JPH0123089Y2 - - Google Patents

Info

Publication number
JPH0123089Y2
JPH0123089Y2 JP298681U JP298681U JPH0123089Y2 JP H0123089 Y2 JPH0123089 Y2 JP H0123089Y2 JP 298681 U JP298681 U JP 298681U JP 298681 U JP298681 U JP 298681U JP H0123089 Y2 JPH0123089 Y2 JP H0123089Y2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heating
cooling
refrigeration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP298681U
Other languages
Japanese (ja)
Other versions
JPS57116070U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP298681U priority Critical patent/JPH0123089Y2/ja
Publication of JPS57116070U publication Critical patent/JPS57116070U/ja
Application granted granted Critical
Publication of JPH0123089Y2 publication Critical patent/JPH0123089Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 本考案は冷凍サイクルのみを利用して補助熱源
が一切不要なヒートポンプ冷暖房給湯機に関す
る。
[Detailed Description of the Invention] The present invention relates to a heat pump air conditioning/heating/water heater that uses only a refrigeration cycle and does not require any auxiliary heat source.

圧縮冷凍サイクルによる冷暖房運転に、さらに
給湯運転を付加した多目的に叶う装置は家庭にお
けるセントラルヒーテイング装置として普及しつ
つあるが、従来は冷房機と温水利用による暖房給
湯が可能な温大ボイラーを要素とした装置との組
合わせになるものが一般的であつて、暖房給湯用
のエネルギー源が電気あるいは他の燃料であるを
問わず、室内側のフアンコイルユニツトに空気用
と水用の2経路を要して設置スペースを大きくと
ると共に、配管が冷媒用と水用の4本必要となり
工事が複雑になる欠点は否めなく、さらに取扱い
が面倒であるなどの問題もあつた。
Multi-purpose devices that add hot water operation to heating and cooling operations using a compression refrigeration cycle are becoming popular as central heating devices in homes, but conventional systems have traditionally included an air conditioner and a large boiler that can heat and supply hot water using hot water. Regardless of whether the energy source for heating and hot water supply is electricity or other fuel, the fan coil unit inside the room has two routes for air and water. This method requires a large amount of installation space, requires four pipes, one for the refrigerant, and one for the water, making the construction work complicated.Furthermore, there are other problems such as troublesome handling.

本考案はかゝる諸点に着目して、従来のこの種
装置が有する欠陥を排除し得るヒートポンプ方式
の冷暖房給湯機を提供しようとして成されたもの
である。
The present invention has been made with attention to these points and an attempt to provide a heat pump type air-conditioning/heating water heater that can eliminate the deficiencies of conventional devices of this type.

すなわち、本考案は第1図の基本的回路図によ
つて示す通り、第1冷媒通路9Aおよび第2冷媒
通路9Bの2冷媒系統を有する利用側熱交換器8
と、圧縮機1A、四路切換弁2A、対空気形の熱
源側熱交換器3A、逆止弁6Aが並列に接続され
た暖房用減圧器4A、逆止弁7Aが並列に接続さ
れた冷房用減圧器5Aおよび前記第1冷媒通路9
Aを要素となし、冷房運転と暖房運転とに切換え
可能な可逆ヒートポンプ冷凍サイクルに形成した
第1冷凍系Aと、圧縮機1B、四路切換弁2B、
対空気形の熱源側熱交換器3B、逆止弁6Bが並
列に接続された暖房用減圧器4B、逆止弁7Bが
並列に接続された冷房用減圧器5Bおよび前記第
2冷媒通路9Bを要素となし、冷房運転と暖房運
転との切換可能な可逆ヒートポンプ冷凍サイクル
に形成した第2冷凍系Bと、前記第1冷凍系Aに
関連して夫々設けた給湯用熱交換器10および制
御弁12とからなり、前記制御弁12は圧縮機1
Aの吐出口を、冷房サイクル時および暖房サイク
ル時には四路切換弁2Aの流入側ポートに夫々連
絡し、給湯サイクル時には前記給湯用熱交換器1
0の冷媒入口に連絡する如き切換え可能に吐出ガ
ス管14中に介設し、前記給湯用熱換器10は、
前記制御弁12の給湯側ポートと暖房用減圧器4
Aおよび冷房用減圧器5Aの入口側とを給湯運転
時にのみ連通する如く設けた高圧管15中に冷媒
側通路を介設してなり、第1冷凍系Aを、四路切
換弁2Aの暖房側あるいは冷房側への切換操作、
前記制御弁12の切換操作ならびに前記冷房用減
圧器5Aあるいは前記冷房用減圧器5Aあるいは
前記暖房用減圧器4Aの強制閉止操作によつて、
給湯用熱交換器10が凝縮器として作用する一
方、熱源側熱交換器10が蒸発器として作用し、
かつ第1冷媒通路9Aが不作用となる冷凍サイク
ルによる第1給湯運転あるいは第1冷媒通路9A
が蒸発器として作用し、かつ熱源側熱交換器3A
が不作用となる冷凍サイクルによる第2給湯運転
に切換え得る如くなしたヒートポンプ冷暖房給湯
機であつて、第1冷凍系Aおよび第2冷凍系Bの
同一サイクル併用による冷房専用運転と暖房専用
運転、第1冷凍系Aの第1給湯運転による給湯専
用運転ならびに第1冷凍系Aの第2給湯運転に第
2冷凍系Bの冷房運転を併用した冷房給湯運転
と、第1冷凍系Aの第1給湯運転に第2冷凍系B
の暖房運転を併用してなる暖房給湯運転の5種の
モードの運転を可能となしたことを特徴とする。
That is, as shown in the basic circuit diagram of FIG. 1, the present invention provides a user-side heat exchanger 8 having two refrigerant systems, a first refrigerant passage 9A and a second refrigerant passage 9B.
A compressor 1A, a four-way switching valve 2A, an air-type heat source side heat exchanger 3A, a heating pressure reducer 4A with a check valve 6A connected in parallel, and a cooling system with a check valve 7A connected in parallel. pressure reducer 5A and the first refrigerant passage 9
A as an element, a first refrigeration system A formed into a reversible heat pump refrigeration cycle that can be switched between cooling operation and heating operation, a compressor 1B, a four-way switching valve 2B,
An air-type heat source side heat exchanger 3B, a heating pressure reducer 4B with a check valve 6B connected in parallel, a cooling pressure reducer 5B with a check valve 7B connected in parallel, and the second refrigerant passage 9B. A second refrigeration system B formed into a reversible heat pump refrigeration cycle capable of switching between cooling operation and heating operation, and a hot water supply heat exchanger 10 and a control valve provided in connection with the first refrigeration system A, respectively. 12, and the control valve 12 is connected to the compressor 1.
The discharge ports of A are connected to the inflow side ports of the four-way switching valve 2A during the cooling cycle and the heating cycle, respectively, and are connected to the inflow side ports of the four-way switching valve 2A during the hot water supply cycle, and the hot water supply heat exchanger 1 is connected during the hot water supply cycle.
The hot water supply heat exchanger 10 is switchably interposed in the discharge gas pipe 14 so as to communicate with the refrigerant inlet of
The hot water supply side port of the control valve 12 and the heating pressure reducer 4
A refrigerant side passage is interposed in a high-pressure pipe 15 that is provided so as to communicate between A and the inlet side of the cooling pressure reducer 5A only during hot water supply operation, and the first refrigeration system A is connected to the heating side of the four-way switching valve 2A. switching operation to side or cooling side,
By switching the control valve 12 and forcibly closing the cooling pressure reducer 5A, the cooling pressure reducer 5A, or the heating pressure reducer 4A,
While the hot water supply heat exchanger 10 acts as a condenser, the heat source side heat exchanger 10 acts as an evaporator,
and the first hot water supply operation by the refrigeration cycle in which the first refrigerant passage 9A is inactive or the first refrigerant passage 9A
acts as an evaporator, and the heat source side heat exchanger 3A
A heat pump air-conditioning/heating water heater capable of switching to a second hot water supply operation using a refrigeration cycle in which the refrigeration cycle is inactive, the cooling-only operation and the heating-only operation using the same cycle of the first refrigeration system A and the second refrigeration system B, A dedicated hot water supply operation by the first hot water supply operation of the first refrigeration system A, a cooling hot water supply operation in which the second hot water supply operation of the first refrigeration system A is combined with the cooling operation of the second refrigeration system B, and the first hot water supply operation of the first refrigeration system A. Second refrigeration system B for hot water supply operation
The present invention is characterized in that it is possible to operate in five modes of heating hot water supply operation in combination with heating operation.

以下、本考案の具体的態様を添付図面に示す具
体例を参照しつつ詳述する。
Hereinafter, specific aspects of the present invention will be described in detail with reference to specific examples shown in the accompanying drawings.

第1図は本考案に係る冷暖房給湯機の基本的冷
媒系統を示したものであつて、第1冷凍系Aと第
2冷凍系Bの2系統冷凍回路を対水形の利用側熱
交換器8に関連させて設けている。
Figure 1 shows the basic refrigerant system of the air-conditioning/heating water heater according to the present invention, in which two refrigeration circuits, a first refrigeration system A and a second refrigeration system B, are connected to a water-to-water user side heat exchanger. It is provided in connection with 8.

該利用側熱交換器8は、第1冷媒通路9A、第
2冷媒通路9Bを備えて、シエル側を冷暖房用水
の流通路に形成したダブルバンドル構造を成して
いる。
The user-side heat exchanger 8 has a double bundle structure including a first refrigerant passage 9A and a second refrigerant passage 9B, and the shell side is formed as a flow path for water for heating and cooling.

第1冷凍系Aは圧縮機1A、四路切換弁2A、
対空気形の熱源側熱交換器3A、逆止弁6Aが並
列に接続された暖房用減圧器4A例えば自動膨脹
弁、逆止弁7Aが並列に接続された冷房用減圧器
5A例えば自動膨脹弁、受液器11および前記第
1冷媒通路9Aを要素となして、冷房運転と暖房
運転とに切換可能な可逆ヒートポンプ冷凍サイク
ルに形成していて、さらに給湯用熱交換器10、
制御弁12および逆止弁13を関連して有し、後
述する如くさらに給湯運転が可能な冷凍回路に形
成されている。なお16は高圧液管である。
The first refrigeration system A includes a compressor 1A, a four-way switching valve 2A,
A heating pressure reducer 4A with an air-type heat source side heat exchanger 3A and a check valve 6A connected in parallel, such as an automatic expansion valve, and a cooling pressure reducer 5A with a check valve 7A connected in parallel, such as an automatic expansion valve. , the liquid receiver 11 and the first refrigerant passage 9A are used as elements to form a reversible heat pump refrigeration cycle that can be switched between cooling operation and heating operation, and further includes a hot water supply heat exchanger 10,
It has a control valve 12 and a check valve 13 in association with each other, and is formed into a refrigeration circuit capable of further hot water supply operation as described later. Note that 16 is a high pressure liquid pipe.

