JP3404133B2 - Thermal storage type air conditioner - Google Patents

Thermal storage type air conditioner

Info

Publication number
JP3404133B2
JP3404133B2 JP16121594A JP16121594A JP3404133B2 JP 3404133 B2 JP3404133 B2 JP 3404133B2 JP 16121594 A JP16121594 A JP 16121594A JP 16121594 A JP16121594 A JP 16121594A JP 3404133 B2 JP3404133 B2 JP 3404133B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat
heat storage
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16121594A
Other languages
Japanese (ja)
Other versions
JPH0828932A (en
Inventor
繁男 青山
哲英 倉本
和彦 町田
皓三 鈴木
吉秀 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP16121594A priority Critical patent/JP3404133B2/en
Publication of JPH0828932A publication Critical patent/JPH0828932A/en
Application granted granted Critical
Publication of JP3404133B2 publication Critical patent/JP3404133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance indoor comfortableness at the time of defrosting in winter and to effectively utilize night power in the refrigerating cycle of a thermal storage type air conditioner having a thermal storage tank. CONSTITUTION:A bypass circuit for connecting a refrigerant-to-refrigerant heat exchanger HEX and a thermal storage tank STR in a secondary side refrigerating cycle are connected in series via a bypass valve BV is installed. An outdoor side heat exchanger 4 is defrosted when a thermal storage material 16 in the tank STR is a predetermined temperature or higher. Accordingly, the valve BV is opened, a primary side refrigerating cycle and a secondary side refrigerating cycle are operated. A defrost controller CN for closing the valve BV and operating only the primary cycle in the case of defrosting the exchanger 4 when the material 16 is lower than a predetermined temperature is installed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を熱源とする空気
調和機において、夜間電力を利用するための蓄熱・放熱
機能、及びその制御機能を備えた蓄熱式空気調和機の冬
季除霜運転に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using air as a heat source in the winter defrosting operation of a heat storage type air conditioner having a heat storage / radiation function for utilizing night power and a control function thereof. Regarding

【0002】[0002]

【従来の技術】蓄熱式空気調和機については、既にさま
ざまな開発がなされており、例えば、冷凍・第62巻第
714号(昭和62年4月号)P358に示されている
ような蓄熱式空気調和機がある。
2. Description of the Related Art A heat storage type air conditioner has already been variously developed, and for example, a heat storage type as shown in P.358 of Refrigeration Vol. 62, No. 714 (April 1987). There is an air conditioner.

【0003】その基本的な技術について述べると、図4
に示すように、空冷ヒ−トポンプ1は、圧縮機2,四方
弁3,室外側熱交換器4,室外側膨張弁5,フロン対ブ
ライン熱交換器6を環状に順次接続して冷凍サイクルA
を形成し、一方、フロン対ブライン熱交換器6,ブライ
ン対水熱交換器7と蓄熱槽8との並列接続回路,ブライ
ンポンプ9を環状に順次接続してブライン循環サイクル
Bを形成している。
The basic technique will be described with reference to FIG.
As shown in FIG. 1, the air-cooling heat pump 1 has a refrigeration cycle A in which a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an outdoor expansion valve 5, a Freon-to-brine heat exchanger 6 are sequentially connected in an annular shape.
On the other hand, a freon-to-brine heat exchanger 6, a brine-to-water heat exchanger 7 and a parallel connection circuit of the heat storage tank 8 and a brine pump 9 are sequentially connected in an annular shape to form a brine circulation cycle B. .

【0004】また、負荷側についてはブライン対水熱交
換器7,蓄熱槽8,冷温水ポンプ10,室内機12を環
状に順次接続して冷温水循環サイクルCを形成してい
る。
On the load side, a brine-to-water heat exchanger 7, a heat storage tank 8, a cold / hot water pump 10 and an indoor unit 12 are sequentially connected in an annular shape to form a cold / hot water circulation cycle C.

【0005】この蓄熱式空気調和機において夜間運転
は、冷凍サイクルAにおいて四方弁3によって製氷/冷
房運転、及び蓄熱/暖房運転に切り替えられる。
In this heat storage type air conditioner, the night operation is switched to the ice making / cooling operation and the heat storage / heating operation by the four-way valve 3 in the refrigeration cycle A.

【0006】特に、冬季運転、即ち蓄熱/暖房運転に限
って、以下述べていくと、夜間における蓄熱運転は冷凍
サイクルA、及び冷凍サイクルBにて、図4中の実線矢
印方向に冷媒が流れて暖房サイクルが形成され、同じく
フロン対ブライン熱交換器6を介してブライン循環サイ
クルBにおける蓄熱槽8内に温水として蓄熱される。こ
の場合、ブライン対水熱交換器7は使用されない。
Particularly, in the winter operation, that is, only in the heat storage / heating operation, the heat storage operation at night is performed in the refrigeration cycle A and the refrigeration cycle B in the direction of the arrow in the solid line in FIG. As a result, a heating cycle is formed, and heat is stored as hot water in the heat storage tank 8 in the brine circulation cycle B via the Freon-to-brine heat exchanger 6 as well. In this case, the brine to water heat exchanger 7 is not used.

【0007】そして、夜間における室外側熱交換器4の
除霜運転は冷凍サイクルA、及び冷凍サイクルBにて、
図4中の破線矢印方向に冷媒が流れて除霜サイクルが形
成され、フロン対ブライン熱交換器6を介してブライン
循環サイクルBにおける蓄熱槽8内の温水より吸熱して
室外側熱交換器4の除霜が行われる。
In the defrosting operation of the outdoor heat exchanger 4 at night, the refrigeration cycle A and the refrigeration cycle B are
The refrigerant flows in the direction of the broken line arrow in FIG. 4 to form a defrost cycle, and absorbs heat from the hot water in the heat storage tank 8 in the brine circulation cycle B via the Freon-to-brine heat exchanger 6 and the outdoor heat exchanger 4 Defrosting is performed.

