JPS61159058A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS61159058A
JPS61159058A JP28029384A JP28029384A JPS61159058A JP S61159058 A JPS61159058 A JP S61159058A JP 28029384 A JP28029384 A JP 28029384A JP 28029384 A JP28029384 A JP 28029384A JP S61159058 A JPS61159058 A JP S61159058A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
heat exchanger
pressure reducer
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28029384A
Other languages
Japanese (ja)
Inventor
宏治 室園
寿夫 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28029384A priority Critical patent/JPS61159058A/en
Publication of JPS61159058A publication Critical patent/JPS61159058A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、低外気温時にも効果的な暖房運転を行なうヒ
ートポンプ式空気調和機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump type air conditioner that performs effective heating operation even at low outside temperatures.

従来の技術 ヒートポンプ式空気調和機で暖房運転を行なう場合、外
気の湿り空気のエンタルピが低下すると室外熱交換器に
着霜現象が生じ、霜層の断熱作用と空気通過面積の縮少
によって、運転時間と共に前記熱交換器の吸熱量が減少
し、暖房能力が著しく低下する。そこで、この着霜時に
は一時的に冷媒サイクルを逆転させ除霜を行なった後、
正常な冷媒サイクルに戻すといった動作のくり返しを行
なわせていたが、除霜中は冷房運転となるために室内熱
交換器から冷風が吹き出したり室内温度が低下したり等
、快適性を損なうといった問題があった。したがって暖
房運転をできるだけ長く継続して除霜回数を極力減らす
ために従来、以下に示す構成が用いられていた。
Conventional technology When performing heating operation with a heat pump type air conditioner, frost formation occurs on the outdoor heat exchanger when the enthalpy of the humid outside air decreases, and due to the insulation effect of the frost layer and the reduction of the air passage area, the operation As time passes, the amount of heat absorbed by the heat exchanger decreases, and the heating capacity significantly decreases. Therefore, when this frost occurs, the refrigerant cycle is temporarily reversed to defrost, and then
The system repeated the operation to return to the normal refrigerant cycle, but during defrosting, the air conditioner is in cooling mode, which causes problems such as cold air blowing out of the indoor heat exchanger and a drop in indoor temperature, which impairs comfort. was there. Therefore, in order to continue the heating operation for as long as possible and reduce the number of times of defrosting as much as possible, the following configuration has been used in the past.

第4図は従来のヒートポンプ式空気調和機の冷媒回路の
一例を示すものである。
FIG. 4 shows an example of a refrigerant circuit of a conventional heat pump type air conditioner.

同図において、1は圧縮機、2は四方弁、aは室内熱交
換器、4は減圧器、5は室外熱交換器である。6は前記
圧縮機1の吐出側と、減圧器4と室外熱交換器5の間と
を結ぶバイパス回路、7はバイパス回路6に設けられた
開閉弁、8は同じくバイパス回路6に設けられた補助減
圧器である。
In the figure, 1 is a compressor, 2 is a four-way valve, a is an indoor heat exchanger, 4 is a pressure reducer, and 5 is an outdoor heat exchanger. 6 is a bypass circuit connecting the discharge side of the compressor 1, the pressure reducer 4 and the outdoor heat exchanger 5, 7 is an on-off valve provided in the bypass circuit 6, and 8 is also provided in the bypass circuit 6. It is an auxiliary pressure reducer.

ま、た9は、室外熱交換器5の配管温度を検出するサー
ミスタ等の温度検出素子、10はこの温度検出素子9の
温度信号を受けてその値が設定値になると信号を発する
制御回路、11は制御回路10の発する信号を受けて開
閉弁7の開閉を行なう制御リレーである。
Further, 9 is a temperature detection element such as a thermistor that detects the pipe temperature of the outdoor heat exchanger 5, and 10 is a control circuit that receives a temperature signal from this temperature detection element 9 and issues a signal when the value reaches a set value. A control relay 11 opens and closes the on-off valve 7 in response to a signal generated by the control circuit 10.

