JPH02169968A - Heat pump type room cooler/heater hot water supply apparatus - Google Patents

Heat pump type room cooler/heater hot water supply apparatus

Info

Publication number
JPH02169968A
JPH02169968A JP32277288A JP32277288A JPH02169968A JP H02169968 A JPH02169968 A JP H02169968A JP 32277288 A JP32277288 A JP 32277288A JP 32277288 A JP32277288 A JP 32277288A JP H02169968 A JPH02169968 A JP H02169968A
Authority
JP
Japan
Prior art keywords
hot water
water supply
valve
electromagnetic
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32277288A
Other languages
Japanese (ja)
Inventor
Hiroshi Yuyama
湯山 ▲ひろし▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32277288A priority Critical patent/JPH02169968A/en
Publication of JPH02169968A publication Critical patent/JPH02169968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To satisfy room cooling, heating and hot water supplying functions and to simplify the construction of a refrigerant circuit by providing a first solenoid switching valve in the refrigerant circuit between the outlet of a compressor and a four-way switching valve, and connecting a hot water supplying heat exchanger to a branch circuit provided with a second solenoid switching valve branched from the refrigerant circuit between the outlet of the compressor and the first solenoid switching valve. CONSTITUTION:A first solenoid switching valve 2 is provided in a discharge refrigerant tube 7 of a refrigerant circuit for connecting the outlet of a compressor 1 to the inlet of a four-way switching valve 3, and a hot water supply refrigerant tube 29 for forming a branch circuit between the outlet of the compressor 1 of the discharge refrigerant tube 7 and the first solenoid switching valve 2 is provided. A second solenoid switching valve 9 a hot water supply heat exchanger 10 and a check valve 15 are provided in this order from the upstream side to the downstream side of the refrigerant in the refrigerant tube 29, and the downstream side of the refrigerant circuit 29 is connected to one end of a throttle unit 5. In the refrigerant circuit of such a construction, the operations of room cooling, room cooling and hot water supply, room heating, room heating and hot water supply, room heating, room heating and hot water supply can be performed by switching the first, second solenoid switching valves 2, 9 and the four-way switching valve 3.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分W!】[Industrial use W! ]

この発明は、冷房、暖房、冷房給湯、[房給湯および給
湯運転を行えるようにしたヒートポンプ式冷暖房給湯装
置に関するものである。
The present invention relates to a heat pump type air-conditioning/heating/water supply device capable of performing air conditioning, heating, air conditioning/hot water supply, room hot water supply, and hot water supply operations.

