JPH03170753A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH03170753A
JPH03170753A JP1311971A JP31197189A JPH03170753A JP H03170753 A JPH03170753 A JP H03170753A JP 1311971 A JP1311971 A JP 1311971A JP 31197189 A JP31197189 A JP 31197189A JP H03170753 A JPH03170753 A JP H03170753A
Authority
JP
Japan
Prior art keywords
degree
heating
electronic expansion
cooling
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1311971A
Other languages
Japanese (ja)
Other versions
JP2904354B2 (en
Inventor
Toshihiko Enomoto
寿彦 榎本
Akio Fukushima
章雄 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1311971A priority Critical patent/JP2904354B2/en
Publication of JPH03170753A publication Critical patent/JPH03170753A/en
Application granted granted Critical
Publication of JP2904354B2 publication Critical patent/JP2904354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make a supercooling degree appropriate by calculating the supercooling degree of a refrigerant at an outlet of a condenser from a difference between the temperature of a condensed refrigerant of a heat exchanger operating as a condenser and the temperature of the refrigerant at the outlet thereof and by controlling the degree of opening of an electronic expansion value just behind the heat exchanger. CONSTITUTION:A supercooling degree of a refrigerant at an outlet of a condenser is calculated by arithmetic means 17 and 18 from a difference between the temperature of a condensed refrigerant of heat exchangers 3 and 5 operating as the condenser respectively and the temperature of the refrigerant at the outlet thereof. The degree of opening of electronic expansion valves 11 and 12 just behind the heat exchangers 3 and 5 operating as the condenser is controlled by controllers 19 and 20 so that the supercooling degree thus calculated be a value within a prescribed range, and the degree of opening of the electronic expansion valves 11 and 12 just before the heat exchangers 3 and 5 operating as an evaporator respectively is fixed at a prescribed degree of opening. Even when the capacity of a compressor varies both in cooling and in heating, according to this constitution, an appropriate supercooling degree is always maintained in a wide range of the capacity, and thus an air-conditioner being operated with an appropriate quantity of the refrigerant and being highly reliable can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は,冷媒回路が室外ユニットと室内ユニットに
別けられたヒートポンプ式の空気調和機に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat pump type air conditioner in which the refrigerant circuit is divided into an outdoor unit and an indoor unit.

[従来の技術] 第4図は、例えば特開昭62−158958号公報に示
された従来の分離形ヒートポンプ式空気調和機の冷媒回
路図である。図において、(1)は圧縮機、(2)は四
方弁,(3)は室外熱交換器、(4a)は冷房時減圧用
毛細管、(4b)は暖房時減圧用毛細管、(5)は室内
熱交換器、(6)は余剰冷媒を貯留するアキュムレー夕
、(7a) = (7b)は上記減圧用毛細管(4a)
,(4b)にそれぞれ並列に接続された逆止弁、(8)
は、上記圧縮機(1)、四方弁(2)、室外熱交換器(
3)、冷房時減圧用毛細管(4a)、アキュムレータ(
6)及び逆止弁(7a)を内部に配設した室外ユニット
、(9)は、室内熱交換器(5)、暖房時減圧用毛細管
(4b)及び逆止弁(7b)を内部に配設した室内ユニ
ット、(10a),(10b)は室外ユニット(8)と
室内ユニット(9)間を接続する接続配管である。
[Prior Art] FIG. 4 is a refrigerant circuit diagram of a conventional separated heat pump type air conditioner disclosed in, for example, Japanese Patent Application Laid-Open No. 62-158958. In the figure, (1) is a compressor, (2) is a four-way valve, (3) is an outdoor heat exchanger, (4a) is a capillary tube for reducing pressure during cooling, (4b) is a capillary tube for reducing pressure during heating, and (5) is a capillary tube for reducing pressure during heating. Indoor heat exchanger, (6) is an accumulator for storing surplus refrigerant, (7a) = (7b) is the capillary tube for pressure reduction (4a)
, (4b), each of which is connected in parallel with the check valve (8).
The above compressor (1), four-way valve (2), outdoor heat exchanger (
3), Capillary tube for reducing pressure during cooling (4a), Accumulator (
6) and a check valve (7a) are arranged inside the outdoor unit (9), an indoor heat exchanger (5), a capillary tube for pressure reduction during heating (4b) and a check valve (7b) are arranged inside. The provided indoor units (10a) and (10b) are connection pipes that connect the outdoor unit (8) and the indoor unit (9).

次に第4図の従来例の動作について説明する。Next, the operation of the conventional example shown in FIG. 4 will be explained.

まず、冷房時においては,四方弁(2)は第1図の実線
の位置にあり、圧縮機(1)により吐出された高温高圧
のガス冷媒は、四方弁(2)をへて室外熱交換器(3)
で室外空気と熱交換されて冷却され凝縮し、高圧のまま
過冷却な液冷媒状態となって、室外ユニット(8)内の
冷房時減圧用毛細管(4a)により低圧の2相状態冷媒
となる.この低圧の2相状態の冷媒は室内外ユニット接
続配管(10a)がら室内ユニット(9)にいたり、逆
止弁(7b)をへて室内熱交換器(5)において室内空
気と熱交換されて低圧のまま加熱され蒸発し、乾き度の
大きな2相冷媒または過熱ガス冷媒となって,室内外ユ
ニット接続配管(10b)、四方弁(2)、アキュムレ
ータ(6)をへて圧縮機(1)に戻るというサイクルが
繰り返される。
First, during cooling, the four-way valve (2) is located at the position indicated by the solid line in Figure 1, and the high-temperature, high-pressure gas refrigerant discharged by the compressor (1) passes through the four-way valve (2) for outdoor heat exchange. Vessel (3)
It exchanges heat with outdoor air, cools and condenses, becomes a supercooled liquid refrigerant while maintaining high pressure, and becomes a low-pressure two-phase refrigerant through the cooling capillary (4a) in the outdoor unit (8). .. This low-pressure two-phase refrigerant enters the indoor unit (9) through the indoor/outdoor unit connecting pipe (10a), passes through the check valve (7b), and is heat exchanged with indoor air in the indoor heat exchanger (5). It is heated and evaporated at low pressure, becoming a highly dry two-phase refrigerant or superheated gas refrigerant, which passes through the indoor/outdoor unit connection piping (10b), four-way valve (2), and accumulator (6) to the compressor (1). The cycle of returning to is repeated.

暖房時においては、四方弁(2)は第4図の破線の位置
にあり、圧縮機(1)により吐出された高温、高圧のガ
ス冷媒は、四方弁(2),室内外ユニット接続配管(1
0b)をへて室内ユニット(9)にいたり、凝縮器とし
て動作する室内熱交換器(5)において室内空気と熱交
換されて高圧の過冷却液冷媒となり,室内ユニット(9
)内の暖房時減圧用毛細管(4b)により減圧され、低
圧の2相状態冷媒となり、室内外ユニット接続配管(I
Oa)から室外ユニット(8)にいたり、逆止弁(7a
)から蒸発器として動作する室外熱交換器(3)で室外
空気と熱交換され、乾き度の大きな2相状態の冷媒また
は過熱ガスとなり、四方弁(2)、アキュムレータ(6
)をへて圧縮機(1)に戻るというサイクルが繰り返さ
れる.したがって,冷房時および暖房時とも室内外ユニ
ット接続配管(10a)には低圧の2相状態の冷媒が流
れ,その平均比重量はほぼ同一の値(0.6〜0.7g
/c+++’)を示す. また、室内外ユニット接続配管(10b)には、ガス状
態または乾き度の大きな2相状態の冷媒が流れる。した
がって、冷房時および暖房時とも、必要冷媒充填量はほ
ぼ同一の値を示し、室内外ユニット接続配管長さが長く
なっても、必要冷媒充填量に差異を生じない。
During heating, the four-way valve (2) is located at the position indicated by the broken line in Figure 4, and the high-temperature, high-pressure gas refrigerant discharged by the compressor (1) is routed through the four-way valve (2) and the indoor/outdoor unit connecting pipe ( 1
0b) and enters the indoor unit (9), where it exchanges heat with the indoor air in the indoor heat exchanger (5) that operates as a condenser, becomes a high-pressure supercooled liquid refrigerant, and enters the indoor unit (9).
) is depressurized by the capillary tube (4b) for pressure reduction during heating in
Oa) to the outdoor unit (8), check valve (7a)
) is exchanged with outdoor air in the outdoor heat exchanger (3), which operates as an evaporator, and becomes a highly dry two-phase refrigerant or superheated gas, which is then transferred to the four-way valve (2) and the accumulator (6).
) and return to the compressor (1), and the cycle is repeated. Therefore, a low-pressure two-phase refrigerant flows through the indoor/outdoor unit connecting pipe (10a) during both cooling and heating, and its average specific weight is approximately the same (0.6 to 0.7 g).
/c+++'). Furthermore, a refrigerant in a gas state or in a two-phase state with high dryness flows through the indoor/outdoor unit connecting pipe (10b). Therefore, the required refrigerant filling amount shows almost the same value during both cooling and heating, and even if the length of the indoor/outdoor unit connecting pipe becomes longer, there is no difference in the required refrigerant filling amount.

[発明が解決しようとする課題] 従来の分離形ヒートポンプ式空気調和機は、以上のよう
に減圧装置として毛細管を用いて構成しているため、能
力可変形の圧縮機に対しては,その能力によっては減圧
効果が不適正となり充分な?能が得られない場合が生じ
,また、圧縮機の能力の変化によって冷媒量に過不足を
生じ機器の信頼性が悪化するなどの問題点があった.こ
の発明は、上記のような問題点を解消するためになされ
たもので、圧縮機の能力が変化しても、冷房時および暖
房時に必要な冷媒充填量に大きな差が生じることがなく
冷媒充填量に対する運転の信頼性を向上できるとともに
,運転可能な能カ範囲の広い空気調■和機を得ることを
目的とする。
[Problems to be Solved by the Invention] Conventional separated heat pump air conditioners are constructed using capillary tubes as pressure reducing devices as described above, and therefore, the capacity of the variable capacity compressor is limited. Depending on the situation, the decompression effect may be inappropriate and may not be sufficient. There were also problems such as changes in the capacity of the compressor, resulting in excess or deficiency in the amount of refrigerant, which deteriorated the reliability of the equipment. This invention was made to solve the above-mentioned problems, and even if the compressor capacity changes, there will be no large difference in the amount of refrigerant required for cooling and heating, and the refrigerant can be filled. The objective is to provide an air conditioner that can improve operational reliability with respect to volume and has a wide range of operable capabilities.

[課題を解決するための手段] この発明に係る空気調和機は、冷房用及び暖房用減圧装
置としてそれぞれ電子膨張弁を用いるとともに、室外熱
交換器中央の冷媒配管上に第1の温度検出器を、この室
外熱交換器と冷房用電子膨張弁間の冷媒配管上に第2の
温度検出器を,室内熱交換器中央の冷媒配管上に第3の
温度検出器を、この室内熱交換器と暖房用電子膨張弁間
の冷媒配管上に第4の温度検出器をそれぞれ配設し,上
記第1,第2の温度検出器の検出温度差から冷房時の過
冷却度を算出する冷房時過冷却度演算手段、上記第3、
第4の温度検出器の検出温度差から暖房時の過冷却度を
算出する暖房時過冷却度演算手段、上記冷房用の電子膨
張弁の開度を、暖房運転時に一定開度に固定し、冷房運
転時に上記冷房時過冷却度演算手段からの出力に応じ上
記冷房時の過冷却度が所定の一定範囲内の値になるよう
制御する冷房用電子膨張弁開度制御器及び上記暖房用の
電子膨張弁の開度を、冷房運転時に一定開度に固定し、
暖房運転時に上記暖房時過冷却度演算手段からの出力に
応じ上記暖房時の過冷却度が所定の一定範囲内の値にな
るよう制御する暖房用電子膨張弁開度制御器を設けたも
のである。
[Means for Solving the Problems] The air conditioner according to the present invention uses electronic expansion valves as decompression devices for cooling and heating, and also includes a first temperature detector on the refrigerant pipe in the center of the outdoor heat exchanger. A second temperature sensor is installed on the refrigerant pipe between this outdoor heat exchanger and the cooling electronic expansion valve, and a third temperature sensor is installed on the refrigerant pipe in the center of the indoor heat exchanger. A fourth temperature detector is installed on each refrigerant pipe between the electronic expansion valve and the electronic expansion valve for heating, and the degree of subcooling during cooling is calculated from the difference in temperature detected by the first and second temperature detectors. supercooling degree calculation means, the third above;
heating-time supercooling degree calculating means for calculating the degree of supercooling during heating from the temperature difference detected by the fourth temperature detector; fixing the opening degree of the electronic expansion valve for cooling to a constant opening degree during heating operation; An electronic expansion valve opening controller for cooling that controls the degree of subcooling during cooling to a value within a predetermined constant range according to the output from the degree of subcooling calculation means during cooling during cooling operation, and an electronic expansion valve opening controller for heating. The opening degree of the electronic expansion valve is fixed at a constant opening degree during cooling operation,
A heating electronic expansion valve opening controller is provided for controlling the degree of subcooling during heating to a value within a predetermined constant range according to the output from the degree of subcooling during heating calculation means during heating operation. be.

[作 用] この発明においては、凝縮器として動作する熱交換器、
即ち冷房時の室外熱交換器、暖房時の室内熱交換器の凝
縮冷媒温度と、それらの出口冷媒温度との差から過冷却
度演算手段により凝縮器出口冷媒の過冷却度が算出され
、これらの過冷却度が所定の一定範囲内の値となるよう
凝縮器として動作する熱交換器直後の電子膨張弁の開度
が電子膨張弁開度制御器によって制御される。それによ
り、冷房時,暖房時とも圧縮機の能力が変化しても常に
適正な過冷却度が保たれ適切な冷媒量での運転が行なわ
れる。
[Function] In this invention, a heat exchanger that operates as a condenser,
That is, the degree of subcooling of the refrigerant at the condenser outlet is calculated by the degree of subcooling calculating means from the difference between the condensed refrigerant temperature of the outdoor heat exchanger during cooling and the indoor heat exchanger during heating, and the temperature of those outlet refrigerants. The opening degree of the electronic expansion valve immediately after the heat exchanger that operates as a condenser is controlled by an electronic expansion valve opening degree controller so that the degree of subcooling of the heat exchanger is within a predetermined range. As a result, even when the capacity of the compressor changes during cooling and heating, an appropriate degree of supercooling is always maintained and operation is performed with an appropriate amount of refrigerant.

[実施例] 以下、この発明の一実施例を図について説明する.第1
図はこの発明の一実施例を示す冷媒回路図、第2図、第
3図はこの実施例における電子膨張弁の制御動作を説明
するためのフローチャート及びタイミングチャートであ
る。図において、(1)は圧縮機、(2)は四方弁、(
3)は室外熱交換器、(5)は室内熱交換器,(6)は
アキュムレータ、(8)は室外:L二y ト. (9)
4t室内ユニット、(10a) , (10b) ハ室
外、室内両ユニット間を接続する接続配管で,以上は第
4図に示す従来例と同様のものである。
[Example] An example of the present invention will be described below with reference to the drawings. 1st
The figure is a refrigerant circuit diagram showing one embodiment of the present invention, and FIGS. 2 and 3 are a flowchart and timing chart for explaining the control operation of the electronic expansion valve in this embodiment. In the figure, (1) is a compressor, (2) is a four-way valve, (
3) is an outdoor heat exchanger, (5) is an indoor heat exchanger, (6) is an accumulator, and (8) is an outdoor heat exchanger. (9)
4t indoor unit, (10a), (10b) (c) Connecting piping connecting both the outdoor and indoor units, which are similar to the conventional example shown in FIG. 4.

(11)は室外ユニット(8)内にある冷房用電子膨張
弁、(12)は室内ユニット(9)内にある暖房用電子
膨張弁. (13)は室外熱交換器(3)の中央の冷媒
配管上に配設された第1の温度検出器、(l4)は室外
熱交換器(3)と冷房用電子膨張弁(11)とを接続す
る冷媒配管上に配設された第2の温度検出器、(15)
は室内熱交換器(5)の中央の冷媒配管上に配設された
第3の温度検出器. (16)は室内熱交換器(5)と
暖房用電子膨張弁(l2)とを接続する冷媒配管上に配
設された第4の温度検出器、(17)は第1の温度検出
器(13)と第2の温度検出器(14)の検出温度差か
ら冷房時の過冷却度を算出する冷房時過冷却度演算手段
. (18)は第3の温度検出器(l5)と第4の温度
検出器(16)の検出温度差から暖房時の過冷却度を算
出する暖房時過冷却度演算手段、(19)は冷房用電子
膨張弁(11)の開度を、暖房運転時に一定開度に、冷
房運転時に冷房時過冷却度演算手段(17)からの出力
に応じ冷房時の過冷却度が所定の一定範囲内の値になる
よう制御する冷房用電子膨張弁開度制御器、(20)は
暖房用電子膨張弁(12)の開度を、冷房運転時に一定
開度に、暖房運転時に暖房時過冷却度演算手段(18)
からの出力に応じ暖房時の過冷却度が所定の一定範囲内
の値になるよう制御する暖房用電子膨張弁開度制御器で
ある. 次に、この実施例の動作について説明する。まず、冷房
時においては、四方弁(2)は第1図の実線の位置にあ
り、圧縮機(1)により吐出された高温高圧のガス冷媒
は,四方弁(2)をへて室外熱交換器(3)にいたり室
外空気と熱交換されて冷却凝縮され、高圧で過冷却な液
冷媒状態となり、第1の温度検出器(13)と第2の温
度検出器(14)の検出温度差から冷房時過冷却度演算
手段(17)によって算出された過冷却度に応じ、冷房
用電子膨張弁開度制御器(19)によって制御される開
度の冷房用電子膨張弁(11)により減圧膨張されて低
圧の2相状態冷媒となる。この低圧の2相状態の冷媒は
室内外ユニット接続配管(10a)から室内ユニット(
9)にいたり、冷房時大きな一定開度に保持されている
暖房用電子膨張弁(l2)をへて、室内熱交換器(5)
において室内空気と熱交換されて低圧のまま加熱され蒸
発し、乾き度の大きな2相冷媒または過熱ガス冷媒とな
って、室内外ユニット接続配管(tab)、四方弁(2
)、アキュムレータ(6)をへて圧縮機(1)に戻ると
いうサイクルが繰り返えされる。この時、冷房時過冷却
度演算手段(17)によって算出される過冷却度は、第
1の温度検出器(13)から検出される凝縮温度をT1
3、第2の温度検出器(14)から検出される凝縮器出
口温度をTi4とすると、次式により算出される。
(11) is an electronic expansion valve for cooling in the outdoor unit (8), and (12) is an electronic expansion valve for heating in the indoor unit (9). (13) is the first temperature detector installed on the refrigerant pipe in the center of the outdoor heat exchanger (3), and (l4) is the outdoor heat exchanger (3) and the electronic expansion valve for cooling (11). a second temperature sensor disposed on the refrigerant pipe connecting the (15)
is the third temperature sensor installed on the refrigerant pipe in the center of the indoor heat exchanger (5). (16) is the fourth temperature detector disposed on the refrigerant pipe connecting the indoor heat exchanger (5) and the heating electronic expansion valve (l2), and (17) is the first temperature detector ( 13) and the second temperature detector (14) to calculate the degree of supercooling during cooling. (18) is a heating subcooling degree calculating means for calculating the degree of subcooling during heating from the difference in temperature detected by the third temperature detector (l5) and the fourth temperature detector (16), and (19) is a heating subcooling degree calculation means. The degree of opening of the electronic expansion valve (11) is kept constant during heating operation, and the degree of subcooling during cooling is within a predetermined certain range according to the output from the degree of subcooling calculation means (17) during cooling operation. A cooling electronic expansion valve opening controller (20) controls the opening of the heating electronic expansion valve (12) to a constant opening during cooling operation, and to a heating supercooling degree during heating operation. Calculation means (18)
This is an electronic expansion valve opening controller for heating so that the degree of subcooling during heating is within a predetermined range according to the output from the heating system. Next, the operation of this embodiment will be explained. First, during cooling, the four-way valve (2) is located at the position indicated by the solid line in Figure 1, and the high-temperature, high-pressure gas refrigerant discharged by the compressor (1) passes through the four-way valve (2) for outdoor heat exchange. The temperature difference between the first temperature sensor (13) and the second temperature sensor (14) is detected by the temperature difference between the first temperature sensor (13) and the second temperature sensor (14). According to the degree of subcooling calculated by the degree of subcooling calculating means (17) during cooling, the electronic expansion valve for cooling (11) whose opening degree is controlled by the electronic expansion valve opening degree controller (19) for cooling is used to reduce the pressure. It is expanded to become a low-pressure, two-phase refrigerant. This low-pressure two-phase refrigerant is transferred from the indoor/outdoor unit connecting pipe (10a) to the indoor unit (
9), and passes through the heating electronic expansion valve (l2), which is kept at a large constant opening during cooling, to the indoor heat exchanger (5).
It exchanges heat with the indoor air, heats and evaporates at a low pressure, and becomes a dry two-phase refrigerant or superheated gas refrigerant, which can be used in indoor/outdoor unit connection piping (TAB), four-way valve (2
), then returns to the compressor (1) through the accumulator (6), and the cycle is repeated. At this time, the degree of supercooling calculated by the degree of supercooling calculating means (17) during cooling is calculated by T1
3. If the condenser outlet temperature detected by the second temperature detector (14) is Ti4, it is calculated by the following equation.

過冷却度= T1, − Ti. この過冷却度が所定の一定範囲に入るよう冷房時電子膨
張弁開度制御器(19)によって冷房用電子膨張弁(1
1)の開度が制御される。
Degree of supercooling = T1, - Ti. The electronic expansion valve for cooling ( 1
1) The opening degree is controlled.

また、暖房時においては,四方弁(2)は第1図の破線
の位置にあり、圧縮機(1)により吐出された高温、高
圧のガス冷媒は、四方弁(2)、室内外ユニット接続配
管(10b)をへて凝縮器として動作する室内熱交換器
(5)において熱交換されて冷却凝縮され、高圧で過冷
却な液冷媒状態となり、第3の温度検出器(l5)と第
4の温度検出器(16)の検出温度差から暖房時過冷却
度演算手段(18)によって算出された過冷却度に応じ
,暖房用電子膨張弁開度制御器(20)によって制御さ
れる開度の暖房用電子膨張弁(12)により減圧されて
低圧の2相状態?媒となる。この低圧の2相状態の冷媒
は、室内外ユニット接続配管(10a)をへて室外ユニ
ット(8)にいたり、暖房時大きな一定開度に保持され
ている冷房用電子膨張弁(1l)をへて、蒸発器として
動作する室外熱交換器(3)において室外空気と熱交換
されて低圧のまま加熱され蒸発し、乾き度の大きな2相
状態の冷媒または過熱ガスとなり、西方弁(2),アキ
ュムレータ(6)をへて圧縮機(1)に戻るというサイ
クルが繰り返される.この時,暖房時過冷却度演算手段
(18)によって算出される過冷却度は、第3の温度検
出器(15)から検出される凝縮温度をT■,,第4の
温度検出器(14)から検出される凝縮器出口温度をT
1。とすると,次式により算出される。
Also, during heating, the four-way valve (2) is located at the position indicated by the broken line in Figure 1, and the high temperature, high pressure gas refrigerant discharged by the compressor (1) is connected to the four-way valve (2) and the indoor/outdoor unit. Passing through the pipe (10b), heat is exchanged in the indoor heat exchanger (5) which operates as a condenser, and the refrigerant is cooled and condensed, becoming a high-pressure, supercooled liquid refrigerant, which is then passed through the third temperature sensor (l5) and the fourth temperature sensor (l5). The opening degree is controlled by the electronic expansion valve opening controller (20) for heating according to the degree of supercooling calculated by the degree of supercooling calculation means (18) during heating from the temperature difference detected by the temperature detector (16). Is the pressure reduced by the heating electronic expansion valve (12) in a low-pressure two-phase state? Become a medium. This low-pressure, two-phase refrigerant passes through the indoor/outdoor unit connecting pipe (10a) to the outdoor unit (8), and then passes through the cooling electronic expansion valve (1l), which is kept at a large constant opening during heating. It exchanges heat with outdoor air in the outdoor heat exchanger (3), which operates as an evaporator, and is heated and evaporated at a low pressure, becoming a highly dry two-phase refrigerant or superheated gas, and the west valve (2), The cycle of passing through the accumulator (6) and returning to the compressor (1) is repeated. At this time, the degree of supercooling calculated by the degree of supercooling calculation means (18) during heating is determined by the condensation temperature detected from the third temperature detector (15), T■, the fourth temperature detector (14). ) is the condenser outlet temperature detected from T
1. Then, it is calculated by the following formula.

過冷却度=T..−T,, この過冷却度が所定の一定範囲に入るよう暖房用電子膨
張弁開度制御器(20)によって暖房用電子膨張弁(1
2〉の開度が制御される。
Supercooling degree = T. .. -T,, The electronic expansion valve for heating (1
2> opening degree is controlled.

次に上記冷房用電子膨張弁(l1)及び暖房用電子膨張
弁(12)の開度制御動作を,第2図のフローチャート
および第3図のタイミングチャートに基づいて説明する
。ここに電子膨張弁(11) , (12)の開度と開
度制御器(19) , (20)の出力開度Sjとの関
係は比例関係にあるものとし、第2図は開度制御器(1
9) , (20)において実行されるプログラムのシ
ーケンスフローチャートである。
Next, the opening control operation of the cooling electronic expansion valve (11) and the heating electronic expansion valve (12) will be explained based on the flowchart of FIG. 2 and the timing chart of FIG. 3. Here, it is assumed that the relationship between the opening degrees of the electronic expansion valves (11), (12) and the output opening degrees Sj of the opening controllers (19), (20) is proportional, and Fig. 2 shows the opening degree control. Vessel (1
9) is a sequence flowchart of the program executed in (20).

まず、冷房運転時の電子膨張弁開度制御動作について説
明する。最初にプログラムのスタートにあたり、ステッ
プ(21)において、冷房用電子膨張弁(11)の制御
時間間隔tを設定するタイマセットが行なわれる。ステ
ップ(22)でこのタイマのタイムカウントが行われ、
所定の設定時間Tが経過すると次のステップ(23)で
タイムアップが検出され、さらに次のステップ(24)
で、各温度検出器(13) , (14)からの温度信
号Ti,,T14により過冷却度が算出される過冷却度
測定が行われる。次に、この測定された過冷却度が,予
め定められている4つの領域,A,B,適正,C,Dの
何れにあるかが、各ステップ(25) , (26) 
, (27) , (2g)及び(29)で判定され,
その結果に基づき各ステップ(30) , (31) 
,(32),(33)及び(34)において、開度制御
器(19)から現在出力中の弁開度Sj−1に所定の各
補正値a,bが加算あるいは補正値c,dが減算され、
適正領域にあればSj−1がそのまま,新たな制御出力
弁開度Sjとして決定され電子膨張弁開度制御器(19
)から出力され、ステップ(35)においてこの新たに
決定された出力弁開度Sjに電子膨張弁(11)の弁開
度が制御され、プログラムの初期に戻る。
First, the electronic expansion valve opening control operation during cooling operation will be explained. First, at the start of the program, in step (21), a timer is set to set a control time interval t for the cooling electronic expansion valve (11). In step (22), the timer is counted,
When the predetermined set time T has elapsed, time-up is detected in the next step (23), and then in the next step (24)
Then, a supercooling degree measurement is performed in which the supercooling degree is calculated based on the temperature signals Ti, , T14 from each temperature detector (13), (14). Next, it is determined in each step (25), (26) which of the four predetermined regions A, B, proper, C, and D the measured degree of supercooling is.
, (27), (2g) and (29),
Based on the results, each step (30), (31)
, (32), (33) and (34), each predetermined correction value a, b is added to the valve opening Sj-1 currently being output from the opening controller (19), or the correction values c, d are added. subtracted,
If it is in the appropriate range, Sj-1 is determined as the new control output valve opening Sj and the electronic expansion valve opening controller (19
), and in step (35), the valve opening degree of the electronic expansion valve (11) is controlled to this newly determined output valve opening degree Sj, and the program returns to the initial stage.

上記各補正値はa>b,d>cの関係にあり、適正領域
に近いほど、補正値を小さい値に設定される. いま、例えば第3図に示す過冷却度のタイミングチャー
トにおいて,時点t0において過冷却度がA領域にあっ
たとすれば,所定の補正値aが加えられ電子膨張弁(1
l)の弁開度が開く.電子膨張弁(l1)の弁開度が大
になると過冷却度は減少し、t時間後のtエにおいて測
定された過冷却度がD領域にきたとすると、電子膨張弁
(11)の弁開度が開きすぎということで補正値dが減
算されて電子膨張弁(l1)の弁開度が閉じる。この時
の補正値a、dの大小関係はa > dということにな
る。さらに,時刻t2において過冷却度がB領域にきた
とすれば、今度は補正値bが加算され,電子膨張弁(1
l)の弁開度が開かれる。その補正値は当然a > b
とする。時刻t3において今度は過冷却度がC領域にき
たとすれば補正値Cが減算され、電子膨張弁(1l)の
弁開度が閉じるよう制御される。ここでは当然d > 
cとする。このようにして最終的に過冷却度が適正領域
に入るよう電子膨張弁(11)の弁開度が制御される。
The above correction values have a relationship of a>b and d>c, and the closer the correction value is to the appropriate area, the smaller the correction value is set. Now, for example, in the timing chart of the degree of supercooling shown in FIG. 3, if the degree of supercooling is in region A at time t0, a predetermined correction value a is added and the electronic expansion valve (1
The valve opening of l) is open. As the valve opening degree of the electronic expansion valve (l1) increases, the degree of supercooling decreases, and if the degree of supercooling measured at time t after t time reaches region D, the valve opening degree of the electronic expansion valve (11) decreases. Since the opening degree is too wide, the correction value d is subtracted and the valve opening degree of the electronic expansion valve (l1) is closed. At this time, the magnitude relationship between the correction values a and d is a>d. Furthermore, if the degree of supercooling has reached region B at time t2, the correction value b is added this time, and the electronic expansion valve (1
The valve opening degree of l) is opened. The correction value is naturally a > b
shall be. At time t3, if the degree of supercooling now reaches region C, the correction value C is subtracted, and the valve opening of the electronic expansion valve (1l) is controlled to close. Here, of course, d >
Let it be c. In this way, the valve opening degree of the electronic expansion valve (11) is controlled so that the degree of supercooling finally falls within the appropriate range.

なお、この時暖房用電子膨張弁(12)は冷房時の減圧
装置としては作用しないため、抵抗とならぬよう、大き
な所定の弁開度に固定される。
At this time, the electronic expansion valve for heating (12) does not function as a pressure reducing device during cooling, so it is fixed at a large predetermined valve opening so as not to create resistance.

次に,暖房運転時においては、第3、第4の温度検出器
(15) , (16)からの温度信号Ti,,T1s
によって算出される過冷却度が、適正領域に入るよう暖
房用電子膨張弁(12)の開度が上述と同様に制御され
、冷房用電子膨張弁(11)は大きな所定の弁開度に固
定される。
Next, during heating operation, temperature signals Ti, , T1s from the third and fourth temperature detectors (15) and (16)
The opening degree of the electronic expansion valve for heating (12) is controlled in the same manner as described above so that the degree of supercooling calculated by is within the appropriate range, and the electronic expansion valve for cooling (11) is fixed at a large predetermined valve opening degree. be done.

上記過冷却度の制御は、圧縮機の能力が変化した時にも
行なわれ、常時過冷却度が一定の範囲内に入るよう制御
され、冷媒回路に必要な冷媒量が一定に保たれれること
になる。
The above degree of supercooling is controlled even when the capacity of the compressor changes, and the degree of supercooling is controlled so that it is always within a certain range, and the amount of refrigerant required for the refrigerant circuit is kept constant. Become.

[発明の効果] 以上のようにこの発明によれば、凝縮器として動作する
熱交換器の凝縮冷媒温度と、それらの出口冷媒温度との
差から凝縮器出口冷媒の過冷却度を算出し、これらの過
冷却度が所定の一定範囲内の値となるよう凝縮器として
動作する熱交換器直後の電子膨張弁の開度を制御し、蒸
発器として動作する熱交換器直前の電子膨張弁の開度を
一定開度に固定するよう構成したので,冷房時,暖房時
とも、圧縮機の能力が変化しても広い能力範囲において
常に適正な過冷却度が保たれ、適切な冷媒量での運転が
行なわれる信頼性の高い空気調和機が得られる効果があ
る。
[Effects of the Invention] As described above, according to the present invention, the degree of subcooling of the condenser outlet refrigerant is calculated from the difference between the condensed refrigerant temperature of the heat exchanger that operates as a condenser and the outlet refrigerant temperature thereof, The opening degree of the electronic expansion valve immediately after the heat exchanger that operates as a condenser is controlled so that the degree of subcooling is within a predetermined range, and the opening degree of the electronic expansion valve immediately before the heat exchanger that operates as an evaporator is controlled. Since the opening degree is fixed at a constant opening degree, even when the compressor capacity changes during both cooling and heating operations, an appropriate degree of subcooling is always maintained over a wide capacity range, and the appropriate amount of refrigerant is maintained. This has the effect of providing an air conditioner that operates with high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図はこの発明の一実施例を示す冷媒回路図、第2図
、第3図はこの実施例における電子膨張弁の制御動作を
説明するためのフローチャート及びタイミングチャート
、第4図は従来の分離形ヒートポンプ式空気調和機の冷
媒回路図である・図において、(1)は圧縮機、(2)
は四方弁、(3)は室外熱交換器、(5)は室内熱交換
器、(6)はアキュムレータ、(8)は室外ユニット,
(9)は室内ユニット、(11)は冷房用電子膨張弁、
(l2)は暖房用電子膨張弁、(13)は第1の温度検
出器. (14)は第2の温度検出器、(15)は第3
の温度検出器、(l6)は第4の温度検出器、(17)
は冷房時過冷却度演算手段、(l8)は暖房時過冷却度
演算手段、(19)は冷房用電子膨張弁開度制御器、(
20)は暖房用電子膨張弁開度制御器である。 図中同一符号は同一あるいは相当部分を示す。
Fig. 1 is a refrigerant circuit diagram showing one embodiment of the present invention, Figs. 2 and 3 are flow charts and timing charts for explaining the control operation of the electronic expansion valve in this embodiment, and Fig. 4 is a conventional refrigerant circuit diagram. This is a refrigerant circuit diagram of a separate heat pump type air conditioner. In the diagram, (1) is the compressor, (2)
is a four-way valve, (3) is an outdoor heat exchanger, (5) is an indoor heat exchanger, (6) is an accumulator, (8) is an outdoor unit,
(9) is an indoor unit, (11) is an electronic expansion valve for cooling,
(l2) is an electronic expansion valve for heating, and (13) is a first temperature sensor. (14) is the second temperature detector, (15) is the third temperature detector
temperature sensor, (l6) is the fourth temperature sensor, (17)
(18) is a supercooling degree calculation means for heating, (19) is an electronic expansion valve opening controller for cooling, (
20) is an electronic expansion valve opening controller for heating. The same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  能力可変の圧縮機、四方弁、室外熱交換器、冷房用減
圧装置、暖房用減圧装置、室内熱交換器及びアキュムレ
ータを順次冷媒配管で接続した冷媒回路により構成し、
上記圧縮機、四方弁、室外熱交換器、冷房用減圧装置及
びアキュムレータを室外ユニット内に、上記室内熱交換
器及び暖房用減圧装置を室内ユニット内にそれぞれ配設
してなる空気調和機において、上記冷房用及び暖房用減
圧装置としてそれぞれ電子膨張弁を用いるとともに、上
記室外熱交換器中央の冷媒配管上に第1の温度検出器を
、この室外熱交換器と上記冷房用電子膨張弁間の冷媒配
管上に第2の温度検出器を、上記室内熱交換器中央の冷
媒配管上に第3の温度検出器を、この室内熱交換器と上
記暖房用電子膨張弁間の冷媒配管上に第4の温度検出器
をそれぞれ配設し、上記第1、第2の温度検出器の検出
温度差から冷房時の過冷却度を算出する冷房時過冷却度
演算手段、上記第3、第4の温度検出器の検出温度差か
ら暖房時の過冷却度を算出する暖房時過冷却度演算手段
、上記冷房用の電子膨張弁の開度を、暖房運転時に一定
開度に固定し、冷房運転時に上記冷房時過冷却度演算手
段からの出力に応じ上記冷房時の過冷却度が所定の一定
範囲内の値になるよう制御する冷房用電子膨張弁開度制
御器及び上記暖房用の電子膨張弁の開度を、冷房運転時
に一定開度に固定し、暖房運転時に上記暖房時過冷却度
演算手段からの出力に応じ上記暖房時の過冷却度が所定
の一定範囲内の値になるよう制御する暖房用電子膨張弁
開度制御器を設けたことを特徴とする空気調和機。
It consists of a refrigerant circuit in which a variable capacity compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device for cooling, a pressure reducing device for heating, an indoor heat exchanger, and an accumulator are sequentially connected by refrigerant piping.
An air conditioner in which the compressor, four-way valve, outdoor heat exchanger, cooling pressure reducing device, and accumulator are arranged in an outdoor unit, and the indoor heat exchanger and heating pressure reducing device are arranged in an indoor unit, Electronic expansion valves are used as the cooling and heating pressure reducing devices, and a first temperature sensor is installed on the refrigerant pipe in the center of the outdoor heat exchanger, and a first temperature sensor is installed between the outdoor heat exchanger and the cooling electronic expansion valve. A second temperature sensor is installed on the refrigerant pipe, a third temperature sensor is installed on the refrigerant pipe in the center of the indoor heat exchanger, and a third temperature sensor is installed on the refrigerant pipe between the indoor heat exchanger and the heating electronic expansion valve. cooling-time supercooling degree calculating means for calculating the degree of supercooling during cooling from the difference in temperature detected by the first and second temperature detectors; A heating subcooling degree calculation means that calculates the degree of subcooling during heating from the temperature difference detected by the temperature detector, the opening degree of the electronic expansion valve for cooling is fixed at a constant opening degree during heating operation, and the opening degree during cooling operation is fixed. An electronic expansion valve opening controller for cooling, which controls the degree of subcooling during cooling to a value within a predetermined range according to the output from the degree of subcooling calculation means during cooling; and an electronic expansion valve for heating. The opening degree is fixed at a constant opening degree during cooling operation, and during heating operation, the degree of subcooling during heating is controlled to be a value within a predetermined fixed range according to the output from the degree of subcooling calculation means during heating. An air conditioner characterized by being equipped with an electronic expansion valve opening controller for heating.
JP1311971A 1989-11-30 1989-11-30 Air conditioner Expired - Fee Related JP2904354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1311971A JP2904354B2 (en) 1989-11-30 1989-11-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311971A JP2904354B2 (en) 1989-11-30 1989-11-30 Air conditioner

Publications (2)

Publication Number Publication Date
JPH03170753A true JPH03170753A (en) 1991-07-24
JP2904354B2 JP2904354B2 (en) 1999-06-14

Family

ID=18023640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311971A Expired - Fee Related JP2904354B2 (en) 1989-11-30 1989-11-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP2904354B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669231A (en) * 1995-06-23 1997-09-23 Nippondenso Co., Ltd. Air conditioning apparatus
JP2002054836A (en) * 2000-08-08 2002-02-20 Mitsubishi Electric Corp Indoor multi-air conditioner
JP2007183091A (en) * 2005-12-29 2007-07-19 Lg Electronics Inc Air conditioner and refrigerant control method for the same
JPWO2022102077A1 (en) * 2020-11-13 2022-05-19

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969663A (en) * 1982-10-12 1984-04-19 三菱重工業株式会社 Refrigeration cycle
JPS62158958A (en) * 1986-01-07 1987-07-14 三菱電機株式会社 Separation type heat pump system air conditioner
JPS63131961A (en) * 1986-11-24 1988-06-03 三菱電機株式会社 Heat pump device
JPS63197853A (en) * 1987-02-13 1988-08-16 三菱電機株式会社 Refrigerant circuit for heat pump type air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969663A (en) * 1982-10-12 1984-04-19 三菱重工業株式会社 Refrigeration cycle
JPS62158958A (en) * 1986-01-07 1987-07-14 三菱電機株式会社 Separation type heat pump system air conditioner
JPS63131961A (en) * 1986-11-24 1988-06-03 三菱電機株式会社 Heat pump device
JPS63197853A (en) * 1987-02-13 1988-08-16 三菱電機株式会社 Refrigerant circuit for heat pump type air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669231A (en) * 1995-06-23 1997-09-23 Nippondenso Co., Ltd. Air conditioning apparatus
JP2002054836A (en) * 2000-08-08 2002-02-20 Mitsubishi Electric Corp Indoor multi-air conditioner
JP4538919B2 (en) * 2000-08-08 2010-09-08 三菱電機株式会社 Indoor multi air conditioner
JP2007183091A (en) * 2005-12-29 2007-07-19 Lg Electronics Inc Air conditioner and refrigerant control method for the same
JPWO2022102077A1 (en) * 2020-11-13 2022-05-19
WO2022102077A1 (en) * 2020-11-13 2022-05-19 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP2904354B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US5214918A (en) Refrigerator and method for indicating refrigerant amount
US4771610A (en) Multiroom air conditioner
KR101158318B1 (en) Air conditioner
US20080197206A1 (en) Refrigerant System With Water Heating
CN106196495A (en) Control device and control method of multi-split air conditioner and multi-split air conditioner
JP5164527B2 (en) Air conditioner
JPH03170753A (en) Air conditioner
JPH08189717A (en) Heat pump type air-conditioner
JPH1183250A (en) Amount of refrigerant judging method of air conditioner
JP2893844B2 (en) Air conditioner
CN113720047A (en) Air conditioning system
JP2765970B2 (en) Air conditioner
JPH08136078A (en) Multi-room cooling and heating device
JP2692895B2 (en) Air conditioner
EP4310416A1 (en) Hybrid multi-air conditioning system
JP3284578B2 (en) Operation control device for multi-room air conditioner
JPH0670515B2 (en) Multi-room air conditioner
JPS63290368A (en) Heat pump type air conditioner
JPH0113972Y2 (en)
JPS5850211Y2 (en) Air conditioner
JPH0579894B2 (en)
JPH08145482A (en) Multi-chamber split type heater
JPH06137690A (en) Air conditioner
JPS62129660A (en) Method of controlling refrigerant in refrigerator
JPH0694960B2 (en) Multi-room air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees