JPH0198860A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPH0198860A
JPH0198860A JP25657387A JP25657387A JPH0198860A JP H0198860 A JPH0198860 A JP H0198860A JP 25657387 A JP25657387 A JP 25657387A JP 25657387 A JP25657387 A JP 25657387A JP H0198860 A JPH0198860 A JP H0198860A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
electric expansion
expansion valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25657387A
Other languages
Japanese (ja)
Inventor
Shigeo Aoyama
繁男 青山
Hiroshi Yoneda
米田 浩
Masayuki Tanaka
田中 優行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP25657387A priority Critical patent/JPH0198860A/en
Publication of JPH0198860A publication Critical patent/JPH0198860A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To restrict a drop in the evaporation capacity during the cooling operation along with an extended cooling operation time by a method wherein a reversible type electric expansion valve is provided in liquid piping to a room heat exchanger from an outdoor heat exchanger and a hot line path and a bypass are formed to be connected to a heat exchanger tube of the outdoor heat exchanger in the course of the piping between the electric expansion valve and the room heat exchanger to defrost with the hot line path during the heating operation. CONSTITUTION: A reversible type electric expansion valve 24 is provided on the side of an outdoor heat exchanger 23 in liquid piping for sending a liquid refrigerant to a room heat exchanger 27 from the outdoor heat exchanger 23 in the cooling operation. A hot line path 30 connected to a heat exchanger tube as a part of the outdoor heat exchanger 23 in the course of the piping between the electric expansion valve 24 and the outdoor heat exchanger 27 and a bypass 31 not connected thereto are formed containing check valves 32 and 33. During the heating operation in winter seasons, the outdoor heat exchanger 23 is frosted but it is defrosted by the hot line path 30 to extend the heating operation time. On the other hand, in the cooling operation, a high pressure liquid refrigerant leaving the outdoor heat exchanger 23 is decompressed by the electric expansion valve 24 and flows through the bypass 31, not the hot line path 30 thereby restricting a drop in the evaporation capacity without any pressure loss.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ヒートポンプ式空気調和機において、冷房時
に室外熱交換器から液冷媒を室内熱交換器へ送る液配管
に正逆流式の電動膨張弁を設けたヒートポンプ式空気調
和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a heat pump type air conditioner in which a forward and reverse flow electric expansion valve is installed in a liquid pipe that sends liquid refrigerant from an outdoor heat exchanger to an indoor heat exchanger during cooling. The present invention relates to a heat pump type air conditioner.

従来の技術 従来のヒートポンプ式空気調和機は第2図に示すように
、圧縮機1.四方弁2.室外熱交換器3゜電動膨張弁4
.及び室外側送風機5などからなる室外機6、及び室内
熱交換器7.室内側送風機8などからなる室内機9から
構成されている。電動膨張弁4は、正逆流式のもので、
冷房時に室外熱交換器3から液冷媒を室内熱交換器7へ
送る液配管中の室外機6側に設けられている。また、四
方弁2によって冷房運転、暖房運転が切り替えられ、冷
房運転時は図示実線矢印の方向に冷媒が流れて冷房サイ
クルが形成され、暖房運転時には図示破線の方向に冷媒
が流れて暖房サイクルが形成される。そして、暖房運転
時に室外熱交換器3から液冷媒を室内熱交換器7へ送る
液配管は室外熱交換器3の一部へ通された後(これをホ
ットラインバス10と呼ぶことにする)、電動膨張弁4
で減圧されて室外熱交換器3へ送られる。従って、冬期
暖房運転時、外気温度が0°C以下に下がると室外熱交
換器3を構成しているフィンや伝熱管表面に着霜が生じ
るが、このホットラインバス10によって一部の霜を解
かし、暖房運転時間が延長されるという効果がある。
BACKGROUND OF THE INVENTION A conventional heat pump type air conditioner has a compressor 1, as shown in FIG. Four-way valve 2. Outdoor heat exchanger 3゜Electric expansion valve 4
.. and an outdoor unit 6 consisting of an outdoor blower 5 and the like, and an indoor heat exchanger 7. It is composed of an indoor unit 9 including an indoor blower 8 and the like. The electric expansion valve 4 is of a forward and reverse flow type.
It is provided on the outdoor unit 6 side in the liquid piping that sends liquid refrigerant from the outdoor heat exchanger 3 to the indoor heat exchanger 7 during cooling. Cooling operation and heating operation are switched by the four-way valve 2. During cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure to form a cooling cycle, and during heating operation, the refrigerant flows in the direction of the broken line in the figure to form a heating cycle. It is formed. Then, during heating operation, the liquid piping that sends the liquid refrigerant from the outdoor heat exchanger 3 to the indoor heat exchanger 7 passes through a part of the outdoor heat exchanger 3 (this will be referred to as the hotline bus 10). , electric expansion valve 4
It is depressurized and sent to the outdoor heat exchanger 3. Therefore, during winter heating operation, if the outside air temperature drops below 0°C, frost will form on the surfaces of the fins and heat transfer tubes that make up the outdoor heat exchanger 3, but this hotline bus 10 will remove some of the frost. This has the effect of extending heating operation time.

発明が解決しようとする問題点 前述の従来例では、暖房運転時は室内熱交換器71N:
出てから冷媒は高圧液状態であるため、ホットラインバ
ス10を通っても伝熱管内での圧力損失はさほど問題に
ならない程度である。しかしながら、冷房運転時には、
室外熱交換器3を出た高圧液冷媒は電動膨張弁4によっ
て減圧され、気液二相状態になり、その後、ホットライ
ンバス10を通るため、伝熱管内での圧力損失は暖房運
転時に比べてかなり大きくなる。従って、蒸発器として
作用する室内熱交換器7の入口冷媒圧力が低下し、蒸発
能力も低下するという欠点を有していた。
Problems to be Solved by the Invention In the conventional example described above, during heating operation, the indoor heat exchanger 71N:
Since the refrigerant is in a high-pressure liquid state after exiting, the pressure loss within the heat transfer tubes does not pose much of a problem even if the refrigerant passes through the hot line bus 10. However, during cooling operation,
The high-pressure liquid refrigerant leaving the outdoor heat exchanger 3 is depressurized by the electric expansion valve 4 to become a gas-liquid two-phase state, and then passes through the hotline bus 10, so the pressure loss within the heat transfer tubes is lower than that during heating operation. It becomes quite large. Therefore, the refrigerant pressure at the inlet of the indoor heat exchanger 7, which functions as an evaporator, is reduced and the evaporation capacity is also reduced.

そこで、本発明は、暖房運転時、着霜した場合にこのホ
ットラインバスによって一部の霜を解かし、暖房運転時
間の延長を図るとともに、冷房運転時にはホットライン
バスな短絡させて、室外熱交換器の伝熱管内での圧力損
失をなくし、室内熱交換器の入口冷媒圧力の低下を抑え
、蒸発能力の低下を抑えることを目的とするものである
Therefore, the present invention uses the hotline bus to thaw some of the frost when frost forms during heating operation to extend the heating operation time, and also short-circuits the hotline bus during cooling operation to exchange outdoor heat. The purpose of this is to eliminate pressure loss within the heat transfer tubes of the heat exchanger, suppress the drop in refrigerant pressure at the inlet of the indoor heat exchanger, and suppress the drop in evaporation capacity.

問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、冷房時に
室外熱交換器から液冷媒を室内熱交換器へ送る液配管中
の室外熱交換器側に正逆流式の電動膨張弁を設けると共
に、前記室内熱交換器と電動膨張弁との間に、暖房時に
は室内熱交換器から室外熱交換器へ向かう冷媒が室外熱
交換器の一部へ流れ込むホットラインバス、及び、この
ホットラインバスの電動膨張弁側に冷房時の冷媒の流入
を阻止する逆止弁を設け、かつ、暖房時に閉じ、冷房時
に開く弁を有し、冷房時にはホットラインバスに冷媒が
流れ込むのを阻止するバイパスを設けるようにしたもの
である。
Means for Solving the Problems The technical means of the present invention for solving the above problems is to control the forward and reverse flow of liquid refrigerant from the outdoor heat exchanger to the indoor heat exchanger side in the liquid piping that sends it from the outdoor heat exchanger to the indoor heat exchanger during cooling. A hot line bus is provided between the indoor heat exchanger and the electric expansion valve, in which refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger flows into a part of the outdoor heat exchanger during heating. , and a check valve is provided on the electric expansion valve side of the hotline bus to prevent the inflow of refrigerant during cooling, and the valve is closed during heating and opened during cooling, so that the refrigerant does not flow into the hotline bus during cooling. A bypass is provided to prevent the water from flowing in.

作   用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

冷房時に室外熱交換器から液冷媒を室内熱交換器へ送る
液配管中の室外熱交換器側に正逆流式の電動膨張弁を設
け、電動膨張弁と室内熱交換器の配管途中で室外熱交換
器の一部の伝熱管へ接続する回路(ホットラインバス)
と接続しない回路(バイパス)を形成している。この構
成において、暖房時には室内熱交換器から室外熱交換器
へ向かう高圧液状態の冷媒がホットラインバスを通った
後、電動膨張弁を経て減圧されて室外熱交換器へ流れ込
むため、冬期暖房運転時、外気温度が0゜C以下に下が
ると室外熱交換器を構成しているフィンや伝熱管表面に
着霜が生じるが、このホットラインバスによって一部の
霜を解かし、暖房運転時間が延長される。一方、冷房運
転時にはホットラインバスなバイパスさせて、室外熱交
換器の伝熱管内での圧力損失をなくなるため、室内熱交
換器の入口冷媒圧力の低下を抑え、蒸発能力の低下を抑
えることができる。
A forward-reverse flow electric expansion valve is installed on the outdoor heat exchanger side in the liquid piping that sends liquid refrigerant from the outdoor heat exchanger to the indoor heat exchanger during cooling, and the outdoor heat is removed between the electric expansion valve and the indoor heat exchanger. Circuit that connects to some of the heat transfer tubes of the exchanger (hotline bus)
It forms a circuit (bypass) that is not connected to the In this configuration, during heating, the high-pressure liquid refrigerant flows from the indoor heat exchanger to the outdoor heat exchanger, passes through the hotline bus, is depressurized through the electric expansion valve, and flows into the outdoor heat exchanger, so that heating is not possible during winter heating. When the outside temperature drops below 0°C, frost forms on the surfaces of the fins and heat transfer tubes that make up the outdoor heat exchanger, but this hotline bath melts some of the frost and extends the heating operation time. be done. On the other hand, during cooling operation, the hotline bus is bypassed to eliminate pressure loss in the heat transfer tubes of the outdoor heat exchanger, which suppresses the drop in refrigerant pressure at the indoor heat exchanger's inlet and suppresses the drop in evaporation capacity. can.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図は本発明の一実施例のヒートポンプ式空気調和機
の冷凍サイクル図である。この実施例のヒートポンプ式
空気調和機は、圧縮機21.四方弁22.室外熱交換器
23.電動膨張弁24.及び室外側送風機25などから
なる室外機26、及び室内熱交換器27.室内側送風機
28などからなる室内機29から構成されている。冷房
運転時に室外熱交換器23から液冷媒を室内熱交換器2
7へ送る液配管中の室外熱交換器23側に正逆流式の電
動膨張弁24を設け、電動膨張弁24と室内熱交換器2
7の配管途中で室外熱交換器23の一部の伝熱管へ接続
する回路(ホットラインバス30)と接続しない回路(
バイパス31)がそれぞれ逆止弁32及び33を含んで
形成されている。
FIG. 1 is a refrigeration cycle diagram of a heat pump type air conditioner according to an embodiment of the present invention. The heat pump type air conditioner of this embodiment has a compressor 21. Four-way valve 22. Outdoor heat exchanger 23. Electric expansion valve 24. and an outdoor unit 26 consisting of an outdoor blower 25, etc., and an indoor heat exchanger 27. It is composed of an indoor unit 29 including an indoor blower 28 and the like. During cooling operation, liquid refrigerant is transferred from the outdoor heat exchanger 23 to the indoor heat exchanger 2.
A forward and reverse flow electric expansion valve 24 is provided on the outdoor heat exchanger 23 side in the liquid piping sent to the liquid pipe 7, and the electric expansion valve 24 and the indoor heat exchanger 2
7, a circuit that connects to some heat transfer tubes of the outdoor heat exchanger 23 (hot line bus 30) and a circuit that does not connect (
A bypass 31) is formed containing check valves 32 and 33, respectively.

