JPH025323Y2 - - Google Patents

Info

Publication number
JPH025323Y2
JPH025323Y2 JP6159083U JP6159083U JPH025323Y2 JP H025323 Y2 JPH025323 Y2 JP H025323Y2 JP 6159083 U JP6159083 U JP 6159083U JP 6159083 U JP6159083 U JP 6159083U JP H025323 Y2 JPH025323 Y2 JP H025323Y2
Authority
JP
Japan
Prior art keywords
indoor
outdoor
unit
switching
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6159083U
Other languages
Japanese (ja)
Other versions
JPS59167371U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6159083U priority Critical patent/JPS59167371U/en
Publication of JPS59167371U publication Critical patent/JPS59167371U/en
Application granted granted Critical
Publication of JPH025323Y2 publication Critical patent/JPH025323Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 [考案の技術分野] 本考案は単一の室外ユニツトに対して複数の室
内ユニツトをそれぞれ単独交互に対応させるべく
切換えることができるヒートポンプ式の分離形空
気調和装置に係り、特に暖房運転時における熱損
失を可及的に低減すると共に立ち上り特性を向上
させることができる分離形空気調和装置に関する
ものである。 [考案の技術的背景とその問題点] 一般に一台の室外ユニツトに対して複数台の室
内ユニツトを対応させ、一台づつ切換えて運転す
るヒートポンプ式の分離形空気調和装置にあつて
その冷凍サイクルは、第1図に示す如く構成され
ている。 室外ユニツトaには圧縮機b、室外側熱交換器
c、膨張弁d及び四方弁eが設けられ、これに対
応して複数台(図示例にあつては2台)の室内ユ
ニツトf,gがそれぞれ同じ熱交換能力の室内側
熱交換器h,iを備えて設けられている。この室
外ユニツトaの能力は室内ユニツトf,gの一台
分に相当しており、複数の室内ユニツトf,gが
同時に運転されることはない。従つてこれら室内
外ユニツトa,f,gの間には運転する室内ユニ
ツトf,gを交互に選択切換えするための切換ユ
ニツトjが介設されている。 切換ユニツトJ内には開閉切換弁k,l,m,
nと逆止弁o,p,q,rとが設けられている。 室外ユニツトaと切換ユニツトjとは接続間
s,tによつて、切換ユニツトjと室内ユニツト
f,gとは接続管u,v,w,xによつてそれぞ
れが接続され冷凍サイクルが形成されている。 ここで、上述した従来の回路における冷媒の循
環経路をその通過順に上記記号で示す。尚、冷媒
が通過する室内側熱交換器にはアンダーラインを
施して示す。 イ 室内ユニツトfを冷房運転する場合。 開閉切換弁k,l,m,nはlが開、k,
m,nが閉である。 冷媒の循環径路:b→e→c→d→s→p→
l→v→→u→r→t→e→b ロ 室内ユニツトgを冷房運転する場合。 開閉切換弁はnが開、k,l,mが閉であ
る。 冷媒の循環径路:b→e→c→d→s→p→
n→x→→w→r→t→e→b ハ 室内ユニツトfを暖房運転する場合。 開閉切換弁はk,nが開、l,mが閉であ
る。 冷媒の循環径路:b→e→t→q→n→x→
i→w→u→→v→k→o→s→d→c→e
→b 尚、図示していないが室内送風機は室内ユニツ
トfがON、室内ユニツトgがOFFである。 ニ 室内ユニツトgを暖房運転する場合。 開閉切換弁l,mが開、k,nが閉である。 冷媒の循環径路:b→e→t→q→l→v→
h→u→w→→x→m→o→s→d→c→e
→b 尚、室内送風機は室内ユニツトgがON、室内
ユニツトfがOFFである。 ところで、冷房運転の場合と暖房運転の場合に
おいてそれぞれの冷媒の循環径路を比較すると、
冷房運転の場合、冷媒は運転される室内ユニツト
の室内側熱交換器を流れ、他の室内ユニツトの室
内側熱交換器には流れない。しかし暖房運転の場
合、運転する室内ユニツトは一台であるにもかか
わらず全ての室内ユニツトの室内側熱交換器を流
れるように構成されている。 即ち、冷房運転の場合には室内側熱交換器が蒸
発器として作用するために冷媒はガス状で熱交換
器内に存在し、冷凍サイクル全体の中での冷媒分
布量としては比較的少量であると共に膨脹弁より
も低圧側に位置するため、運転室内ユニツトを切
換えても停止した室内ユニツト内の冷媒は放置状
態で自然に圧縮機の低圧側へ回収することができ
る。しかしながら暖房運転の場合には室内側熱交
換器が凝縮器として作用するので冷媒は液状で熱
交換器内に存在し、上述の冷媒分布量は比較的多
量で且つ膨脹弁の高圧側に位置している。従つて
運転室内ユニツトを切換えるに際しては停止した
室内ユニツト内の冷媒に高圧側から低圧側へ積極
的に圧力を与えて圧縮機の低圧側へ回収しなけれ
ばならず、そのために前述の如く暖房時の冷凍サ
イクルが構成されているものである。 このように、暖房運転に際しては停止している
室内ユニツトに対しても常に冷媒が流れているた
め、この室内側熱交換器での放熱が無駄な熱交換
となり熱損失を増大する要因となる。また運転さ
れる室内ユニツトの立ち上りも緩慢になる問題が
あつた。 [考案の目的] 本考案は上述のごとき問題点に鑑み、これらを
有効に解決すべく創案されたものである。 本考案の目的は単一の室外ユニツトに対して複
数の室内ユニツトをそれぞれ単独交互に対応させ
るべく切換えることができるヒートポンプ式の分
離形空気調和装置において、暖房運転時の熱損失
を可及的に低減すると共に立ち上り特性を向上さ
せることができる分離形空気調和装置を提供する
ことにある。 [考案の概要] 本考案は暖房運転時における冷媒回路を運転さ
れる室内ユニツト毎に独立して構成し、停止され
る室内ユニツト内に残存する冷媒を圧縮機の低圧
側へ回収できるバイパス回路を形成することによ
つて上記目的を達成するものである。 [考案の実施例] 以下に本考案の好適一実施例について添付図面
に従つて説明する。 第2図は本考案に係る分離形空気調和装置機の
冷凍サイクルの回路構成を示している。 1は室外ユニツトであり、これに対応して複数
台(図示例にあつては2台)の室内ユニツト2,
3が並列に設けられている。室外ユニツト1と室
内ユニツト2,3との間には、運転される室内ユ
ニツトを交互に切換えるための操作をする切換ユ
ニツト4が介設されている。 室外ユニツト1には圧縮機5、室外側熱交換器
6、第1の減圧装置としての膨脹弁7及び冷暖房
回路切換弁としての四方弁8が設けられて、更に
膨脹弁7に対して並列に開閉弁9を介して第1の
バイパス回路10が形成されている。 室内ユニツト2,3には、それぞれ室内側熱交
換器11,12が設けられている。 切換ユニツト4には室内ユニツト1側に接続す
る室外側接続回路13,14、これらから分岐さ
れて室内ユニツト2,3のそれぞれへ接続する室
内側接続回路15,16,17,18が設けられ
ている。また、それぞれの室内側接続回路15,
16,17,18には運転する室内ユニツトへの
冷凍サイクル回路を切換え開成するための開閉切
換弁19,20,21,22が直列に介設されて
いる。暖房運転時において各接続回路の高圧側は
13,15,17、低圧側は14,16,18で
ある。尚、冷房運転時にあつては冷媒が逆方向に
循環するため13,15,17は低圧側、14,
16,18は高圧側となる。 暖房運転時の低圧側室外接続回路14には第2
の減圧装置として膨脹弁23が設けられており、
室外側接続回路の高圧側13及び低圧側14の温
度を検知してその絞りを調節するように構成され
ている。 また、低圧側室内側接続回路16,18には、
それぞれの開閉切換弁20,22の室内ユニツト
2,3側から分岐され、膨脹弁23の低圧側へ接
続される第2のバイパス回路24,25が設けら
