JPH04217759A - Multiroom type air-conditioner - Google Patents

Multiroom type air-conditioner

Info

Publication number
JPH04217759A
JPH04217759A JP40309190A JP40309190A JPH04217759A JP H04217759 A JPH04217759 A JP H04217759A JP 40309190 A JP40309190 A JP 40309190A JP 40309190 A JP40309190 A JP 40309190A JP H04217759 A JPH04217759 A JP H04217759A
Authority
JP
Japan
Prior art keywords
valve
heat exchanger
piping
flows
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40309190A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitayama
浩 北山
Takayuki Takatani
隆幸 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP40309190A priority Critical patent/JPH04217759A/en
Publication of JPH04217759A publication Critical patent/JPH04217759A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Abstract

PURPOSE:To prevent the occurrence of leak in way that a reverse pressure is not exerted on a solenoid valve and to enable execution of constantly normal operation by a method wherein the direction of the flow of a refrigerant in two solenoid valves per one indoor machine is kept in a normally constant state despite of cooling and heating operation. CONSTITUTION:During cooling operation, high temperature high pressure gas delivered from a compressor 2 is condensed and liquefied by means of a heat exchanger on the outdoor side and guided through a piping 10 and a two-way valve 14 to a piping 12. After the gas flows through an expansion valve 7 to a heat exchanger 6 on the indoor side and is vaporized for gasification, it flows through a solenoid valve 9 and a four-way valve 3 to the compressor 2. During cooling operation, high temperature high pressure gas from the compressor 2 flows through the four-way valve 3 to a piping 11 and a flow is switched in the middle to a piping 18 by means of a check valve 25. The gas flows in a piping 10 and is guided through a solenoid valve 8 to a heat exchanger on the indoor side, where it is condensed for liquefaction. The pressure of liquefied gas is reduced by means of the expansion valve 7 and flows to the piping 12. After it flows through a two-way valve 15, a flow is switched to a piping 24 and the liquefied gas flows through a piping 10 to a heat exchanger 4 on the outdoor side and is gasified and returned to the compressor. The above circulating operation is carried out.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は多室型空気調和機に係わ
り、特に各室内機毎に自由に冷暖房が選択可能な多室型
空気調和機の冷凍サイクルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner, and more particularly to a refrigeration cycle for a multi-room air conditioner in which heating and cooling can be freely selected for each indoor unit.

【0002】0002

【従来の技術】従来、この種の多室型空気調和機として
、例えば、特開平2−97857号公報に掲載されたも
のがある。
2. Description of the Related Art Conventionally, this type of multi-room air conditioner has been disclosed, for example, in Japanese Patent Application Laid-Open No. 2-97857.

【0003】以下、図面を参照しながら上述した公報の
従来の多室型空気調和機について説明する。
[0003] The conventional multi-room air conditioner disclosed in the above-mentioned publication will be described below with reference to the drawings.

【0004】図4〜図6において、1は多室型空気調和
機の室外機であり、圧縮機2、四方弁3、室外側熱交換
器4から成っている。5は室内機であり、室内側熱交換
器6、膨張弁7、第1電磁弁8、第2電磁弁9から成っ
ている。
In FIGS. 4 to 6, reference numeral 1 denotes an outdoor unit of a multi-room air conditioner, which is composed of a compressor 2, a four-way valve 3, and an outdoor heat exchanger 4. Reference numeral 5 denotes an indoor unit, which includes an indoor heat exchanger 6, an expansion valve 7, a first solenoid valve 8, and a second solenoid valve 9.

【0005】そして室内側熱交換器6の一端は、第1電
磁弁8を介して室外機1と室内機5を接続する第1の接
続配管10と連通するとともに、第2電磁弁9を介して
室外機1と室内機5を接続する第2の接続配管11と連
通しており、第1電磁弁8と第2電磁弁9の開閉により
、室内側熱交換器6の一端は、第1の接続配管10およ
び第2の接続配管11と切替可能に接続されている。
One end of the indoor heat exchanger 6 communicates with a first connecting pipe 10 that connects the outdoor unit 1 and the indoor unit 5 via a first solenoid valve 8, and communicates with a first connecting pipe 10 that connects the outdoor unit 1 and the indoor unit 5 via a second solenoid valve 9. and communicates with a second connection pipe 11 that connects the outdoor unit 1 and the indoor unit 5, and by opening and closing the first solenoid valve 8 and the second solenoid valve 9, one end of the indoor heat exchanger 6 is connected to the first The connecting pipe 10 and the second connecting pipe 11 are switchably connected to each other.

【0006】また室内側熱交換器6の他方は、膨張弁7
を介して第3の接続配管12と接続しており、この第3
の接続配管12は流量制御装置13を介して第1の接続
配管10と接続されている。尚、室内機5は本従来例で
は3台接続されており、区別する場合は添字a、b、c
を付けることにする。
The other side of the indoor heat exchanger 6 is connected to an expansion valve 7.
It is connected to the third connecting pipe 12 through the
The connecting pipe 12 is connected to the first connecting pipe 10 via a flow rate control device 13. In addition, three indoor units 5 are connected in this conventional example, and the subscripts a, b, and c are used to distinguish them.
I will add .

【0007】次に上記構成の多室型空気調和機の動作に
ついて説明する。まず冷房運転のみの場合について説明
する。この場合の冷媒の流れは実線矢印で表わし、各弁
の開閉状態は次の通りである。即ち、第1電磁弁8は閉
、第2電磁弁9は開、流量制御装置13は開、各膨張弁
7は各室内負荷に応じた開度である。
Next, the operation of the multi-room air conditioner having the above configuration will be explained. First, the case of only cooling operation will be explained. The flow of refrigerant in this case is represented by solid arrows, and the open/close states of each valve are as follows. That is, the first electromagnetic valve 8 is closed, the second electromagnetic valve 9 is open, the flow rate control device 13 is open, and each expansion valve 7 is opened according to each indoor load.

【0008】圧縮機2より吐出された高温高圧ガスは、
室外側熱交換器4で凝縮液化され、第1の接続配管10
、流量制御装置13を通って第3の接続配管12に導か
れる。そして膨張弁7を通って各室内側熱交換器6に流
入し、それぞれ蒸発気化したあと、第2電磁弁9を経て
四方弁3を介して圧縮機2に戻り、冷房運転を行なう。
The high temperature and high pressure gas discharged from the compressor 2 is
It is condensed and liquefied in the outdoor heat exchanger 4, and then transferred to the first connection pipe 10.
, and is led to the third connection pipe 12 through the flow rate control device 13. The air then flows into each indoor heat exchanger 6 through the expansion valve 7, where it is evaporated and vaporized, and then returns to the compressor 2 via the second electromagnetic valve 9 and the four-way valve 3, where it performs cooling operation.

【0009】次に暖房運転のみの場合について説明する
。この場合の冷媒の流れは破線矢印で表わし、各弁の開
閉状態は次の通りである。即ち、第1電磁弁8は閉、第
2電磁弁9は開、流量制御装置13は開、各膨張弁7は
各室内負荷に応じた開度である。
Next, the case of only heating operation will be explained. The flow of refrigerant in this case is represented by a broken line arrow, and the open/close states of each valve are as follows. That is, the first electromagnetic valve 8 is closed, the second electromagnetic valve 9 is open, the flow rate control device 13 is open, and each expansion valve 7 is opened according to each indoor load.

【0010】圧縮機2より吐出された高温高圧ガスは、
四方弁3、第2電磁弁9を介して各室内側熱交換器6に
導かれ、ここで凝縮液化して膨張弁7を介して第3の接
続配管12に流入し、流量制御装置13で低圧二相状態
まで減圧され、第1の接続配管10を通って室外側熱交
換器4に入り蒸発気化して圧縮機2に戻り、暖房運転を
行なう。
[0010] The high temperature and high pressure gas discharged from the compressor 2 is
It is guided to each indoor heat exchanger 6 via the four-way valve 3 and the second electromagnetic valve 9, where it is condensed and liquefied, flows into the third connection pipe 12 via the expansion valve 7, and is controlled by the flow rate control device 13. It is depressurized to a low-pressure two-phase state, passes through the first connection pipe 10, enters the outdoor heat exchanger 4, is evaporated, and returns to the compressor 2, where heating operation is performed.

【0011】次に冷房主体運転の場合について図5を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…冷房、室内機5c…暖房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
閉、第1電磁弁8cは開、第2電磁弁9a、9bは開、
第2電磁弁9cは閉、流量制御装置13は開、各膨張弁
7は各室内負荷に応じた開度である。
Next, the case of cooling-based operation will be explained using FIG. 5. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...cooling, indoor unit 5c...heating, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are closed, the first solenoid valve 8c is open, and the second solenoid valves 9a and 9b are open.
The second electromagnetic valve 9c is closed, the flow rate control device 13 is open, and each expansion valve 7 has an opening degree according to each indoor load.

【0012】圧縮機2より吐出された冷媒は、室外側熱
交換器4で或る程度凝縮液化され、第1の接続配管10
を通って、一部は第1電磁弁8cを介して室内側熱交換
器6cに導かれここで凝縮液化して膨張弁7cを通って
第3の接続配管12に流入する。また残りの冷媒は流量
制御装置13を通って第3の接続配管12に流入し、膨
張弁7cからの冷媒と合流したあと膨張弁7a、7bを
介して室内側熱交換器6a、6bで蒸発気化し、第2の
接続配管11を通って圧縮機2に戻る。
The refrigerant discharged from the compressor 2 is condensed and liquefied to some extent in the outdoor heat exchanger 4, and then transferred to the first connecting pipe 10.
A part of it is guided to the indoor heat exchanger 6c via the first electromagnetic valve 8c, where it is condensed and liquefied, and flows into the third connection pipe 12 through the expansion valve 7c. The remaining refrigerant flows into the third connection pipe 12 through the flow rate control device 13, joins with the refrigerant from the expansion valve 7c, and then evaporates in the indoor heat exchangers 6a, 6b via the expansion valves 7a, 7b. It is vaporized and returns to the compressor 2 through the second connection pipe 11.

【0013】次に暖房主体運転の場合について図6を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…暖房、室内機5c…冷房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
閉、第1電磁弁8cは開、第2電磁弁9a、9bは開、
第2電磁弁9cは閉、流量制御装置13は開、各膨張弁
7は各室内負荷に応じた開度である。
Next, the case of heating-based operation will be explained using FIG. 6. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...heating, indoor unit 5c...cooling, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are closed, the first solenoid valve 8c is open, and the second solenoid valves 9a and 9b are open.
The second electromagnetic valve 9c is closed, the flow rate control device 13 is open, and each expansion valve 7 has an opening degree according to each indoor load.

【0014】圧縮機2より吐出された冷媒は、第2の接
続配管11を通り第2電磁弁9a、9bを介して室内側
熱交換器6a、6bに導かれここで凝縮液化して膨張弁
7a、7bを通って第3の接続配管12に流入する。そ
して一部の冷媒は膨張弁7cを介して室内側熱交換器6
cで蒸発気化して第1電磁弁8cを通って第1の接続配
管10に流入する。また残りの冷媒は流量制御装置13
で減圧され第1の接続配管10に流入し、第1電磁弁8
cからの冷媒と合流して室外側熱交換器4で蒸発気化し
て圧縮機2に戻る。
The refrigerant discharged from the compressor 2 passes through the second connecting pipe 11 and is guided to the indoor heat exchangers 6a and 6b via the second electromagnetic valves 9a and 9b, where it is condensed and liquefied to the expansion valve. It flows into the third connecting pipe 12 through 7a and 7b. A part of the refrigerant passes through the expansion valve 7c to the indoor heat exchanger 6.
It is evaporated at step c and flows into the first connection pipe 10 through the first electromagnetic valve 8c. In addition, the remaining refrigerant is transferred to the flow control device 13.
The pressure is reduced and flows into the first connection pipe 10, and the first solenoid valve 8
It joins with the refrigerant from c, evaporates in the outdoor heat exchanger 4, and returns to the compressor 2.

【0015】[0015]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、室外機1が冷房運転する場合と暖房運転
する場合によって、第1電磁弁8及び第2電磁弁9の冷
媒の流れ方向が逆転するため、電磁弁に逆圧が作用し、
閉状態の電磁弁からリークが生じ、正常な運転ができな
いという問題点を有していた。
However, in the above configuration, the flow directions of the refrigerant in the first solenoid valve 8 and the second solenoid valve 9 are reversed depending on whether the outdoor unit 1 is in a cooling operation or a heating operation. Therefore, back pressure acts on the solenoid valve,
There was a problem in that leakage occurred from the solenoid valve in the closed state, making normal operation impossible.

【0016】そこでこのような問題を解決するためには
、逆圧が作用してもリークしない電磁弁を用いればよい
が、この種の電磁弁は非常に高価であったり、大容量の
ものがないといった問題点があった。また他の解決策と
しては、電磁弁と逆止弁の組み合わせを室内機1台につ
き4つ設ければよいが、これでは非常に高価で冷媒回路
も複雑になってしまうという問題点を有していた。
In order to solve this problem, it is possible to use a solenoid valve that does not leak even when reverse pressure is applied, but this type of solenoid valve is very expensive or has a large capacity. There was a problem that there was no. Another solution is to install four combinations of solenoid valves and check valves per indoor unit, but this has the problems of being extremely expensive and complicating the refrigerant circuit. was.

【0017】本発明は上記課題に鑑みなされたもので、
接続配管が従来の2本と工事性に優れ、かつ安価な仕様
で電磁弁からのリークをなくして正常な運転が可能な、
各室内機毎に自由に冷暖房ができる多室型空気調和機を
提供するものである。
[0017] The present invention was made in view of the above problems, and
It has two connecting pipes compared to the conventional one, is easier to construct, and is inexpensive, eliminating leaks from the solenoid valve and allowing normal operation.
To provide a multi-room air conditioner that can freely perform heating and cooling for each indoor unit.

【0018】[0018]

【課題を解決するための手段】上記課題を解決するため
に本発明は、室内側熱交換器の一端を前記第1の接続配
管および第2の接続配管とそれぞれ第1電磁弁、第2電
磁弁を介して切替可能に接続し、他端を膨張弁を介して
第3の接続配管と接続し、前記第3の接続配管は、一端
を第1二方弁を介して前記第1の接続配管と接続し、他
端を第2二方弁を介して前記第2の接続配管と接続する
とともに、冷房または暖房運転時に前記第1および前記
第2の接続配管内の冷媒の流れ方向を切り替える流路切
替機構を備えた構成とするものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention connects one end of the indoor heat exchanger to the first connecting pipe and the second connecting pipe, respectively with a first solenoid valve and a second solenoid valve. the other end is connected to a third connecting pipe via an expansion valve, and one end of the third connecting pipe is connected to the first connecting pipe via a first two-way valve. the other end is connected to the second connection pipe via a second two-way valve, and the flow direction of the refrigerant in the first and second connection pipes is switched during cooling or heating operation. The configuration includes a flow path switching mechanism.

【0019】[0019]

【作用】本発明は上記した構成によって、室内機1台に
つき2つ設けられた電磁弁における冷媒の流れ方向を、
冷房、暖房運転に拘らず常に一定方向として、電磁弁に
逆圧が作用しないようにして、電磁弁でのリークをなく
し、常に正常な運転を可能とするものである。
[Operation] With the above-described configuration, the present invention controls the flow direction of the refrigerant in the two solenoid valves provided per indoor unit.
Regardless of cooling or heating operation, the direction is always constant so that no back pressure acts on the solenoid valve, eliminating leaks in the solenoid valve and always allowing normal operation.

【0020】[0020]

【実施例】以下本発明の一実施例について図面を参照し
ながら説明する。尚、従来と同一部分については同一符
号を付しその詳細な説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In addition, the same reference numerals are given to the same parts as in the conventional art, and detailed explanation thereof will be omitted.

【0021】図1〜図3において14は第1二方弁であ
り、第3の接続配管12の一端を第1二方弁14を介し
て第1の接続配管10に接続している。15は第2二方
弁であり、第3の接続配管12の他端を第2二方弁15
を介して第2の接続配管11に接続している。
In FIGS. 1 to 3, reference numeral 14 denotes a first two-way valve, and one end of the third connecting pipe 12 is connected to the first connecting pipe 10 via the first two-way valve 14. 15 is a second two-way valve, and the other end of the third connection pipe 12 is connected to the second two-way valve 15.
It is connected to the second connection pipe 11 via.

【0022】16は流路切替機構であり、第2の接続配
管11と第1の接続配管10を第1逆止弁17を介して
接続する第4の接続配管18と、第2の接続配管11の
途中で第4の接続配管18との合流点19より室内機5
側の位置20と、第1の接続配管10の途中で第4の接
続配管18との合流点21より反室内機5側の位置22
とを第2逆止弁23を介して接続する第5の接続配管2
4と、第2の接続配管11の途中で合流点19と位置2
0との間に設けられた第3逆止弁25と、第1の接続配
管10の途中で合流点21と位置22との間に設けられ
た第4逆止弁26とから成っている。
Reference numeral 16 denotes a flow path switching mechanism, which includes a fourth connection pipe 18 that connects the second connection pipe 11 and the first connection pipe 10 via the first check valve 17; 11, the indoor unit 5 is connected from the confluence 19 with the fourth connection pipe 18.
a position 20 on the side, and a position 22 on the side opposite to the indoor unit 5 from the confluence 21 with the fourth connection pipe 18 in the middle of the first connection pipe 10.
A fifth connection pipe 2 that connects with the second check valve 23
4 and the confluence point 19 in the middle of the second connection pipe 11 and position 2
0, and a fourth check valve 26 provided between the merging point 21 and the position 22 in the middle of the first connecting pipe 10.

【0023】そして各逆止弁の流れ方向は、第1逆止弁
17及び第2逆止弁23は第2の接続配管11から第1
の接続配管10方向、第3逆止弁25は室内機5から室
外機1方向、第4逆止弁26は室外機1から室内機5方
向である。
The flow direction of each check valve is such that the first check valve 17 and the second check valve 23 flow from the second connecting pipe 11 to the first check valve 17 and the second check valve 23.
The third check valve 25 is from the indoor unit 5 to the outdoor unit 1, and the fourth check valve 26 is from the outdoor unit 1 to the indoor unit 5.

【0024】次に、このような構成においての動作につ
いて説明する。まず冷房運転のみの場合について説明す
る。この場合の冷媒の流れは実線矢印で表わし、各弁の
開閉状態は次の通りである。即ち、第1電磁弁8は閉、
第2電磁弁9は開、第1二方弁14は開、第2二方弁1
5は閉、各膨張弁7は各室内負荷に応じた開度である。
Next, the operation in such a configuration will be explained. First, the case of only cooling operation will be explained. The flow of refrigerant in this case is represented by solid arrows, and the open/close states of each valve are as follows. That is, the first solenoid valve 8 is closed,
The second solenoid valve 9 is open, the first two-way valve 14 is open, and the second two-way valve 1
5 is closed, and each expansion valve 7 is opened according to each indoor load.

【0025】圧縮機2より吐出された高温高圧ガスは、
室外側熱交換器4で凝縮液化され、第1の接続配管10
、第4逆止弁26、第1二方弁14を通って第3の接続
配管12に導かれる。そして膨張弁7を通って各室内側
熱交換器6に流入し、それぞれ蒸発気化したあと、第2
電磁弁9、第3逆止弁25を経て四方弁3を介して圧縮
機2に戻り、冷房運転を行なう。
The high temperature and high pressure gas discharged from the compressor 2 is
It is condensed and liquefied in the outdoor heat exchanger 4, and then transferred to the first connection pipe 10.
, the fourth check valve 26 , and the first two-way valve 14 to be led to the third connecting pipe 12 . Then, it flows into each indoor heat exchanger 6 through the expansion valve 7, and after being evaporated and vaporized, the second
It returns to the compressor 2 via the solenoid valve 9, the third check valve 25, and the four-way valve 3, and performs cooling operation.

【0026】次に暖房運転のみの場合について説明する
。この場合の冷媒の流れは破線矢印で表わし、各弁の開
閉状態は次の通りである。即ち、第1電磁弁8は開、第
2電磁弁9は閉、第1二方弁14は閉、第2二方弁15
は開、各膨張弁7は各室内負荷に応じた開度である。
Next, the case of only heating operation will be explained. The flow of refrigerant in this case is represented by a broken line arrow, and the open/close states of each valve are as follows. That is, the first solenoid valve 8 is open, the second solenoid valve 9 is closed, the first two-way valve 14 is closed, and the second two-way valve 15 is closed.
is open, and each expansion valve 7 has an opening degree according to each indoor load.

【0027】圧縮機2より吐出された高温高圧ガスは、
四方弁3から第2の接続配管11を通り、途中第3逆止
弁25のために第4の接続配管18へ流れが切り変わり
、第1の接続配管10に流入して第1電磁弁8を介して
各室内側熱交換器6に導かれ、ここで凝縮液化して膨張
弁7により低圧二相状態まで減圧されて第3の接続配管
12に流入し、第2二方弁15を通ったあと流れが第5
の接続配管24に切り変わり、第1の接続配管10を通
って室外側熱交換器4に入り蒸発気化して圧縮機2に戻
り、暖房運転を行なう。
The high temperature and high pressure gas discharged from the compressor 2 is
From the four-way valve 3, the flow passes through the second connection pipe 11, switches to the fourth connection pipe 18 due to the third check valve 25, flows into the first connection pipe 10, and flows into the first solenoid valve 8. It is guided to each indoor heat exchanger 6 via the heat exchanger 6 , where it is condensed and liquefied, and the pressure is reduced to a low-pressure two-phase state by the expansion valve 7 , flows into the third connecting pipe 12 , and passes through the second two-way valve 15 . The flow is the fifth
The air is switched to the connecting pipe 24, passes through the first connecting pipe 10, enters the outdoor heat exchanger 4, is evaporated, and returns to the compressor 2, where heating operation is performed.

【0028】次に冷房主体運転の場合について図2を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…冷房、室内機5c…暖房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
閉、第1電磁弁8cは開、第2電磁弁9a、9bは開、
第2電磁弁9cは閉、第1二方弁14は閉、第2二方弁
15は閉、各膨張弁7は各室内負荷に応じた開度である
Next, the case of cooling-based operation will be explained using FIG. 2. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...cooling, indoor unit 5c...heating, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are closed, the first solenoid valve 8c is open, and the second solenoid valves 9a and 9b are open.
The second solenoid valve 9c is closed, the first two-way valve 14 is closed, the second two-way valve 15 is closed, and each expansion valve 7 is opened according to each indoor load.

【0029】圧縮機2より吐出された冷媒は、室外側熱
交換器4で或る程度凝縮液化され、第1の接続配管10
を通って、第1電磁弁8cを介して室内側熱交換器6c
に導かれここで凝縮液化して膨張弁7cを通って第3の
接続配管12に流入する。そして膨張弁7a、7bで減
圧され室内側熱交換器6a、6bで蒸発気化し、第2電
磁弁9a、9b、第2の接続配管11中の第3逆止弁2
5を経て四方弁3を介して圧縮機2に戻り、冷房運転を
行なう。
The refrigerant discharged from the compressor 2 is condensed and liquefied to some extent in the outdoor heat exchanger 4, and then transferred to the first connecting pipe 10.
through the indoor heat exchanger 6c via the first solenoid valve 8c.
Here, it is condensed and liquefied, and flows into the third connecting pipe 12 through the expansion valve 7c. The pressure is then reduced by the expansion valves 7a and 7b, and evaporated by the indoor heat exchangers 6a and 6b.
5 and returns to the compressor 2 via the four-way valve 3, where cooling operation is performed.

【0030】次に暖房主体運転の場合について図3を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…暖房、室内機5c…冷房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
開、第1電磁弁8cは閉、第2電磁弁9a、9bは閉、
第2電磁弁9cは開、第1二方弁14は閉、第2二方弁
15は閉、各膨張弁7は各室内負荷に応じた開度である
Next, the case of heating-based operation will be explained using FIG. 3. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...heating, indoor unit 5c...cooling, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are open, the first solenoid valve 8c is closed, and the second solenoid valves 9a and 9b are closed.
The second solenoid valve 9c is open, the first two-way valve 14 is closed, the second two-way valve 15 is closed, and each expansion valve 7 has an opening degree according to each indoor load.

【0031】圧縮機2より吐出された冷媒は、四方弁3
から第2の接続配管11を通り、途中第3逆止弁25の
ために第4の接続配管18へ流れが切り変わり、第1の
接続配管10に流入して、第2電磁弁9a、9bを介し
て室内側熱交換器6a、6bに導かれここで凝縮液化し
て膨張弁7a、7bを通って第3の接続配管12に流入
する。そして膨張弁7cで減圧され室内側熱交換器6c
である程度蒸発気化して第2電磁弁9cを通って第2の
接続配管11に流入し、第3逆止弁25のために流れが
第5の接続配管24に切り変わり、第1の接続配管10
を通って室外側熱交換器4に入り蒸発気化して圧縮機2
に戻り、暖房運転を行なう。
The refrigerant discharged from the compressor 2 passes through the four-way valve 3
The flow passes through the second connecting pipe 11, switches to the fourth connecting pipe 18 due to the third check valve 25, flows into the first connecting pipe 10, and then flows into the second electromagnetic valves 9a, 9b. It is guided to the indoor heat exchangers 6a, 6b, where it is condensed and liquefied, and flows into the third connecting pipe 12 through the expansion valves 7a, 7b. Then, the pressure is reduced by the expansion valve 7c and the indoor heat exchanger 6c
It is evaporated to some extent and flows into the second connection pipe 11 through the second electromagnetic valve 9c, and the flow is switched to the fifth connection pipe 24 due to the third check valve 25, and then the flow is transferred to the first connection pipe. 10
It passes through the outdoor heat exchanger 4 and is evaporated into compressor 2.
Return to and perform heating operation.

【0032】以上のように、室内機5に設けられた各電
磁弁8、9を流れる冷媒の方向は、冷房、冷房主体、暖
房、暖房主体運転のいかんに拘らず常に一定方向にする
ことができるため、各電磁弁8、9に逆圧が作用するこ
とがなく、従来生じていた閉状態の電磁弁からのリーク
を解消することが出来る。
As described above, the direction of the refrigerant flowing through each of the solenoid valves 8 and 9 provided in the indoor unit 5 can always be kept in the same direction regardless of whether the operation is cooling, mainly cooling, heating, or mainly heating. Therefore, no back pressure acts on each electromagnetic valve 8, 9, and leakage from the electromagnetic valve in the closed state, which conventionally occurs, can be eliminated.

【0033】[0033]

【発明の効果】以上の説明から明らかなように本発明の
多室型空気調和機は、室内側熱交換器の一端を第1の接
続配管および第2の接続配管とそれぞれ第1電磁弁、第
2電磁弁を介して切替可能に接続し、他の一端を膨張弁
を介して第3の接続配管と接続し、前記第3の接続配管
は、一端を第1二方弁を介して前記第1の接続配管と接
続し、他端を第2二方弁を介して前記第2の接続配管と
接続するとともに、冷房または暖房運転時に前記第1お
よび第2の接続配管内の冷媒の流れ方向を切り替える流
路切替機構を備えたものである。
As is clear from the above description, the multi-room air conditioner of the present invention connects one end of the indoor heat exchanger to the first connecting pipe and the second connecting pipe, and the first solenoid valve, respectively. The third connection pipe has one end connected to the third connection pipe via the first two-way valve, and the other end thereof is connected to the third connection pipe via the first two-way valve. The other end is connected to the first connecting pipe, and the other end is connected to the second connecting pipe via a second two-way valve, and the flow of refrigerant in the first and second connecting pipes during cooling or heating operation. It is equipped with a flow path switching mechanism that switches the direction.

【0034】本発明は多室型空気調和機を上記のように
構成したので、安価な仕様で冷房、冷房主体、暖房、暖
房主体運転のいかんに拘らず、室内機に設けられた各電
磁弁を流れる冷媒の方向を常に一定方向にでき、各電磁
弁に逆圧が作用することをなくして閉状態の電磁弁から
のリークを解消して、正常な運転を行なうことが出来る
。また室内機と室外機を接続する配管も2本でよく、省
工事性に優れたものである。
Since the present invention has a multi-room air conditioner configured as described above, each solenoid valve provided in the indoor unit can be used regardless of whether it is used for cooling, cooling-only, heating, or heating-only operation with inexpensive specifications. The direction of the refrigerant flowing through the refrigerant can be kept constant at all times, eliminating back pressure from acting on each electromagnetic valve, eliminating leaks from closed electromagnetic valves, and allowing normal operation. In addition, only two pipes are required to connect the indoor unit and the outdoor unit, resulting in excellent construction efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例における多室型空気調和機の
冷凍サイクル図
[Fig. 1] Refrigeration cycle diagram of a multi-room air conditioner in an embodiment of the present invention

【図2】同実施例の多室型空気調和機の冷房主体運転状
態を示す冷凍サイクル図
[Fig. 2] Refrigeration cycle diagram showing the cooling-mainly operating state of the multi-room air conditioner of the same example.

【図3】同実施例の多室型空気調和機の暖房主体運転状
態を示す冷凍サイクル図
[Fig. 3] Refrigeration cycle diagram showing the heating-main operating state of the multi-room air conditioner of the same example.

【図4】従来の多室型空気調和機の冷凍サイクル図[Figure 4] Refrigeration cycle diagram of a conventional multi-room air conditioner

【図
5】従来の多室型空気調和機の冷房主体運転状態を示す
冷凍サイクル図
[Figure 5] Refrigeration cycle diagram showing the cooling-dominant operation state of a conventional multi-room air conditioner

【図6】従来の多室型空気調和機の暖房主体運転状態を
示す冷凍サイクル図
[Fig. 6] Refrigeration cycle diagram showing the heating-main operating state of a conventional multi-room air conditioner

【符号の説明】[Explanation of symbols]

1  室外機 2  圧縮機 3  四方弁 4  室外側熱交換器 5  室内機 6  室内側熱交換器 7  膨張弁 8  第1電磁弁 9  第2電磁弁 10  第1の接続配管 11  第2の接続配管 12  第3の接続配管 16  流路切替機構 1 Outdoor unit 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Indoor unit 6 Indoor heat exchanger 7 Expansion valve 8 First solenoid valve 9 Second solenoid valve 10 First connection piping 11 Second connection pipe 12 Third connection pipe 16 Flow path switching mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機、四方弁、室外側熱交換器から
成る室外機と、膨張弁、室内側熱交換器から成る複数の
室内機を第1の接続配管及び第2の接続配管を介して並
列に接続し、前記室内側熱交換器の一端は前記第1の接
続配管および前記第2の接続配管とそれぞれ第1電磁弁
、第2電磁弁を介して切替可能に接続し、他端は膨張弁
を介して第3の接続配管と接続し、前記第3の接続配管
は、一端を第1二方弁を介して前記第1の接続配管と接
続し、他端を第2二方弁を介して前記第2の接続配管と
接続するとともに、冷房または暖房運転時に前記第1お
よび前記第2の接続配管内の冷媒の流れ方向を切り替え
る流路切替機構を備えた多室型空気調和機。
Claim 1: An outdoor unit consisting of a compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units consisting of an expansion valve and an indoor heat exchanger are connected via a first connection pipe and a second connection pipe. one end of the indoor heat exchanger is switchably connected to the first connection pipe and the second connection pipe via a first solenoid valve and a second solenoid valve, respectively, and the other end of the indoor heat exchanger is connected in parallel with each other. is connected to a third connecting pipe via an expansion valve, and the third connecting pipe has one end connected to the first connecting pipe via a first two-way valve, and the other end connected to a second two-way valve. A multi-room air conditioner that is connected to the second connecting pipe via a valve and includes a flow path switching mechanism that switches the flow direction of the refrigerant in the first and second connecting pipes during cooling or heating operation. Machine.
JP40309190A 1990-12-18 1990-12-18 Multiroom type air-conditioner Pending JPH04217759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40309190A JPH04217759A (en) 1990-12-18 1990-12-18 Multiroom type air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40309190A JPH04217759A (en) 1990-12-18 1990-12-18 Multiroom type air-conditioner

Publications (1)

Publication Number Publication Date
JPH04217759A true JPH04217759A (en) 1992-08-07

Family

ID=18512849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40309190A Pending JPH04217759A (en) 1990-12-18 1990-12-18 Multiroom type air-conditioner

Country Status (1)

Country Link
JP (1) JPH04217759A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057141A1 (en) * 2004-11-25 2006-06-01 Mitsubishi Denki Kabushiki Kaisha Air conditioner
KR100677266B1 (en) * 2005-02-17 2007-02-02 엘지전자 주식회사 Multi-air conditioner capable of cooling and heating simultaneously
JP2007309538A (en) * 2006-05-16 2007-11-29 Mitsubishi Electric Corp Air conditioner
WO2011052042A1 (en) * 2009-10-27 2011-05-05 三菱電機株式会社 Air conditioning device
CN102753908A (en) * 2009-10-28 2012-10-24 三菱电机株式会社 Air conditioning device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057141A1 (en) * 2004-11-25 2006-06-01 Mitsubishi Denki Kabushiki Kaisha Air conditioner
EP1816416A1 (en) * 2004-11-25 2007-08-08 Mitsubishi Denki Kabushiki Kaisha Air conditioner
JPWO2006057141A1 (en) * 2004-11-25 2008-06-05 三菱電機株式会社 Air conditioner
EP1816416A4 (en) * 2004-11-25 2011-08-03 Mitsubishi Electric Corp Air conditioner
JP4752765B2 (en) * 2004-11-25 2011-08-17 三菱電機株式会社 Air conditioner
KR100677266B1 (en) * 2005-02-17 2007-02-02 엘지전자 주식회사 Multi-air conditioner capable of cooling and heating simultaneously
JP2007309538A (en) * 2006-05-16 2007-11-29 Mitsubishi Electric Corp Air conditioner
WO2011052042A1 (en) * 2009-10-27 2011-05-05 三菱電機株式会社 Air conditioning device
JP5279919B2 (en) * 2009-10-27 2013-09-04 三菱電機株式会社 Air conditioner
US9032747B2 (en) 2009-10-27 2015-05-19 Mitsubishi Electric Corporation Multi-mode air conditioner with refrigerant cycle and heat medium cycle
CN102753908A (en) * 2009-10-28 2012-10-24 三菱电机株式会社 Air conditioning device

Similar Documents

Publication Publication Date Title
US5063752A (en) Air conditioning apparatus
US7000423B2 (en) Dual economizer heat exchangers for heat pump
JP2002107000A (en) Air conditioner
WO2011074028A1 (en) Air conditioner
JPH02118372A (en) Air-conditioning device
EP1026460B1 (en) Double-tube type heat exchanger and refrigerating machine using the heat exchanger
JPH04217759A (en) Multiroom type air-conditioner
JP2522361B2 (en) Air conditioner
JPH08159621A (en) Air conditioner
JP3655523B2 (en) Multi-type air conditioner
JP2817816B2 (en) Multi-room air conditioner
JPH07293975A (en) Air conditioner
JP2723774B2 (en) Multi-room air conditioner
JPH06257874A (en) Heat pump type air-conditioning machine
JPH04278151A (en) Multi-chamber type air conditioner
JPH04309754A (en) Multiple chamber air conditioner
JP2000154941A (en) Refrigerator
US11913680B2 (en) Heat pump system
JPH0252964A (en) Multiroom type refrigerating circuit
JPH04254167A (en) Multi-room type air-contiditioning machine
JPH05172433A (en) Air conditioning apparatus
JP3791019B2 (en) Air conditioner
JP2522360B2 (en) Air conditioner
JPS592832B2 (en) Heat recovery air conditioner
JP2002089996A (en) Multi-chamber type air conditioner