また、四方弁22によって冷房運転、暖房運転が切り替
えられる。
Further, the four-way valve 22 switches between cooling operation and heating operation.

次に、この一実施例の構成における作用を説明する。Next, the operation of the configuration of this embodiment will be explained.

暖房運転時には図示破線の方向に冷媒が流れて、すなわ
ち、室内熱交換器27を出た高圧液冷媒は、バイパス3
1には逆止弁33が冷媒の流動方向とは逆向きに設置さ
れているので、バイパス31を流れずにホットラインバ
ス30を流れ、冷媒の流動方向と同方向に設置された逆
止弁32を通って、電動膨張弁24で減圧されて低圧の
気液二相状態になって室外熱交換器23に達し、暖房サ
イクルが形成される。これによって、冬期暖房運転時、
外気温度が0°C以下に下がると室外熱交換器23を構
成しているフィンや伝熱管表面に着霜が生じるが、この
ホットラインバス30によって一部の霜を解かし、着霜
によって室外熱交換器23の通風路が閉塞されるまで時
間がかかり、暖房運転時間が延長される。
During heating operation, the refrigerant flows in the direction of the broken line in the figure, that is, the high-pressure liquid refrigerant that has exited the indoor heat exchanger 27 flows through the bypass 3.
1, the check valve 33 is installed in the opposite direction to the flow direction of the refrigerant, so that it does not flow through the bypass 31 but flows through the hotline bus 30, and the check valve 33 installed in the same direction as the flow direction of the refrigerant 32, the air is depressurized by the electric expansion valve 24, becomes a low-pressure gas-liquid two-phase state, and reaches the outdoor heat exchanger 23, forming a heating cycle. As a result, during winter heating operation,
When the outside air temperature drops below 0°C, frost forms on the surfaces of the fins and heat exchanger tubes that make up the outdoor heat exchanger 23, but this hotline bus 30 melts some of the frost and the frost forms the outdoor heat. It takes time until the ventilation path of the exchanger 23 is blocked, and the heating operation time is extended.

一方、冷房運転時は図示実線矢印の方向に冷媒が流れて
、すなわち、室外熱交換器23を出た高圧液冷媒は1.
電動膨張弁24で減圧されて低圧の気液二相状態になっ
て、バイパス31には逆止弁32が冷媒の流動方向とは
逆向きに設置されているので、ホットラインバス30を
流れずにバイパス31を流れ、冷媒の流動方向と同方向
に設置された逆止弁3゛3を通って室内熱交換器27へ
流れていく、すなわち、ホットラインバス30を短絡し
た状態で冷房サイクルが形成されるため、室外熱交換器
27の伝熱管内での圧力損失がなくなるため、室内熱交
換器27の人口冷媒圧力の低下を抑え、蒸発能力の低下
を抑えることができる。
On the other hand, during cooling operation, the refrigerant flows in the direction of the solid arrow in the figure, that is, the high-pressure liquid refrigerant that exits the outdoor heat exchanger 23 is 1.
The electric expansion valve 24 reduces the pressure, resulting in a low-pressure gas-liquid two-phase state, and since the check valve 32 is installed in the bypass 31 in the opposite direction to the flow direction of the refrigerant, the refrigerant does not flow through the hotline bus 30. The refrigerant flows through the bypass 31, passes through the check valve 3'3 installed in the same direction as the refrigerant flow direction, and flows to the indoor heat exchanger 27. In other words, the cooling cycle is started with the hot line bus 30 short-circuited. Since there is no pressure loss within the heat transfer tubes of the outdoor heat exchanger 27, it is possible to suppress a decrease in the artificial refrigerant pressure in the indoor heat exchanger 27 and suppress a decrease in evaporation capacity.

以上の点より、暖房運転時には、着霜によって室外熱交
換器の通風路が閉塞されるのを防ぎ、−方、冷房運転時
には、室内熱交換器の人口冷媒圧力の低下を抑え、蒸発
能力の低下を抑えることができる。
From the above points, during heating operation, the ventilation path of the outdoor heat exchanger is prevented from being blocked by frost formation, and during cooling operation, the drop in the artificial refrigerant pressure of the indoor heat exchanger is suppressed, and the evaporation capacity is increased. The decline can be suppressed.

発明の効果 以上のように本発明は、冷房時に室外熱交換器から液冷
媒を室内熱交換器へ送る液配管中の室外熱交換器側に正
逆流式の電動膨張弁を設けると共に、暖房時には室内熱
交換器と電動膨張弁との間に、暖房時には室内熱交換器
から室外熱交換器へ向かう冷媒が室外熱交換器の一部へ
流れ込むホットラインバス、及び、このホットラインバ
スの電動膨張弁側に冷房時の冷媒の流入を阻止する逆止
弁を設け、かつ、暖房時に閉じ、冷房時に開く弁を有し
、冷房時にはホットラインバスに冷媒が流れ込むのを阻
止するバイパスを設けるようにしたヒートポンプ式空気
調和機であるため、次のような効果を有する。
Effects of the Invention As described above, the present invention provides a forward and reverse flow type electric expansion valve on the outdoor heat exchanger side in the liquid piping that sends liquid refrigerant from the outdoor heat exchanger to the indoor heat exchanger during cooling, and Between the indoor heat exchanger and the electric expansion valve, there is a hot line bus in which refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger flows into a part of the outdoor heat exchanger during heating, and an electric expansion valve for this hot line bus. A check valve is installed on the valve side to prevent refrigerant from flowing into the hotline bus during cooling, and a valve is closed during heating and opened during cooling, and a bypass is provided to prevent refrigerant from flowing into the hotline bus during cooling. As this is a heat pump type air conditioner, it has the following effects.

1)冬期暖房運転時、外気温度が0°C以下に下がると
室外熱交換器を構成しているフィンや伝熱管表面に着霜
が生じるが、ホットラインバスによって一部の霜を解か
し、着霜によって室外熱交換器の通風路が閉塞されるま
で時間がかかり、暖房運転時間が延長される。
1) During heating operation in winter, when the outside air temperature drops below 0°C, frost forms on the surfaces of the fins and heat transfer tubes that make up the outdoor heat exchanger, but the hotline bath melts some of the frost and prevents it from forming. It takes time for the ventilation passages of the outdoor heat exchanger to become blocked by frost, extending the heating operation time.

2)冷房運転時、ホットラインバスを短絡した状態で冷
房サイクルが形成されるため、室外熱交換器の伝熱管内
での圧力損失がなくなるため、室内熱交換器の入口冷媒
圧力の低下を抑え、蒸発能力の低下を抑えることができ
る。
2) During cooling operation, the cooling cycle is formed with the hotline bus short-circuited, so there is no pressure loss within the heat transfer tubes of the outdoor heat exchanger, which suppresses the drop in refrigerant pressure at the indoor heat exchanger's inlet. , it is possible to suppress a decrease in evaporation capacity.

以上のような効果により、暖房、冷房運転ともに高性能
な、かつ、快適なヒートポンプ式空気調和機が実現でき
る。
As a result of the above effects, it is possible to realize a heat pump type air conditioner that has high performance in both heating and cooling operations and is comfortable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるヒートポンプ式空気調
和機の冷凍システム図、第2図は従来例を示すヒートポ
ンプ式空気調和機の冷凍システム図である。 21・・・圧縮機、22・・・四方弁、23・・・室外
熱交換器、24・・・電動膨張弁、27・・・室内熱交
換器、30・・・ホットラインバス、31・・・バイパ
ス、32.33・・・逆止弁。
FIG. 1 is a diagram of a refrigeration system of a heat pump type air conditioner according to an embodiment of the present invention, and FIG. 2 is a diagram of a refrigeration system of a heat pump type air conditioner showing a conventional example. 21...Compressor, 22...Four-way valve, 23...Outdoor heat exchanger, 24...Electric expansion valve, 27...Indoor heat exchanger, 30...Hot line bus, 31... ...Bypass, 32.33...Check valve.

Claims (1)

【特許請求の範囲】[Claims]  圧縮機、四方弁、室外熱交換器、電動膨張弁、及び室
内熱交換器を順次連通してなる冷凍サイクルを備え、冷
房時に前記室外熱交換器から液冷媒を室内熱交換器へ送
る液配管中の室外熱交換器側に正逆流式の電動膨張弁を
設けると共に、前記室内熱交換器と電動膨張弁との間に
、暖房時には室内熱交換器から室外熱交換器へ向かう冷
媒が室外熱交換器の一部へ流れ込むホットラインバス、
及び、このホットラインバスの電動膨張弁側に冷房時の
冷媒の流入を阻止する逆止弁を設け、かつ、暖房時に閉
じ、冷房時に開く弁を有し、冷房時にはホットラインバ
スに冷媒が流れ込むのを阻止するバイパスを設けたこと
を特徴とするヒートポンプ式空気調和機。
Liquid piping that includes a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, an electric expansion valve, and an indoor heat exchanger are connected in sequence, and sends liquid refrigerant from the outdoor heat exchanger to the indoor heat exchanger during cooling. A forward and reverse flow electric expansion valve is provided on the outdoor heat exchanger side of the interior, and a refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger is connected between the indoor heat exchanger and the electric expansion valve to absorb outdoor heat during heating. Hotline bus flowing into part of the exchange,
A check valve is provided on the electric expansion valve side of this hotline bus to prevent refrigerant from flowing in during cooling, and a valve is closed during heating and opened during cooling, so that refrigerant flows into the hotline bus during cooling. A heat pump air conditioner characterized by having a bypass that prevents
JP25657387A 1987-10-12 1987-10-12 Heat pump type air conditioner Pending JPH0198860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25657387A JPH0198860A (en) 1987-10-12 1987-10-12 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25657387A JPH0198860A (en) 1987-10-12 1987-10-12 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPH0198860A true JPH0198860A (en) 1989-04-17

Family

ID=17294515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25657387A Pending JPH0198860A (en) 1987-10-12 1987-10-12 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH0198860A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020521100A (en) * 2017-05-22 2020-07-16 スウェップ インターナショナル アクティエボラーグ Refrigeration system
KR20220140860A (en) 2020-05-14 2022-10-18 오르가노 코포레이션 A simulated moving bed chromatography separation method and a simulated moving bed chromatography separation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020521100A (en) * 2017-05-22 2020-07-16 スウェップ インターナショナル アクティエボラーグ Refrigeration system
KR20220140860A (en) 2020-05-14 2022-10-18 오르가노 코포레이션 A simulated moving bed chromatography separation method and a simulated moving bed chromatography separation system

Similar Documents

Publication Publication Date Title
JP2528601B2 (en) Air conditioner and air conditioning method
JPH09318206A (en) Heat pump type air conditioner
JPH03117866A (en) Heat pump type refrigerating cycle
JP2001263848A (en) Air conditioner
CN109442794A (en) A kind of air-conditioning refrigeration system, Defrost method and air conditioner
JPH0420764A (en) Air conditioner
JPH0198860A (en) Heat pump type air conditioner
CN211876411U (en) Air conditioning unit capable of continuously heating
JPH0426847Y2 (en)
JPH09287847A (en) Heat recovery type air conditioner
CN204535185U (en) Heat recovery air conditioner unit
JPH0452469A (en) Air conditioner
JP2962311B1 (en) Binary refrigeration equipment
JPH0914802A (en) Air conditioner
CN109341160A (en) The idle call circulatory system and air-conditioning
JPH11132603A (en) Air-conditioner
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JPH025323Y2 (en)
JP2007051795A (en) Air conditioner
JPH0794927B2 (en) Air conditioner
JPH08320172A (en) Air conditioner
JPS59219669A (en) Heat pump air conditioner
JP2001033126A (en) Air conditioner
JPH03177765A (en) Air conditioner
JPH03286979A (en) Defrosting apparatus of air conditioner