れている。これら第2のバイパス回路24,25
にはそれぞれ第3の減圧装置としてキヤピラリチ
ユーブ26,27が直列に設けられ、更に室内側
接続回路16,18から室外側接続回路14への
み冷媒の流動を許容する逆止弁28,29が設け
られている。 次に本考案の作用について説明する。 この説明においても従来技術の説明と同じ手法
によつて冷媒の循環経路をその通過順に記号で示
し、室内側熱交換器にはアンダーラインを施す。 ホ 室内ユニツト2を冷房運転する場合。 開閉切換弁は19,20が開、21,22が
閉である。 冷媒の循環経路:5→8→6→10→9→1
4→23→20→16→11→15→19→1
3→8→5 尚、第2のバイパス回路24内には室内側接続
回路16側が室外側接続回路14側よりも低圧で
あるため冷媒の流動は生じない。 ヘ 室内ユニツト3を冷房運転する場合。 開閉切換弁は21,22が開、19,20が
閉である。 冷媒の循環経路:5→8→6→10→9→1
4→23→22→28→12→17→21→1
3→8→5 尚、第2のバイパス回路25内には室内側接続
回路18側が室外側接続回路14側よりも低圧で
あるため冷媒の流動は生じない。 ト 室内ユニツト2を暖房運転する場合。 開閉切換弁19,20が開、21,22が閉
である。 冷媒の循環経路:5→8→13→19→15 →11→16〓20→23 24→26→28〓14→9 →10→6→8→5 尚、膨脹弁23に比してキヤピラリチユーブ2
6の圧力損失を大きく設定し、ほとんどの冷媒に
開閉切換弁20及び膨脹弁23を通過させる。 また、室内ユニツト2を暖房運転する前に室内
ユニツト3によつて暖房運転が行われていた場
合、開閉切換弁21,22が開から閉に切換えら
れて室内側熱交換器12及び室内側接続回路1
7,18内に残存する冷媒は、室内ユニツト2の
暖房運転開始と共に第2のバイパス回路25を介
して低圧側室外側接続回路14へ回収される。 チ 室内ユニツト3を暖房運転する場合。 開閉切換弁は21,22が開、19,20が
閉である。 冷媒の循環経路:5→8→13→21→17 →12→18〓22→23 25→27→29〓14 →9→10→6→8→5 尚、トの場合と同様、ほとんどの冷媒は開閉弁
22及び膨脹弁23を通過する。また、室内ユニ
ツト2からの切換えの場合においても同様に室内
ユニツト2側に残存する冷媒は第2のバイパス回
路24によつて低圧側室外側接続回路14へ回収
される。 尚、切換ユニツト4を介さず、室外ユニツト1
と1台の室内ユニツト2あるいは3とを接続する
場合には、開閉弁9を閉とし、膨脹弁7を用いて
冷凍サイクルを構成する。 [考案の効果] 以上の説明より明らかなように本考案によれば
次のごとき効果が発揮される。 (1) 暖房運転時において冷媒が停止された室内ユ
ニツト内を流れることなく、運転される室内ユ
ニツトのみを循環するので熱損失が可及的に低
減される。 (2) また停止された室内ユニツト内の残存冷媒を
回収するに際して運転される室内ユニツト内に
その残存冷媒が流入することがなく、圧縮機の
高圧側と常に運転室内側熱交換器とが接続され
るので立ち上り特性が向上する。 (3) 開閉切換弁の制御が簡単で信頼性が高くな
る。 (4) 停止された室内ユニツトにおいて冷媒の流動
音を取り除くことができる。 (5) 停止された室内ユニツトでの熱損失が低減す
るので室内ユニツトの台数を増加することがで
きる。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a heat pump type separate air conditioner that can switch a plurality of indoor units to correspond to a single outdoor unit individually and alternately. In particular, the present invention relates to a separate air conditioner that can reduce heat loss as much as possible during heating operation and improve startup characteristics. [Technical background of the invention and its problems] In general, the refrigeration cycle of a heat pump type separate air conditioner is such that one outdoor unit corresponds to multiple indoor units, and the units are switched and operated one by one. is constructed as shown in FIG. The outdoor unit a is provided with a compressor b, an outdoor heat exchanger c, an expansion valve d, and a four-way valve e, and correspondingly, a plurality of (two in the illustrated example) indoor units f, g are provided with indoor heat exchangers h and i each having the same heat exchange capacity. The capacity of this outdoor unit a corresponds to one indoor unit f, g, and a plurality of indoor units f, g are not operated at the same time. Therefore, a switching unit j is interposed between the indoor and outdoor units a, f, and g for alternately selecting and switching the operating indoor units f and g. In the switching unit J, on-off switching valves k, l, m,
n and check valves o, p, q, and r are provided. The outdoor unit a and the switching unit j are connected by connections s and t, and the switching unit j and the indoor units f and g are connected by connecting pipes u, v, w, and x, respectively, to form a refrigeration cycle. ing. Here, the circulation paths of the refrigerant in the conventional circuit described above are indicated by the above symbols in the order in which they pass. Note that the indoor heat exchanger through which the refrigerant passes is underlined. B. When operating indoor unit f for cooling. As for on/off switching valves k, l, m, and n, l is open, k,
m and n are closed. Refrigerant circulation path: b→e→c→d→s→p→
l → v → h → u → r → t → e → b b When operating indoor unit g for air conditioning. In the on-off switching valve, n is open, and k, l, and m are closed. Refrigerant circulation path: b→e→c→d→s→p→