【従来の技術] 近年、ヒートポンプ技術の向上に伴い、冷房。 +IJj房のみではなく、これらに加えて給湯も行う、
と−トポンプ式冷暖房給湯装置の提案が増加している。 これらは、給湯のみの運転の他に、冷房運転の冷媒の凝
縮排熱を利用する経済的な運転を行うものが多数提案さ
れている。 第7図は、例えば実開昭61−203268号公報に示
された従来のヒートポンプ式冷暖房給湯装置の冷媒回路
構成図である。第7図にわいて、1は圧縮機、3は四方
切換弁、4は室外熱交換器、5A、5Bは絞り装置、6
は室内熱交換器、8はアキュムレータ、10は給湯用熱
交換器、30゜31.32,33,34および35は電
磁開閉弁、15.36,37は逆止弁であり、以上の各
部材を接続してヒートポンプ冷媒回路を構成している。 また、17.18は給湯用水用管路、21は給湯口であ
る。 次に、以上の構成のヒートポンプ式冷暖房給湯装置の冷
媒回路の各運転モード時の動作について説明する。 冷房運転時は、電磁開閉弁30,32を開、電磁開閉弁
31,33,34,35を閉として運転する。暖房運転
時は、電磁開閉弁30,32.34を開、電磁開閉弁3
1,33,35を閉として運転する。また、冬期の給湯
運転時は電磁開閉弁31.32.34を開、電磁開閉弁
30,33゜35を閉として運転し、夏期の給湯運転時
は電磁開閉弁33,34,35を開、電磁開閉弁30゜
31.32を閉として運転する。さらに、冷房給湯運転
時は電磁開閉弁30,33を開、電磁開閉弁31,32
,34,35を閉として運転し、暖房給湯運転時は電磁
開閉弁30,31,32,34を開、電磁開閉弁33.
35を閉として運転する。 上記のようにして、冷房、暖房、給湯の各運転と、冷房
と給湯とを同時に行う冷房給湯運転および暖房と給湯と
を行う暖房給湯運転とを行うものである。これらの運転
時において、四方切換弁3はそれぞれの運転モードに対
応した冷媒の流れを構成するように切り換える。 【発明が解決しようとする課1![1 従来のヒートポンプ式冷暖房給湯装置は、以上のように
構成されているので、冷房、暖房2給湯。 冷房給湯、@房給湯の各運転が電磁開閉弁の開閉と四方
切換弁の切り換えとによって一応可能であるが、多数の
電磁開閉弁を用いているため、冷媒回路の構成が複雑に
なるとともに、制御も複雑となり、冷凍サイクルの信頼
性が低いという問題点があった。また、冷媒回路に多く
の電磁開閉弁を設けると、これらが流路抵抗となり冷凍
サイクルの性能低下を来すので、エネルギ効率上好まし
くない。そして、流路抵抗による損失を低減するために
、口径の大きな電磁開閉弁を用いると、高価な装置にな
り、しかも上記のような回路部品からの放熱が大きくな
り、性能を低下させ、電磁開閉弁の電気入力も大きくな
9、ランニングコストも高くなるという問題点が発生す
る。さらに従来のヒートポンプ式冷暖房給湯装置では、
冷房給湯運転時に給湯用熱交換器のみを凝縮器として使
用するため、給湯温度や出湯量によって冷房能力が変わ
り、冷房負荷と給湯負荷との整合(マツチング)がとれ
ず、冷房能力の不足、am圧力の上昇によって圧縮機に
過大な負荷がかかる運転が発生するという問題点もあっ
た。 この発明は上記のような問題点を解決するためニナされ
たもので、冷房、暖房および給湯のそれぞれの機能を満
足させる運転ができ、冷房給湯。 暖房給湯も良好な運転状態で行うことができ、さらに冷
媒回路の構成を簡素にできるヒートポンプ式冷暖房給湯
装置を得ることを目的とするものである。 【!I!題を解決するための手段】 この発明に係るヒートポンプ式冷暖房給湯装置は、圧I
I機の吐出口と四方切換弁との間の冷媒回路に第1の電
磁開閉弁を設け、圧縮機の吐出口と第1の電磁開閉弁と
の間で冷媒回路から分岐された第2の電磁開閉弁を設け
た分岐回路に給湯用熱交換器を接続し、第1.第2の電
磁開閉弁の開閉および四方切換弁の切9換えにより、冷
房、暖房。 給湯2冷房給湯2暖房給湯の各運転を行うようにしたも
のである。
[Conventional technology] In recent years, with the improvement of heat pump technology, air conditioning. +In addition to IJJ cells, we also supply hot water.
Proposals for pump-type air-conditioning, heating, and water-heating systems are increasing. Many of these have been proposed to perform economical operation by utilizing condensed waste heat of refrigerant during cooling operation, in addition to operation for only supplying hot water. FIG. 7 is a refrigerant circuit configuration diagram of a conventional heat pump type air-conditioning/heating/water supply device disclosed in, for example, Japanese Utility Model Application Publication No. 61-203268. In Fig. 7, 1 is a compressor, 3 is a four-way switching valve, 4 is an outdoor heat exchanger, 5A and 5B are throttling devices, and 6
8 is an indoor heat exchanger, 8 is an accumulator, 10 is a hot water supply heat exchanger, 30° 31. 32, 33, 34 and 35 are electromagnetic shut-off valves, 15, 36, 37 are check valves, and each of the above members are connected to form a heat pump refrigerant circuit. Further, 17 and 18 are water supply pipes, and 21 is a hot water supply port. Next, the operation of the refrigerant circuit of the heat pump type air-conditioning/heating/water supply apparatus having the above configuration in each operation mode will be explained. During cooling operation, the electromagnetic on-off valves 30 and 32 are opened and the electromagnetic on-off valves 31, 33, 34 and 35 are closed. During heating operation, open the solenoid on-off valves 30, 32, 34, and close the solenoid on-off valve 3.
Operate with 1, 33, and 35 closed. In addition, during hot water supply operation in the winter, the electromagnetic on-off valves 31, 32, and 34 are opened and the electromagnetic on-off valves 30, 33, 35 are closed, and during hot water supply operation in the summer, the electromagnetic on-off valves 33, 34, and 35 are opened. Operate with the electromagnetic on-off valve 30°31.32 closed. Furthermore, during cooling hot water supply operation, the electromagnetic on-off valves 30 and 33 are opened, and the electromagnetic on-off valves 31 and 32 are opened.
