the collecting liquid pipe (53) is branched into the first usage side unit. A first branch liquid pipe (54) connected to (30, 40), and a second branch liquid pipe (55) branched from the collecting liquid pipe (53) and connected to the second usage side unit (20). )
上記冷媒回路 (50)には、上記圧縮機構(11D, 11E)力 送り出された冷媒が上記 第 2利用側ユニット (20)から第 1利用側ユニット (30, 40)を流通し該圧縮機構(11D, 1 1E)に戻る第 1運転モードと、上記圧縮機構(11D, 11E)力 送り出された冷媒が上記 熱源側熱交 (15)からレシーバ(17)に流入した後に第 1利用側ユニット (30, 40) を流通して該圧縮機構(11D, 11E)に戻る第 2運転モードとを切り換える切 構(12 )が設けられ、  In the refrigerant circuit (50), the refrigerant sent out by the compression mechanism (11D, 11E) flows from the second usage-side unit (20) through the first usage-side unit (30, 40) to the compression mechanism ( 11D, 1 1E), and the first use side unit (11D, 11E) after the refrigerant sent out from the heat source side heat exchange (15) flows into the receiver (17). 30, 40) is provided to switch the second operation mode to return to the compression mechanism (11D, 11E). (12)
上記切換機構(12)によって第 1運転モードから第 2運転モードに切り換えて、該第 1運転モード中にレシーバ(17)内に溜まった液冷媒を上記集合液管 (53)を通じて上 記第 1利用側ユニット (30, 40)へ戻すことを特徴とする冷凍装置。  The switching mechanism (12) switches from the first operation mode to the second operation mode, and the liquid refrigerant accumulated in the receiver (17) during the first operation mode passes through the collecting liquid pipe (53). A refrigeration system that is returned to the user side unit (30, 40).
PCT/JP2006/315914 2005-08-15 2006-08-11 Refrigerating apparatus WO2007020885A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/988,232 US20090077985A1 (en) 2005-08-15 2006-08-11 Refrigerating Apparatus
CN2006800298921A CN101243294B (en) 2005-08-15 2006-08-11 Refrigerating apparatus
AU2006280834A AU2006280834A1 (en) 2005-08-15 2006-08-11 Refrigerating apparatus
EP06796352A EP1916487A1 (en) 2005-08-15 2006-08-11 Refrigerating apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-235447 2005-08-15
JP2005235447 2005-08-15
JP2005377703A JP3982548B2 (en) 2005-08-15 2005-12-28 Refrigeration equipment
JP2005-377703 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007020885A1 true WO2007020885A1 (en) 2007-02-22

Family

ID=37757546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315914 WO2007020885A1 (en) 2005-08-15 2006-08-11 Refrigerating apparatus

Country Status (8)

Country Link
US (1) US20090077985A1 (en)
EP (1) EP1916487A1 (en)
JP (1) JP3982548B2 (en)
KR (1) KR100912161B1 (en)
CN (1) CN101243294B (en)
AU (1) AU2006280834A1 (en)
TW (1) TW200720608A (en)
WO (1) WO2007020885A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985548A1 (en) * 2008-04-01 2016-02-17 Efficient Energy GmbH Vertically arranged heat pump having a return channel and method of manufacturing the vertically arranged heat pump