一方、第2冷凍系Bの圧縮機1B、四路切換弁
2B、対空気形の熱源側熱交換器3B、逆止弁6
Bが並列に接続された暖房用減圧器4B例えばキ
ヤピラリーチユーブ、逆止弁7Bが並列に接続さ
れた冷房用減圧器5B例えばキヤピラリーチユー
ブおよび前記第2冷媒通路を要素となして、冷房
運転と暖房運転とに切換可能な可逆ヒートポンプ
冷凍サイクルに形成している。
On the other hand, the second refrigeration system B has a compressor 1B, a four-way switching valve 2B, an air-type heat source side heat exchanger 3B, and a check valve 6.
Cooling operation is performed using a heating pressure reducer 4B, for example, a capillary reach tube, and a cooling pressure reducer 5B, for example, a capillary reach tube and the second refrigerant passage, connected in parallel to each other. It is a reversible heat pump refrigeration cycle that can be switched between heating and heating operation.

前記制御弁12は三方切換弁などの電磁切換弁
が用いられ、圧縮機1Aの吐出口と四路切換弁2
Aの流入側ポートとを連絡する吐出ガス管14中
に介設して、圧縮機1Aの吐出口を冷房サイクル
時および暖房サイクル時には四路切換弁2Aの前
記流入側ポートに夫々連絡し、給湯サイクル時に
は前記給湯用熱交換器10の冷媒入口に連絡する
切換可能に設けられる。
The control valve 12 is an electromagnetic switching valve such as a three-way switching valve, and is connected to the discharge port of the compressor 1A and the four-way switching valve 2.
The discharge port of the compressor 1A is connected to the inlet port of the four-way selector valve 2A during the cooling cycle and during the heating cycle, respectively, and hot water is supplied. During the cycle, the refrigerant inlet of the heat exchanger 10 for hot water supply is switchably provided.

前記給湯用熱交換器10は冷媒側通路と水側通
路とを熱交換的に設けた熱交換器であつて、その
冷媒側通路は前記制御弁12の給湯側ポートと暖
房用減圧器4Aおよび冷房用減圧器5Aの入口側
とを接続せしめる高圧管15中に、逆止弁13を
下流側に直列に備えて介設しており、該逆止弁1
3の流通阻止作用によつて給湯運転時の他は高圧
管15側に冷媒が流通しないようにしている。
The hot water supply heat exchanger 10 is a heat exchanger that is provided with a refrigerant side passage and a water side passage for heat exchange, and the refrigerant side passage is connected to the hot water supply side port of the control valve 12, the heating pressure reducer 4A, and the water supply side port of the control valve 12. A check valve 13 is interposed in series on the downstream side in a high pressure pipe 15 connecting the inlet side of the cooling pressure reducer 5A.
The flow prevention effect of 3 prevents the refrigerant from flowing to the high pressure pipe 15 side except during hot water supply operation.

かゝる基本構造を有する装置は次のように5種
の運転モードが随時選択して行われる。
The apparatus having such a basic structure can be operated by selecting five operating modes as follows.

(イ) 冷房専用運転、 四路切換弁2A,2Bを図示実線弁位置に操作
し、かつ制御弁12を図示実線弁位置に操作し両
圧縮機1A,1Bを付勢して行う。
(a) Cooling-only operation is performed by operating the four-way switching valves 2A and 2B to the valve positions shown by solid lines, and operating the control valve 12 to the valve positions shown by solid lines to energize both compressors 1A and 1B.

第1冷凍系A、第2冷凍系Bは共に第1図上で
実線矢示方向に冷媒が流通する冷房サイクルが形
成され、熱源側熱交換器3A,3Bが凝縮器に、
第1冷媒通路9A、第2冷媒通路9Bが蒸発器に
夫々作用することによつて、2つの冷凍系による
十分な能力で利用側熱交換器8内には冷房用低温
水が得られる。
Both the first refrigeration system A and the second refrigeration system B form a cooling cycle in which the refrigerant flows in the direction indicated by the solid line arrow in FIG.
By each of the first refrigerant passage 9A and the second refrigerant passage 9B acting on the evaporator, low-temperature water for cooling can be obtained in the user-side heat exchanger 8 with the sufficient capacity of the two refrigeration systems.

この場合、暖房用減圧器4Aは自動的に閉止制
御されるが、これを強制的に閉弁操作するように
してもよい。しかして給湯用熱交換器10は制御
弁12と逆止弁13で冷媒側両端が閉止されてい
るので、運転は停止している。
In this case, the heating pressure reducer 4A is automatically controlled to close, but it may be forcibly closed. Since both ends of the hot water supply heat exchanger 10 are closed on the refrigerant side by the control valve 12 and the check valve 13, the operation is stopped.

(ロ) 暖房専用運転、 四路切換弁2A,2Bを破線弁位置に切換え、
制御弁12は冷房時と同様な操作をし両圧縮機1
A,1Bを付勢して運転する。
(b) For heating-only operation, switch the four-way switching valves 2A and 2B to the dashed line valve positions,
The control valve 12 is operated in the same way as during cooling, and both compressors 1
Operate by energizing A and 1B.

第1冷凍系A、第2冷凍系Bは共に破線矢示方
向に冷媒が流通する暖戻サイクルが形成され、第
1冷媒通路9A、第2冷媒通路9Bが凝縮器に、
熱源側熱交換器3A,3Bが蒸発器に夫々作用す
ることによつて両冷凍系A,Bによる十分な能力
で利用側熱交換器8内には暖房用高温水が得られ
る。
Both the first refrigeration system A and the second refrigeration system B form a warm-back cycle in which the refrigerant flows in the direction indicated by the broken line arrow, and the first refrigerant passage 9A and the second refrigerant passage 9B are connected to the condenser,
As the heat source side heat exchangers 3A and 3B act on the evaporator, high temperature water for heating is obtained in the user side heat exchanger 8 with sufficient capacity of both the refrigeration systems A and B.

この場合、冷戻用減圧器5Aは自動的又は強制
的に閉弁制御する。
In this case, the cooling return pressure reducer 5A is automatically or forcibly closed.

給湯用熱交換器10は冷房時と同様、運転停止
している。
The hot water supply heat exchanger 10 is not operating as in the case of cooling.

(ハ) 給湯専用運転、 第2冷凍系Bは運転を停止し、第1冷凍系Aは
四路切換弁2Aを暖房側に操作し、かつ制御弁1
2を図示破線弁位置に切換操作すると共に、圧縮
機1Aを付勢して行う。
(c) Operation exclusively for hot water supply, the second refrigeration system B stops operation, the first refrigeration system A operates the four-way switching valve 2A to the heating side, and the control valve 1
2 to the illustrated broken line valve position and energizes the compressor 1A.

第1冷凍系Aでは、冷媒が図示波状線矢示方向
に流通して、給湯用熱交換器10が凝縮器に、熱
源側熱交換器3Aが蒸発器に夫々作用する第1給
湯運転を形成させて、給湯用熱交換器10では給
湯用高温水が得られる。
In the first refrigeration system A, the refrigerant flows in the direction indicated by the wavy line in the diagram, forming a first hot water supply operation in which the hot water supply heat exchanger 10 acts on the condenser and the heat source side heat exchanger 3A acts on the evaporator. As a result, high-temperature water for hot water supply is obtained in the heat exchanger 10 for hot water supply.

なお、給湯能力は暖房専用時に比して約50%の
能力が最大限度であつて、給湯量としては十分で
あり、一方冷房時期には能力をさらに減じさせる
必要が生じるので、熱源側熱交換器3Aを2分し
て一方を冷媒回路がら切り離すか若しくは室外フ
アンの風量を低下させることにより蒸発能力を低
下せしめるようにすればよい。
Note that the maximum hot water supply capacity is about 50% compared to when it is only used for heating, which is sufficient for hot water supply.On the other hand, during the cooling season, it is necessary to further reduce the capacity, so heat exchange on the heat source side is used. The evaporation capacity may be reduced by dividing the container 3A into two and separating one from the refrigerant circuit, or by reducing the air volume of the outdoor fan.

(ニ) 冷房・給湯併用運転、 第2冷凍系Bを前(イ)項と同要領で冷房運転に作
動せしめる一方、第1冷凍系Aは四路切換弁2A
を冷戻側に切換操作し、かつ制御弁12る給湯運
転側に切換操作すると共に、暖房用減圧器5Aを
強制閉弁させ、かつ圧縮機1Aを付勢して行う。
(d) Combined operation of cooling and hot water supply, the second refrigeration system B is operated in the cooling operation in the same manner as in the previous (a), while the first refrigeration system A is operated with the four-way switching valve 2A.
This is done by switching the control valve 12 to the cooling return side, switching the control valve 12 to the hot water supply operation side, forcing the heating pressure reducer 5A to close, and energizing the compressor 1A.

第1冷凍系Aでは冷媒が第1図において波状線
矢示方向(但し一部は括弧内に表示している)に
流通し、給湯用熱交換器10が凝縮器に、第1冷
媒通路9Aが蒸発器に夫々作用する第2給湯運転
を形成させることにより、給湯用熱交換器10で
は給湯用高温水が得られる一方、利用側熱交換器
8では両冷凍系A,Bによる100%能力での冷房
用低温水が得られる。
In the first refrigeration system A, the refrigerant flows in the direction indicated by the wavy line in FIG. By forming a second hot water supply operation in which the evaporators act on the respective evaporators, hot water supply heat exchanger 10 can obtain hot water for hot water supply, while user side heat exchanger 8 can achieve 100% capacity from both refrigeration systems A and B. Low-temperature water for air conditioning can be obtained.

なお、この場合、第1冷凍系Aでは熱源側熱交
換器3Aは不作動となり、給湯用水に凝縮熱を放
出し、第1冷媒通路9Aで蒸発熱を奪取する運転
となるので、熱回収運転が有効に行われる。
In this case, in the first refrigeration system A, the heat source side heat exchanger 3A is inactive, and the operation is such that the heat of condensation is released to the hot water supply water and the heat of evaporation is captured in the first refrigerant passage 9A, so the heat recovery operation is performed. is carried out effectively.

(ホ) 暖房・給湯併用運転、 第1冷凍系Aを前(ハ)項と同要領で運転し、第2
冷凍系Bを前(ロ)項と同要領で運転する。
(e) Combined heating and hot water supply operation, operate the first refrigeration system A in the same manner as in the previous (c), and
Operate refrigeration system B in the same manner as in the previous (b).

このときには、第1冷凍系Aでは給湯用熱交換
器10が凝縮器に、熱源側熱交換器3Aが蒸発器
に夫々作用し、第1冷媒通路9Aは不作用とな
る。
At this time, in the first refrigeration system A, the hot water supply heat exchanger 10 acts on the condenser, the heat source side heat exchanger 3A acts on the evaporator, and the first refrigerant passage 9A becomes inactive.

従つて第1冷凍系Aの冷凍能力が給湯に、第2
冷凍系Bの冷凍能力が暖房に夫々利用され、何れ
も50%の能力となる。
Therefore, the refrigeration capacity of the first refrigeration system A is used for hot water supply, and the refrigeration capacity of the second refrigeration system A is
The refrigeration capacity of refrigeration system B is used for heating, and both have 50% capacity.

以上の各項の説明によつて、5種の運転モード
が行えることを明らかにしたが、次に第2図およ
び第3図によつて本考案に係る具体的実施装置を
例示する。
It has been clarified through the explanation of each section above that five types of operation modes can be performed, and next, a specific implementation apparatus according to the present invention will be illustrated with reference to FIGS. 2 and 3.