この冷媒回路において、通常暖房運転時には冷媒は、圧
縮機1、四方弁2、室内熱交換器3、減圧器4、室外熱
交換器5、四方弁2の順で流れ圧縮機1に戻る。この時
、開閉弁7は閉じており冷媒はバイパス回路6には流れ
ない。この暖房運転中に外気温が低下して室外熱交換器
5の冷媒蒸発温度が低下した場合、温度検出素子9の温
度信号の値か設定値になると制御回路10が信号を発し
、この信号を受けた制御リレー11にて開閉弁7を開く
In this refrigerant circuit, during normal heating operation, the refrigerant flows through the compressor 1, the four-way valve 2, the indoor heat exchanger 3, the pressure reducer 4, the outdoor heat exchanger 5, and the four-way valve 2 in this order and returns to the compressor 1. At this time, the on-off valve 7 is closed and the refrigerant does not flow into the bypass circuit 6. During this heating operation, when the outside temperature drops and the refrigerant evaporation temperature of the outdoor heat exchanger 5 drops, the control circuit 10 issues a signal when the temperature signal of the temperature detection element 9 reaches the set value. The on-off valve 7 is opened by the received control relay 11.

したがって、それにより圧縮機1より吐出された高温、
高圧のガス冷媒の一部がバイパス回路6を流れ、補助減
圧器8で減圧されて比較的高温のガス冷媒となる。そう
して室内熱交換器a1減圧器4を流れてきた冷媒と合流
して室外熱交換器5へと^れる。これにより室外熱交換
器5での冷媒の蒸発温度を上昇させることができるので
室外熱交換器5に着霜しにくくなり、バイパスを行なわ
ない場合に比べて暖房運転を長時間継続させることがマ
きる(例えば実公111151−5074号公報)。
Therefore, the high temperature discharged from the compressor 1,
A portion of the high-pressure gas refrigerant flows through the bypass circuit 6 and is reduced in pressure by the auxiliary pressure reducer 8, becoming a relatively high-temperature gas refrigerant. Then, it joins with the refrigerant that has flowed through the indoor heat exchanger a1 and the pressure reducer 4, and flows to the outdoor heat exchanger 5. As a result, the evaporation temperature of the refrigerant in the outdoor heat exchanger 5 can be increased, making it difficult for frost to form on the outdoor heat exchanger 5, making it easier to continue heating operation for a longer period of time than when bypassing is not performed. (for example, Utility Model Publication No. 111151-5074).

発明が解決しようとする問題点 しかしながら上記のような構成では、圧縮機1より吐出
されたガス冷媒の一部がバイパス回路6を通って室外熱
交換器5へと流れるため減圧器4を流れる冷媒の流量が
減少し、減圧器4の前後の圧力差が小さくなる。すなわ
ち高圧側の冷媒圧力が低下する。
Problems to be Solved by the Invention However, in the above configuration, a part of the gas refrigerant discharged from the compressor 1 flows through the bypass circuit 6 to the outdoor heat exchanger 5, so that the refrigerant flowing through the pressure reducer 4 The flow rate decreases, and the pressure difference across the pressure reducer 4 decreases. That is, the refrigerant pressure on the high pressure side decreases.

第5図は、上記従来のバイパスを行なった場合の冷凍サ
イクルとバイパスを行なわない場合の冷凍サイクルをモ
リエル線図上に示す(室外熱交換器が着霜していない時
)。同図において、Aのサイクルがバイパスを行なわな
い場合を、Bのサイクルがバイパスを行なった場合をそ
れぞれあられす。Bのサイクルにおいて、バイパス回路
の補助減圧器8を通過した冷媒は点aより減圧されて点
すの状態となる。一方、室内熱交換器3通過後の冷媒は
減圧器4を通過するため点Cより減圧されて点dの状態
となり、バイパス回路6を流れて点すの状態となった冷
媒と合流して点eの状態となって室外熱交換器5へと流
れる。
FIG. 5 shows, on a Mollier diagram, a refrigeration cycle when the conventional bypass is performed and a refrigeration cycle when the bypass is not performed (when the outdoor heat exchanger is not frosted). In the figure, the case where the A cycle does not perform bypass is shown, and the case where the B cycle performs bypass is shown. In cycle B, the refrigerant that has passed through the auxiliary pressure reducer 8 of the bypass circuit is depressurized from point a and is turned on. On the other hand, the refrigerant that has passed through the indoor heat exchanger 3 passes through the pressure reducer 4 and is reduced in pressure from point C to the state at point d, where it joins with the refrigerant that has flowed through the bypass circuit 6 and is in the on state. e and flows to the outdoor heat exchanger 5.

AのサイクルにおけるΔ11は、バイパスを行なわない
場合の室内熱交換器の出入口のエンタルピ差をあられし
、BのサイクルにおけるΔ12  はバイパスを行なっ
た場合の室内熱交換器の出入口のエンタルピ差をあられ
す。     □同図より明らかなように、バイパスを
行なった場合、バイパスを行なわない場合よりも室内熱
交換器内の冷媒循環量が減少する上に高圧側圧力が低下
するために室内熱交換器出入口のエンタルピ差がΔ11
−△12だけ小さくなるので暖房能力が大幅に低下する
。したがって、暖房運転を長く継続することができても
暖房能力が大幅に低下するために室温の低下等を招き、
快適性を損なうという問題点を有していた。
Δ11 in cycle A is the enthalpy difference at the entrance and exit of the indoor heat exchanger when bypass is not performed, and Δ12 in cycle B is the enthalpy difference between the entrance and exit of the indoor heat exchanger when bypass is performed. . □As is clear from the figure, when a bypass is performed, the amount of refrigerant circulated within the indoor heat exchanger is reduced compared to when the bypass is not performed, and the pressure on the high pressure side is lowered, so the inlet/outlet of the indoor heat exchanger is Enthalpy difference is Δ11
Since the heating capacity is reduced by -Δ12, the heating capacity is significantly reduced. Therefore, even if heating operation can be continued for a long time, the heating capacity will be significantly reduced, resulting in a drop in room temperature, etc.
This has the problem of impairing comfort.

本発明は上記問題点を鑑み、低外気温時に暖房能力の低
下を押さえながら暖房運転を長く継続して除霜回数を減
らし、快適性の向上をはかることができるヒートポンプ
式空気調和機を提供するものである。
In view of the above-mentioned problems, the present invention provides a heat pump type air conditioner that can continue heating operation for a long time, reduce the number of times of defrosting, and improve comfort while suppressing a decrease in heating capacity when the outside temperature is low. It is something.

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポンプ式空
気調和機は、暖房運転時に第1減圧器、第2減圧器の2
つの減圧器を用いて冷媒の減圧を行なう冷媒回路を構成
し、圧縮機の吐出側とこの第1、第2減圧器間とを結ぶ
バイパス回路を設け、このバイパス回路に開閉弁および
補助減圧器を備え外気温や冷媒温度、圧力等を検知して
前記開閉弁を開閉する制御回路を有するものである。
Means for Solving the Problems In order to solve the above problems, the heat pump type air conditioner of the present invention has two pressure reducers, a first pressure reducer and a second pressure reducer, during heating operation.
A refrigerant circuit is configured to reduce the pressure of the refrigerant using two pressure reducers, and a bypass circuit is provided that connects the discharge side of the compressor and the first and second pressure reducers. It has a control circuit that detects outside air temperature, refrigerant temperature, pressure, etc. and opens and closes the on-off valve.

作  用 本発明は上記した構成によって、低外気温時に圧縮機よ
り吐出された冷媒の一部を2つの減圧器の間へバイパス
させることで高圧側圧力の低下を押さえながら室外熱交
換器での冷媒の蒸発温度を上昇させることかできるので
、暖房能力の低下を押さえなから暖房運転を長く継続し
て除霜回数を減らし、快適性の向上をはかることができ
る。
Effects The present invention has the above-described configuration, by bypassing a part of the refrigerant discharged from the compressor between the two pressure reducers when the outside temperature is low, thereby suppressing the drop in pressure on the high pressure side and reducing the amount of refrigerant in the outdoor heat exchanger. Since the evaporation temperature of the refrigerant can be increased, heating operation can be continued for a longer period of time without reducing the heating capacity, reducing the number of defrosting operations and improving comfort.

実施例 以下、本発明をその一実施例を示す添付図面の第1図〜
第3図を参考に説明する。なお本実施例を説明するに当
り、第4図に示す従来のものと同一の機能をもつものに
は同一の番号を付して説明を省略する。
EXAMPLE Hereinafter, the present invention will be described with reference to FIG. 1 of the accompanying drawings showing an example thereof.
This will be explained with reference to FIG. In explaining this embodiment, parts having the same functions as the conventional one shown in FIG. 4 are given the same numbers and the explanation will be omitted.

第1図は本発明のヒートポンプ式空気調和機の冷媒回路
の一例を示す。同図において、4aは第1減圧器、4b
は第2減圧器であり、通常暖房運転時には冷媒は圧縮機
1、四方弁2、室内熱交換器3、第1減圧器48%第2
減圧器4b、室外熱交換器5、四方弁2の順で流れ圧縮
機1に戻る。
FIG. 1 shows an example of a refrigerant circuit of a heat pump air conditioner according to the present invention. In the same figure, 4a is the first pressure reducer, 4b
is the second pressure reducer, and during normal heating operation, the refrigerant is transferred to the compressor 1, four-way valve 2, indoor heat exchanger 3, first pressure reducer 48% second
The flow returns to the compressor 1 in the order of the pressure reducer 4b, the outdoor heat exchanger 5, and the four-way valve 2.

この時、圧縮機1の吐出側と第1減圧器4a、第2減圧
器4b間を結ぶバイパス回路6aに設けられた開閉弁7
は閉じており冷媒はバイパス回路6aには流れない。こ
の暖房運転中に外気温が低下して室外熱交換器5の冷媒
蒸発温度が低下した場合、温度検出素子9の温度信号の
値が設定値になると制御回路10が信号を発し、この信
号を受けた制御リレー11にて開閉弁7を開く。したが
って、それにより圧縮機1より吐出された高温、高圧の
ガス冷媒の一部がバイパス回路6aを流れ、補助減圧器
8で減圧されて比較的高温のガス冷媒となっ′て室内熱
交換器3、第1減圧器4aを流れてきた冷媒と合流して
第2減圧器4b、室外熱交換器6へと流れる。これによ
り室外熱交換器5での冷媒の蒸発温度を上昇させること
ができるので室外熱交換器5に着霜しにくくなり、バイ
パスを行なわない場合に比べて暖房運転を長時間継続さ
せることができる。また、高圧側圧力の低下を押さえる
ことができるので暖房能力の低下を押さえることができ
、したがって快適性を損なうことなく暖房運転を継続さ
せることができる。
At this time, an on-off valve 7 provided in a bypass circuit 6a connecting the discharge side of the compressor 1 and the first pressure reducer 4a and the second pressure reducer 4b
is closed and refrigerant does not flow into the bypass circuit 6a. During this heating operation, when the outside temperature drops and the refrigerant evaporation temperature of the outdoor heat exchanger 5 drops, the control circuit 10 issues a signal when the value of the temperature signal of the temperature detection element 9 reaches the set value. The on-off valve 7 is opened by the received control relay 11. Therefore, a part of the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 flows through the bypass circuit 6a, is depressurized by the auxiliary pressure reducer 8, becomes relatively high-temperature gas refrigerant, and is transferred to the indoor heat exchanger 3. , joins with the refrigerant that has flowed through the first pressure reducer 4a, and flows to the second pressure reducer 4b and the outdoor heat exchanger 6. As a result, the evaporation temperature of the refrigerant in the outdoor heat exchanger 5 can be increased, making it difficult for frost to form on the outdoor heat exchanger 5, making it possible to continue heating operation for a longer period of time than when bypassing is not performed. . Further, since it is possible to suppress a decrease in the pressure on the high pressure side, a decrease in the heating capacity can be suppressed, and therefore, the heating operation can be continued without impairing comfort.

このよ゛うに高圧側圧力の低下を押さえ、暖房能力の低
下を押さえることができる理由を第2図、第3図を用い
て説明する。
The reason why it is possible to suppress the drop in the high-pressure side pressure and suppress the drop in heating capacity in this way will be explained with reference to FIGS. 2 and 3.

第2図は、本発明の一実施例のヒートポンプ式空気調和
機の暖房バイパス運転時の第1減圧器と第2減圧器付近
の冷媒の圧力変化を示す図であり、第3図はこのヒート
ポンプ式空気調和機と従来の技術の項で述べたヒートポ
ンプ式空気調和機の暖房バイパス運転時の冷凍サイクル
をモリエル線図上にあられしたものである。
FIG. 2 is a diagram showing the pressure change of the refrigerant near the first pressure reducer and the second pressure reducer during heating bypass operation of the heat pump type air conditioner according to an embodiment of the present invention, and FIG. The refrigeration cycle during heating bypass operation of the heat pump air conditioner described in the section on air conditioners and conventional technology is shown on a Mollier diagram.

第2図において、Dは本発明の一実施例のヒートポンプ
式空気調和機の圧力変化線を示し、Eは従来の技術の項
で述べたヒートポンプ式空気調和機の圧力変化線を示し
、またFはバイパス回路を設けないヒートポンプ式空気
調和機の圧力変化線をそれぞれ示す(比較のためにE、
Fの圧力変化線も第1減圧器4a、$2減圧器4bを用
いた場合を示す)。
In FIG. 2, D indicates a pressure change line of the heat pump type air conditioner according to an embodiment of the present invention, E indicates a pressure change line of the heat pump type air conditioner described in the prior art section, and F shows the pressure change lines of a heat pump air conditioner without a bypass circuit (for comparison, E,
The pressure change line F also shows the case where the first pressure reducer 4a and the $2 pressure reducer 4b are used).

従来の技術で説明した理由によりEの圧力変化線はFの
圧力変化線より低圧側では高いが高圧側ではかなり低く
なってしまう。一方、Dの圧力変化線は室内熱交換器3
、第1減圧器4aを通過した冷媒と圧縮機の吐出側から
一部分岐してバイパス回路6aを流れてきた冷媒とが合
流するため第2減圧器4b入口の冷媒の乾き度は上昇し
、したがって第2減圧器4bの出入口の圧力差が大きく
なければ冷媒の流量が減少してしまうため第1減圧器4
aの出口と第2減圧器4bの入口の間の圧力は上昇する
。もし第1減圧器4a入口の冷媒の過冷却度がり、Hの
それぞれの場合において等しいならば第1減圧器4aの
出入口の圧力差はDlEの圧力線番こおいて等しくなる
はずであり、Dの圧力線はdで示す破線のようになるは
ずであるが、Dの場合のほうが過冷却度が大きいため前
記圧力差はEの場合より小さくなり、結局第1減圧器4
a入口の圧力はFの場合よりわずかに低い圧力となる。
For the reason explained in the prior art, the pressure change line E is higher on the low pressure side than the pressure change line F, but it is considerably lower on the high pressure side. On the other hand, the pressure change line D is the indoor heat exchanger 3
Since the refrigerant that has passed through the first pressure reducer 4a and the refrigerant that has partially branched from the discharge side of the compressor and flowed through the bypass circuit 6a merge, the dryness of the refrigerant at the inlet of the second pressure reducer 4b increases, and therefore If the pressure difference between the inlet and outlet of the second pressure reducer 4b is not large, the flow rate of the refrigerant will decrease.
The pressure between the outlet of a and the inlet of the second pressure reducer 4b increases. If the degree of subcooling of the refrigerant at the inlet of the first pressure reducer 4a is equal in each case of H, the pressure difference at the outlet and outlet of the first pressure reducer 4a should be equal in the pressure line number of DlE, and D The pressure line in case D should be like the broken line shown by d, but since the degree of supercooling is greater in case D, the pressure difference is smaller than in case E, and as a result, the first pressure reducer 4
The pressure at the inlet a is slightly lower than in the case of F.

第3図のモリエル線図で上述した冷媒の状態変化を説明
すると、本発明の一実施例におけるヒートポンプ式空気
調和機の冷凍サイクルを示すFのサイクルにおいてバイ
パス回路の補助減圧器を通過した冷媒は点fより減圧さ
れて点gの状態とt「る。一方、室内熱交換器通過後の
冷媒は第1減圧器を通過するので点りより減圧されて点
iの状態となり、バイパス回路を流れて点gの状態とな
った冷媒と合流して点】の状態となって第2減圧器を流
れて減圧され、点にの状態となって室外熱交換器へと流
れる。このFのサイクルは前述したようにバイパスを行
なわない場合と比べて高圧側圧力の低下がわずかである
ので同図に示す従来の技術の項で説明したヒートポンプ
式空気調和機の冷凍サイクルBと比較すると室内熱交換
器の出入口のエンタルピ差がΔ13−△12だけ大きい
。したがってより大きな暖房能力を得ることができる。
To explain the state change of the refrigerant mentioned above using the Mollier diagram in FIG. The refrigerant is depressurized from point f and reaches the state of point g. On the other hand, the refrigerant after passing through the indoor heat exchanger passes through the first pressure reducer, so it is depressurized from point f and reaches the state of point i, and flows through the bypass circuit. It joins with the refrigerant that has reached the state of point g, becomes the state of point ], flows through the second pressure reducer, is depressurized, becomes the state of point g, and flows to the outdoor heat exchanger.This cycle of F is As mentioned above, the drop in high-pressure side pressure is small compared to the case without bypass, so compared to the refrigeration cycle B of the heat pump air conditioner explained in the conventional technology section shown in the same figure, the indoor heat exchanger The enthalpy difference between the entrance and exit is larger by Δ13−Δ12. Therefore, a larger heating capacity can be obtained.

またバイパスを行なわない場合と比べると、高圧側圧力
はわずかに低下するだけであるので暖房能力の低下はほ
とんどバイパス回路に冷媒を流すことによる室内熱交換
器内の冷媒流量の減少分であるので従来の技術と比較し
て暖房能力の低下を押さえることができる。
Also, compared to the case without bypass, the pressure on the high pressure side is only slightly reduced, so the reduction in heating capacity is mostly due to the decrease in the refrigerant flow rate in the indoor heat exchanger due to the refrigerant flowing through the bypass circuit. Compared to conventional technology, the reduction in heating capacity can be suppressed.

なお、本実施例においては開閉弁7の開閉は室外熱交換
器5の配管温度を検出することで行なったが、低圧側圧
力、外気温と室外熱交換器5との温度差等、外気温の低
下による冷媒蒸発温度の低下を検知できるものであれば
検出する圧力、温度の位置およびその手段は任意である
In this embodiment, the on-off valve 7 was opened and closed by detecting the pipe temperature of the outdoor heat exchanger 5. The position of the pressure and temperature to be detected and the means thereof are arbitrary as long as the decrease in the refrigerant evaporation temperature due to the decrease in the temperature can be detected.

また、本実施例においては冷房運転時の説明を省略した
が、冷房運転は四方弁2を切り換えて冷媒の流れを逆転
させて行なう。この時、圧縮機1、四方弁2、室外熱交
換器5と流れてきた高圧冷媒の減圧は第2減圧器4b、
第1減圧器4aの2つの減圧器を用いて減圧してもよく
、あるいはどちらか一方の減圧器を用いて減圧して他方
の減圧器を冷房運転時のみバイパスしてもよく、または
2つの減圧器をバイパスして冷房運転用の減圧器を用い
てもよい。
Further, in this embodiment, although the description of the cooling operation is omitted, the cooling operation is performed by switching the four-way valve 2 and reversing the flow of the refrigerant. At this time, the pressure of the high-pressure refrigerant flowing through the compressor 1, four-way valve 2, and outdoor heat exchanger 5 is reduced by the second pressure reducer 4b.
The pressure may be reduced using two pressure reducers of the first pressure reducer 4a, or one pressure reducer may be used to reduce the pressure and the other pressure reducer may be bypassed only during cooling operation, or the two pressure reducers may be used to reduce the pressure and the other pressure reducer may be bypassed only during cooling operation. The pressure reducer may be bypassed and a pressure reducer for cooling operation may be used.

発明の効果 以上のように本発明のヒートポンプ式空気調和機は、圧
縮機、室外熱交換器、第1減圧器、第2減圧器、室内熱
交換器を連結し、少なくとも暖房運転時には前記第1減
圧器、第2減圧器の両方を用いて冷媒の減圧を行なう冷
媒回路を構成し、前記圧縮機の吐出側と第1、第2減圧
器間とを結ぶバイパス回路を設け、このバイパス回路に
開閉弁および補助減圧器を備え外気温や冷媒温度、圧力
等を検知して前記開閉弁を開閉する制御装置を有するも
ので、低外気温時に圧縮機より吐出された冷媒の一部を
2つの減圧器の間へバイパスさせることで高圧側圧力の
低下を押さえながら室外熱交換器での冷媒の蒸発温度を
上昇させることができるので、暖房能力の低下を押さえ
ながら暖房運転を長く継続して除霜回数を減らし、快適
性の向上をはかることができる。
Effects of the Invention As described above, the heat pump air conditioner of the present invention connects a compressor, an outdoor heat exchanger, a first pressure reducer, a second pressure reducer, and an indoor heat exchanger, and at least during heating operation, the first A refrigerant circuit is configured to reduce the pressure of the refrigerant using both a pressure reducer and a second pressure reducer, and a bypass circuit is provided that connects the discharge side of the compressor and the first and second pressure reducers. It is equipped with an on-off valve and an auxiliary pressure reducer, and has a control device that opens and closes the on-off valve by detecting outside air temperature, refrigerant temperature, pressure, etc. When the outside temperature is low, a part of the refrigerant discharged from the compressor is divided into two By bypassing between the pressure reducers, it is possible to increase the evaporation temperature of the refrigerant in the outdoor heat exchanger while suppressing the drop in high-pressure side pressure, allowing heating operation to continue for a long time while suppressing a decrease in heating capacity. It can reduce the number of frosts and improve comfort.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるヒートポンプ式空気
調和機の冷媒回路図、第2図は本発明の一実施例におけ
るヒートポンプ式空気調和機の暖房バイパス運転時の第
1減圧器と第2減圧器付近の冷媒の圧力変化を示す説明
図、第3図は本発明の一実施例におけるヒートポンプ式
空気調和機と従来のヒートポンプ式空気調和機の暖房バ
イパス運転時の冷凍サイクルをモリエル線図上にあられ
した図、第4図は従来のヒートポンプ式空気調和機の冷
媒回路図、第5図は従来のヒートポンプ式空気調和機の
暖房運転時、バイパスを行なった場合と行なわない場合
の冷凍サイクルをモリエル線図上にあられした図である
。 1・・・・・・圧縮機、2・・・・・・四方弁、3・・
・・・・室内熱交換器、4a・・・・・・第1減圧器、
4b・・・・・・第2減圧器、5・・・・・・室外熱交
換器、6a・・・・・・バイパス回路、7・・・・・・
開閉弁、8・・・・・・補助減圧器、9・・・・・・温
度検出素子(制御装置)、10・・・・・・制御回路(
制御装置)、11・・・・・・制御リレー(制御装置)
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名f・
・・圧縮機 259.田方弁 3・・・宝内外支嶺器 412・・浄1遥f港 4(、、埠25A万暴 第 1 図           5・・室外鐙玄侠、
葛・zl:L・・・)く°イパス@アK q・・聞閥弁 θ−・誦゛a/7蜂五米 3・・・電PIg鯵交挑慕 44・・・埠1戚1券 8・・・精幼戚1幕 第3図 一−−−−−工〉9ルヒ0 第 4 図 第5図 −一一一一一エンクルヒO
FIG. 1 is a refrigerant circuit diagram of a heat pump air conditioner according to an embodiment of the present invention, and FIG. 2 is a refrigerant circuit diagram of a first pressure reducer and a second pressure reducer during heating bypass operation of a heat pump air conditioner according to an embodiment of the present invention. An explanatory diagram showing the pressure change of the refrigerant near the pressure reducer, FIG. 3 is a Mollier diagram showing the refrigeration cycle of the heat pump air conditioner according to an embodiment of the present invention and the conventional heat pump air conditioner during heating bypass operation. Figure 4 shows the refrigerant circuit diagram of a conventional heat pump air conditioner, and Figure 5 shows the refrigeration cycle of a conventional heat pump air conditioner with and without bypass during heating operation. It is a diagram drawn on a Mollier diagram. 1... Compressor, 2... Four-way valve, 3...
... Indoor heat exchanger, 4a ... First pressure reducer,
4b...Second pressure reducer, 5...Outdoor heat exchanger, 6a...Bypass circuit, 7...
Opening/closing valve, 8... Auxiliary pressure reducer, 9... Temperature detection element (control device), 10... Control circuit (
control device), 11... control relay (control device)
. Name of agent: Patent attorney Toshio Nakao and one other person f.
... Compressor 259. Tagata dialect 3...Takao Naiwa Shireki 412...Jyo 1 Haruka fko 4 (,, Bu 25A Bankai 1 Figure 5...Outdoor stirrup Genkyo,
Kudzu・zl:L...)ku°ipas@aK q...Monbakuben θ-・Recitation ゛a/7 Bee five rice 3...Electric PIg mackerel exchange challenge 44...Bu 1 relative 1 Ticket 8...Emperor and Young Relatives Act 1 Act 3 Figure 1 -----Work〉9 Ruhi 0 Figure 4 Figure 5 - 11111 Enkuruhi O