【0008】一方、昼間運転は、冷温水循環サイクルC
において図5中の実線矢印方向に冷媒が流れて、蓄熱槽
8内の温水を冷温水ポンプ10により室内機12へ送
り、暖房運転を行う。この際、暖房能力を高めるべく、
冷凍サイクルA、ブライン循環サイクルBを暖房サイク
ルとして運転して、冷温水循環サイクルC内においてブ
ライン対水熱交換器7と蓄熱槽8を並列に回路を構成
し、2つの熱交換器で水に加熱する。
On the other hand, during the daytime operation, the cold / hot water circulation cycle C
In FIG. 5, the refrigerant flows in the direction of the solid line arrow in FIG. 5, hot water in the heat storage tank 8 is sent to the indoor unit 12 by the cold / hot water pump 10, and heating operation is performed. At this time, in order to increase the heating capacity,
The refrigeration cycle A and the brine circulation cycle B are operated as a heating cycle, and the brine-to-water heat exchanger 7 and the heat storage tank 8 are configured in parallel in the cold / hot water circulation cycle C to heat water with two heat exchangers. To do.

【0009】そして、昼間における室外側熱交換器4の
除霜運転は冷凍サイクルA、冷凍サイクルB、及び冷凍
サイクルCにて、図5中の破線矢印方向に冷媒が流れて
除霜サイクルが形成され、夜間運転時と同様、フロン対
ブライン熱交換器6を介してブライン循環サイクルBに
おける蓄熱槽8内の温水より吸熱して室外側熱交換器4
の除霜が行われる。
In the defrosting operation of the outdoor heat exchanger 4 in the daytime, in the refrigerating cycle A, the refrigerating cycle B and the refrigerating cycle C, the refrigerant flows in the direction of the broken line arrow in FIG. 5 to form the defrosting cycle. As in the night operation, the outdoor heat exchanger 4 absorbs heat from the hot water in the heat storage tank 8 in the brine circulation cycle B via the Freon-to-brine heat exchanger 6.
Defrosting is performed.

【0010】以上のように、夜間の余剰電力エネルギー
を熱に変換して蓄熱しておき、冬季は朝の暖房立上げ
時、または昼間の暖房に夜間電力を利用することによ
り、室内の快適性の向上が可能である。
As described above, by converting the surplus power energy at night into heat to store the heat, and by using the night power at the time of heating start-up in the morning or heating during the daytime in winter, the indoor comfort is improved. Can be improved.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、前述の
従来例では、熱源側と負荷側との間に熱交換を2回介す
る必要があるため効率の低下を招き、また負荷側へは冷
温水を直接搬送するため、水漏れ事故が生じた場合、近
年OA化が進展したオフィス内のOA機器への水損は避
けられないという欠点を有していた。
However, in the above-mentioned conventional example, since it is necessary to perform heat exchange twice between the heat source side and the load side, efficiency is lowered, and cold / hot water is supplied to the load side. Since it is directly transported, it has a drawback that if a water leakage accident occurs, water damage to OA equipment in an office, which has been recently improved to OA, cannot be avoided.

【0012】そこで、本発明は、高効率で、安全性が高
く、かつ負荷追従性の高い蓄熱式空気調和機を提供する
ことを目的とするものである。
Therefore, it is an object of the present invention to provide a heat storage type air conditioner having high efficiency, high safety, and high load followability.

【0013】[0013]

【課題を解決するための手段】上記課題を解決する本発
明の技術的手段は、圧縮機、第1四方弁、室外側熱交換
器、第1膨張弁、1次側熱交換部と2次側熱交換部とか
らなる冷媒対冷媒熱交換器の1次側熱交換部を順次環状
に接続し、第2膨張弁と1次側熱交換部と2次側熱交換
部と蓄熱材とからなる蓄熱槽の1次側熱交換部との直列
接続回路を、前記第1膨張弁と前記冷媒対冷媒熱交換器
の前記1次側熱交換部との直列接続回路に並列に接続し
てなる1次側冷凍サイクルと、冷媒搬送ポンプと第2四
方弁とからなるポンプユニットと、複数の室内ユニット
と、前記冷媒対冷媒熱交換器の前記2次側熱交換部と第
1流量弁との直列接続回路と前記蓄熱槽内の前記2次側
熱交換部と第2流量弁との直列接続回路とを並列に接続
したものとを環状に接続してなる2次側冷凍サイクルと
を備え、前記冷媒対冷媒熱交換器の前記2次側熱交換部
の反第1流量弁側と前記蓄熱槽内の前記2次側熱交換部
の第2流量弁側とをバイパス弁を介して接続するバイパ
ス回路を設けたものである。
The technical means of the present invention for solving the above problems is a compressor, a first four-way valve, an outdoor heat exchanger, a first expansion valve, a primary side heat exchange section and a secondary side. The primary side heat exchange section of the refrigerant-to-refrigerant heat exchanger including the side heat exchange section is sequentially connected in an annular shape, and the second expansion valve, the primary side heat exchange section, the secondary side heat exchange section, and the heat storage material are connected. A series connection circuit with the primary side heat exchange section of the heat storage tank is connected in parallel with a series connection circuit with the first expansion valve and the primary side heat exchange section of the refrigerant-refrigerant heat exchanger. A primary side refrigeration cycle, a pump unit including a refrigerant transfer pump and a second four-way valve, a plurality of indoor units, the secondary side heat exchange section of the refrigerant-refrigerant heat exchanger, and a first flow valve. An annular connection of a series connection circuit and a series connection circuit of the secondary heat exchange section and the second flow valve in the heat storage tank connected in parallel A second side refrigeration cycle connected to the second side heat exchange section of the refrigerant-to-refrigerant heat exchanger, the second side heat exchange section being opposite to the first flow valve side of the secondary side heat exchange section, and the second side heat exchange section being in the heat storage tank. A bypass circuit is provided for connecting the two flow rate valves via a bypass valve.

【0014】また、蓄熱槽内の蓄熱材が所定温度以上の
場合の室外側熱交換器の除霜運転において、バイパス弁
を開として1次側冷凍サイクル、及び2次側冷凍サイク
ルを運転し、かつ蓄熱材が所定温度未満の場合の室外側
熱交換器の除霜運転においては、バイパス弁を閉として
1次側冷凍サイクルのみ運転する除霜制御装置を設置し
たものである。
Further, in the defrosting operation of the outdoor heat exchanger when the heat storage material in the heat storage tank is at a predetermined temperature or higher, the bypass valve is opened to operate the primary side refrigeration cycle and the secondary side refrigeration cycle, In addition, in the defrosting operation of the outdoor heat exchanger when the heat storage material is below a predetermined temperature, a defrosting control device that operates only the primary side refrigeration cycle with the bypass valve closed is installed.