, 34, and 35 are closed, and during heating and hot water supply operation, the electromagnetic on-off valves 30, 31, 32, and 34 are opened, and the electromagnetic on-off valves 33.
Operate with 35 closed. As described above, the cooling, heating, and hot water supply operations, the cooling hot water supply operation that simultaneously performs cooling and hot water supply, and the heating hot water supply operation that performs heating and hot water supply are performed. During these operations, the four-way switching valve 3 switches to configure the refrigerant flow corresponding to each operation mode. [Question 1 that the invention attempts to solve! [1. Conventional heat pump type air conditioning/heating/hot water supply equipment is configured as described above, so it has two hot water supply systems: cooling and heating. Although cooling hot water supply and hot water supply operations are possible by opening and closing the electromagnetic on-off valve and switching the four-way switching valve, the use of a large number of electromagnetic on-off valves complicates the configuration of the refrigerant circuit. There was a problem that the control was complicated and the reliability of the refrigeration cycle was low. Further, if a large number of electromagnetic on-off valves are provided in the refrigerant circuit, these act as flow path resistance and cause a decrease in the performance of the refrigeration cycle, which is not preferable in terms of energy efficiency. If a large-diameter electromagnetic shut-off valve is used to reduce loss due to flow path resistance, it becomes an expensive device, and heat radiation from the circuit components described above increases, reducing performance and causing electromagnetic shut-off valves. Problems arise in that the electrical input to the valve is also large9 and the running cost is also high. Furthermore, with conventional heat pump type air conditioning and water heating systems,
During cooling hot water supply operation, only the heat exchanger for hot water supply is used as a condenser, so the cooling capacity changes depending on the hot water temperature and amount of hot water, making it impossible to match the cooling load with the hot water supply load, resulting in insufficient cooling capacity, am There was also the problem that the compressor would be operated under an excessive load due to the increase in pressure. This invention was developed to solve the above-mentioned problems, and is capable of operation that satisfies each of the functions of cooling, heating, and hot water supply. It is an object of the present invention to provide a heat pump type air-conditioning/heating-water supply device which can perform heating/hot-water supply in a good operating state and can further simplify the configuration of a refrigerant circuit. [! I! Means for Solving the Problem] A heat pump type air-conditioning/heating water supply device according to the present invention has a pressure I
A first electromagnetic on-off valve is provided in the refrigerant circuit between the outlet of the I machine and the four-way switching valve, and a second electromagnetic on-off valve branched from the refrigerant circuit is provided between the outlet of the compressor and the first electromagnetic on-off valve. A hot water heat exchanger is connected to a branch circuit equipped with an electromagnetic on-off valve, and the first. Cooling and heating by opening and closing the second electromagnetic on-off valve and switching the four-way switching valve. Each operation of hot water supply, cooling hot water supply, and heating hot water supply is performed.