n→x→ i →w→r→t→e→b c. When heating indoor unit f. As for the on-off switching valves, k and n are open, and l and m are closed. Refrigerant circulation path: b→e→t→q→n→x→
i→w→u→ h →v→k→o→s→d→c→e
→b Note that although not shown in the figure, indoor unit f is ON and indoor unit g is OFF. D. When indoor unit g is operated for heating. On-off switching valves l and m are open, and k and n are closed. Refrigerant circulation path: b→e→t→q→l→v→
h→u→w→ i →x→m→o→s→d→c→e
→b Regarding the indoor fan, indoor unit g is ON and indoor unit f is OFF. By the way, when comparing the refrigerant circulation paths in cooling operation and heating operation,
In the case of cooling operation, the refrigerant flows through the indoor heat exchanger of the operated indoor unit and does not flow to the indoor heat exchangers of other indoor units. However, in the case of heating operation, although only one indoor unit is in operation, the air is configured to flow through the indoor heat exchangers of all indoor units. That is, in the case of cooling operation, the indoor heat exchanger acts as an evaporator, so the refrigerant exists in the heat exchanger in a gaseous state, and the amount of refrigerant distributed in the entire refrigeration cycle is relatively small. At the same time, since the refrigerant is located on the lower pressure side than the expansion valve, even if the indoor unit is switched, the refrigerant in the stopped indoor unit can be naturally recovered to the low pressure side of the compressor when left unattended. However, in the case of heating operation, the indoor heat exchanger acts as a condenser, so the refrigerant is present in the heat exchanger in liquid form, and the amount of refrigerant distributed above is relatively large and is located on the high pressure side of the expansion valve. ing. Therefore, when switching the operating indoor unit, it is necessary to actively apply pressure to the refrigerant in the stopped indoor unit from the high pressure side to the low pressure side and recover it to the low pressure side of the compressor. It consists of a refrigeration cycle. In this way, during heating operation, the refrigerant is constantly flowing even to the indoor units that are stopped, so the heat radiation in the indoor heat exchanger becomes wasteful heat exchange and becomes a factor that increases heat loss. There was also the problem that the indoor unit being operated was slow to start up. [Purpose of the invention] The present invention has been devised in view of the above-mentioned problems and to effectively solve them. The purpose of this invention is to reduce heat loss during heating operation as much as possible in a heat pump type separate air conditioner that can switch multiple indoor units to correspond to a single outdoor unit. An object of the present invention is to provide a separate air conditioner that can reduce the rise in temperature and improve the rise characteristics. [Summary of the invention] This invention configures the refrigerant circuit independently for each indoor unit operated during heating operation, and provides a bypass circuit that can recover the refrigerant remaining in the indoor unit that is shut down to the low pressure side of the compressor. The above object is achieved by forming the above object. [Embodiment of the invention] A preferred embodiment of the invention will be described below with reference to the accompanying drawings. FIG. 2 shows the circuit configuration of the refrigeration cycle of the separate air conditioner according to the present invention. 1 is an outdoor unit, and correspondingly there are a plurality of (two in the illustrated example) indoor units 2,
3 are provided in parallel. A switching unit 4 is interposed between the outdoor unit 1 and the indoor units 2 and 3, and is operated to alternately switch the indoor units to be operated. The outdoor unit 1 is provided with a compressor 5, an outdoor heat exchanger 6, an expansion valve 7 as a first pressure reducing device, and a four-way valve 8 as an air conditioning circuit switching valve. A first bypass circuit 10 is formed via the on-off valve 9. The indoor units 2 and 3 are provided with indoor heat exchangers 11 and 12, respectively. The switching unit 4 is provided with outdoor connection circuits 13, 14 connected to the indoor unit 1 side, and indoor connection circuits 15, 16, 17, 18 branched from these and connected to the indoor units 2, 3, respectively. There is. In addition, each indoor side connection circuit 15,
On-off switching valves 19, 20, 21, and 22 are interposed in series at 16, 17, and 18 for switching over and opening a refrigeration cycle circuit to an operating indoor unit. During heating operation, the high pressure side of each connection circuit is 13, 15, 17, and the low pressure side is 14, 16, 18. Note that during cooling operation, the refrigerant circulates in the opposite direction, so 13, 15, and 17 are on the low pressure side, and 14,
16 and 18 are on the high pressure side. The low pressure side outdoor connection circuit 14 during heating operation has a second
An expansion valve 23 is provided as a pressure reducing device,
It is configured to detect the temperature of the high pressure side 13 and low pressure side 14 of the outdoor side connection circuit and adjust the throttle. In addition, the low pressure side indoor connection circuits 16 and 18 include
Second bypass circuits 24 and 25 are provided which are branched from the indoor units 2 and 3 sides of the respective on-off switching valves 20 and 22 and connected to the low pressure side of the expansion valve 23. These second bypass circuits 24, 25
Capillary tubes 26 and 27 are provided in series as third pressure reducing devices, respectively, and check valves 28 and 29 that allow refrigerant to flow only from the indoor connection circuits 16 and 18 to the outdoor connection circuit 14 are provided. It is provided. Next, the operation of the present invention will be explained. In this explanation, the same method as in the explanation of the prior art is used to indicate the refrigerant circulation path with symbols in the order in which it passes, and the indoor heat exchanger is underlined. E. When operating indoor unit 2 for cooling. As for the on-off switching valves, 19 and 20 are open, and 21 and 22 are closed. Refrigerant circulation route: 5 → 8 → 6 → 10 → 9 → 1
4 → 23 → 20 → 16 → 11 → 15 → 19 → 1
3→8→5 Note that no flow of refrigerant occurs in the second bypass circuit 24 because the pressure on the indoor side connection circuit 16 side is lower than that on the outdoor side connection circuit 14 side. F. When operating indoor unit 3 for cooling. As for the on-off switching valves, 21 and 22 are open, and 19 and 20 are closed. Refrigerant circulation route: 5 → 8 → 6 → 10 → 9 → 1
4 → 23 → 22 → 28 → 12 → 17 → 21 → 1
3→8→5 Note that no refrigerant flow occurs in the second bypass circuit 25 because the pressure on the indoor side connection circuit 18 side is lower than that on the outdoor side connection circuit 14 side. G. When operating indoor unit 2 for heating. On-off switching valves 19 and 20 are open, and valves 21 and 22 are closed. Refrigerant circulation path: 5→8→13→19→15 → 11 →16〓20→23 24→26→28〓14→9 →10→6→8→5 Note that the capillary is smaller than the expansion valve 23. tube 2
6 is set to a large pressure loss, and most of the refrigerant passes through the on-off switching valve 20 and the expansion valve 23. In addition, if heating operation is being performed by the indoor unit 3 before heating the indoor unit 2, the on-off switching valves 21 and 22 are switched from open to closed, and the indoor heat exchanger 12 and the indoor connection are switched from open to closed. circuit 1
The refrigerant remaining in the indoor units 7 and 18 is recovered to the low-pressure side outdoor connection circuit 14 via the second bypass circuit 25 when the heating operation of the indoor unit 2 starts. H. When operating indoor unit 3 for heating. As for the on-off switching valves, 21 and 22 are open, and 19 and 20 are closed. Refrigerant circulation path: 5 → 8 → 13 → 21 → 17 → 12 → 18 〓 22 → 23 25 → 27 → 29 〓 14 → 9 → 10 → 6 → 8 → 5 As in the case of G, most refrigerants passes through the on-off valve 22 and the expansion valve 23. Furthermore, in the case of switching from the indoor unit 2, the refrigerant remaining on the indoor unit 2 side is similarly recovered to the low pressure side outdoor connection circuit 14 by the second bypass circuit 24. In addition, the outdoor unit 1 can be connected without going through the switching unit 4.
When connecting one indoor unit 2 or 3, the on-off valve 9 is closed and the expansion valve 7 is used to configure a refrigeration cycle. [Effects of the invention] As is clear from the above explanation, the invention provides the following effects. (1) During heating operation, the refrigerant does not flow through the indoor units that are stopped and circulates only through the indoor units that are being operated, so heat loss is reduced as much as possible. (2) In addition, when recovering the residual refrigerant in the indoor unit that has been stopped, the residual refrigerant does not flow into the indoor unit that is being operated, and the high pressure side of the compressor is always connected to the heat exchanger inside the operating room. As a result, the rise characteristics are improved. (3) Control of the on-off switching valve is simple and highly reliable. (4) It is possible to eliminate the noise of refrigerant flowing in indoor units that are stopped. (5) Since heat loss in stopped indoor units is reduced, the number of indoor units can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の従来例を示す分離形空気調和
装置の冷媒回路図、第2図は本考案に係る分離形
空気調和装置の一実施例を示す冷媒回路図であ
る。 尚、図中、1は室外ユニツト、2,3は室内ユ
ニツト4は切換ユニツト、5は圧縮機、6は室外
側熱交換器、7は膨脹弁で例示した第1の減圧装
置、8は四方弁で例示した冷暖房回路切換弁、9
は開閉弁、10は第1のバイパス回路、11,1
2は室内側熱交換器、13,14は室外側接続回
路、15,16,17,18は室内側接続回路、
19,20,21,22は開閉切換弁、23は膨
脹弁で例示した第2の減圧装置、24,25は第
2のバイパス回路、26,27はキヤピラリチユ
ーブで例示した第3の減圧装置である。
FIG. 1 is a refrigerant circuit diagram of a separate air conditioner according to a conventional example of the present invention, and FIG. 2 is a refrigerant circuit diagram showing an embodiment of the separate air conditioner according to the present invention. In the figure, 1 is an outdoor unit, 2 and 3 are indoor units, 4 is a switching unit, 5 is a compressor, 6 is an outdoor heat exchanger, 7 is a first pressure reducing device exemplified by an expansion valve, and 8 is a four-way unit. Heating and cooling circuit switching valve illustrated as a valve, 9
is an on-off valve, 10 is a first bypass circuit, 11,1
2 is an indoor heat exchanger, 13 and 14 are outdoor connection circuits, 15, 16, 17, and 18 are indoor connection circuits,
19, 20, 21, 22 are on-off switching valves, 23 is a second pressure reducing device exemplified by an expansion valve, 24, 25 is a second bypass circuit, and 26, 27 is a third pressure reducing device exemplified by a capillary tube. It is.

Claims (1)

【実用新案登録請求の範囲】 圧縮機と室外側熱交換器と第1の減圧装置と冷
暖房回路切換弁とを有する単一の室外ユニツトに
対して、それぞれに室内側熱交換器を有する複数
の室内ユニツトをそれぞれ単独交互に対応させる
べく切換えて冷暖房運転ができる分離形空気調和
装置において、上記室外ユニツトに設けられ、上
記第1の減圧装置に対して並列に開閉弁を有する
第1のバイパス回路と、上記室内外ユニツト間に
介設され、上記室外ユニツトに接続可能な室外側
接続回路と該室外側接続回路からそれぞれの室内
ユニツトに接続可能に分岐した室内側接続回路と
を有する切換ユニツトと、上記室内側接続回路の
それぞれに直列に設けられた開閉切換弁と、暖房
運転時における上記室外側接続回路の低圧側に直
列に設けられた第2の減圧装置と、暖房運転時の
運転室内ユニツト切換時において上記室内側接続
回路の低圧側から 上記第2の減圧装置の低圧側へ冷媒をバイパス
させて停止室内ユニツト内に滞留する冷媒を室外
ユニツトの低圧側へ回収するための第2のバイパ
ス回路と、これら第2のバイパス回路にそれぞれ
直列に設けられた第3の減圧装置とを備えたこと
を特徴とする分離形空気調和装置。
[Claims for Utility Model Registration] For a single outdoor unit having a compressor, an outdoor heat exchanger, a first pressure reducing device, and an air conditioning circuit switching valve, a plurality of units each having an indoor heat exchanger In a separate air conditioner capable of performing cooling and heating operation by switching the indoor units so that they can be operated independently and alternately, a first bypass circuit is provided in the outdoor unit and has an on-off valve in parallel with the first pressure reducing device. and a switching unit which is interposed between the indoor and outdoor units and has an outdoor connection circuit connectable to the outdoor unit and an indoor connection circuit branched from the outdoor connection circuit so as to be connectable to each indoor unit. , an on-off switching valve installed in series with each of the indoor side connection circuits, a second pressure reducing device installed in series on the low pressure side of the outdoor side connection circuit during heating operation, and a second pressure reducing device installed in series on the low pressure side of the outdoor connection circuit during heating operation; At the time of unit switching, the refrigerant is bypassed from the low-pressure side of the indoor connection circuit to the low-pressure side of the second pressure reducing device, and the refrigerant accumulated in the stopped indoor unit is recovered to the low-pressure side of the outdoor unit. A separate air conditioner comprising a bypass circuit and a third pressure reducing device provided in series with each of the second bypass circuits.
JP6159083U 1983-04-26 1983-04-26 Separate air conditioner Granted JPS59167371U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6159083U JPS59167371U (en) 1983-04-26 1983-04-26 Separate air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6159083U JPS59167371U (en) 1983-04-26 1983-04-26 Separate air conditioner

Publications (2)

Publication Number Publication Date
JPS59167371U JPS59167371U (en) 1984-11-09
JPH025323Y2 true JPH025323Y2 (en) 1990-02-08

Family

ID=30191807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6159083U Granted JPS59167371U (en) 1983-04-26 1983-04-26 Separate air conditioner

Country Status (1)

Country Link
JP (1) JPS59167371U (en)

Also Published As

Publication number Publication date
JPS59167371U (en) 1984-11-09

Similar Documents

Publication Publication Date Title
JPH05264133A (en) Air conditioner
JP2000274879A (en) Air conditioner
JPH09196489A (en) Refrigeration cycle for air conditioner
JPH0420764A (en) Air conditioner
JP2760500B2 (en) Multi-room air conditioner
JPH025323Y2 (en)
JP2731608B2 (en) Air conditioner
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JPH10325641A (en) Refrigerating device
JPH06213531A (en) Heat pump air conditioner for car
JPS6327626B2 (en)
JP2522360B2 (en) Air conditioner
JP2508812B2 (en) Heat storage type air conditioner
JP2001033126A (en) Air conditioner
JPH0198860A (en) Heat pump type air conditioner
JPH01179874A (en) Air-conditioner
JP2605422B2 (en) Air conditioner
JPS5848823B2 (en) Heat recovery air conditioner
JP3301828B2 (en) Air conditioner
JPH10141815A (en) Air conditioner
JPH03144266A (en) Absorption type heat pump room cooler/heater
JPH0195257A (en) Air conditioner
JPH11304286A (en) Multi-room air conditioner
JPH08105667A (en) Air conditioner
JPH0814440B2 (en) Air conditioner