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054194A (en) * 2008-07-31 2010-03-11 Daikin Ind Ltd Refrigerating device
WO2011112495A2 (en) * 2010-03-08 2011-09-15 Carrier Corporation Refrigerant distribution apparatus and methods for transport refrigeration system
JP4888583B2 (en) 2010-05-31 2012-02-29 ダイキン工業株式会社 Refrigeration equipment
JP2012077983A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Refrigerating circuit
US9816739B2 (en) 2011-09-02 2017-11-14 Carrier Corporation Refrigeration system and refrigeration method providing heat recovery
EP2778567B1 (en) * 2011-11-07 2021-01-20 Mitsubishi Electric Corporation Air-conditioning apparatus
CN104390384B (en) * 2014-10-15 2017-03-29 珠海格力电器股份有限公司 Air conditioning system
CN106642780B (en) * 2016-12-30 2019-09-27 中原工学院 It is a kind of to refrigerate and freeze synchronous Two-way Cycle composite system
JP6849036B1 (en) * 2019-09-30 2021-03-24 ダイキン工業株式会社 Heat source unit and refrigeration equipment
CN111964208A (en) * 2020-07-14 2020-11-20 宁波奥克斯电气股份有限公司 Heating indoor unit high-temperature-resistant control method and device, air conditioner and storage medium
JP6958692B1 (en) * 2020-08-28 2021-11-02 ダイキン工業株式会社 Heat source unit and refrigeration equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305903A (en) * 1994-05-10 1995-11-21 Hitachi Ltd Controller for freezer
JP2005134103A (en) * 2003-10-06 2005-05-26 Daikin Ind Ltd Refrigeration device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046663A1 (en) * 2000-12-08 2002-06-13 Daikin Industries, Ltd. Refrigerator
JP3630632B2 (en) * 2000-12-12 2005-03-16 株式会社東芝 refrigerator
JP4465889B2 (en) * 2001-02-02 2010-05-26 ダイキン工業株式会社 Refrigeration equipment
JP3775358B2 (en) * 2002-07-12 2006-05-17 ダイキン工業株式会社 Refrigeration equipment
US6826924B2 (en) * 2003-03-17 2004-12-07 Daikin Industries, Ltd. Heat pump apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305903A (en) * 1994-05-10 1995-11-21 Hitachi Ltd Controller for freezer
JP2005134103A (en) * 2003-10-06 2005-05-26 Daikin Ind Ltd Refrigeration device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985548A1 (en) * 2008-04-01 2016-02-17 Efficient Energy GmbH Vertically arranged heat pump having a return channel and method of manufacturing the vertically arranged heat pump
EP2988075A1 (en) * 2008-04-01 2016-02-24 Efficient Energy GmbH Vertically arranged heat pump having two compressors and method of manufacturing the vertically arranged heat pump
US9933190B2 (en) 2008-04-01 2018-04-03 Efficient Energy Gmbh Vertically arranged heat pump and method of manufacturing the vertically arranged heat pump

Also Published As

Publication number Publication date
TWI314983B (en) 2009-09-21
EP1916487A1 (en) 2008-04-30
AU2006280834A1 (en) 2007-02-22
CN101243294A (en) 2008-08-13
JP3982548B2 (en) 2007-09-26
KR100912161B1 (en) 2009-08-14
CN101243294B (en) 2010-05-19
KR20080025419A (en) 2008-03-20
TW200720608A (en) 2007-06-01
US20090077985A1 (en) 2009-03-26
JP2007078338A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
WO2007020885A1 (en) Refrigerating apparatus
KR100924628B1 (en) Refrigeration device
JP5871959B2 (en) Air conditioner
JP4096934B2 (en) Refrigeration equipment
EP0638777A1 (en) Refrigerator
JP4360203B2 (en) Refrigeration equipment
US6883346B2 (en) Freezer
WO2006057141A1 (en) Air conditioner
JP4441965B2 (en) Air conditioner
WO2006025427A1 (en) Refrigerating device
WO2004008048A1 (en) Refrigeration equipment
JP3956784B2 (en) Refrigeration equipment
WO2006013861A1 (en) Refrigeration unit
WO2006057224A1 (en) Freezing apparatus
WO2007102345A1 (en) Refrigeration device
EP3961126B1 (en) Multi-air conditioner for heating and cooling operations
CN114270111B (en) Heat source unit and refrigerating device
JPWO2004013550A1 (en) Refrigeration equipment
KR20100062405A (en) Air conditioner and control method thereof
CN111919073A (en) Refrigerating device
JP3584514B2 (en) Refrigeration equipment
JP4023386B2 (en) Refrigeration equipment
JP2007163011A (en) Refrigeration unit
JP2010014308A (en) Refrigerating device
JP2006300507A (en) Refrigeration device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029892.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11988232

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006280834

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006796352

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006280834

Country of ref document: AU

Date of ref document: 20060811

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087004353

Country of ref document: KR