Claims (1)

【特許請求の範囲】[Claims]  圧縮機、四方弁、室外熱交換器、第1減圧器、第2減
圧器、室内熱交換器等を連結し、少なくとも暖房運転時
には前記第1減圧器、第2減圧器の両方を用いて冷媒の
減圧を行なう冷媒回路を構成し、前記圧縮機の吐出側と
第1、第2減圧器間とを結ぶバイパス回路を設け、この
バイパス回路に開閉弁および補助減圧器を備え外気温や
冷媒温度、圧力等を検知して前記開閉弁を開閉する制御
装置を有するヒートポンプ式空気調和機。
A compressor, a four-way valve, an outdoor heat exchanger, a first pressure reducer, a second pressure reducer, an indoor heat exchanger, etc. are connected, and at least during heating operation, both the first pressure reducer and the second pressure reducer are used to reduce the refrigerant. The refrigerant circuit is configured to reduce the pressure of , a heat pump type air conditioner having a control device that detects pressure, etc. and opens and closes the on-off valve.
JP28029384A 1984-12-27 1984-12-27 Heat pump type air conditioner Pending JPS61159058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28029384A JPS61159058A (en) 1984-12-27 1984-12-27 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28029384A JPS61159058A (en) 1984-12-27 1984-12-27 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS61159058A true JPS61159058A (en) 1986-07-18

Family

ID=17622964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28029384A Pending JPS61159058A (en) 1984-12-27 1984-12-27 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS61159058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197853A (en) * 1987-02-13 1988-08-16 三菱電機株式会社 Refrigerant circuit for heat pump type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197853A (en) * 1987-02-13 1988-08-16 三菱電機株式会社 Refrigerant circuit for heat pump type air conditioner

Similar Documents

Publication Publication Date Title
JPH026992B2 (en)
JPH01118080A (en) Heat pump type air conditioner
JPS63169457A (en) Heat pump type air conditioner
JP2007107853A (en) Air conditioner
JPS61159058A (en) Heat pump type air conditioner
JPH04324075A (en) Air conditioning apparatus
JPS61159057A (en) Heat pump type air conditioner
JPH11132603A (en) Air-conditioner
JPH0313502B2 (en)
JPH0239186Y2 (en)
JPH03286979A (en) Defrosting apparatus of air conditioner
JPH0519723Y2 (en)
JPH0233100Y2 (en)
JPH0732460U (en) Air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JP2814839B2 (en) Heat exchanger
JPH01306782A (en) Heat pump type air-conditioner
JPH03255864A (en) Heat pump type air conditioner
JPH0198860A (en) Heat pump type air conditioner
JPH05346269A (en) Cooling/heating machine
JPS62266365A (en) Air conditioner
JPH0743028A (en) Heat pump package
JPS58124174A (en) Refrigeration cycle of air conditioner
JPS62776A (en) Heat pump type air conditioner
JPH0648125B2 (en) Heat pump type air conditioner