JPS63197853A - Refrigerant circuit for heat pump type air conditioner - Google Patents

Refrigerant circuit for heat pump type air conditioner

Info

Publication number
JPS63197853A
JPS63197853A JP3086487A JP3086487A JPS63197853A JP S63197853 A JPS63197853 A JP S63197853A JP 3086487 A JP3086487 A JP 3086487A JP 3086487 A JP3086487 A JP 3086487A JP S63197853 A JPS63197853 A JP S63197853A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
circuit
refrigerant circuit
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3086487A
Other languages
Japanese (ja)
Inventor
康雄 中島
寿彦 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3086487A priority Critical patent/JPS63197853A/en
Publication of JPS63197853A publication Critical patent/JPS63197853A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、空気調和機据付条件及び運転範囲ン拡大す
ることt目的とするヒートポンプ式空気調和機の冷媒回
路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a refrigerant circuit for a heat pump type air conditioner whose purpose is to expand the installation conditions and operating range of the air conditioner.

〔従来の技術〕[Conventional technology]

第6図は9世1えば実開昭59−4921号公報に示さ
れた従来のヒートポンプ式空気調和榊の冷媒回路図であ
る。(1)は圧縮機、(21は四方弁、13Iは室外熱
交換器、  (5a)は冷房運転時冷奴を通す第1逆止
弁で、室外熱交換器(31の出口管側に設けである。
FIG. 6 is a refrigerant circuit diagram of a conventional heat pump type air conditioner Sakaki disclosed in, for example, Japanese Utility Model Application Publication No. 59-4921. (1) is the compressor, (21 is the four-way valve, 13I is the outdoor heat exchanger, (5a) is the first check valve that passes the cold tube during cooling operation, and is installed on the outlet pipe side of the outdoor heat exchanger (31). be.

(5b)は暖房運転時冷媒を通す8g2逆止弁で、室内
熱交換器(7)の出口管側に設けである。(6a)は暖
房用の第2毛細管、  (6b)は冷房用の第1毛細管
、(7)は室内熱交換器、 ci+nは第1接続配管、
t2X5は第2接続配管で、それぞれ箆内外機を接続す
るよう両端にカップリング■!設け、冷媒回路を形成し
ている。
(5b) is an 8g2 check valve that passes refrigerant during heating operation, and is installed on the outlet pipe side of the indoor heat exchanger (7). (6a) is the second capillary for heating, (6b) is the first capillary for cooling, (7) is the indoor heat exchanger, ci+n is the first connection pipe,
t2X5 is the second connection pipe, and there are couplings at both ends to connect the inner and outer machines respectively! A refrigerant circuit is formed.

次に動作について説明すると、冷房時圧縮機(1)より
吐出された高圧のガス冷媒は四方弁(2)ヲ通り室外熱
交換器(3)に入り、ここで高圧の准冷媒となり、第1
逆上弁(5a)を通り、第1接続配管0I+を通り、箆
内@側へ導かれ、冷房用の第1毛細管(6b)で減圧さ
れて室内熱交換器(7)で蒸発しガス化し第2接続配管
のを通って再び四方弁+21を介して圧縮機(1)へ戻
るサイクルを構成する。
Next, to explain the operation, during cooling, the high-pressure gas refrigerant discharged from the compressor (1) passes through the four-way valve (2) and enters the outdoor heat exchanger (3), where it becomes a high-pressure quasi-refrigerant.
It passes through the reverse valve (5a), passes through the first connection pipe 0I+, is guided to the @ side of the pipe, is depressurized by the first cooling capillary (6b), and is evaporated and gasified in the indoor heat exchanger (7). This constitutes a cycle that passes through the second connecting pipe and returns to the compressor (1) via the four-way valve +21.

一方暖房時は、四方弁(2)が切換わり冷房時と逆のサ
イクルを行う。
On the other hand, during heating, the four-way valve (2) switches to perform a cycle opposite to that during cooling.

〔発明が解決しようとする間和点〕[The balance that the invention attempts to solve]

従来のヒートポンプ式空気調和機の冷媒回路は以上のよ
うに構成されているので、冷暖房どちらのサイクルも室
内外接続配管(21+内は液状態であり冷媒量の比重量
も11ookg/−となり室内・外機の設置場所が陥れ
れば配管が長くなり、当然冷媒回路内に必要とする冷媒
量が増大し、これに伴って優込み起動での腋圧怖あるい
は回路内を循環する冷凍機油の増加などの悪条件が電な
り圧縮機の信糟性を低下させている。したがって、接続
配管の配管長は当然制限されることになり、据付条件も
制約されると共に、近年の空気調和機は室内機の送風音
を低下されるため1弱風のレベルが低くなってきている
ので、冷房時には蒸発器となる室内熱交換器の能力不足
による陳結、又暖房時には簑縮器となる室内熱交換器の
能力不足による高圧上昇といった問題が発生する。
The refrigerant circuit of a conventional heat pump type air conditioner is configured as described above, so both indoor and outdoor connection piping (inside 21+ is in a liquid state and the specific weight of the refrigerant amount is 11ookg/-, so both indoor and outdoor connections are connected). If the installation location of the external unit is compromised, the piping will become longer and the amount of refrigerant required in the refrigerant circuit will naturally increase, resulting in fear of armpit pressure during preferential start-up or an increase in refrigerating machine oil circulating in the circuit. Adverse conditions such as The level of 1-weak air has become lower due to the reduction of the air blowing noise of the machine, which is due to insufficient capacity of the indoor heat exchanger which acts as an evaporator during cooling, and the indoor heat exchanger which acts as a compressor during heating. Problems such as high pressure increases occur due to insufficient capacity of the equipment.

また、これら冷房時の室内熱交換器の能力不足による凍
結、また暖戻時の室内熱交換器の能力不足による高圧上
昇を防止するため1例えば第7図の冷媒回路の要部説明
図に示すように圧縮機(1)の吐出管と吸入管とを接続
するバイパス路ののバイパス弁(81を開き圧縮機の吐
出圧力を下げ、吸入圧力を上げる構成がある。この場合
効果ン上げるために冷媒のバイパス流量を増やすと、室
内機から聞える冷媒のバイパス流量が大きくなるといっ
た別の間順があり、この音を防止するためには、さらに
1!!+!雑な回路が必要となるなど間趙点があった。
In addition, in order to prevent freezing due to insufficient capacity of the indoor heat exchanger during cooling, and high pressure rise due to insufficient capacity of the indoor heat exchanger during heating, 1. There is a configuration in which the bypass valve (81) of the bypass path connecting the discharge pipe and suction pipe of the compressor (1) is opened to lower the discharge pressure of the compressor and increase the suction pressure.In this case, in order to increase the effectiveness If you increase the refrigerant bypass flow rate, the refrigerant bypass flow rate heard from the indoor unit will increase, and in order to prevent this sound, an even more complicated circuit will be required. There was a Zhao point.

この発明は上記のような間踊な解消するためになされた
もので、室内外機を接続する配管を長くすることができ
ると同時に、室内機風量低下での運転範囲も拡大できる
空気調和機を得ることを目的とする。
This invention was made in order to solve the above-mentioned inconvenience, and to create an air conditioner that can lengthen the piping connecting the indoor and outdoor units and at the same time expand the operating range when the air volume of the indoor unit decreases. The purpose is to obtain.

〔間踊廃乞解決するための手段〕[Means to solve the problem of begging]

この発明は従来の冷媒回路に於る冷房用毛細管と暖房用
毛細管の配置を入れ替え、さらに圧縮機の吐出管とこれ
ら2つの毛細管との間にバイパス弁を有したバイパス路
を設けるように構成したものである。
This invention replaces the arrangement of the cooling capillary tube and the heating capillary tube in a conventional refrigerant circuit, and furthermore, a bypass path with a bypass valve is provided between the discharge pipe of the compressor and these two capillary tubes. It is something.

〔作用〕[Effect]

この発明におけるヒートポンプ式空気調和機の冷媒回路
は、冷房用毛細管とea用用軸細管配置を入れ替えたこ
とにより、接続配管内が低圧の2相加、冷媒となり、冷
媒量の比M量が大幅に減少する。
In the refrigerant circuit of the heat pump air conditioner in this invention, by replacing the arrangement of the cooling capillary tube and the EA shaft capillary tube, the inside of the connecting pipe becomes a low-pressure two-phase additive refrigerant, and the refrigerant amount ratio M amount is greatly increased. decreases to

〔発明の夾抛例〕[Examples of inventions]

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、(1)は圧縮機、(2)は四方弁、(
31は室外熱交換器、C41はアキュムレータ、  (
5a)は冷房時開、暖房時閉となる第1逆止弁、  (
5b)は?v房時閉、暖房時開となる第2逆止弁、  
(6a)は第2の毛細管、  (6b)は第1の毛細管
で、第2逆止yf(5b)と第1の牛細管(6b)は蔓
外機内で、室外熱交換器f31の冷房時出口91+1配
管に並列に接続され第1の並列回路C241を搗成し、
第1逆止弁(5a)と第2の毛細管(6a)は室内機内
で室内熱交換器(71出ロ1lllll配置に並列に接
続され第2の並列回路のを構成している。
In Figure 1, (1) is a compressor, (2) is a four-way valve, (
31 is an outdoor heat exchanger, C41 is an accumulator, (
5a) is a first check valve that opens during cooling and closes during heating;
What about 5b)? A second check valve that closes when the chamber is heated and opens when heating;
(6a) is the second capillary tube, (6b) is the first capillary tube, and the second check yf (5b) and the first capillary tube (6b) are inside the outdoor unit when cooling the outdoor heat exchanger f31. Connected in parallel to the outlet 91+1 piping to form a first parallel circuit C241,
The first check valve (5a) and the second capillary tube (6a) are connected in parallel in an indoor heat exchanger (71 outputs and 1llllll arrangement) in the indoor unit to form a second parallel circuit.

(7)は室内熱交換器、 anは第1接続配管、@は第
2接続配管、■は圧縮機+11の吐出管側と第1の並列
回路241と第2の並列回路■の間を接続するバイパス
路で、バイパス弁(81を途中に設けている。
(7) is the indoor heat exchanger, an is the first connection pipe, @ is the second connection pipe, ■ is the connection between the discharge pipe side of the compressor +11 and the first parallel circuit 241 and the second parallel circuit ■ A bypass valve (81) is provided in the middle of the bypass path.

次に、冷房時、暖房時の作用について述べると冷房時、
圧縮機(11より吐出された高圧のガス冷媒は四方弁(
21を辿って室外熱交換器131に入り、ここで高圧の
液冷媒となり、第1の毛細管で減圧され。
Next, we will discuss the effects during cooling and heating.
The high pressure gas refrigerant discharged from the compressor (11) is passed through a four-way valve (
21 and enters the outdoor heat exchanger 131, where it becomes a high-pressure liquid refrigerant and is depressurized in the first capillary tube.

室内外機を接続する第1接続配管r2Dを低圧の2相冷
媒となって室内機へ導かれる。さらに第1逆止弁(5a
)を通り室内熱交換器(7)で蒸発し、低圧ガス冷奴は
再び第2接続配管のを通り、 室外機に戻り四方弁(2
)ヲ介しアキュムレータ+41から圧mm(s)へ戻る
サイクル1kw4成する。ここでアキュムレーター(4
1は、運転条件により発生する余剰冷媒を溜める作用を
持っている。
A low-pressure two-phase refrigerant is guided to the indoor unit through the first connection pipe r2D that connects the indoor and outdoor units. Furthermore, the first check valve (5a
), evaporates in the indoor heat exchanger (7), and the low-pressure gas coolant passes through the second connection pipe again and returns to the outdoor unit through the four-way valve (2).
), a cycle 1kw4 returns from the accumulator +41 to the pressure mm (s). Here the accumulator (4
1 has the function of storing surplus refrigerant generated due to operating conditions.

一方、暖房時は圧縮機filから吐出された高圧のガス
冷媒は、四方弁(21,第2接続配管■を通り室内熱交
換器(71に入りここで准化し、第2の毛細管により減
圧され、第1接続配管QIIを低圧の2相流冷媒となっ
て通過し室外機へ戻り、第2逆止弁(5b)を通って室
外熱交換器(3:に入りここで蒸発し。
On the other hand, during heating, the high-pressure gas refrigerant discharged from the compressor fil passes through the four-way valve (21, second connection pipe ■), enters the indoor heat exchanger (71), is standardized here, and is depressurized by the second capillary tube. The refrigerant passes through the first connection pipe QII as a low-pressure two-phase flow refrigerant, returns to the outdoor unit, passes through the second check valve (5b), enters the outdoor heat exchanger (3), and evaporates here.

四方弁(2)、アキュームレータ(4)を経て圧縮機(
1)へ戻るサイクルヲ構成する。
The compressor (
Construct a cycle that returns to 1).

このように構成された冷媒回路において、従来の冷媒回
路との比軟を表12表2及び第5図に示す必要冷媒量の
特性図によって説明する。
In the refrigerant circuit configured as described above, the relative softness with respect to the conventional refrigerant circuit will be explained with reference to Table 12 and the characteristics diagram of the required refrigerant amount shown in FIG.

ここでは、比重量は2相流の平均比重量の式を用いた。Here, the formula of the average specific weight of two-phase flow was used for the specific weight.

即ち。That is.

γG:飽和ガス比亘蓋 γL:胞和蔽比■量 表1において、液管比重量は冷房時の従来回路及びこの
発明の回路ともに401kg/−であったものが、暖房
時の従来回路では1100 kg/rrlで、 この発
明の回路では400kg/−となる。
γG: Saturated gas ratio γL: Cell hydration ratio ■Quantity In Table 1, the liquid pipe specific weight was 401 kg/- for both the conventional circuit during cooling and the circuit of this invention, but in the conventional circuit during heating. 1100 kg/rrl, and in the circuit of this invention, it becomes 400 kg/-.

表2に示す冷媒回路上の比軟を見ると1g管内圧力では
、従来回路は冷房時は低く、暖房時は高くなり、この発
明の回路は冷房時、暖房時共に低くなる。
Looking at the specific softness on the refrigerant circuit shown in Table 2, at 1 g pipe internal pressure, the conventional circuit has a low value during cooling and high value during heating, while the circuit of the present invention has a low value during both cooling and heating.

又2次管内の冷媒の状gでは、従来回路の冷房時は2相
流、暖房時はサブクール液状態であったものが、この発
明の回路の冷房時、暖房時は共に2相淀の状態となる。
In addition, the state of the refrigerant in the secondary pipe g is a two-phase flow during cooling in the conventional circuit and a subcooled liquid state during heating, but in the circuit of this invention, it is in a two-phase stagnation state during both cooling and heating. becomes.

さらに、単位配管長さに必要な冷媒tを見ると。Furthermore, if we look at the refrigerant t required for unit pipe length.

従来回路の冷房時は20f/lrL、暖房時は6597
mとなり、この発明の回路の冷房時、暖房時は共に20
f/fiとなる。
Conventional circuit cooling: 20f/lrL, heating: 6597
m, and when the circuit of this invention is cooling and heating, it is 20
f/fi.

表1 表   2 このように従来の冷媒回路では、蔓内外を接続する第1
接続配管内anが高圧の液であったものが低圧の2相冷
媒となり冷w!、−jlノ比■量が1100kg/−カ
・ら400kgZ−へと大巾に減少し、 冷媒配管内の
必要冷媒量が減少する、さらにバイパス路ののバイパス
弁+H+を開とすれば、冷房時、暖房時とも1)tlf
18冷媒か蒸発器となる峯内外熱交換器f71 f31
人口に供給される。いわゆるホットガスバイパス運転と
なり、冷房時は蒸発器である呈内熱交候器の凍結を防止
でき、暖房時には蒸発能力を・落すことにより吐出圧力
を低下することが出来る。いずれの場合も圧縮機f11
の吐出から吸入へバイパスするより効果がある。
Table 1 Table 2 In this way, in conventional refrigerant circuits, the first
The high-pressure liquid in the connecting pipe becomes a low-pressure two-phase refrigerant, making it cold! The amount of refrigerant in the refrigerant pipe decreases by a large amount to 1100 kg/- F400 kg Z-, and the amount of refrigerant required in the refrigerant piping decreases.Furthermore, if the bypass valve +H+ of the bypass path is opened, the air conditioner will be cooled. 1) tlf for both time and heating
18 Refrigerant or evaporator Mine internal/external heat exchanger f71 f31
supplied to the population. This is a so-called hot gas bypass operation, which prevents the internal heat exchanger, which is the evaporator, from freezing during cooling, and reduces the discharge pressure by reducing the evaporation capacity during heating. In either case, compressor f11
It is more effective than bypassing from exhalation to inhalation.

第2図は、バイパス弁(8)の制御例を示す一実施例で
、(9Iは電源、(l[は冷房暖房切換スイッチ、aυ
は外気温度を検出する温度調節器で、冷房用ステージ、
暖房用ステージがあり9例えば、第 図に示す特性図に
より説明すると、冷房時、外気が25で以下、暖房時外
気が10で以上となると、 バイパス弁+81が逆電さ
れ、冷房時の凍結、暖房時の吐出圧力上昇を防ぐ。
FIG. 2 shows an example of controlling the bypass valve (8), in which (9I is the power supply, (l[ is the cooling/heating changeover switch, aυ
is a temperature controller that detects the outside air temperature, and has a cooling stage,
For example, if the outside air is 25 or lower during cooling, and the outside air is 10 or higher during heating, the bypass valve +81 is reversely energized, causing freezing during cooling, Prevents discharge pressure from increasing during heating.

また、第3図はバイパス弁+81の開閉するタイミング
を示す佃の実施例であり、 aZは圧力上昇時閉となる
低圧スイッチ、 (131は圧力上昇時閉となる高圧ス
イッチである。
Moreover, FIG. 3 is an example of a Tsukuda which shows the timing of opening and closing of the bypass valve +81, where aZ is a low pressure switch that closes when the pressure rises, (131 is a high pressure switch that closes when the pressure rises).

この場合には、低圧スイッチtI21は圧縮機fl)の
吸入管、高圧スイッチf+3は圧縮機(1)の吐出管に
それぞれ装着されて冷媒圧力を検出する。即ち、冷房時
には、吸入圧力が低下し呈内熱交換器が府箱しそうにな
ると、低圧スイッチazが閉となりバイパス弁+81を
閉じ1着霜を防止する働きをする。また。
In this case, the low pressure switch tI21 is attached to the suction pipe of the compressor fl), and the high pressure switch f+3 is attached to the discharge pipe of the compressor (1) to detect the refrigerant pressure. That is, during cooling, when the suction pressure decreases and the internal heat exchanger is about to collapse, the low pressure switch az closes and the bypass valve +81 is closed to prevent frost formation. Also.

暖房時には、室内外生り温度が上昇するなど吐出圧力が
高くなると、高圧スイッチ1131が閉となり。
During heating, when the discharge pressure increases as the indoor and outdoor temperatures rise, the high pressure switch 1131 closes.

バイパス弁+81を開き異常に冷媒圧力が上昇するのを
防ぐものである。
This opens the bypass valve +81 to prevent the refrigerant pressure from rising abnormally.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、峯外熱交換器の冷房時
出口9IiJ配管に冷房用毛細管を、また暖房用毛細管
を室内熱交換器の暖房時出口側配管に設け、これら毛細
管の間と圧縮機吐出管の間をバイパス弁を有するバイパ
ス路により接続することにより、冷媒回路内の必要冷媒
量を減らすと同時に簡単な回路で、冷@房時の負荷減少
に対し追従が可能という冷媒回路が得られ、許容配管長
を増大させて、空気条件の据付条件の緩和運転範囲の拡
大という多大の効果がある。
As described above, according to the present invention, a cooling capillary tube is provided in the cooling outlet 9IiJ piping of the Mine outdoor heat exchanger, and a heating capillary tube is provided in the heating outlet side piping of the indoor heat exchanger. A refrigerant circuit that connects the compressor discharge pipes with a bypass path with a bypass valve to reduce the amount of refrigerant required in the refrigerant circuit, and at the same time allows a simple circuit to follow the load reduction during cooling @ air conditioning. This has the great effect of increasing the allowable piping length and expanding the operating range in which the installation conditions of air conditions can be relaxed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すヒートポンプ式空気
調和機の冷媒回路図、第2図はバイパス弁の制御を示す
電気回路図、第3図は第2図の他の実施例を示す電気回
路図、第4図は第2図の温度特性図、第5図は必要冷媒
量の従来回路との関係を示す特性図、第6図は従来の実
施例を示す冷媒回路図、第7図は算6図の回路にバイパ
ス路を追加した場合の要部回路図である。 なお9図中同一符号は、同−又は相当部分を示し、(1
)は圧縮機、(21は四方弁、(31は室外熱交換器。 (5a)は第1逆止弁、  (5b)は第2逆止弁、 
 (6a)は第2の毛細管、  (6b)は第1の毛細
管、(7)は室内熱交換器、(泪はバイパス弁、(23
はバイパスThe 241ハ第1並列回路、C151は
第2並列回路である。
Fig. 1 is a refrigerant circuit diagram of a heat pump type air conditioner showing one embodiment of the present invention, Fig. 2 is an electric circuit diagram showing control of a bypass valve, and Fig. 3 shows another embodiment of Fig. 2. Electrical circuit diagram, Fig. 4 is a temperature characteristic diagram of Fig. 2, Fig. 5 is a characteristic diagram showing the relationship between the required refrigerant amount and the conventional circuit, Fig. 6 is a refrigerant circuit diagram showing a conventional example, Fig. 7 The figure is a main part circuit diagram when a bypass path is added to the circuit in Figure 6. The same reference numerals in Figure 9 indicate the same or equivalent parts, (1
) is a compressor, (21 is a four-way valve, (31 is an outdoor heat exchanger, (5a) is a first check valve, (5b) is a second check valve,
(6a) is the second capillary tube, (6b) is the first capillary tube, (7) is the indoor heat exchanger, (Tear is the bypass valve, (23)
The bypass The 241 C is the first parallel circuit, and C151 is the second parallel circuit.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室外熱交換器、絞り機構、室内熱交換
器、四方弁などを連結してなるヒートポンプ式冷媒回路
において、室外熱交換器の冷房時出口側配管に冷房時閉
、暖房時開となる第2逆止弁と第1の毛細管を並列に設
けた第1の並列回路と、室内熱交換器の暖房時出口側配
管に暖房時閉、冷房時開となる第1逆止弁と第2の毛細
管を並列に設けた第2の並列回路とを設け、かつ上記圧
縮機吐出管と上記第1及び第2の並列回路との間を連結
するバイパス弁を有したバイパス路を設けたことを特徴
とするヒートポンプ式空気調和機の冷媒回路。
In a heat pump refrigerant circuit that connects a compressor, four-way valve, outdoor heat exchanger, throttling mechanism, indoor heat exchanger, four-way valve, etc., the outlet side piping of the outdoor heat exchanger is closed during cooling and closed during heating. A first parallel circuit in which a second check valve that opens and a first capillary tube are provided in parallel; and a first check valve that closes during heating and opens during cooling in the outlet side piping of the indoor heat exchanger during heating. and a second parallel circuit in which a second capillary tube is provided in parallel, and a bypass path having a bypass valve connecting the compressor discharge pipe and the first and second parallel circuits. A refrigerant circuit for a heat pump type air conditioner.
JP3086487A 1987-02-13 1987-02-13 Refrigerant circuit for heat pump type air conditioner Pending JPS63197853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3086487A JPS63197853A (en) 1987-02-13 1987-02-13 Refrigerant circuit for heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3086487A JPS63197853A (en) 1987-02-13 1987-02-13 Refrigerant circuit for heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS63197853A true JPS63197853A (en) 1988-08-16

Family

ID=12315591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3086487A Pending JPS63197853A (en) 1987-02-13 1987-02-13 Refrigerant circuit for heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS63197853A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170753A (en) * 1989-11-30 1991-07-24 Mitsubishi Electric Corp Air conditioner
JP2018077037A (en) * 2016-10-25 2018-05-17 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner
US11199342B2 (en) 2015-06-18 2021-12-14 Daikin Industries, Ltd. Air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836641B1 (en) * 1970-09-03 1973-11-06
JPS61159058A (en) * 1984-12-27 1986-07-18 松下電器産業株式会社 Heat pump type air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836641B1 (en) * 1970-09-03 1973-11-06
JPS61159058A (en) * 1984-12-27 1986-07-18 松下電器産業株式会社 Heat pump type air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170753A (en) * 1989-11-30 1991-07-24 Mitsubishi Electric Corp Air conditioner
US11199342B2 (en) 2015-06-18 2021-12-14 Daikin Industries, Ltd. Air conditioner
JP2018077037A (en) * 2016-10-25 2018-05-17 三星電子株式会社Samsung Electronics Co.,Ltd. Air conditioner

Similar Documents

Publication Publication Date Title
US9746212B2 (en) Refrigerating and air-conditioning apparatus
JP3352469B2 (en) Air conditioner
JP4269397B2 (en) Refrigeration equipment
CN114151934A (en) Air conditioner
JPS5952344B2 (en) air conditioner
JP6735896B2 (en) Refrigeration cycle equipment
JPH0544675Y2 (en)
JPS63197853A (en) Refrigerant circuit for heat pump type air conditioner
JP2877552B2 (en) Air conditioner
JP2006125762A (en) Indoor unit, air conditioning device comprising the same, and its operating method
JP2004226025A (en) Air-conditioner
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPH04324067A (en) Air conditioner
JPS60245966A (en) Air conditioner
JP2833339B2 (en) Thermal storage type air conditioner
WO2024070872A1 (en) Air conditioner
JPH04263742A (en) Refrigerator
JP2006125761A (en) Indoor machine and air conditioner comprising the same
JPH08178450A (en) Air conditioner
JPS60248971A (en) Heat pump type air conditioner
JPH0117007Y2 (en)
JPS5969663A (en) Refrigeration cycle
KR100510850B1 (en) Pipe Laying Structure Of Outdoor Unit At Multi-Air Conditioner
JPH0123089Y2 (en)
CN112728666A (en) Air conditioning system