この装置において、1A,1B〜7A,7B、
8〜16の番号を付した各部材は第1図において
等番号を付したものに夫々対応する同一部材であ
るので説明を省略し、その他の各部材について以
下述べる。
In this device, 1A, 1B to 7A, 7B,
Since each member numbered 8 to 16 is the same member corresponding to the same numbered member in FIG. 1, a description thereof will be omitted, and the other members will be described below.

17A,17Bはアンロード用三方電磁弁であ
り、流入ポートP1を圧縮機1A,1Bのアンロ
ード機構の操作部に、切換ポートP2を低圧側に、
切換ポートP3を逆止弁付ゲージ接手36を介し
高圧側に夫々接続して、流入ポートP1と切換ポ
ートP3を連通してアンロード機構を作動させ圧
縮機1A,1Bの能力を半減する一方、流入ポー
トP1と切換ポートP2を連通してアンロード機構
を不作動にし、圧縮機1A,1Bを全能力で運転
せしめるようになつている。
17A and 17B are three-way solenoid valves for unloading, with the inlet port P 1 connected to the operating section of the unloading mechanism of the compressors 1A and 1B, and the switching port P 2 connected to the low pressure side.
The switching port P3 is connected to the high pressure side through the gauge joint 36 with a check valve, and the inflow port P1 and the switching port P3 are connected to operate the unloading mechanism to reduce the capacity of the compressors 1A and 1B by half. On the other hand, the inflow port P1 and the switching port P2 are communicated with each other to disable the unloading mechanism and to operate the compressors 1A and 1B at full capacity.

18Aは圧縮機1Aの起動時にモータに加わる
負荷を軽減するため作動させる起動負荷軽減弁で
あつて、流入ポートと一方の切換ポートとを用い
て吐出管14中に介設し、他方の切換ポートを圧
縮機1Aの低圧側に接続せしめており、起動時に
は圧縮機1Aの吐出口を低圧側に短絡して負荷を
軽減し、通常運転時は圧縮機1Aの吐出口を前記
制御弁12に接続する如き三方弁の機能を有す
る。
Reference numeral 18A is a startup load reduction valve that is operated to reduce the load applied to the motor when the compressor 1A is started, and is interposed in the discharge pipe 14 using an inflow port and one switching port, and is inserted into the discharge pipe 14 using an inflow port and one switching port. is connected to the low pressure side of the compressor 1A, and at startup, the discharge port of the compressor 1A is short-circuited to the low pressure side to reduce the load, and during normal operation, the discharge port of the compressor 1A is connected to the control valve 12. It has the function of a three-way valve.

なお、この起動負荷軽減弁18Aにはパイロツ
ト圧操作弁を用いると共に、操作用として三方電
磁弁19Aを関連させており、パイロツト用ポー
トを三方電磁弁19Aの切換操作で高圧側に接続
することにより通常運転時に、低圧側に接続する
ことにより負荷軽減運転時に夫々対応させるよう
になつている。
Note that this starting load reduction valve 18A uses a pilot pressure operating valve and is associated with a three-way solenoid valve 19A for operation, and by connecting the pilot port to the high pressure side by switching the three-way solenoid valve 19A. By connecting to the low pressure side during normal operation, it is possible to correspond to load reduction operation.

20A,20Bは吸入管路中に介設したアキユ
ムレータ、21はドライヤーであつて一般の冷凍
回路に設けられた周知の機器である。
20A and 20B are accumulators interposed in the suction pipe, and 21 is a dryer, which is a well-known device installed in a general refrigeration circuit.

なお、熱源側熱交換器3Aおよび3Bは、夫々
2基のクロスフインコイル3A−1,3A−2およ
び3B−1,3B−2により形成せしめていて、特
に第1冷凍系Aの熱源側熱交換器3A−1,3A
2は夏季の給湯専用運転時において高圧が異常
に上昇するのを防止するために圧縮機1Aのアン
ロードに合わせて一方の熱源側熱交換器3A−1
あるいは3A−2のフアンを停止せしめる制御を
行うものであり、蒸発器として作用する熱源側熱
交換器の能力を低下することによつて高圧上昇を
抑えると共に、アンロード制御と合わせて冷凍能
力を約25%程度に低減するようにしている。
The heat source side heat exchangers 3A and 3B are formed by two cross fin coils 3A- 1 , 3A- 2 and 3B- 1 , 3B- 2, respectively, and in particular, the heat source side heat exchangers of the first refrigeration system A are Exchanger 3A- 1 , 3A
- 2 is connected to one heat source side heat exchanger 3A- 1 in accordance with the unloading of the compressor 1A in order to prevent the high pressure from rising abnormally during hot water supply-only operation in the summer.
Alternatively, this control controls to stop the fan of 3A- 2 , suppressing the high pressure rise by reducing the capacity of the heat source side heat exchanger that acts as an evaporator, and also reduces the refrigeration capacity in conjunction with unload control. We are trying to reduce it to about 25%.

また、熱源側熱交換器3Aを2分したのに応じ
て、暖房用減圧器は4A−1,4A−2の2個、逆
止弁も6A−1,6A−2の2個を使用している。
In addition, since the heat source side heat exchanger 3A is divided into two, two heating pressure reducers, 4A- 1 and 4A- 2 , and two check valves, 6A- 1 and 6A- 2, are used. ing.

前記減圧器4A−1,4A−2および冷房用減圧
器弁5Aには自動膨脹弁を使用して、感温筒3
3,34および32を第2図に示す如く、感温筒
33,34については室外コイル3A−1,3A
2に夫々接続するガス管に添設し、感温筒32
については第1冷媒通路9Aの接続するガス管に
添設している。
Automatic expansion valves are used for the pressure reducers 4A- 1 , 4A- 2 and the cooling pressure reducer valve 5A, and the temperature sensing tube 3
3, 34 and 32 as shown in FIG .
- Attached to the gas pipes connected to each of the temperature sensing tubes 32
is attached to the gas pipe connected to the first refrigerant passage 9A.

また前記減圧器弁4A−1,4A−2は、各均圧
管に対して三方電磁弁22,22を介し、吐出圧
力あるいは各熱源側熱交換器3A−1,3A−2
接続するガス管中の冷媒圧力を切換えて供給する
ようにしており、冷房運転時および冷房給湯運転
時には吐出圧力を供給して強制的に閉弁させ、そ
の他の運転時には蒸発圧力を供給して本来の自動
膨脹弁として機能させるようにしている。
Further, the pressure reducer valves 4A- 1 and 4A- 2 are connected to the discharge pressure or the gas pipes connected to the respective heat source side heat exchangers 3A- 1 and 3A- 2 via the three-way solenoid valves 22 and 22 for each pressure equalizing pipe. The internal refrigerant pressure is switched and supplied, and during cooling operation and cooling hot water supply operation, discharge pressure is supplied to force the valve to close, and during other operations, evaporation pressure is supplied and the original automatic expansion valve is closed. I am trying to make it function as.

一方、冷房用減圧器5Aについては均圧管に対
して同様に三方電磁弁28を介し吐出圧力あるい
は第1冷媒通路9Aに接続するガス管内の冷媒圧
力を切り換えて供給するようにしており、暖房専
用運転時および給湯専用運転時には強制閉弁さ
せ、その他の運転時には、本来の自動膨脹弁とし
て機能させるようにしている。
On the other hand, the cooling pressure reducer 5A is configured to switch and supply the discharge pressure or the refrigerant pressure in the gas pipe connected to the first refrigerant passage 9A to the pressure equalizing pipe via the three-way solenoid valve 28, and is exclusively used for heating. The valve is forcibly closed during operation and hot water supply-only operation, and functions as an original automatic expansion valve during other operations.

電磁弁23と逆止弁24,35を要素とする回
路は、冷媒回収のための制御回路であり、冷房給
湯運転時に電磁弁23を開いて熱源側熱交換器3
A−1,3A−2中の冷媒を系統中に回収させるよ
うになつている。
The circuit including the solenoid valve 23 and the check valves 24 and 35 is a control circuit for refrigerant recovery, and the solenoid valve 23 is opened during cooling hot water supply operation to close the heat source side heat exchanger 3.
The refrigerant in A- 1 and 3A- 2 is recovered into the system.

電磁弁25と逆止弁26との直列になる回路は
同様に冷媒回収用制御回路であり、給湯専用、暖
房給湯併用の両運転時に電磁弁25を開いて第1
冷媒通路9A内の冷媒を系統中に回収させるよう
になつている。
The circuit connected in series with the solenoid valve 25 and the check valve 26 is also a control circuit for refrigerant recovery, and when the solenoid valve 25 is opened for both hot water supply and heating and hot water supply operations, the first solenoid valve 25 is opened.
The refrigerant in the refrigerant passage 9A is recovered into the system.

電磁弁29、逆止弁30,31を有する回路は
同じく冷媒回収用制御回路であつて、冷房専用、
暖房専用の両運転時に電磁弁29を開き、給湯用
熱交換器10内の冷媒を系統中に回収するよう機
能せしめるものである。
The circuit including the solenoid valve 29 and the check valves 30 and 31 is also a control circuit for refrigerant recovery, and is used exclusively for cooling.
During both heating-only operations, the solenoid valve 29 is opened and the refrigerant in the hot water supply heat exchanger 10 is recovered into the system.

以上制御のための各部材について説明したが前
記制御弁12は三方弁としての機能を有するもの
であれば種々の形態のものが使用可能であるが、
第2図々示装置では汎用形の四路切換弁を用いて
おり、その要部を第3図に示しているように、流
出ポートP4を電磁弁27を介して吸入管に接続
し、流入ポートP1を圧縮機1Aの吐出側に、切
換ポートP2を給湯用熱交換器10に、切換ポー
トP3を四路切換弁2Aに夫々接続している。
Although each member for control has been described above, various forms of the control valve 12 can be used as long as it has a function as a three-way valve.
The device shown in FIG. 2 uses a general-purpose four-way switching valve, the main part of which is shown in FIG . The inflow port P1 is connected to the discharge side of the compressor 1A, the switching port P2 is connected to the hot water supply heat exchanger 10, and the switching port P3 is connected to the four-way switching valve 2A.

そしてパイロツト三方電磁弁37を切り換える
ことによつて吐出ガスを給湯用熱交換器10ある
いは四路切換弁2Aに送るようになつている。
By switching the pilot three-way solenoid valve 37, the discharged gas is sent to the hot water supply heat exchanger 10 or the four-way switching valve 2A.

なお、電磁弁27は制御弁12の切換操作に際
して約10秒間だけ開きスプールの動きを確実かつ
円滑に行わせるためのものである。
The solenoid valve 27 is opened for about 10 seconds when the control valve 12 is switched to ensure that the spool moves reliably and smoothly.

以上説明した第2図々示装置の運転モードは前
記(イ)〜(ホ)項で述べたものと同じであるが、特に夏
場の給湯専用運転には熱源側熱交換器3A−1
3A−2の一方を能力低下させることと、圧縮機
1Aのアンロードとによつて高圧異常上昇を防止
することができ、運転範囲を冷房時と同時にまで
拡げることが可能である。
The operation mode of the apparatus shown in FIG .
By lowering the capacity of one of the compressors 3A- 2 and unloading the compressor 1A, an abnormal rise in high pressure can be prevented, and the operating range can be expanded to include cooling at the same time.

本考案は叙上の構成および作用を有するもので
あり、冷媒回路を2系統にし、片側の系統に給湯
用熱交換器を組み込んで、四路切換弁2A,2B
と制御弁12の操作により5種の運転モードが行
えるようにしたから、給湯のために冷凍機以外の
他のエネルギー源を必要としなく、全電気方式で
あり、かつ冷暖房用配管は2本でよいので装置は
単純化される。
The present invention has the above-mentioned configuration and function, and has two refrigerant circuits, a hot water heat exchanger built into one system, and four-way switching valves 2A and 2B.
Since five operating modes can be operated by operating the control valve 12, there is no need for any other energy source other than the refrigerator for hot water supply; the system is entirely electric, and only requires two piping for heating and cooling. This simplifies the device.

特に本考案は冷温水入口の水温と給湯水温を検
知して5種のモードを自動的に切換えて適切な運
転が行えるのでオールシーズン用として最適であ
る。
In particular, this invention is ideal for use in all seasons because it detects the water temperature at the cold/hot water inlet and the hot water temperature and automatically switches between five modes for appropriate operation.

さらに冷房給湯併用運転の場合には熱源側熱交
換器3Aから放出する廃熱を給湯熱源として利用
できるので、熱回収効果により総合能力は150%
に相当しランニングコストは従来に比して著しく
低減される。
Furthermore, in the case of combined cooling and hot water supply operation, the waste heat released from the heat source side heat exchanger 3A can be used as a hot water heat source, so the overall capacity can be increased by 150% due to the heat recovery effect.
The running cost is significantly reduced compared to the conventional method.

以上の如く本考案は種々のすぐれた効果を奏し
セントラルヒーテイング装置として最適なヒート
ポンプ冷暖房給湯機である。
As described above, the present invention is a heat pump air-conditioning/heating water heater that exhibits various excellent effects and is most suitable as a central heating device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係る基本的冷凍回路図、第2
図は本考案の1例に係る冷凍回路詳細図、第3図
は第2図における制御弁の機構図である。 A……第1冷凍系、B……第2冷凍系、1A,
1B……圧縮機、2A,2B……四路切換弁、3
A,3B……熱源側熱交換器、4A,4B……暖
房用減圧器、5A,5B……冷房用減圧器、6
A,6B,7A,7B……逆止弁、8……利用側
熱交換器、9A……第1冷媒通路、9B……第2
冷媒通路、10……給湯用熱交換器、11……受
液器、12……制御弁、14……吐出ガス管、1
6……高圧液管。
Figure 1 is a basic refrigeration circuit diagram according to the present invention, Figure 2
The figure is a detailed diagram of a refrigeration circuit according to an example of the present invention, and FIG. 3 is a mechanical diagram of the control valve in FIG. 2. A...First refrigeration system, B...Second refrigeration system, 1A,
1B...Compressor, 2A, 2B...Four-way switching valve, 3
A, 3B...Heat source side heat exchanger, 4A, 4B...Heating pressure reducer, 5A, 5B...Cooling pressure reducer, 6
A, 6B, 7A, 7B...Check valve, 8...Using side heat exchanger, 9A...First refrigerant passage, 9B...Second
Refrigerant passage, 10... Heat exchanger for hot water supply, 11... Liquid receiver, 12... Control valve, 14... Discharge gas pipe, 1
6...High pressure liquid pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 第1冷媒通路9Aおよび第2冷媒通路9Bの2
冷媒系統を有する利用側熱交換器8と、圧縮機1
A、四路切換弁2A、対空気形の熱源側熱交換器
3A、逆止弁6Aが並列に接続された暖房用減圧
器4A、逆止弁7Aが並列に接続された冷房用減
圧器5Aおよび前記第1冷媒通路9Aを要素とな
し、冷房運転と暖房運転とに切換え可能な可逆ヒ
ートポンプ冷凍サイクルに形成した第1冷凍系A
と、圧縮機1B、四路切換弁2B、対空気形の熱
源側熱交換器3B、逆止弁6Bが並列に接続され
た暖房用減圧器4B、逆止弁7Bが並列に接続さ
れた冷房用減圧器5Bおよび前記第2冷媒通路9
Bを要素となし、冷房運転と暖房運転とに切換可
能な可逆ヒートポンプ冷凍サイクルに形成した第
2冷凍系Bと、前記第1冷凍系Aに関連して夫々
設けた給湯用熱交換器10および制御弁12とか
らなり、前記制御弁12は圧縮機1Aの吐出口
を、冷房サイクル時および暖房サイクル時には四
路切換弁2Aの流入側ポートに夫々連絡し、給湯
サイクル時には前記給湯用熱交換器10の冷媒入
口に連絡する如き切換え可能に吐出ガス管14中
に介設し、前記給湯用熱交換器10は、前記制御
弁12の給湯側ポートと暖房用減圧器4Aおよび
冷房用減圧器5Aの入口側とを給湯運転時にのみ
連通する如く設けた高圧管15中に冷媒側通路を
介設してなり、第1冷凍系Aを、四路切換弁2A
の暖房側あるいは冷房側への切換操作、前記制御
弁12の切換操作ならびに前記冷房用減圧器5A
あるいは前記暖房用減圧器4Aの強制閉止操作に
よつて、給湯用熱交換器10が凝縮器として作用
する一方、熱源側熱交換器10が蒸発器として作
用し、かつ第1冷媒通路9Aが不作用となる冷凍
サイクルによる第1給湯運転あるいは第1冷媒通
路9Aが蒸発器として作用し、かつ熱源側熱交換
器3Aが不作用となる冷凍サイクルによる第2給
湯運転に切換え得る如くなし、第1冷凍系Aおよ
び第2冷凍系Bの同一サイクル併用による冷房専
用運転と暖房専用運転、第1冷凍系Aの第1給湯
運転による給湯専用運転ならびに第1冷凍系Aの
第2給湯運転に第2冷凍系Bの冷房運転を併用し
た冷房給湯運転と、第1冷凍系Aの第1給湯運転
に第2冷凍系Bの暖房運転を併用してなる暖房給
湯運転の5種のモードの運転を可能となしたこと
を特徴とするヒートポンプ冷暖房給湯機。
2 of the first refrigerant passage 9A and the second refrigerant passage 9B
A user side heat exchanger 8 having a refrigerant system and a compressor 1
A, a four-way switching valve 2A, an air-type heat source side heat exchanger 3A, a heating pressure reducer 4A with a check valve 6A connected in parallel, and a cooling pressure reducer 5A with a check valve 7A connected in parallel. and a first refrigeration system A that includes the first refrigerant passage 9A as an element and is formed into a reversible heat pump refrigeration cycle that can be switched between cooling operation and heating operation.
A compressor 1B, a four-way switching valve 2B, an air-type heat source side heat exchanger 3B, a heating pressure reducer 4B with a check valve 6B connected in parallel, and a cooling device with a check valve 7B connected in parallel. pressure reducer 5B and the second refrigerant passage 9
A second refrigeration system B is formed into a reversible heat pump refrigeration cycle capable of switching between cooling operation and heating operation, and a hot water supply heat exchanger 10 and a hot water supply heat exchanger 10 respectively provided in relation to the first refrigeration system A. The control valve 12 connects the discharge port of the compressor 1A to the inlet port of the four-way selector valve 2A during the cooling cycle and the heating cycle, and connects the outlet of the compressor 1A to the inflow side port of the four-way switching valve 2A during the hot water supply cycle, and connects the discharge port of the compressor 1A to the inlet port of the four-way switching valve 2A during the hot water supply cycle. The hot water supply heat exchanger 10 is connected to the hot water supply side port of the control valve 12, the heating pressure reducer 4A, and the cooling pressure reducer 5A. A refrigerant side passage is interposed in the high pressure pipe 15 which is provided so as to communicate with the inlet side only during hot water supply operation, and the first refrigeration system A is connected to the four-way switching valve 2A.
switching operation to the heating side or cooling side, switching operation of the control valve 12, and the cooling pressure reducer 5A.
Alternatively, by forcibly closing the heating pressure reducer 4A, the hot water supply heat exchanger 10 acts as a condenser, the heat source side heat exchanger 10 acts as an evaporator, and the first refrigerant passage 9A is disabled. The first hot water supply operation can be switched to the first hot water supply operation using the refrigeration cycle, in which the first refrigerant passage 9A acts as an evaporator, and the second hot water supply operation using the refrigeration cycle, in which the heat source side heat exchanger 3A is inactive. Refrigeration system A and second refrigeration system B operate in the same cycle for cooling only and heating only, first refrigeration system A performs hot water only in the first hot water supply operation, and first refrigeration system A performs the second hot water supply operation in the second hot water supply operation. Possible to operate in 5 modes: cooling hot water supply operation that combines cooling operation of refrigeration system B, and heating hot water supply operation that combines the first hot water supply operation of first refrigeration system A with heating operation of second refrigeration system B. A heat pump air-conditioning/heating/water heater that is characterized by the following.
JP298681U 1981-01-12 1981-01-12 Expired JPH0123089Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP298681U JPH0123089Y2 (en) 1981-01-12 1981-01-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP298681U JPH0123089Y2 (en) 1981-01-12 1981-01-12

Publications (2)

Publication Number Publication Date
JPS57116070U JPS57116070U (en) 1982-07-19
JPH0123089Y2 true JPH0123089Y2 (en) 1989-07-14

Family

ID=29801419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP298681U Expired JPH0123089Y2 (en) 1981-01-12 1981-01-12

Country Status (1)

Country Link
JP (1) JPH0123089Y2 (en)

Also Published As

Publication number Publication date
JPS57116070U (en) 1982-07-19

Similar Documents

Publication Publication Date Title
JP5518101B2 (en) Air conditioning and hot water supply complex system
WO2009098751A1 (en) Air-conditioning and water-heating complex system
WO2010113372A1 (en) Combined system of air conditioning device and hot-water supply device
JPH0232546B2 (en)
US20220011014A1 (en) Air conditioning system
JP2003172523A (en) Heat-pump floor heater air conditioner
CN110579036A (en) Multi-split cold and hot water system and control method thereof
JPS6155018B2 (en)
CN117940706A (en) Air source heat pump system
JP2001263848A (en) Air conditioner
JP2956584B2 (en) Heat recovery type air conditioner
JPH0123089Y2 (en)
JP2502719B2 (en) Cooling and hot water supply heat pump system
KR20110018958A (en) Heat pump system
JPS6146347Y2 (en)
KR100643689B1 (en) Heat pump air-conditioner
JPH02169968A (en) Heat pump type room cooler/heater hot water supply apparatus
CN217383113U (en) Air conditioner
WO2023103968A1 (en) Air source heat pump system
CN214249789U (en) Multi-split air conditioner
JP2009109061A (en) Heat pump type air conditioning device comprising heating panel
JPH06213478A (en) Air-conditioning machine
JPH0620053Y2 (en) Heat pump air conditioner
JP2603708B2 (en) Air conditioning system
JP2730934B2 (en) Heat pump refrigeration system