【0015】[0015]

【作用】この技術的手段による作用は次のようになる。The function of this technical means is as follows.

【0016】まず、冬季の夜間運転について説明する。
蓄熱式空気調和機の、圧縮機、第1四方弁、室外側熱交
換器、第2膨張弁、蓄熱槽内の1次側熱交換部とを連通
した1次側冷凍サイクルにおいて、夜間運転時に冷媒対
冷媒熱交換器を使用しない状態で、第2膨張弁の制御に
より、蓄熱槽内の1次側熱交換部を介して蓄熱材である
水を温水にする蓄熱運転を行う。この時、バイパス弁は
閉とする。
First, night driving in winter will be described.
In the primary side refrigeration cycle that communicates with the compressor, the first four-way valve, the outdoor heat exchanger, the second expansion valve, and the primary side heat exchange section in the heat storage tank of the heat storage type air conditioner, during nighttime operation In a state where the refrigerant-refrigerant heat exchanger is not used, heat storage operation is performed in which water, which is a heat storage material, is turned into hot water through the primary side heat exchange section in the heat storage tank by controlling the second expansion valve. At this time, the bypass valve is closed.

【0017】また、低外気温時の蓄熱運転において室外
側熱交換器に着霜現象が生じた場合、前記1次側冷凍サ
イクルにて逆サイクル運転を行って夜間除霜運転を行
う。即ち、前記1次側冷凍サイクルにおいて蓄熱槽内の
1次側熱交換部を蒸発器、室外側熱交換器を凝縮器とし
て冷凍サイクルを構成し、温水より吸熱して室外側熱交
換器の除霜を行う。この時も、バイパス弁は閉とする。
When a frosting phenomenon occurs in the outdoor heat exchanger in the heat storage operation at low outside air temperature, the reverse cycle operation is performed in the primary side refrigeration cycle to perform the night defrosting operation. That is, in the primary side refrigeration cycle, the primary side heat exchange section in the heat storage tank is an evaporator and the outdoor side heat exchanger is a condenser to constitute a refrigeration cycle, which absorbs heat from hot water to remove the outdoor side heat exchanger. Do frost. At this time as well, the bypass valve is closed.

【0018】次に、冬季の昼間運転について説明する。
昼間暖房運転は、ポンプユニット、室内機、蓄熱槽の2
次側熱交換器、及び冷媒対冷媒熱交換器の2次側熱交換
器からなる2次側冷凍サイクルにおいて、夜間に温水と
して貯めた蓄熱槽内の熱量を蓄熱槽の2次側熱交換器を
介して室内機へと搬送し、室内を暖房運転する。
Next, the daytime operation in winter will be described.
During daytime heating operation, there are 2 types of pump unit, indoor unit and heat storage tank.
In the secondary side refrigeration cycle including the secondary side heat exchanger and the secondary side heat exchanger of the refrigerant-refrigerant heat exchanger, the heat quantity in the heat storage tank stored as hot water at night is used as the secondary side heat exchanger of the heat storage tank. It is conveyed to the indoor unit via the and heats the room.

【0019】この時、暖房能力を高めるべく、1次側冷
凍サイクルにおいて冷媒対冷媒熱交換器の1次側熱交換
器を凝縮器として運転して、冷媒対冷媒熱交換器と蓄熱
槽とで並行に2次側冷凍サイクル内の冷媒を加熱する。
この時も、バイパス弁は閉とする。
At this time, in order to enhance the heating capacity, the primary side heat exchanger of the refrigerant-refrigerant heat exchanger is operated as a condenser in the primary-side refrigeration cycle, and the refrigerant-refrigerant heat exchanger and the heat storage tank are combined. In parallel, the refrigerant in the secondary side refrigeration cycle is heated.
At this time as well, the bypass valve is closed.

【0020】また、低外気温時の暖房運転においても室
外側熱交換器に着霜現象が生じた場合、前記1次側冷凍
サイクルにて逆サイクル運転を行って昼間除霜運転を行
う。
Further, even when the outdoor side heat exchanger has a frosting phenomenon even during the heating operation at the low outside air temperature, the reverse cycle operation is performed in the primary side refrigeration cycle to perform the daytime defrosting operation.

【0021】即ち、前記1次側冷凍サイクルにおいて蓄
熱槽内の1次側熱交換部を蒸発器、室外側熱交換器を凝
縮器として冷凍サイクルを構成するのは夜間除霜運転の
場合と同様であるが、2次側冷凍サイクルではバイパス
弁を開、蓄熱槽用流量弁を全閉として、蓄熱槽の2次側
熱交換器と冷媒対冷媒熱交換器の2次側熱交換器を直列
として暖房運転を継続する。
That is, in the primary side refrigerating cycle, the refrigerating cycle is constituted by using the primary side heat exchange section in the heat storage tank as the evaporator and the outdoor side heat exchanger as the condenser, as in the night defrosting operation. However, in the secondary refrigeration cycle, the bypass valve is opened, the heat storage tank flow valve is fully closed, and the secondary heat exchanger of the heat storage tank and the secondary heat exchanger of the refrigerant-refrigerant heat exchanger are connected in series. Continue heating operation.

【0022】つまり、蓄熱槽内の温水としての熱量は、
蓄熱槽の2次側熱交換器を介して冷媒に熱交換される
が、その後、室外側熱交換器に付着した霜を除霜するべ
く、冷媒対冷媒熱交換器の2次側熱交換器にて吸熱され
る。
That is, the amount of heat as hot water in the heat storage tank is
The heat is exchanged with the refrigerant through the secondary heat exchanger of the heat storage tank, and then the secondary heat exchanger of the refrigerant-refrigerant heat exchanger is used to defrost the frost adhering to the outdoor heat exchanger. Is absorbed by.

【0023】従って、室内機へ搬送される熱量が減少し
て暖房能力は多少低下するが、除霜運転によって室内空
気より吸熱することがなく、暖房時の快適性が損なわれ
ることがなくなる。
Therefore, although the amount of heat transferred to the indoor unit is reduced and the heating capacity is somewhat reduced, the defrosting operation does not absorb heat from the indoor air and the comfort during heating is not impaired.

【0024】[0024]

【実施例】以下、本発明の一実施例を添付図面に基づい
て説明を行うが、従来と同一構成については同一符号を
付し、その詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. The same components as those of the prior art will be designated by the same reference numerals and detailed description thereof will be omitted.

【0025】図1は本発明の一実施例の蓄熱式空気調和
機の冬季夜間運転時の冷凍サイクル図であり、図2は本
発明の一実施例の蓄熱式空気調和機の冬季昼間運転時の
冷凍サイクル図である。
FIG. 1 is a refrigeration cycle diagram of the heat storage type air conditioner of one embodiment of the present invention during winter night operation, and FIG. 2 is the heat storage type air conditioner of one embodiment of the present invention during winter daytime operation. It is a refrigerating cycle figure of.

【0026】蓄熱式空気調和機は空冷ヒートポンプ1
と、蓄熱槽STRと、ポンプユニットPUと、室内機1
2とから構成されている。
The heat storage type air conditioner is an air-cooled heat pump 1.
, Heat storage tank STR, pump unit PU, and indoor unit 1
2 and.

【0027】空冷ヒートポンプ1は、圧縮機2、第1四
方弁3a、室外側熱交換器4、第1膨張弁5a、第2膨
張弁5b、1次側熱交換部14aと2次側熱交換部14
bとからなる冷媒対冷媒熱交換器HEX、2次側熱交換
部14b用の第1流量弁RV1、蓄熱槽STRの2次側
熱交換器13b用の第2流量弁RV2、及びバイパス流
量弁BVから構成されている。
The air-cooled heat pump 1 includes a compressor 2, a first four-way valve 3a, an outdoor heat exchanger 4, a first expansion valve 5a, a second expansion valve 5b, a primary side heat exchange section 14a and a secondary side heat exchange. Part 14
b to the refrigerant-to-refrigerant heat exchanger HEX, the first flow valve RV1 for the secondary heat exchange section 14b, the second flow valve RV2 for the secondary heat exchanger 13b of the heat storage tank STR, and the bypass flow valve. It is composed of BV.

【0028】蓄熱槽STRは、蓄熱材である水16と1
次側熱交換部13a、2次側熱交換部13bからなり、
ポンプユニットPUは第2四方弁3b、及び冷媒搬送ポ
ンプPMとから構成されている。
The heat storage tank STR includes water 16 and 1 which are heat storage materials.
The secondary side heat exchange section 13a, the secondary side heat exchange section 13b,
The pump unit PU includes a second four-way valve 3b and a refrigerant transfer pump PM.

【0029】上記構成において、1次側冷凍サイクル
は、圧縮機2、第1四方弁3a、室外側熱交換器4、第
1膨張弁5a、冷媒対冷媒熱交換器HEXの1次側熱交
換部14aを順次環状に接続し、第2膨張弁5bと蓄熱
槽STRの1次側熱交換部13aとの直列接続回路を、
第1膨張弁5aと冷媒対冷媒熱交換器HEXの1次側熱
交換部14aとの直列接続回路に並列に接続してなる。
In the above-described structure, the primary side refrigeration cycle includes the compressor 2, the first four-way valve 3a, the outdoor heat exchanger 4, the first expansion valve 5a, the primary side heat exchange of the refrigerant-refrigerant heat exchanger HEX. The parts 14a are sequentially connected in an annular shape, and a series connection circuit of the second expansion valve 5b and the primary side heat exchange part 13a of the heat storage tank STR is connected,
The first expansion valve 5a and the refrigerant-to-refrigerant heat exchanger HEX are connected in parallel to the series connection circuit of the primary side heat exchange section 14a.

【0030】また、2次側冷凍サイクルは、ポンプユニ
ットPUと、2台の室内ユニット12a,12bと、冷
媒対冷媒熱交換器HEXの2次側熱交換部14bと第1
流量弁RV1との直列接続回路と蓄熱槽STR内の2次
側熱交換部13bと第2流量弁RV2との直列接続回路
とを並列に接続したものとを環状に接続し、更に、冷媒
対冷媒熱交換器HEXの2次側熱交換部14bの反第1
流量弁側と蓄熱槽STR内の2次側熱交換部13bの第
2流量弁RV2側とをバイパス弁BVを介して接続する
バイパス回路を設けている。
In the secondary side refrigeration cycle, the pump unit PU, the two indoor units 12a and 12b, the secondary side heat exchange section 14b of the refrigerant / refrigerant heat exchanger HEX, and the first unit.
A series connection circuit with the flow valve RV1 and a series connection circuit with the secondary side heat exchange section 13b in the heat storage tank STR and the second flow valve RV2 connected in parallel are connected in an annular shape, and the refrigerant pair is further connected. Anti-first of the secondary side heat exchange section 14b of the refrigerant heat exchanger HEX
A bypass circuit that connects the flow valve side and the second flow valve RV2 side of the secondary side heat exchange section 13b in the heat storage tank STR via the bypass valve BV is provided.

【0031】そして、除霜制御装置CNは、第1四方弁
3a、第1流量弁RV1、第2流量弁RV2、バイパス
弁BV、及び室外側熱交換器4の配管温度センサーTS
と信号線で接続されている。
Then, the defrost control device CN includes the pipe temperature sensor TS of the first four-way valve 3a, the first flow valve RV1, the second flow valve RV2, the bypass valve BV, and the outdoor heat exchanger 4.
It is connected with the signal line.

【0032】この除霜制御装置CNにてバイパス弁BV
の開閉、及び第1流量弁RV1、第2流量弁RV2の開
度を制御することにより、冷媒対冷媒熱交換器HEXの
2次側熱交換部14bへ流入する冷媒循環量の制御を行
え、つまり室外側熱交換器4の除霜能力の制御を行え
る。
In this defrost control device CN, the bypass valve BV
By controlling the opening and closing of the valve, and controlling the opening of the first flow valve RV1 and the second flow valve RV2, it is possible to control the refrigerant circulation amount flowing into the secondary heat exchange section 14b of the refrigerant-refrigerant heat exchanger HEX. That is, the defrosting ability of the outdoor heat exchanger 4 can be controlled.

【0033】次に、この−実施例の構成における作用
を、以下の場合に分けて説明する。 (1)夜間蓄熱運転 圧縮機2、第1四方弁3a、室外側熱交換器4、第2膨
張弁5b、冷媒対冷媒熱交換器HEXの1次側熱交換部
14a、蓄熱槽STR内の1次側熱交換部13aとを連
通した1次側冷凍サイクルにおいて、第1四方弁3a:
暖房モード、第1膨張弁5a:全閉、第2膨張弁5b:
所定の開度に設定して図1の黒矢印のように冷媒を流す
ことにより、蓄熱槽内の1次側熱交換部13aを介して
蓄熱材である水16を温水にする蓄熱運転を行う。 (2)夜間除霜運転 低外気温時の蓄熱運転において室外側熱交換器4に着霜
現象が生じた場合、室外側熱交換器4の配管温度センサ
ーTSが所定の温度以下を検知すると、1次側冷凍サイ
クルにて逆サイクル運転を行って夜間除霜運転を行う。
Next, the operation of the structure of this embodiment will be described in the following cases. (1) Nighttime heat storage operation Compressor 2, first four-way valve 3a, outdoor heat exchanger 4, second expansion valve 5b, primary side heat exchange section 14a of refrigerant-to-refrigerant heat exchanger HEX, inside heat storage tank STR In the primary side refrigeration cycle that communicates with the primary side heat exchange section 13a, the first four-way valve 3a:
Heating mode, first expansion valve 5a: fully closed, second expansion valve 5b:
By setting a predetermined opening degree and flowing the refrigerant as shown by the black arrow in FIG. 1, the heat storage operation is performed in which the water 16 as the heat storage material is heated through the primary side heat exchange section 13a in the heat storage tank. . (2) Nighttime defrosting operation When a frosting phenomenon occurs in the outdoor heat exchanger 4 in the heat storage operation at low outdoor temperature, when the pipe temperature sensor TS of the outdoor heat exchanger 4 detects a temperature equal to or lower than a predetermined temperature, Reverse cycle operation is performed in the primary side refrigeration cycle to perform night defrosting operation.

【0034】即ち、前記1次側冷凍サイクルにおいて、
第1四方弁3a:冷房モード、第1膨張弁5a:全閉、
第2膨張弁5b:所定の開度に設定して図1中の白抜矢
印のように冷媒を流すことにより、蓄熱槽内の1次側熱
交換部13aを蒸発器、室外側熱交換器4を凝縮器とし
て冷凍サイクルを構成し、温水より吸熱して室外側熱交
換器4の除霜を行う。
That is, in the primary side refrigeration cycle,
First four-way valve 3a: cooling mode, first expansion valve 5a: fully closed,
Second expansion valve 5b: The primary side heat exchange section 13a in the heat storage tank is set to an evaporator and an outdoor heat exchanger by setting a predetermined opening degree and flowing a refrigerant as shown by a white arrow in FIG. A refrigerating cycle is constituted by using 4 as a condenser, and heat is taken from warm water to defrost the outdoor heat exchanger 4.

【0035】そして、配管温度センサーTSが所定温度
以上に上昇すると、除霜運転は終了し、夜間蓄熱運転に
復帰する。 (3)昼間暖房運転 この場合、蓄熱槽STR内の温水温度によって作用が異
なる様に除霜制御装置CNにて制御する。
When the pipe temperature sensor TS rises above the predetermined temperature, the defrosting operation ends and the night heat storage operation is resumed. (3) Daytime heating operation In this case, the defrosting control device CN controls so that the action differs depending on the temperature of the hot water in the heat storage tank STR.

【0036】a)蓄熱槽内の水温Tw≧Tmin(暖房利用
限界温度)の場合 昼間暖房運転は、ポンプユニットPU、室内ユニット1
2a,12b、蓄熱槽STRの2次側熱交換器13b、
及び冷媒対冷媒熱交換器HEXの2次側熱交換器14b
からなる2次側冷凍サイクルにおいて、第2四方弁:暖
房モード、第1流量弁RV1,第2流量弁RV2:所
定、バイパス弁BV:閉として、図2の黒矢印で示すよ
うに、前記夜間蓄熱運転にて温水として貯めた蓄熱槽S
TR内の熱量を蓄熱槽の2次側熱交換器13bを介して
室内ユニット12a,12bへと搬送し、室内を暖房運
転する。
A) When the water temperature in the heat storage tank is Tw ≧ Tmin (heating use limit temperature) During the daytime heating operation, the pump unit PU and the indoor unit 1 are used.
2a, 12b, the secondary heat exchanger 13b of the heat storage tank STR,
And the secondary heat exchanger 14b of the refrigerant-to-refrigerant heat exchanger HEX
2nd four-way valve: heating mode, first flow valve RV1, second flow valve RV2: predetermined, bypass valve BV: closed, as indicated by the black arrow in FIG. Heat storage tank S stored as hot water in heat storage operation
The heat quantity in TR is conveyed to the indoor units 12a and 12b via the secondary side heat exchanger 13b of the heat storage tank, and the room is heated.

【0037】同時に、暖房能力を高めるべく、1次側冷
凍サイクルにおいて冷媒対冷媒熱交換器HEXの1次側
熱交換器14aを凝縮器として運転して、冷媒対冷媒熱
交換器HEXと蓄熱槽STRとで並行に2次側冷凍サイ
クル内の冷媒を加熱する。
At the same time, in order to improve the heating capacity, the primary side heat exchanger 14a of the refrigerant-refrigerant heat exchanger HEX is operated as a condenser in the primary-side refrigeration cycle to operate the refrigerant-refrigerant heat exchanger HEX and the heat storage tank. The refrigerant in the secondary side refrigeration cycle is heated in parallel with the STR.

【0038】b)蓄熱槽内の水温Tw<Tmin(暖房利用
限界温度)の場合 この場合の昼間暖房運転では、蓄熱槽STRの水温が暖
房として利用できる限界温度より低いため、蓄熱槽ST
Rは室内の暖房としては利用しない。
B) In the case of water temperature Tw <Tmin (heat use limit temperature) in the heat storage tank In the daytime heating operation in this case, since the water temperature of the heat storage tank STR is lower than the limit temperature that can be used for heating, the heat storage tank ST
R is not used for indoor heating.

【0039】即ち、ポンプユニットPU、室内ユニット
12a,12b、蓄熱槽の2次側熱交換器13b、及び
冷媒対冷媒熱交換器HEXの2次側熱交換器14bから
なる2次側冷凍サイクルにおいて、第2四方弁:暖房モ
ード、第1流量弁RV1:所定の開度、第2流量弁RV
2:全閉、バイパス弁BV:閉として、図2中の白抜矢
印で示すように、室外側から吸熱したの熱量を冷媒対冷
媒熱交換器HEXを介して室内ユニット12a,12b
へと搬送し、室内を暖房運転する。 (4)昼間除霜運転 低外気温時の暖房運転においても室外側熱交換器4に着
霜現象が生じた場合、室外側熱交換器4の配管温度セン
サーTSが所定の温度以下を検知すると、前記1次側冷
凍サイクルにて逆サイクル運転を行って昼間除霜運転を
行う。
That is, in the secondary refrigeration cycle comprising the pump unit PU, the indoor units 12a and 12b, the secondary heat exchanger 13b of the heat storage tank, and the secondary heat exchanger 14b of the refrigerant-refrigerant heat exchanger HEX. , Second four-way valve: heating mode, first flow valve RV1: predetermined opening, second flow valve RV
2: Fully closed, bypass valve BV: closed, and as shown by the white arrow in FIG. 2, the amount of heat absorbed from the outdoor side is passed through the refrigerant-refrigerant heat exchanger HEX to the indoor units 12a, 12b.
It is transported to and the room is heated. (4) Daytime defrosting operation When a frosting phenomenon occurs in the outdoor heat exchanger 4 even in the heating operation at low outdoor temperature, if the pipe temperature sensor TS of the outdoor heat exchanger 4 detects a temperature equal to or lower than a predetermined temperature. The reverse cycle operation is performed in the primary side refrigeration cycle to perform the daytime defrosting operation.

【0040】この場合も、蓄熱槽STR内の温水温度に
よって作用が異なる様に除霜制御装置CNにて制御す
る。
In this case as well, the defrosting control device CN controls so that the action differs depending on the temperature of the hot water in the heat storage tank STR.

【0041】a)蓄熱槽内の水温Tw≧Tmin(暖房利用
限界温度)の場合 室外側熱交換器4の除霜運転において、バイパス弁B
V:開、第1流量弁RV1,第2流量弁RV2:所定開
度として図3中の黒矢印で示すように、1次側冷凍サイ
クル:逆冷凍サイクル、及び2次側冷凍サイクル:暖房
運転サイクルにて運転する。
A) Water temperature in the heat storage tank Tw ≧ Tmin (limit temperature for heating use) In the defrosting operation of the outdoor heat exchanger 4, the bypass valve B
V: open, first flow valve RV1, second flow valve RV2: as a predetermined opening, as shown by the black arrow in FIG. 3, primary refrigeration cycle: reverse refrigeration cycle, and secondary refrigeration cycle: heating operation Operate in a cycle.

【0042】即ち、蓄熱槽STRの2次側熱交換器13
bと冷媒対冷媒熱交換器HEXの2次側熱交換器14b
とを直列として暖房運転を継続する。
That is, the secondary heat exchanger 13 of the heat storage tank STR.
b and refrigerant-to-refrigerant heat exchanger HEX secondary heat exchanger 14b
The heating operation is continued with and in series.

【0043】つまり、蓄熱槽STR内の温水としての熱
量は、蓄熱槽STRの2次側熱交換器13bを介して冷
媒に熱交換されるが、その後、室外側熱交換器4に付着
した霜を除霜するべく、冷媒対冷媒熱交換器HEXの2
次側熱交換器14bにて吸熱される。
That is, the amount of heat as hot water in the heat storage tank STR is heat-exchanged with the refrigerant via the secondary side heat exchanger 13b of the heat storage tank STR, but thereafter, the frost attached to the outdoor heat exchanger 4 Refrigerant-to-refrigerant heat exchanger HEX 2 for defrosting
The heat is absorbed by the secondary heat exchanger 14b.

【0044】従って、室内ユニット12a,12bへ搬
送される熱量が減少して暖房能力は多少低下するが、除
霜運転によって室内空気より吸熱することがなく、暖房
時の快適性が損なわれることがなくなる。
Therefore, although the amount of heat transferred to the indoor units 12a, 12b is reduced and the heating capacity is somewhat lowered, the defrosting operation does not absorb heat from the indoor air and the comfort during heating may be impaired. Disappear.

【0045】b)蓄熱槽内の水温TwがTo(外気温)<
Tw<Tmin(暖房利用限界温度)の場合 室外側熱交換器4の除霜運転において、第1膨張弁5
a:全閉、第2流量弁RV2:所定開度として図3中の
白抜矢印で示すように、1次側冷凍サイクルを逆冷凍サ
イクルとして運転し、2次側冷凍サイクルは運転しな
い。
B) Water temperature Tw in the heat storage tank is To (outside air temperature) <
When Tw <Tmin (heating use limit temperature) In the defrosting operation of the outdoor heat exchanger 4, the first expansion valve 5
a: Fully closed, second flow valve RV2: With a predetermined opening, the primary side refrigeration cycle is operated as a reverse refrigeration cycle, and the secondary side refrigeration cycle is not operated, as indicated by the white arrow in FIG.

【0046】即ち、蓄熱槽STRの水温が暖房として利
用できる限界温度より低いため、蓄熱槽STRは室内の
暖房としては利用されないが、外気温より高いため除霜
時のみに利用する。
That is, since the water temperature of the heat storage tank STR is lower than the limit temperature that can be used for heating, the heat storage tank STR is not used for indoor heating, but is used only for defrosting because it is higher than the outside air temperature.

【0047】前記1次側冷凍サイクルにおいて、第1四
方弁3a:冷房モード、第1膨張弁5a:全閉、第2膨
張弁5b:所定の開度に設定することにより、蓄熱槽内
の1次側熱交換部13aを蒸発器、室外側熱交換器4を
凝縮器として冷凍サイクルを構成し、温水より吸熱して
室外側熱交換器4の除霜を効率的に行うことができる。
In the primary side refrigeration cycle, by setting the first four-way valve 3a: cooling mode, the first expansion valve 5a: fully closed, and the second expansion valve 5b: predetermined opening degree A refrigerating cycle is configured by using the secondary heat exchanger 13a as an evaporator and the outdoor heat exchanger 4 as a condenser, and the outdoor heat exchanger 4 can be efficiently defrosted by absorbing heat from warm water.

【0048】[0048]

【発明の効果】以上のように本発明は、冷媒対冷媒熱交
換器、及び蓄熱槽を介して1次側冷凍サイクルと2次側
冷凍サイクルとからなる蓄熱式空調空気調和機におい
て、2次側冷凍サイクル内の冷媒対冷媒熱交換器と蓄熱
槽とをバイパス弁を介して直列に接続するバイパス回路
を設置したものである。
As described above, according to the present invention, in the heat storage type air conditioning air conditioner including the primary side refrigeration cycle and the secondary side refrigeration cycle through the refrigerant-refrigerant heat exchanger and the heat storage tank. A bypass circuit for connecting the refrigerant-refrigerant heat exchanger and the heat storage tank in the side refrigeration cycle in series via a bypass valve is installed.

【0049】従って、昼間除霜運転時においても、室内
機へ搬送される熱量が減少して暖房能力は多少低下する
が、除霜運転によって室内空気より吸熱することがな
く、暖房時の快適性が損なわれることがなくなる。
Therefore, even during the daytime defrosting operation, the amount of heat transferred to the indoor unit is reduced and the heating capacity is somewhat reduced, but the defrosting operation does not absorb heat from the room air and the comfort during heating is improved. Will not be damaged.

【0050】また、蓄熱槽内の蓄熱材が所定温度以上の
場合の室外側熱交換器の除霜運転において、バイパス弁
を開として1次側冷凍サイクル、及び2次側冷凍サイク
ルを運転し、かつ蓄熱材が所定温度未満の場合の室外側
熱交換器の除霜運転においては、バイパス弁を閉として
1次側冷凍サイクルのみ運転する除霜制御装置を設置し
たものである。
In the defrosting operation of the outdoor heat exchanger when the heat storage material in the heat storage tank is at a predetermined temperature or higher, the bypass valve is opened to operate the primary side refrigeration cycle and the secondary side refrigeration cycle, In addition, in the defrosting operation of the outdoor heat exchanger when the heat storage material is below a predetermined temperature, a defrosting control device that operates only the primary side refrigeration cycle with the bypass valve closed is installed.

【0051】従って、夜間電力を利用して蓄熱した熱量
の残量によって、その用途をわけることが可能となり、
電力の有効利用が図れることになる。
Therefore, the use can be divided according to the remaining amount of heat stored by using night power.
Effective use of electric power can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による蓄熱式空気調和機の冬
季夜間運転時の冷凍システム図
FIG. 1 is a refrigeration system diagram of a heat storage type air conditioner according to an embodiment of the present invention during winter night operation.

【図2】本発明の一実施例による蓄熱式空気調和機の冬
季昼間暖房運転時の冷凍システム図
FIG. 2 is a refrigeration system diagram during a winter daytime heating operation of the heat storage type air conditioner according to an embodiment of the present invention.

【図3】本発明の一実施例による蓄熱式空気調和機の冬
季昼間除霜運転時の冷凍システム図
FIG. 3 is a refrigeration system diagram during a winter daytime defrosting operation of the heat storage type air conditioner according to an embodiment of the present invention.

【図4】従来例を示す蓄熱式空気調和機の冬季夜間運転
時の冷凍システム図
[Fig. 4] Fig. 4 is a refrigeration system diagram of a conventional heat storage type air conditioner during winter night operation.

【図5】従来例を示す蓄熱式空気調和機の冬季昼間運転
時の冷凍システム図
[Fig. 5] Fig. 5 is a refrigeration system diagram of a conventional heat storage type air conditioner during winter daytime operation.

【符号の説明】[Explanation of symbols]

2 圧縮機 3a 第1四方弁 3b 第2四方弁 4 室外側熱交換器 5a 第1膨張弁 5b 第2膨張弁 12a,12b 室内ユニット 13a 蓄熱槽の1次側熱交換部 13b 蓄熱槽の2次側熱交換部 14a 冷媒対冷媒熱交換器の1次側熱交換部 14b 冷媒対冷媒熱交換器の2次側熱交換部 STR 蓄熱槽 HEX 冷媒対冷媒熱交換器 PM 冷媒搬送ポンプ RV1 第1流量弁 RV2 第2流量弁 BV バイパス弁 CN 除霜制御装置 2 compressor 3a 1st four-way valve 3b Second four-way valve 4 Outdoor heat exchanger 5a First expansion valve 5b Second expansion valve 12a, 12b Indoor unit 13a Primary heat exchange part of heat storage tank 13b Secondary heat exchange section of heat storage tank 14a Primary side heat exchange part of refrigerant-refrigerant heat exchanger 14b Secondary-side heat exchange section of refrigerant-refrigerant heat exchanger STR heat storage tank HEX refrigerant to refrigerant heat exchanger PM refrigerant transfer pump RV1 first flow valve RV2 second flow valve BV bypass valve CN defrost control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 町田 和彦 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (72)発明者 鈴木 皓三 東京都千代田区神田神保町2丁目2番30 号 東京電力株式会社開発研究所内 (72)発明者 杉田 吉秀 東京都千代田区神田神保町2丁目2番30 号 東京電力株式会社開発研究所内 (56)参考文献 特開 平5−118690(JP,A) 特開 平5−346247(JP,A) 特開 平3−84370(JP,A) 特開 平4−270876(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 F25B 13/00 104 F25B 13/00 351 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Machida 3-22 Takaidahondori, Higashi-Osaka City, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (72) Inventor Kozo Suzuki 2-32 Kandajinbocho, Chiyoda-ku, Tokyo TEPCO Ltd. Development Laboratory (72) Inventor Yoshihide Sugita 2-30 Kanda Jimbocho, Chiyoda-ku, Tokyo TEPCO Development Laboratory (56) Reference Japanese Patent Laid-Open No. 5-118690 (JP, A) Kaihei 5-346247 (JP, A) JP-A-3-84370 (JP, A) JP-A-4-270876 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F24F 11 / 02 102 F25B 13/00 104 F25B 13/00 351

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、第1四方弁、室外側熱交換器、
第1膨張弁、1次側熱交換部と2次側熱交換部とからな
る冷媒対冷媒熱交換器の1次側熱交換部を順次環状に接
続し、第2膨張弁と1次側熱交換部と2次側熱交換部と
蓄熱材とからなる蓄熱槽の1次側熱交換部との直列接続
回路を、前記第1膨張弁と前記冷媒対冷媒熱交換器の前
記1次側熱交換部との直列接続回路に並列に接続してな
る1次側冷凍サイクルと、 冷媒搬送ポンプと第2四方弁とからなるポンプユニット
と、複数の室内ユニットと、前記冷媒対冷媒熱交換器の
前記2次側熱交換部と第1流量弁との直列接続回路と前
記蓄熱槽内の前記2次側熱交換部と第2流量弁との直列
接続回路とを並列に接続したものとを環状に接続してな
る2次側冷凍サイクルとを備え、 前記冷媒対冷媒熱交換器の前記2次側熱交換部の反第1
流量弁側と前記蓄熱槽内の前記2次側熱交換部の第2流
量弁側とをバイパス弁を介して接続するバイパス回路を
設けた蓄熱式空気調和機。
1. A compressor, a first four-way valve, an outdoor heat exchanger,
The first expansion valve, the primary side heat exchange section of the refrigerant-to-refrigerant heat exchanger including the primary side heat exchange section and the secondary side heat exchange section are sequentially connected in an annular shape, and the second expansion valve and the primary side heat exchange section are connected. A series connection circuit of a primary side heat exchange part of a heat storage tank composed of an exchange part, a secondary side heat exchange part, and a heat storage material is connected to the first expansion valve and the primary side heat of the refrigerant-refrigerant heat exchanger. A primary side refrigeration cycle connected in parallel to a series connection circuit with an exchange section, a pump unit including a refrigerant transfer pump and a second four-way valve, a plurality of indoor units, and a refrigerant-refrigerant heat exchanger. An annular series connection circuit of the secondary side heat exchange section and the first flow valve and a parallel connection of the secondary side heat exchange section in the heat storage tank and the series connection circuit of the second flow rate valve And a secondary side refrigeration cycle connected to the second side heat exchange section of the refrigerant-refrigerant heat exchanger.
A heat storage type air conditioner provided with a bypass circuit that connects a flow valve side and a second flow valve side of the secondary side heat exchange section in the heat storage tank via a bypass valve.
【請求項2】 蓄熱槽内の蓄熱材が所定温度以上の場合
の室外側熱交換器の除霜運転において、バイパス弁を開
として1次側冷凍サイクル、及び2次側冷凍サイクルを
運転し、かつ蓄熱材が所定温度未満の場合の室外側熱交
換器の除霜運転においては、バイパス弁を閉として1次
側冷凍サイクルのみ運転する除霜制御装置を設置した請
求項1記載の蓄熱式空気調和機。
2. In the defrosting operation of the outdoor heat exchanger when the heat storage material in the heat storage tank has a predetermined temperature or higher, the bypass valve is opened to operate the primary side refrigeration cycle and the secondary side refrigeration cycle, In addition, in the defrosting operation of the outdoor heat exchanger when the heat storage material is below a predetermined temperature, a defrosting control device that operates only the primary side refrigeration cycle with the bypass valve closed is installed. Harmony machine.
JP16121594A 1994-07-13 1994-07-13 Thermal storage type air conditioner Expired - Fee Related JP3404133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16121594A JP3404133B2 (en) 1994-07-13 1994-07-13 Thermal storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16121594A JP3404133B2 (en) 1994-07-13 1994-07-13 Thermal storage type air conditioner

Publications (2)

Publication Number Publication Date
JPH0828932A JPH0828932A (en) 1996-02-02
JP3404133B2 true JP3404133B2 (en) 2003-05-06

Family

ID=15730808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16121594A Expired - Fee Related JP3404133B2 (en) 1994-07-13 1994-07-13 Thermal storage type air conditioner

Country Status (1)

Country Link
JP (1) JP3404133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2309199A4 (en) * 2008-10-29 2018-05-16 Mitsubishi Electric Corporation Air conditioner

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218546B1 (en) * 2011-05-23 2013-01-09 진주환 Heat pump system
CN103562648B (en) * 2011-06-16 2016-07-06 三菱电机株式会社 Conditioner
KR101218548B1 (en) * 2012-05-07 2013-01-09 진주환 Heat pump system
CN105716161A (en) * 2016-02-17 2016-06-29 广东美的制冷设备有限公司 Phase change energy storage tank used in air-conditioner and air-conditioner control system and method
WO2019171463A1 (en) 2018-03-06 2019-09-12 三菱電機株式会社 Air conditioning device
CN108592294B (en) * 2018-05-24 2020-09-25 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
CN109028464B (en) * 2018-05-24 2020-11-03 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
CN108775675A (en) * 2018-05-24 2018-11-09 青岛海尔空调器有限总公司 Air conditioner defrosting control method
EP3901531A4 (en) 2018-12-18 2021-12-29 Mitsubishi Electric Corporation Air conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2309199A4 (en) * 2008-10-29 2018-05-16 Mitsubishi Electric Corporation Air conditioner

Also Published As

Publication number Publication date
JPH0828932A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
JP2000179970A (en) Air conditioning system
JP3404133B2 (en) Thermal storage type air conditioner
JP2002005537A (en) Refrigerant heating apparatus and air conditioning apparatus
JP2980022B2 (en) Heat pump water heater
CN110682761A (en) Double-chamber external heat exchanger heat pump system
JP2001263848A (en) Air conditioner
JP2002071169A (en) Ice heat storage type air conditioning device and method for controlling the same
JP2006145098A (en) Heat storage type air conditioner
JP2003139434A (en) Regenerative air conditioning and hot water supply system
JP2842471B2 (en) Thermal storage type air conditioner
JP2833937B2 (en) Thermal storage air conditioning system
JPH10205932A (en) Air conditioner
JP3502155B2 (en) Thermal storage type air conditioner
CN211222955U (en) Double-chamber external heat exchanger heat pump system
JP3297467B2 (en) Thermal storage type air conditioner
JPH0849938A (en) Regenerative air-conditioner
JP2846548B2 (en) Thermal storage air conditioning system
JPH0849924A (en) Heat storage type air-conditioner
JP3236345B2 (en) Thermal storage type air conditioner
JP2000179985A (en) Multifunction heat pump system
JP3056588B2 (en) Thermal storage type air conditioner
JPH0849934A (en) Regenerative type air conditioner
JP2691423B2 (en) Engine driven heat pump air conditioner
JPH06229593A (en) Air conditioning apparatus
JPH0658576A (en) Cooling or heating device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees