JPH04278151A - Multi-chamber type air conditioner - Google Patents

Multi-chamber type air conditioner

Info

Publication number
JPH04278151A
JPH04278151A JP3041562A JP4156291A JPH04278151A JP H04278151 A JPH04278151 A JP H04278151A JP 3041562 A JP3041562 A JP 3041562A JP 4156291 A JP4156291 A JP 4156291A JP H04278151 A JPH04278151 A JP H04278151A
Authority
JP
Japan
Prior art keywords
indoor
valve
connecting pipe
refrigerant
connection pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3041562A
Other languages
Japanese (ja)
Inventor
Takayuki Takatani
隆幸 高谷
Hiroshi Kitayama
浩 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP3041562A priority Critical patent/JPH04278151A/en
Publication of JPH04278151A publication Critical patent/JPH04278151A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Abstract

PURPOSE:To enable a normal operation to be carried out without having any leakage at a solenoid valve for selecting a cooling or a heating operation of an indoor device at any operational states without using any expensive solenoid valve or a complex refrigerant circuit in regard to a freezing cycle of a multi- chamber type air conditioner capable of selecting freely a cooling or a heating operation for every indoor device, to control an amount of circulation of refrigerant in response to the valve of horse power of each of the indoor devices and to stabilize a system without having any problem in reliability in the compressor such as a rapid increasing of each of discharging pressure and suction pressure. CONSTITUTION:The third connecting pipe 13' is connected to the second connecting pipe 12 through the second flow rate control device 15 and further it is provided with a flow passage changing-over mechanism 16 for changing- over a flow direction of refrigerant within the first connecting pipe 11 or the second connecting pipe 12 when either cooling or heating operation is carried out.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は多室型空気調和機に係わ
り、特に各室内機毎に自由に冷暖房が選択可能な多室型
空気調和機の冷凍サイクルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner, and more particularly to a refrigeration cycle for a multi-room air conditioner in which heating and cooling can be freely selected for each indoor unit.

【0002】0002

【従来の技術】従来、この種の多室型空気調和機として
、例えば、特開平2−106667号公報に掲載された
ものがある。
2. Description of the Related Art Conventionally, this type of multi-room air conditioner has been disclosed, for example, in Japanese Patent Application Laid-Open No. 2-106667.

【0003】以下、図面を参照しながら上述した公報の
従来の多室型空気調和機について説明する。
[0003] The conventional multi-room air conditioner disclosed in the above-mentioned publication will be described below with reference to the drawings.

【0004】図4において、1は多室型空気調和機の室
外機であり、圧縮機2、四方弁3、室外側熱交換器4か
ら成っている。5は室内機であり、室内側熱交換器6、
室内側膨張弁7、第1電磁弁8、第2電磁弁9から成っ
ている。
In FIG. 4, reference numeral 1 denotes an outdoor unit of a multi-room air conditioner, which is composed of a compressor 2, a four-way valve 3, and an outdoor heat exchanger 4. 5 is an indoor unit, an indoor heat exchanger 6,
It consists of an indoor expansion valve 7, a first solenoid valve 8, and a second solenoid valve 9.

【0005】そして室内側熱交換器6の一方は、第1電
磁弁8及び気液分離器10を介して室外機1と室内機5
を接続する第1の接続配管11と連通するとともに、第
2電磁弁9を介して室外機1と室内機5を接続する第2
の接続配管12と連通しており、第1電磁弁8と第2電
磁弁9の開閉により、室内側熱交換器6の一方は、第1
の接続配管11または第2の接続配管12と切替可能に
接続されている。尚、室内側熱交換器6の一方は、気液
分離器10の上部と連通している。
One side of the indoor heat exchanger 6 is connected to the outdoor unit 1 and the indoor unit 5 via the first solenoid valve 8 and the gas-liquid separator 10.
The second connecting pipe 11 connects the outdoor unit 1 and the indoor unit 5 via the second solenoid valve 9.
By opening and closing the first solenoid valve 8 and the second solenoid valve 9, one of the indoor heat exchangers 6 is connected to the first solenoid valve 8.
It is switchably connected to the connecting pipe 11 or the second connecting pipe 12. Note that one side of the indoor heat exchanger 6 communicates with the upper part of the gas-liquid separator 10.

【0006】また室内側熱交換器6の他方は、室内側膨
張弁7を介して第3の接続配管13と接続しており、こ
の第3の接続配管13は第1流量制御装置14を介して
第1の接続配管11の気液分離器10の下部と接続され
ている。尚、室内機5は本従来例では3台接続されてお
り、区別する場合は添字a、b、cを付けることにする
The other side of the indoor heat exchanger 6 is connected to a third connecting pipe 13 via an indoor expansion valve 7, and this third connecting pipe 13 is connected to a third connecting pipe 13 via a first flow rate control device 14. and is connected to the lower part of the gas-liquid separator 10 of the first connection pipe 11. In this conventional example, three indoor units 5 are connected, and to distinguish them, suffixes a, b, and c will be added.

【0007】次に上記構成の多室型空気調和機の動作に
ついて説明する。まず冷房運転のみの場合について説明
する。この場合の冷媒の流れは実線矢印で表わし、各弁
の開閉状態は次の通りである。即ち、第1電磁弁8は閉
、第2電磁弁9は開、第1流量制御装置14は開、各室
内側膨張弁7は各室内負荷に応じた開度である。
Next, the operation of the multi-room air conditioner having the above configuration will be explained. First, the case of only cooling operation will be explained. The flow of refrigerant in this case is represented by solid arrows, and the open/close states of each valve are as follows. That is, the first electromagnetic valve 8 is closed, the second electromagnetic valve 9 is open, the first flow rate control device 14 is open, and each indoor expansion valve 7 is opened according to each indoor load.

【0008】圧縮機2より吐出された高温高圧ガスは、
室外側熱交換器4で凝縮液化され、第1の接続配管11
、気液分離器10、第1流量制御装置14を通って第3
の接続配管13に導かれる。そして室内側膨張弁7を通
って各室内側熱交換器6に流入し、それぞれ蒸発気化し
たあと、第2電磁弁9、第2の接続配管12を経て四方
弁3を介して圧縮機2に戻り、冷房運転を行なう。
The high temperature and high pressure gas discharged from the compressor 2 is
It is condensed and liquefied in the outdoor heat exchanger 4, and then transferred to the first connection pipe 11.
, the gas-liquid separator 10, and the third flow rate controller 14.
is guided to the connecting pipe 13. Then, it flows into each indoor heat exchanger 6 through the indoor expansion valve 7, and after being evaporated and vaporized, it passes through the second electromagnetic valve 9, the second connection pipe 12, and the four-way valve 3 to the compressor 2. Return and perform cooling operation.

【0009】次に暖房運転のみの場合について説明する
。この場合の冷媒の流れは破線矢印で表わし、各弁の開
閉状態は次の通りである。即ち、第1電磁弁8は閉、第
2電磁弁9は開、第1流量制御装置14は開、各室内側
膨張弁7は各室内負荷に応じた開度である。
Next, the case of only heating operation will be explained. The flow of refrigerant in this case is represented by a broken line arrow, and the open/close states of each valve are as follows. That is, the first electromagnetic valve 8 is closed, the second electromagnetic valve 9 is open, the first flow rate control device 14 is open, and each indoor expansion valve 7 is opened according to each indoor load.

【0010】圧縮機2より吐出された高温高圧ガスは、
四方弁3、第2の接続配管12、第2電磁弁9を介して
各室内側熱交換器6に導かれ、ここで凝縮液化して室内
側膨張弁7を介して第3の接続配管13に流入し、第1
流量制御装置14で低圧二相状態まで減圧され、気液分
離器10、第1の接続配管11を通って室外側熱交換器
4に入り蒸発気化して圧縮機2に戻り、暖房運転を行な
う。
[0010] The high temperature and high pressure gas discharged from the compressor 2 is
It is led to each indoor heat exchanger 6 via the four-way valve 3, the second connection pipe 12, and the second solenoid valve 9, where it is condensed and liquefied, and then passed through the indoor expansion valve 7 to the third connection pipe 13. The first
The flow rate controller 14 reduces the pressure to a low-pressure two-phase state, passes through the gas-liquid separator 10 and the first connection pipe 11, enters the outdoor heat exchanger 4, evaporates and vaporizes, and returns to the compressor 2, where heating operation is performed. .

【0011】次に冷房主体運転の場合について図5を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…冷房、室内機5c…暖房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
閉、第1電磁弁8cは開、第2電磁弁9a、9bは開、
第2電磁弁9cは閉、第1流量制御装置14は開、各室
内側膨張弁7は各室内負荷に応じた開度である。
Next, the case of cooling-based operation will be explained using FIG. 5. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...cooling, indoor unit 5c...heating, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are closed, the first solenoid valve 8c is open, and the second solenoid valves 9a and 9b are open.
The second electromagnetic valve 9c is closed, the first flow rate control device 14 is open, and each indoor expansion valve 7 is opened according to each indoor load.

【0012】圧縮機2より吐出された冷媒は、室外側熱
交換器4で或る程度凝縮液化され、第1の接続配管11
を通って、気液分離器10に入り、一部の冷媒は第1電
磁弁8cを介して室内側熱交換器6cに導かれここで凝
縮液化して室内側膨張弁7cを通って第3の接続配管1
3に流入する。
The refrigerant discharged from the compressor 2 is condensed and liquefied to some extent in the outdoor heat exchanger 4, and then transferred to the first connecting pipe 11.
A part of the refrigerant enters the gas-liquid separator 10 through the first electromagnetic valve 8c and is led to the indoor heat exchanger 6c, where it is condensed and liquefied, and passes through the indoor expansion valve 7c to the third refrigerant. Connection piping 1
3.

【0013】また残りの冷媒は第1流量制御装置14を
通って第3の接続配管13に流入し、室内側膨張弁7c
からの冷媒と合流したあと室内側膨張弁7a、7bを介
して室内側熱交換器6a、6bで蒸発気化し、第2の接
続配管12を通って圧縮機2に戻る。
The remaining refrigerant passes through the first flow rate control device 14 and flows into the third connecting pipe 13, and then enters the indoor expansion valve 7c.
After joining with the refrigerant from the air, the refrigerant is evaporated in the indoor heat exchangers 6a, 6b via the indoor expansion valves 7a, 7b, and returns to the compressor 2 through the second connection pipe 12.

【0014】次に暖房主体運転の場合について図6を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…暖房、室内機5c…冷房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
閉、第1電磁弁8cは開、第2電磁弁9a、9bは開、
第2電磁弁9cは閉、第1流量制御装置14は開、各室
内側膨張弁7は各室内負荷に応じた開度である。
Next, the case of heating-based operation will be explained using FIG. 6. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...heating, indoor unit 5c...cooling, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are closed, the first solenoid valve 8c is open, and the second solenoid valves 9a and 9b are open.
The second electromagnetic valve 9c is closed, the first flow rate control device 14 is open, and each indoor expansion valve 7 is opened according to each indoor load.

【0015】圧縮機2より吐出された冷媒は、第2の接
続配管12を通り第2電磁弁9a、9bを介して室内側
熱交換器6a、6bに導かれここで凝縮液化して室内側
膨張弁7a、7bを通って第3の接続配管13に流入す
る。そして一部の冷媒は室内側膨張弁7cを介して室内
側熱交換器6cで蒸発気化して第1電磁弁8cを通って
気液分離器10に流入する。
The refrigerant discharged from the compressor 2 passes through the second connecting pipe 12 and is led to the indoor heat exchangers 6a, 6b via the second solenoid valves 9a, 9b, where it is condensed and liquefied to the indoor side. It flows into the third connection pipe 13 through the expansion valves 7a and 7b. Then, a part of the refrigerant is evaporated in the indoor heat exchanger 6c via the indoor expansion valve 7c, and flows into the gas-liquid separator 10 via the first electromagnetic valve 8c.

【0016】また残りの冷媒は第1流量制御装置14で
減圧され気液分離器10に流入し、第1電磁弁8cから
の冷媒と合流して第1の接続配管11を通って室外側熱
交換器4で蒸発気化して圧縮機2に戻る。
The remaining refrigerant is depressurized by the first flow control device 14, flows into the gas-liquid separator 10, joins with the refrigerant from the first solenoid valve 8c, passes through the first connection pipe 11, and is heated to the outdoor side. It is evaporated in the exchanger 4 and returned to the compressor 2.

【0017】[0017]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、室外機が冷房運転する場合と暖房運転す
る場合によって、第1電磁弁8及び第2電磁弁9の冷媒
の流れ方向が逆転するため、電磁弁に逆圧が作用し、閉
状態の電磁弁からリークが生じ、正常な運転ができない
という問題点を有していた。
[Problems to be Solved by the Invention] However, in the above configuration, the flow directions of the refrigerant in the first solenoid valve 8 and the second solenoid valve 9 are reversed depending on whether the outdoor unit is in cooling operation or heating operation. As a result, a back pressure acts on the solenoid valve, causing leakage from the closed solenoid valve, resulting in a problem that normal operation cannot be performed.

【0018】そこでこのような問題を解決するためには
、逆圧が作用してもリークしない電磁弁を用いればよい
が、この種の電磁弁は非常に高価であったり、大容量の
ものがないといった問題点があった。また他の解決策と
しては、電磁弁と逆止弁の組み合わせを室内機1台につ
き4つ設ければよいが、これでは非常に高価で冷媒回路
も複雑になってしまうという欠点を有していた。
In order to solve this problem, it is possible to use a solenoid valve that does not leak even when reverse pressure is applied, but this type of solenoid valve is very expensive or has a large capacity. There was a problem that there was no. Another solution is to install four combinations of solenoid valves and check valves per indoor unit, but this has the drawbacks of being very expensive and requiring a complicated refrigerant circuit. Ta.

【0019】本発明は上記課題に鑑みなされたもので、
接続配管が従来の2本と工事性に優れ、かつ安価な仕様
で電磁弁からのリークをなくして正常な運転を行うこと
ができる。さらに冷房主体運転時の暖房室内機及び暖房
主体運転時の冷房室内機に流れる冷媒循環量を適正な量
に制御し吐出,吸入圧力の急上昇等の圧縮機の信頼性に
問題がなくかつシステムの安定化も図ることができ、各
室内機毎に自由に冷暖房ができる多室型空気調和機を提
供するものである。
[0019] The present invention has been made in view of the above problems.
It has two connecting pipes compared to the conventional one, is easier to construct, and is inexpensive, eliminating leaks from the solenoid valve and allowing normal operation. In addition, the amount of refrigerant circulated through the heating indoor unit during cooling-based operation and the cooling indoor unit during heating-based operation is controlled to an appropriate amount, so that there are no problems with compressor reliability such as sudden increases in discharge or suction pressure, and the system is maintained. The present invention provides a multi-room air conditioner that can be stabilized and can freely perform heating and cooling for each indoor unit.

【0020】[0020]

【課題を解決するための手段】上記課題を解決するため
に本発明は、従来の第3の接続配管を第2流量制御装置
を介して第2の接続配管にも接続するとともに、冷房ま
たは暖房運転時に第1または第2の接続配管内の冷媒の
流れ方向を切り替える流路切替機構を設けるものである
[Means for Solving the Problems] In order to solve the above problems, the present invention connects the conventional third connection pipe to the second connection pipe via the second flow rate control device, and also connects the conventional third connection pipe to the second connection pipe, and A flow path switching mechanism is provided for switching the flow direction of the refrigerant in the first or second connection pipe during operation.

【0021】[0021]

【作用】本発明は上記した構成によって、室内機1台に
つき2つ設けられた電磁弁における冷媒の流れ方向を、
冷房、暖房運転に拘らず常に一定方向として、電磁弁に
逆圧が作用しないようにして、電磁弁でのリークをなく
し、かつ冷房主体運転時の暖房室内機及び暖房主体運転
時の冷房室内機に流れる冷媒循環量を適正な量に制御し
、常に圧縮機の信頼性に問題のない正常な運転を可能と
するものである。
[Operation] With the above-described configuration, the present invention controls the flow direction of the refrigerant in the two solenoid valves provided per indoor unit.
Regardless of cooling or heating operation, the direction is always constant, so that no back pressure acts on the solenoid valve, and leaks at the solenoid valve are eliminated. This system controls the amount of circulating refrigerant flowing through the compressor to an appropriate amount, allowing the compressor to operate normally without any problems with reliability.

【0022】[0022]

【実施例】以下本発明の一実施例について図面を参照し
ながら説明する。尚、従来と同一部分については同一符
号を付しその詳細な説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In addition, the same reference numerals are given to the same parts as in the conventional art, and detailed explanation thereof will be omitted.

【0023】図1において、13’は第3の接続配管で
あり、室内側膨張弁7を介して室内側熱交換器6と接続
し、第1流量制御装置14を介して第1の接続配管11
に設けられた気液分離器10の下部と接続し、第2流量
制御装置15を介して第2の接続配管12に接続してい
る。
In FIG. 1, 13' is a third connecting pipe, which is connected to the indoor heat exchanger 6 via the indoor expansion valve 7, and is connected to the first connecting pipe via the first flow rate control device 14. 11
It is connected to the lower part of the gas-liquid separator 10 provided in the , and is connected to the second connection pipe 12 via the second flow rate control device 15 .

【0024】16は流路切替機構であり、第2の接続配
管12と第1の接続配管11を第1逆止弁17を介して
接続する第4の接続配管18と、第2の接続配管12の
途中で第4の接続配管18との合流点19より室内機5
側の位置20と、第1の接続配管11の途中で第4の接
続配管18との合流点21より反室内機5側の位置22
とを第2逆止弁23を介して接続する第5の接続配管2
4と、第2の接続配管12の途中で合流点19と位置2
0との間に設けられた第3逆止弁25と、第1の接続配
管11の途中で合流点21と位置22との間に設けられ
た第4逆止弁26とから成っている。
Reference numeral 16 denotes a flow path switching mechanism, which includes a fourth connection pipe 18 that connects the second connection pipe 12 and the first connection pipe 11 via the first check valve 17; 12, the indoor unit 5 is connected from the confluence point 19 with the fourth connection pipe 18.
a position 20 on the side, and a position 22 on the side opposite to the indoor unit 5 from the confluence 21 with the fourth connection pipe 18 in the middle of the first connection pipe 11.
A fifth connection pipe 2 that connects with the second check valve 23
4, and the confluence point 19 in the middle of the second connection pipe 12 and position 2
0, and a fourth check valve 26 provided between the merging point 21 and the position 22 in the middle of the first connecting pipe 11.

【0025】そして各逆止弁の流れ方向は、第1逆止弁
17及び第2逆止弁23は第2の接続配管12から第1
の接続配管11への方向、第3逆止弁25は室内機5か
ら室外機1への方向、第4逆止弁26は室外機1から室
内機5への方向である。
The flow direction of each check valve is such that the first check valve 17 and the second check valve 23 flow from the second connecting pipe 12 to the first check valve 17 and the second check valve 23.
The third check valve 25 is the direction from the indoor unit 5 to the outdoor unit 1, and the fourth check valve 26 is the direction from the outdoor unit 1 to the indoor unit 5.

【0026】次に、このような構成においての動作につ
いて説明する。まず冷房運転のみの場合について説明す
る。この場合の冷媒の流れは実線矢印で表わし、各弁の
開閉状態は次の通りである。即ち、第1電磁弁8は閉、
第2電磁弁9は開、第1流量制御装置14は全開、第2
流量制御装置15は閉、各室内側膨張弁7は各室内負荷
に応じた開度である。
Next, the operation in such a configuration will be explained. First, the case of only cooling operation will be explained. The flow of refrigerant in this case is represented by solid arrows, and the open/close states of each valve are as follows. That is, the first solenoid valve 8 is closed,
The second solenoid valve 9 is open, the first flow control device 14 is fully open, and the second
The flow rate control device 15 is closed, and each indoor expansion valve 7 is opened according to each indoor load.

【0027】圧縮機2より吐出された高温高圧ガスは、
室外側熱交換器4で凝縮液化され、第1の接続配管11
、第4逆止弁26、気液分離器10、第1流量制御装置
14を通って第3の接続配管13’に導かれる。そして
室内側膨張弁7を通って各室内側熱交換器6に流入し、
それぞれ蒸発気化したあと、第2電磁弁9、第3逆止弁
25を経て四方弁3を介して圧縮機2に戻り、冷房運転
を行なう。
The high temperature and high pressure gas discharged from the compressor 2 is
It is condensed and liquefied in the outdoor heat exchanger 4, and then transferred to the first connection pipe 11.
, the fourth check valve 26, the gas-liquid separator 10, and the first flow rate control device 14, and are led to the third connection pipe 13'. Then, it flows into each indoor heat exchanger 6 through the indoor expansion valve 7,
After being evaporated, the air passes through the second electromagnetic valve 9, the third check valve 25, and then returns to the compressor 2 via the four-way valve 3 for cooling operation.

【0028】次に暖房運転のみの場合について説明する
。この場合の冷媒の流れは破線矢印で表わし、各弁の開
閉状態は次の通りである。即ち、第1電磁弁8は開、第
2電磁弁9は閉、第1流量制御装置14は閉、第2流量
制御装置15は全開、各室内側膨張弁7は各室内負荷に
応じた開度である。
Next, the case of only heating operation will be explained. The flow of refrigerant in this case is represented by a broken line arrow, and the open/close states of each valve are as follows. That is, the first solenoid valve 8 is open, the second solenoid valve 9 is closed, the first flow rate control device 14 is closed, the second flow rate control device 15 is fully opened, and each indoor expansion valve 7 is opened according to each indoor load. degree.

【0029】圧縮機2より吐出された高温高圧ガスは、
四方弁3から第2の接続配管12を通り、途中第3逆止
弁25のために第4の接続配管18へ流れが切り変わり
、第1の接続配管11に流入して気液分離器10を通っ
て第1電磁弁8を介して各室内側熱交換器6に導かれ、
ここで凝縮液化して室内側膨張弁7により低圧二相状態
まで減圧されて第3の接続配管13’に流入し、第2流
量制御装置15を通ったあと流れが第5の接続配管24
に切り変わり、第1の接続配管11を通って室外側熱交
換器4に入り蒸発気化して圧縮機2に戻り、暖房運転を
行なう。
The high temperature and high pressure gas discharged from the compressor 2 is
From the four-way valve 3, the flow passes through the second connection pipe 12, switches to the fourth connection pipe 18 due to the third check valve 25, flows into the first connection pipe 11, and flows into the gas-liquid separator 10. through the first solenoid valve 8 to each indoor heat exchanger 6,
Here, it is condensed and liquefied, the pressure is reduced to a low-pressure two-phase state by the indoor expansion valve 7, and it flows into the third connection pipe 13', and after passing through the second flow rate control device 15, the flow is transferred to the fifth connection pipe 24.
The air then passes through the first connection pipe 11, enters the outdoor heat exchanger 4, is evaporated, and returns to the compressor 2, where heating operation is performed.

【0030】次に冷房主体運転の場合について図2を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…冷房、室内機5c…暖房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
閉、第1電磁弁8cは開、第2電磁弁9a、9bは開、
第2電磁弁9cは閉、第1流量制御装置14は暖房室内
機の馬力数に応じた冷媒循環量が確保できる開度に開き
、第2流量制御装置15は閉、各室内側膨張弁7は各室
内負荷に応じた開度である。
Next, the case of cooling-based operation will be explained using FIG. 2. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...cooling, indoor unit 5c...heating, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are closed, the first solenoid valve 8c is open, and the second solenoid valves 9a and 9b are open.
The second electromagnetic valve 9c is closed, the first flow rate control device 14 is opened to an opening degree that ensures a refrigerant circulation amount according to the horsepower of the heating indoor unit, the second flow rate control device 15 is closed, and each indoor expansion valve 7 is the opening degree according to each indoor load.

【0031】圧縮機2より吐出された冷媒は、室外側熱
交換器4で或る程度凝縮液化され、第1の接続配管11
を通って、気液分離器10に入り、一部の冷媒は第1電
磁弁8cを介して室内側熱交換器6cに導かれここで凝
縮液化して室内側膨張弁7cを通って第3の接続配管1
3’に流入する。
The refrigerant discharged from the compressor 2 is condensed and liquefied to some extent in the outdoor heat exchanger 4, and then transferred to the first connecting pipe 11.
A part of the refrigerant enters the gas-liquid separator 10 through the first electromagnetic valve 8c and is led to the indoor heat exchanger 6c, where it is condensed and liquefied, and passes through the indoor expansion valve 7c to the third refrigerant. Connection piping 1
3'.

【0032】また、残りの冷媒は第1流量制御装置14
を通って第3の接続配管13’に流入し、室内側膨張弁
7cからの冷媒と合流したあと室内側膨張弁7a、7b
で減圧され室内側熱交換器6a、6bで蒸発気化し、第
2電磁弁9a、9b、第2の接続配管12中の第3逆止
弁25を経て四方弁3を介して圧縮機2に戻り、冷房運
転を行なう。
Further, the remaining refrigerant is transferred to the first flow rate control device 14.
The refrigerant flows through the third connecting pipe 13' and joins with the refrigerant from the indoor expansion valve 7c, and then the indoor expansion valves 7a, 7b.
The pressure is reduced in the indoor heat exchangers 6a and 6b, and the gas is evaporated into the compressor 2 via the second solenoid valves 9a and 9b, the third check valve 25 in the second connection pipe 12, and the four-way valve 3. Return and perform cooling operation.

【0033】次に暖房主体運転の場合について図3を用
いて説明する。ここで各室内機5の運転状態は、室内機
5a、5b…暖房、室内機5c…冷房とし、各弁の開閉
状態は次の通りである。即ち、第1電磁弁8a、8bは
開、第1電磁弁8cは閉、第2電磁弁9a、9bは閉、
第2電磁弁9cは開、第1流量制御装置14は閉、第2
流量制御装置15は冷房室内機の馬力数に応じた冷媒循
環量が確保できる開度に開き、各膨張弁7は各室内負荷
に応じた開度である。
Next, the case of heating-based operation will be explained using FIG. 3. Here, the operating state of each indoor unit 5 is indoor unit 5a, 5b...heating, indoor unit 5c...cooling, and the opening/closing state of each valve is as follows. That is, the first solenoid valves 8a and 8b are open, the first solenoid valve 8c is closed, and the second solenoid valves 9a and 9b are closed.
The second solenoid valve 9c is open, the first flow control device 14 is closed, and the second
The flow rate control device 15 is opened to an opening degree that can ensure a refrigerant circulation amount according to the horsepower number of the cooling indoor unit, and each expansion valve 7 is opened to an opening degree according to each indoor load.

【0034】圧縮機2より吐出された冷媒は、四方弁3
から第2の接続配管12を通り、途中第3逆止弁25の
ために第4の接続配管18へ流れが切り変わり、第1の
接続配管11を通って気液分離器10に入り、第1電磁
弁8a、8bを介して室内側熱交換器6a、6bに導か
れここで凝縮液化して室内側膨張弁7a、7bを通って
第3の接続配管13’に流入し、一部の冷媒は、室内側
膨張弁7cで減圧され室内側熱交換器6cで蒸発気化し
て第2電磁弁9cを通って第2の接続配管12に流入す
る。
The refrigerant discharged from the compressor 2 passes through the four-way valve 3
The flow passes through the second connecting pipe 12, switches to the fourth connecting pipe 18 due to the third check valve 25, passes through the first connecting pipe 11, enters the gas-liquid separator 10, and flows into the gas-liquid separator 10. 1 to the indoor heat exchangers 6a, 6b via the solenoid valves 8a, 8b, where it is condensed and liquefied, flows into the third connection pipe 13' through the indoor expansion valves 7a, 7b, and some of the The refrigerant is depressurized by the indoor expansion valve 7c, evaporated by the indoor heat exchanger 6c, and flows into the second connection pipe 12 through the second electromagnetic valve 9c.

【0035】また、残りの冷媒は第2流量制御装置15
を通って第2の接続配管12に流入し、第2電磁弁9c
からの冷媒と合流したあと第3逆止弁25のために流れ
が第5の接続配管24に切り変わり、第1の接続配管1
1を通って室外側熱交換器4に入り蒸発気化して圧縮機
2に戻り、暖房運転を行なう。
Further, the remaining refrigerant is transferred to the second flow rate control device 15.
flows into the second connection pipe 12 through the second solenoid valve 9c.
After merging with the refrigerant from the flow, the flow is switched to the fifth connection pipe 24 due to the third check valve 25, and the flow is switched to the fifth connection pipe 24.
1, enters the outdoor heat exchanger 4, is evaporated, and returns to the compressor 2, where heating operation is performed.

【0036】以上のように、本実施例では、第3の接続
配管13’を第2流量制御装置15を介して第2の接続
配管12にも接続し、冷房または暖房運転時に第1また
は第2の接続配管11、12内の冷媒の流れ方向を切り
替る流路切替機構16を設けたので室内機5に設けられ
た各電磁弁8、9を流れる冷媒の方向は、冷房、冷房主
体、暖房、暖房主体運転のいかんに拘らず常に一定方向
にすることができるため、各電磁弁8、9に逆圧が作用
することがなく、従来生じていた閉状態の電磁弁からの
リークを解消することが出来る。
As described above, in this embodiment, the third connection pipe 13' is also connected to the second connection pipe 12 via the second flow rate control device 15, and the first or Since the flow path switching mechanism 16 that switches the flow direction of the refrigerant in the connecting pipes 11 and 12 of No. 2 is provided, the direction of the refrigerant flowing through each of the solenoid valves 8 and 9 provided in the indoor unit 5 can be changed to cooling, mainly cooling, Since the direction can always be set in the same direction regardless of heating or heating-based operation, there is no back pressure acting on each solenoid valve 8, 9, eliminating leaks from closed solenoid valves that conventionally occur. You can.

【0037】さらに冷房主体運転時の暖房室内機及び暖
房主体運転時の冷房室内機に流れる冷媒循環量を適正な
量に制御し吐出,吸入圧力の急上昇等の圧縮機の信頼性
に問題がなくかつシステムの安定化も図ることが出来る
Furthermore, the amount of refrigerant circulated through the heating indoor unit during cooling-based operation and the cooling indoor unit during heating-based operation is controlled to an appropriate amount, so that there are no problems with compressor reliability such as sudden increases in discharge or suction pressure. Moreover, it is possible to stabilize the system.

【0038】[0038]

【発明の効果】以上の説明から明らかなように本発明は
、従来の第3の接続配管を第2流量制御装置を介して第
2の接続配管にも接続するとともに、冷房または暖房運
転時に前記第1または第2の接続配管内の冷媒の流れ方
向を切り替える流路切替機構を設けて多室型空気調和機
を構成するのである。
As is clear from the above description, the present invention connects the conventional third connection pipe to the second connection pipe via the second flow rate control device, and also connects the conventional third connection pipe to the second connection pipe during cooling or heating operation. A multi-room air conditioner is constructed by providing a flow path switching mechanism for switching the flow direction of the refrigerant in the first or second connecting pipe.

【0039】これにより、安価な仕様で冷房、冷房主体
、暖房、暖房主体運転のいかんに拘らず、室内機に設け
られた各電磁弁を流れる冷媒の方向を常に一定方向にで
き、各電磁弁に逆圧が作用することをなくして閉状態の
電磁弁からのリークを解消して、正常な運転を行なうこ
とが出来る。
[0039] As a result, the direction of the refrigerant flowing through each solenoid valve provided in the indoor unit can always be kept in the same direction regardless of whether the operation is cooling, mainly cooling, heating, or heating mainly, with inexpensive specifications. By eliminating back pressure from acting on the solenoid valve, leakage from the closed solenoid valve can be eliminated, allowing normal operation.

【0040】さらに冷房主体運転時の暖房室内機及び暖
房主体運転時の冷房室内機に流れる冷媒循環量を適正な
量に制御し吐出,吸入圧力の急上昇等の圧縮機の信頼性
に問題がなくシステムの安定化も図ることが出来る。ま
た室内機と室外機を接続する配管も2本でよく、省工事
性に優れたものである。
Furthermore, the amount of refrigerant circulated through the heating indoor unit during cooling-based operation and the cooling indoor unit during heating-based operation is controlled to an appropriate amount, so that there are no problems with the reliability of the compressor such as sudden increases in discharge or suction pressure. It is also possible to stabilize the system. In addition, only two pipes are required to connect the indoor unit and the outdoor unit, resulting in excellent construction efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例における多室型空気調和機の
冷凍サイクル図
[Fig. 1] Refrigeration cycle diagram of a multi-room air conditioner in an embodiment of the present invention

【図2】同実施例の冷房主体運転状態を示す冷凍サイク
ル図
[Figure 2] Refrigeration cycle diagram showing the cooling-main operating state of the same embodiment

【図3】同実施例の暖房主体運転状態を示す冷凍サイク
ル図
[Figure 3] Refrigeration cycle diagram showing the heating-main operating state of the same example

【図4】従来の多室型空気調和機の冷凍サイクル図[Figure 4] Refrigeration cycle diagram of a conventional multi-room air conditioner

【図
5】従来の多室型空気調和機の冷房主体運転状態を示す
冷凍サイクル図
[Figure 5] Refrigeration cycle diagram showing the cooling-dominant operation state of a conventional multi-room air conditioner

【図6】従来の多室型空気調和機の暖房主体運転状態を
示す冷凍サイクル図
[Fig. 6] Refrigeration cycle diagram showing the heating-main operating state of a conventional multi-room air conditioner

【符号の説明】 1  室外機 2  圧縮機 3  四方弁 4  室外側熱交換器 5  室内機 6  室内側熱交換器 7  室内側膨張弁 8  第1電磁弁 9  第2電磁弁 10  気液分離器 11  第1の接続配管 12  第2の接続配管 13’  第3の接続配管 14  第1流量制御装置 15  第2流量制御装置 16  流路切替機構[Explanation of symbols] 1 Outdoor unit 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Indoor unit 6 Indoor heat exchanger 7 Indoor expansion valve 8 First solenoid valve 9 Second solenoid valve 10 Gas-liquid separator 11 First connection piping 12 Second connection pipe 13’ Third connection pipe 14 First flow control device 15 Second flow control device 16 Flow path switching mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機、四方弁、室外側熱交換器から
成る室外機と、室内側膨張弁、室内側熱交換器から成る
複数の室内機とを第1の接続配管及び第2の接続配管を
介して並列に接続し、前記室内側熱交換器の一方は前記
第1の接続配管の途中に設けた気液分離器の上部または
第2の接続配管とそれぞれ第1電磁弁、第2電磁弁を介
して切替可能に接続し、他の一方は前記室内側膨張弁を
介して第3の接続配管と接続し、前記第3の接続配管は
、一方を第1流量制御装置を介して前記第1の接続配管
に設けた前記気液分離器の下部と接続し、他方を第2流
量制御装置を介して前記第2の接続配管と接続するとと
もに、冷房または暖房運転時に前記第1または第2の接
続配管内の冷媒の流れ方向を切り替える流路切替機構を
備えた多室型空気調和機。
Claim 1: An outdoor unit consisting of a compressor, a four-way valve, and an outdoor heat exchanger, and a plurality of indoor units consisting of an indoor expansion valve and an indoor heat exchanger are connected to each other through a first connecting pipe and a second connecting pipe. They are connected in parallel via piping, and one of the indoor heat exchangers is connected to the upper part of the gas-liquid separator provided in the middle of the first connection piping or to the second connection piping, and a first solenoid valve and a second solenoid valve, respectively. one side is connected to a third connection pipe via the indoor expansion valve, and one side of the third connection pipe is connected to the third connection pipe via the first flow rate control device. The first connecting pipe is connected to the lower part of the gas-liquid separator provided on the first connecting pipe, and the other side is connected to the second connecting pipe via a second flow rate control device. A multi-room air conditioner equipped with a flow path switching mechanism that switches the flow direction of refrigerant in a second connection pipe.
JP3041562A 1991-03-07 1991-03-07 Multi-chamber type air conditioner Pending JPH04278151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3041562A JPH04278151A (en) 1991-03-07 1991-03-07 Multi-chamber type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3041562A JPH04278151A (en) 1991-03-07 1991-03-07 Multi-chamber type air conditioner

Publications (1)

Publication Number Publication Date
JPH04278151A true JPH04278151A (en) 1992-10-02

Family

ID=12611882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3041562A Pending JPH04278151A (en) 1991-03-07 1991-03-07 Multi-chamber type air conditioner

Country Status (1)

Country Link
JP (1) JPH04278151A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839588A (en) * 2010-05-27 2010-09-22 无锡同方人工环境有限公司 High-temperature water outlet and total heat recovery triple co-generation machine set
CN103512274A (en) * 2013-10-11 2014-01-15 无锡同方人工环境有限公司 Ultra-low-energy-consumption residential multifunctional air conditioning device with domestic hot water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839588A (en) * 2010-05-27 2010-09-22 无锡同方人工环境有限公司 High-temperature water outlet and total heat recovery triple co-generation machine set
CN103512274A (en) * 2013-10-11 2014-01-15 无锡同方人工环境有限公司 Ultra-low-energy-consumption residential multifunctional air conditioning device with domestic hot water

Similar Documents

Publication Publication Date Title
US7185505B2 (en) Refrigerant circuit and heat pump type hot water supply apparatus
US5063752A (en) Air conditioning apparatus
JPWO2018047331A1 (en) Air conditioner
KR100589913B1 (en) Air conditioning apparatus
EP1978315A2 (en) Outdoor Unit for Multi-Air Conditioner
JPH09126595A (en) Multi-chamber air conditioner
JP2522361B2 (en) Air conditioner
JPH04278151A (en) Multi-chamber type air conditioner
JPH10176869A (en) Refrigeration cycle device
JPH04217759A (en) Multiroom type air-conditioner
JP3655523B2 (en) Multi-type air conditioner
US11913680B2 (en) Heat pump system
JPH07293975A (en) Air conditioner
JPH04309754A (en) Multiple chamber air conditioner
JPH0297847A (en) Separate type air conditioner designed for multi chambers
JP3791019B2 (en) Air conditioner
US11397015B2 (en) Air conditioning apparatus
JPH04254167A (en) Multi-room type air-contiditioning machine
JPS592832B2 (en) Heat recovery air conditioner
JPH05302765A (en) Multi-chamber type air conditioner
JP2007163011A (en) Refrigeration unit
JPH11230630A (en) Heat storage type air conditioner and its control method
JP2522360B2 (en) Air conditioner
JPH0410528Y2 (en)
JPH10141815A (en) Air conditioner