【作用】[Effect]

この発明におけるヒートポンプ式冷暖房給湯装置は、上
記の各運転を従来のもののように多数の電磁開閉弁を用
いることなく、2つの電磁開閉弁によって行うことがで
き、冷媒回路が簡素となり、また冷媒回路の流路抵抗が
減少するとともに電磁開閉弁への電気入力が減少し、さ
らに重量が軽減し小形化ができろ。
The heat pump type air-conditioning and hot water supply system of the present invention can perform each of the above-mentioned operations using two electromagnetic on-off valves instead of using a large number of electromagnetic on-off valves unlike conventional ones, and the refrigerant circuit is simple. This reduces the flow path resistance and reduces the electrical input to the electromagnetic on-off valve, further reducing weight and making it more compact.

【実施例】【Example】

以下、この発明の一実施例を第1図ないし第6図につい
て説明する。 第1図はこの発明の一実施例によるヒートポンプ式冷暖
房給湯装置の冷媒回路の構成図である。 第1図において、1は圧縮機、3は四方切換弁、4は室
外熱交換器、5は絞り装置、6は室内熱交換器、8はア
キュムレータ、1oは給湯用熱交換器であり、これらを
主な構成要素としてヒートポンプ冷媒回路を構成してい
る。圧縮機1の吐出口と四方切換弁3の入口との間を接
続する冷媒回路の吐出冷媒配管7に第1の電磁開閉弁2
を設けてあり、吐出冷媒配管7の圧縮機1吐出口と第1
の電磁開閉弁2との間から分岐回路を形成する給湯用冷
媒配管29が設けられ、この冷媒配管29には第2の電
磁開閉弁9、給湯用熱交換器10および逆止弁15がこ
の順に冷媒上流側から下流側に向って設けてあり、冷媒
配管29の下流端を絞り装w5の一端に接続させである
。絞り装M5は、一端を室外熱交換器4および室内熱交
換器6と逆止弁11および12を介して接続してあり、
他端・湯用水回路は、給湯クンク19と給湯用熱交換器
10の入口側がポンプ16を有するW路17で接続して
あり、給湯用熱交換器10の出口側が電路18で給湯ク
ンク19と接続してあり、給湯タンク19には給水管2
0および給湯口21も接続しである。さらに制御系はリ
モートコントローラ22、これに信号線25で接続した
室内ユニット41のコントローラ23、このコントロー
ラ23と信号線26で接続した室外ユニット42のコン
トローラ24、およびコントローラ24に信号線27で
接続した温度検出器28を有し、この検出器28は貯湯
タンク19内の水温を検出するものである。そして、リ
モートコントローラ22により冷暖房、給湯運転を制御
する信号を信号線25を用いてコントローラ23に送り
、これで室内ユニット41を制御し、また信号線26を
用いてコントローラ24にも送り室外ユニット42も制
御する。温度検出器28で検出した貯湯タンク19内の
水温検出信号を信号線27を用いてコントローラ24に
送ることtでも室外ユニット42を制御する。さらに、
コントローラ24によって室外ユニ:y I−42側の
他の入力信号を受信し、圧縮機1、四方切換弁3、第1
.第2電磁開閉弁2,9などの刷部信号を出力し、同様
にコントローラ23によって室内ユニット41側の入出
力制御を行うように構成しである。 上述した構成の冷媒回路では、第1.第2の電磁開閉弁
2,9の開閉および四方切換弁、3の切り換えによって
、冷房、冷房給湯、暖房、暖房給湯、および給湯の各運
転を行う。 第2図によって冷房運転を説明する。この運転時には、
第1の電磁開閉弁2を開とし、第2の電磁開閉弁9を閉
として圧縮機1の運転を行う。これの吐出冷媒は第2図
の矢印に示すように、圧縮機1−第1の電磁開閉弁2→
四方切換弁3−室外熱交換器4−逆止弁11−絞り装置
5−逆止弁14−室内熱交換器6→四方切換弁3−圧縮
機1の経路で循環する。この運転時には、第2の電磁開
閉弁9が閉じているので、通常のビー1−ポンプ式冷暖
房装置の冷房運転と同様な動作をする。 次に、冷房給湯運転について説明する。この運転時は、
貯湯タンク19の1温度検出器28から給湯負荷の発生
が室外ユニット42のコントローラ24に入力さね、ま
た室内側からも冷房負荷の発。 生が入力されている場合であり、上述した冷房運転状態
で第2の電磁開閉弁9を開く。また、ポンプ16を駆動
させ、貯湯タンク19と給湯用熱交換Hioとの間で給
湯水を循環させる。圧縮機1の運転により、吐出冷媒は
第3図の矢印に示すように、冷房運転時と同様に室外熱
交換器4に流れるものと、圧縮機1→第2の電磁開閉弁
9呻給湯用熱交換器1〇−逆止弁15の順に流れるもの
とに分流され、これらの冷媒が逆上弁11.15の下流
で合流され、以後は冷房運転時と同様の流れになる。こ
の運転により給湯用熱交換器15で冷媒によって給湯循
環水を加熱するが、給湯循環水の温度は給湯負荷の発生
パターンによって多様である。すなオ)ち、給湯循環水
の温度が低い時は、給湯用熱交換器10の凝縮温度が低
くなるため、圧力が低く、冷媒は給湯用熱交換器10に
主に流れ、圧縮t* iが低負荷状態で冷房しながら貯
湯タンク内の給湯水を加熱して行く。貯湯タンク内の給
湯水の温度上昇に伴い、冷媒の凝縮温度も上昇するが、
この状態になると給湯用熱交換器10の凝縮能力が低下
し、冷媒は室外熱交換器4に主に流れるようになる。こ
の場合には、貯湯タンク内の給湯水の温度が上昇してお
り、これを急速に加熱する必要がなく、この運転を続け
ることにより冷房しながら貯湯タンク内の給湯水を所定
温度に加熱することができる。給湯水が所定温度に達す
ると、温度検出譬の入力によって第2の電磁開閉弁9を
閉じ、ポンプも停止し、冷房運転に移行する。すなわち
、第2の電磁開閉弁9の開閉により、圧縮機1の運転を
続けながら、冷房運転と冷房給湯運転とを切り換えるこ
とができる。 第4図によって暖房運転を説明する。この運転時には、
第1の電磁開閉弁2を開とし、第2の電磁rIli閉弁
9を閉とし、四方切換弁3を切り換え冷媒の流れを冷房
運転時と逆になるようにして圧縮機1を運転する。これ
の吐出冷媒は、第4図の矢印に示すように、圧縮機1→
第1の電磁開閉弁2−四方切換弁3−室内熱交換器6−
逆止弁12−絞り装N5→逆止弁13−室外熱交換器4
−四方切換弁3−圧縮機1の経路で循環し、通常のヒト
ポンプ式冷暖房装置の暖房運転と同様な動作をする。 次に、暖房給湯運転について説明する。この運転時は、
給湯負荷と暖房負荷とが発生している場合であゆ、上述
した暖房運転状態で、第2の電磁開閉弁9を開いて行う
。圧縮機1の運転により、吐出冷媒は第5図の矢印に示
すように暖房運転時と同様に室内熱交換器6に流れるも
のと、給湯用熱交換器10に流れるものとに分流され、
これらの冷媒が逆止弁12.15の下流で合流され、以
後は暖房運転時と同様の流れになる。 さらに、第6図によって給湯運転を説明する。 この運転時は、第1の電磁開閉々閉じ、第2のmm開閉
弁9を閉じて運転を行い、この場合1こはポンプを駆動
させ、貯湯タンクと給湯用熱交換器10との間で給湯水
を循環させる。圧縮機1の運転によ吟、吐出冷媒は第6
図の矢印に示すように、給湯用熱交換器10、絞り装M
5および室外熱交換器4を通って循環する。そして、第
1の電u1開閉弁2の開閉によって、第2の電磁開閉弁
9が開いているため、給湯運転と暖房給湯運転とを圧縮
機1の運転を続けながら行うことができる。 従って、暖房給湯運転中に暖房負荷が増大した場合には
、−時的に第2の電磁開閉弁9を閉じ、給湯運転機能を
停止して暖房能力を大きくしたり、暖房給湯運転中に出
湯によって給湯負荷が増大した場合には、−時的に第1
の電磁開閉弁2を閉じ、給湯能力を増加させたりする運
転を行うことができる。これらの運転は室内側暖房負荷
信号および貯湯タンク内の給湯水の温度信号に基づいて
刷部するものである。また、冷房運転中あるいは暖房運
転中は、第2の電磁開閉弁9が閉じ給湯用熱交換vs1
0が動作しないため、この熱交換器1oへの冷媒の流入
、寝込みがなく、給湯運転中は室内熱交換@6が低圧側
となるため、この熱交換器6への冷媒の流入、寝込みが
なく、運転中に冷媒の過不足を生じろことがなく、安定
した運転ができる。さらに冷房給湯運転中に、凝縮器側
となる室外熱交換器4および給湯用熱交換器10の冷媒
の流れは、循環する給湯水の温度が低い場合には、給湯
用熱交換器10の能力が支配的となって給湯能力を大き
くでき、給湯水の温度が上昇して来ると給湯用熱交換器
10の凝縮能力が減少するため、室外熱交換器4の能力
が支配的となり、従って給湯用熱交換器10、室外熱交
換器4への冷媒の流れが自動的に調整され、冷房能力が
変化することなく運転できろ。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 6. FIG. 1 is a configuration diagram of a refrigerant circuit of a heat pump type air-conditioning/heating/water supply apparatus according to an embodiment of the present invention. In Fig. 1, 1 is a compressor, 3 is a four-way switching valve, 4 is an outdoor heat exchanger, 5 is a throttle device, 6 is an indoor heat exchanger, 8 is an accumulator, and 1o is a hot water supply heat exchanger. The heat pump refrigerant circuit is made up of the following main components: A first electromagnetic on-off valve 2 is installed in the discharge refrigerant pipe 7 of the refrigerant circuit connecting between the discharge port of the compressor 1 and the inlet of the four-way switching valve 3.
The compressor 1 discharge port of the discharge refrigerant pipe 7 and the first
A refrigerant pipe 29 for hot water supply forming a branch circuit between the electromagnetic on-off valve 2 and the second electromagnetic on-off valve 9, a heat exchanger 10 for hot water supply, and a check valve 15 is provided in this refrigerant pipe 29. They are provided in order from the refrigerant upstream side to the downstream side, and the downstream end of the refrigerant pipe 29 is connected to one end of the throttle device w5. The throttle device M5 has one end connected to the outdoor heat exchanger 4 and the indoor heat exchanger 6 via check valves 11 and 12,
The other end of the hot water circuit is such that the inlet side of the hot water supply heat exchanger 10 and the hot water supply heat exchanger 10 are connected by a W path 17 having a pump 16, and the outlet side of the hot water supply heat exchanger 10 is connected to the hot water supply chain 19 through an electric line 18. The water supply pipe 2 is connected to the hot water tank 19.
0 and the hot water supply port 21 are also connected. Furthermore, the control system includes a remote controller 22, a controller 23 of the indoor unit 41 connected to this by a signal line 25, a controller 24 of the outdoor unit 42 connected to this controller 23 by a signal line 26, and a signal line 27 connected to the controller 24. A temperature detector 28 is provided, and this detector 28 detects the water temperature in the hot water storage tank 19. Then, the remote controller 22 sends a signal to control the air conditioning, heating, and hot water supply operation to the controller 23 using the signal line 25, which controls the indoor unit 41, and also sends it to the controller 24 using the signal line 26 to the outdoor unit 42. also control. The outdoor unit 42 is also controlled by sending a water temperature detection signal in the hot water storage tank 19 detected by the temperature detector 28 to the controller 24 using the signal line 27. moreover,
The controller 24 receives other input signals from the outdoor unit y I-42 side, and controls the compressor 1, four-way switching valve 3, and the first
.. It is configured to output printing unit signals such as the second electromagnetic on-off valves 2 and 9, and similarly perform input/output control on the indoor unit 41 side by the controller 23. In the refrigerant circuit configured as described above, the first. By opening and closing the second electromagnetic on-off valves 2 and 9 and switching the four-way switching valve 3, cooling, cooling hot water supply, heating, heating hot water supply, and hot water supply operations are performed. The cooling operation will be explained with reference to FIG. During this drive,
The compressor 1 is operated with the first electromagnetic on-off valve 2 open and the second electromagnetic on-off valve 9 closed. The refrigerant discharged from this is as shown by the arrow in Fig. 2: compressor 1 - first electromagnetic on-off valve 2 ->
It circulates through the four-way switching valve 3 - outdoor heat exchanger 4 - check valve 11 - throttling device 5 - check valve 14 - indoor heat exchanger 6 -> four-way switching valve 3 - compressor 1. During this operation, since the second electromagnetic on-off valve 9 is closed, the operation is similar to the cooling operation of a normal B1-pump air conditioning system. Next, the cooling hot water supply operation will be explained. When driving this way,
The generation of hot water supply load is input from the first temperature detector 28 of the hot water storage tank 19 to the controller 24 of the outdoor unit 42, and the cooling load is also generated from the indoor side. In this case, the second electromagnetic on-off valve 9 is opened in the above-mentioned cooling operation state. In addition, the pump 16 is driven to circulate hot water between the hot water storage tank 19 and the hot water heat exchanger Hio. As the compressor 1 operates, the discharged refrigerant flows into the outdoor heat exchanger 4 as in the case of cooling operation, as shown by the arrow in Fig. 3, and the compressor 1 → the second electromagnetic on-off valve 9 for hot water supply. The refrigerant flows in the order of the heat exchanger 10 and the check valve 15, and these refrigerants are combined downstream of the reversal valve 11.15, and thereafter flow in the same manner as during cooling operation. Through this operation, the hot water supply circulating water is heated by the refrigerant in the hot water supply heat exchanger 15, and the temperature of the hot water circulating water varies depending on the generation pattern of the hot water supply load. In other words, when the temperature of the hot water supply circulating water is low, the condensation temperature of the hot water supply heat exchanger 10 is low, so the pressure is low, and the refrigerant mainly flows to the hot water supply heat exchanger 10, compressing t* i heats the hot water in the hot water storage tank while cooling the air conditioner in a low load state. As the temperature of hot water in the hot water storage tank increases, the condensation temperature of the refrigerant also increases.
In this state, the condensing capacity of the hot water supply heat exchanger 10 decreases, and the refrigerant mainly flows to the outdoor heat exchanger 4. In this case, the temperature of the hot water supply in the hot water storage tank has risen, and there is no need to rapidly heat it, and by continuing this operation, the hot water supply water in the hot water storage tank is heated to a predetermined temperature while cooling. be able to. When the hot water reaches a predetermined temperature, the second electromagnetic on-off valve 9 is closed in response to the temperature detection input, the pump is also stopped, and the cooling operation is started. That is, by opening and closing the second electromagnetic on-off valve 9, it is possible to switch between the cooling operation and the cooling hot water supply operation while continuing the operation of the compressor 1. The heating operation will be explained with reference to FIG. During this drive,
The compressor 1 is operated by opening the first electromagnetic on-off valve 2, closing the second electromagnetic rIli closing valve 9, and switching the four-way switching valve 3 to reverse the flow of refrigerant to that during cooling operation. The refrigerant discharged from the compressor 1 →
First electromagnetic on-off valve 2 - Four-way switching valve 3 - Indoor heat exchanger 6 -
Check valve 12 - Restrictor N5 → Check valve 13 - Outdoor heat exchanger 4
It circulates through the four-way switching valve 3-compressor 1 path, and operates in the same way as the heating operation of a normal human pump type air-conditioning system. Next, the heating and hot water supply operation will be explained. When driving this way,
When a hot water supply load and a heating load are occurring, the second electromagnetic on-off valve 9 is opened in the above-mentioned heating operation state. By the operation of the compressor 1, the discharged refrigerant is divided into two parts: one that flows to the indoor heat exchanger 6 and the other that flows to the hot water supply heat exchanger 10, as in the heating operation, as shown by the arrows in FIG.
These refrigerants are combined downstream of the check valve 12.15, and thereafter flow in the same manner as during heating operation. Furthermore, the hot water supply operation will be explained with reference to FIG. During this operation, the first electromagnetic switch is closed and the second mm switch valve 9 is closed. Circulate hot water. Based on the operation of compressor 1, the discharge refrigerant is
As shown by the arrow in the figure, the hot water supply heat exchanger 10, the diaphragm M
5 and the outdoor heat exchanger 4. Since the second electromagnetic on-off valve 9 is opened by opening and closing the first electric u1 on-off valve 2, hot water supply operation and heating hot water supply operation can be performed while the compressor 1 continues to operate. Therefore, if the heating load increases during the heating hot water supply operation, the second electromagnetic on-off valve 9 may be temporarily closed, the hot water supply operation function may be stopped, and the heating capacity may be increased, or hot water may be tapped during the heating hot water supply operation. If the hot water supply load increases due to
It is possible to perform an operation in which the electromagnetic on-off valve 2 is closed and the hot water supply capacity is increased. These operations are performed based on the indoor heating load signal and the temperature signal of the hot water in the hot water storage tank. In addition, during cooling operation or heating operation, the second electromagnetic on-off valve 9 is closed and the hot water supply heat exchange vs1
0 does not operate, there is no inflow or stagnation of refrigerant into this heat exchanger 1o, and since indoor heat exchange @ 6 is on the low pressure side during hot water supply operation, there is no inflow or stagnation of refrigerant into this heat exchanger 6. There is no problem of excess or shortage of refrigerant during operation, and stable operation is possible. Furthermore, during cooling hot water supply operation, the flow of refrigerant in the outdoor heat exchanger 4 and the hot water supply heat exchanger 10, which are on the condenser side, is limited to the capacity of the hot water heat exchanger 10 when the temperature of the circulating hot water supply water is low. becomes dominant and the hot water supply capacity can be increased, and as the temperature of hot water rises, the condensing capacity of the hot water supply heat exchanger 10 decreases, so the capacity of the outdoor heat exchanger 4 becomes dominant, and therefore the hot water supply capacity increases. The flow of refrigerant to the outdoor heat exchanger 10 and the outdoor heat exchanger 4 is automatically adjusted, allowing operation without changing the cooling capacity.

【発明の効果】【Effect of the invention】

以上説明したように、この発明によれば圧縮機の吐出口
と四方切換弁との間の冷媒回路に第1の電磁開閉弁を設
け、圧縮機の吐出口と第1の電磁開閉弁との間から分岐
され第2の電磁開閉弁を設けた分岐回路に給湯用熱交換
器を接続し、第1゜第2の電磁開閉弁の開閉および四方
切換弁の切り換えにより、冷房、暖房、給湯、冷房給湯
、暖房給湯の各運転を行うようにしたので、従来のもの
のように多数の電磁開閉弁を用いることなく、2つのr
i電磁開閉弁よって上記各運転ができ、冷媒回路が簡素
となって安価に製作でき、また冷媒回路の流路抵抗が減
少するとともに電磁開閉弁への電気入力が大幅に減少し
、冷凍サイクルの性能が向上し、ランニングコストも低
減し、さらに冷媒回路の重量の軽減、小形化が可能とな
り実用性の高いヒートポンプ式冷暖房給湯装置が得られ
るという効果がある。
As explained above, according to the present invention, the first electromagnetic on-off valve is provided in the refrigerant circuit between the discharge port of the compressor and the four-way switching valve, and the first electromagnetic on-off valve is connected between the discharge port of the compressor and the four-way switching valve. A heat exchanger for hot water supply is connected to a branch circuit branched from between and equipped with a second electromagnetic on-off valve, and by opening and closing the first and second electromagnetic on-off valves and switching the four-way switching valve, cooling, heating, hot water supply, Since it is designed to perform both cooling hot water supply and heating hot water supply operations, two r
i The electromagnetic on-off valve enables each of the above operations, the refrigerant circuit is simple and can be manufactured at low cost, and the flow resistance of the refrigerant circuit is reduced, as well as the electrical input to the electromagnetic on-off valve is significantly reduced, which improves the refrigeration cycle. This has the effect of improving performance, reducing running costs, and making it possible to reduce the weight and size of the refrigerant circuit, resulting in a highly practical heat pump type air-conditioning/heating and hot water supply system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によると−トボンブ式冷暖
房給湯装置の冷媒回路を示す構成図、第2図、第3図、
第4図、第5図および第6図は第1図の冷媒流路を給湯
用水回路を除いて示す冷房運転時、冷房給湯運転時、暖
房運転時、暖房給湯運転時、および給湯運転時の説明図
、第7図は従来例のヒートポンプ式冷暖房給湯装置の冷
媒回路を示す構成図である。 1・・圧縮機、2 第1の電磁開閉弁、3 四方切換弁
、4 室外熱交換器、5・−絞り装置、6室内熱交換盟
、8 アキュムレータ、9 第2の電磁開閉弁、10 
給湯用熱交換器、11,12゜13.14,15  逆
止弁。 なお、図中同一符号は同−又は相当部分を示す。
FIG. 1 is a configuration diagram showing a refrigerant circuit of a bomb-type air-conditioning, heating, and hot-water supply system according to an embodiment of the present invention; FIGS. 2 and 3;
Figures 4, 5, and 6 show the refrigerant flow path in Figure 1 with the hot water supply water circuit removed, during cooling operation, cooling hot water supply operation, heating operation, heating hot water supply operation, and hot water supply operation. The explanatory diagram, FIG. 7, is a configuration diagram showing a refrigerant circuit of a conventional heat pump type air-conditioning/heating/water supply device. 1 Compressor, 2 First electromagnetic on-off valve, 3 Four-way switching valve, 4 Outdoor heat exchanger, 5 - Throttle device, 6 Indoor heat exchanger, 8 Accumulator, 9 Second electromagnetic on-off valve, 10
Heat exchanger for hot water supply, 11, 12° 13. 14, 15 Check valve. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方切換弁、室外熱交換器、絞り装置、室内熱
交換器および給湯用熱交換器をヒートポンプ冷媒回路の
主な構成要素として、冷房、暖房給湯運転を行うヒート
ポンプ式冷暖房給湯装置において、圧縮機の吐出口と四
方切換弁との間の冷媒回路に第1の電磁開閉弁を設け、
圧縮機の吐出口と第1の電磁開閉弁との間で冷媒回路か
ら分岐され第2の電磁開閉弁を設けた分岐回路に給湯用
熱交換器を接続し、冷房および暖房運転時には第1の電
磁開閉弁を開、第2の電磁開閉弁を閉とし、給湯運転時
には、第1の電磁開閉弁を閉、第2の電磁開閉弁を開と
し、冷房給湯運転時および暖房給湯運転時には、第1、
第2の電磁開閉弁をともに開とし、四方切換弁の切換え
と相まって上記各運転を行うようにしたことを特徴とす
るヒートポンプ式冷暖房給湯装置。
In a heat pump type air-conditioning/heating/water heating system that performs cooling, heating/hot water supply operations using a compressor, a four-way switching valve, an outdoor heat exchanger, a throttle device, an indoor heat exchanger, and a hot water supply heat exchanger as the main components of a heat pump refrigerant circuit, A first electromagnetic on-off valve is provided in the refrigerant circuit between the discharge port of the compressor and the four-way switching valve,
A heat exchanger for hot water supply is connected to a branch circuit that is branched from the refrigerant circuit between the discharge port of the compressor and the first electromagnetic on-off valve and is provided with a second electromagnetic on-off valve. The electromagnetic on-off valve is opened and the second electromagnetic on-off valve is closed. During hot water supply operation, the first electromagnetic on-off valve is closed and the second electromagnetic on-off valve is opened. 1,
A heat pump type air-conditioning/heating/water supply device characterized in that both the second electromagnetic on-off valves are opened, and each of the above operations is performed in combination with switching of the four-way switching valve.
JP32277288A 1988-12-21 1988-12-21 Heat pump type room cooler/heater hot water supply apparatus Pending JPH02169968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32277288A JPH02169968A (en) 1988-12-21 1988-12-21 Heat pump type room cooler/heater hot water supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32277288A JPH02169968A (en) 1988-12-21 1988-12-21 Heat pump type room cooler/heater hot water supply apparatus

Publications (1)

Publication Number Publication Date
JPH02169968A true JPH02169968A (en) 1990-06-29

Family

ID=18147470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32277288A Pending JPH02169968A (en) 1988-12-21 1988-12-21 Heat pump type room cooler/heater hot water supply apparatus

Country Status (1)

Country Link
JP (1) JPH02169968A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464063U (en) * 1990-10-16 1992-06-01
JPH04268173A (en) * 1991-02-21 1992-09-24 Tomoe Shokai:Kk Cooling, heating and hot water feeding device
CN1302239C (en) * 2003-03-11 2007-02-28 日立家用电器公司 Refrigeration circulator
WO2010098061A1 (en) * 2009-02-24 2010-09-02 ダイキン工業株式会社 Heat pump system
WO2010098069A1 (en) * 2009-02-24 2010-09-02 ダイキン工業株式会社 Heat pump system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191155A (en) * 1984-03-12 1985-09-28 株式会社日立製作所 Heat recovery type chiller unit
JPS6262277A (en) * 1985-09-12 1987-03-18 Nec Corp Initial trapping system for satellite

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191155A (en) * 1984-03-12 1985-09-28 株式会社日立製作所 Heat recovery type chiller unit
JPS6262277A (en) * 1985-09-12 1987-03-18 Nec Corp Initial trapping system for satellite

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464063U (en) * 1990-10-16 1992-06-01
JPH04268173A (en) * 1991-02-21 1992-09-24 Tomoe Shokai:Kk Cooling, heating and hot water feeding device
CN1302239C (en) * 2003-03-11 2007-02-28 日立家用电器公司 Refrigeration circulator
WO2010098061A1 (en) * 2009-02-24 2010-09-02 ダイキン工業株式会社 Heat pump system
WO2010098069A1 (en) * 2009-02-24 2010-09-02 ダイキン工業株式会社 Heat pump system
JP2010196950A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system
US8769974B2 (en) 2009-02-24 2014-07-08 Daikin Industries, Ltd. Heat pump system
US9581361B2 (en) 2009-02-24 2017-02-28 Daikin Industries, Ltd. Heat pump system
EP2402686A4 (en) * 2009-02-24 2017-04-26 Daikin Industries, Ltd. Heat pump system

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
JP5265001B2 (en) Air conditioner
KR101980710B1 (en) Air conditioner
CN203964454U (en) A kind of pure electric automobile heat pump type air conditioning system and pure electric automobile
CN109210820A (en) Multifunctional heat pump and switching method for implementing different functions thereof
CN109945374B (en) Air conditioner and integrated circulation pipeline system thereof
CN101749812A (en) Multifunctional Air Conditioning System
JP2908013B2 (en) Air conditioner
CN114683803A (en) Pure electric vehicle thermal management system based on heat pump and control method thereof
CN110579036A (en) Multi-split cold and hot water system and control method thereof
JP2980022B2 (en) Heat pump water heater
CN213272984U (en) Heat exchange system and air conditioner with same
CN203478692U (en) Total heat recovery household multi-split air-conditioner system
CN1888637A (en) Hot pump type air conditioner set with water heater
JP3404133B2 (en) Thermal storage type air conditioner
CN204254925U (en) Heat exchange system and air conditioner with same
CN201059703Y (en) Refrigeration system of air conditioner hot-water multipurpose apparatus
CN203869367U (en) Floor heating system, water heater and air conditioner three-in-one unit
JPH02169968A (en) Heat pump type room cooler/heater hot water supply apparatus
CN102809247A (en) Variable frequency air-cooled cold water heat pump air-conditioner hot water system
CN209819774U (en) Air conditioner and integrated circulating pipeline system thereof
CN113357691A (en) Air conditioner, floor heating and hot water three-in-one low-temperature air source heat pump unit
CN207050131U (en) A kind of air-conditioning
CN102889709B (en) Frequency-conversion multifunctional air-conditioning water heating system
CN220669821U (en) Heat pump system and air conditioner