JP2000179985A - Multifunction heat pump system - Google Patents

Multifunction heat pump system

Info

Publication number
JP2000179985A
JP2000179985A JP10351641A JP35164198A JP2000179985A JP 2000179985 A JP2000179985 A JP 2000179985A JP 10351641 A JP10351641 A JP 10351641A JP 35164198 A JP35164198 A JP 35164198A JP 2000179985 A JP2000179985 A JP 2000179985A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
hot water
heat storage
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10351641A
Other languages
Japanese (ja)
Other versions
JP3654017B2 (en
Inventor
Junichi Takahashi
淳一 高橋
Masaya Kawasaki
賢哉 川崎
Hikari Kobayashi
光 小林
Hiroshi Kitagawa
寛 北川
Hitoshi Hirai
仁 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PIIMAKKU KK
Taisei Corp
Original Assignee
NIPPON PIIMAKKU KK
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PIIMAKKU KK, Taisei Corp filed Critical NIPPON PIIMAKKU KK
Priority to JP35164198A priority Critical patent/JP3654017B2/en
Publication of JP2000179985A publication Critical patent/JP2000179985A/en
Application granted granted Critical
Publication of JP3654017B2 publication Critical patent/JP3654017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To utilize night power effectively through ice heat storage or hot water heat storage to utilize waste heat for hot water supply by performing ice heat storage operation, cooling operation, cooling operation utilizing ice heat storage, hot water heat storage operation, heating operation utilizing outer air as heat source, heating operation utilizing hot water heat storage, and the like. SOLUTION: Ice heat storage operation is performed during night time in summer season and cooling operation is performed in summer season. In these operations, high temperature high pressure gas from a compressor 1 passes through an outdoor heat exchanger 8 functioning as a condenser. Cooling operation utilizing ice heat storage is performed during power peak time band in day time of summer season. Refrigerant gas from the compressor 1 passes through the outdoor heat exchanger 8 functioning as a condenser and a heat storage tank 22. Hot water heat storage operation is performed in night time of winter season. Refrigerant gas from the compressor 1 passes through the heat storage tank 22. Heating operation utilizing outer air as heat source is performed in day time of winter season. Gas from the compressor 1 passes through an indoor heat exchanger 17. Night time power is utilized effectively by utilizing ice heat storage and hot water heat storage in correspondence with the season and the time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷房、暖房、氷蓄
熱、温水蓄熱、給湯加熱および各種の同時運転などを可
能にする住宅などに使用される多機能ヒートポンプシス
テムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multifunctional heat pump system used in a house or the like which enables cooling, heating, ice heat storage, hot water heat storage, hot water heating and various simultaneous operations.

【0002】[0002]

【従来の技術】従来、住宅用ヒートポンプシステムとし
て、ヒートポンプ給湯が可能で冷房の排熱を給湯加熱に
利用することが可能なものや、貯湯槽に冷水蓄熱を行い
電力負荷の平準化を図るものなど各種のものが提案され
ている。
2. Description of the Related Art Conventionally, as a residential heat pump system, a heat pump system capable of supplying heat pump hot water and utilizing the exhaust heat of cooling for hot water supply heating, and a system in which cold water is stored in a hot water storage tank to level the power load. Various things have been proposed.

【0003】[0003]

【発明が解決しようとする課題】そして、現在でも、さ
らなる空調負荷のピーク時の電力負荷平準化や省エネル
ギー化等が要望されている。本発明は、上記事情に鑑み
なされたもので、請求項1に記載の発明は、氷蓄熱およ
び温水蓄熱を利用して夜間電力を有効に利用できるとと
もに、氷蓄熱および冷房時の排熱を利用して給湯加熱可
能な多機能ヒートポンプシステムを提供することを目的
とするものである。
Further, even now, there is a demand for further leveling of the power load and energy saving at the peak of the air conditioning load. The present invention has been made in view of the above circumstances, and the invention according to claim 1 can effectively use nighttime electric power by using ice heat storage and hot water heat storage, and use ice heat storage and waste heat during cooling. It is an object of the present invention to provide a multifunctional heat pump system capable of heating hot water.

【0004】また、請求項2に記載の発明は、据付時や
改修時の配管工事に伴う冷媒漏れに対応した多機能ヒー
トポンプシステムを提供することを目的とするものであ
る。
Another object of the present invention is to provide a multifunctional heat pump system which can cope with a refrigerant leak caused by piping work during installation or repair.

【0005】さらに、請求項3に記載の発明は、電気温
水器による給湯加熱を併用可能な多機能ヒートポンプシ
ステムを提供することを目的とするものである。
A further object of the present invention is to provide a multi-functional heat pump system capable of simultaneously using hot water supply and heating by an electric water heater.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の多機能ヒートポンプシステムは、
圧縮機と室外熱交換器と第1の減圧機構と室内熱交換器
とがこの順に環状に接続されるとともに、循環ポンプに
よって循環する貯湯槽からの循環水を加熱して給湯加熱
を行う給湯用熱交換器と、第2の減圧機構と、氷蓄熱お
よび温水蓄熱兼用の蓄熱槽と、第3の減圧機構とが介装
され、これらの間に冷媒が循環されてなり、かつ、氷蓄
熱運転時は、上記冷媒が上記圧縮機、上記室外熱交換
器、上記第2の減圧機構、上記蓄熱槽および上記圧縮機
の順に循環され、氷蓄熱・給湯加熱同時運転時は、上記
冷媒が上記圧縮機、上記給湯用熱交換器、上記室外熱交
換器、上記第2の減圧機構、上記蓄熱槽および上記圧縮
機の順に循環され、冷房運転時は、上記冷媒が上記圧縮
機、上記室外熱交換器、上記第1の減圧機構、上記室内
熱交換器および上記圧縮機の順に循環され、冷房・給湯
加熱同時運転時は、上記冷媒が上記圧縮機、上記給湯用
熱交換器、上記室外熱交換器、上記第1の減圧機構、上
記室内熱交換器および上記圧縮機の順に循環され、氷蓄
熱利用冷房運転時は、上記冷媒が上記圧縮機、上記室外
熱交換器、上記蓄熱槽、上記第1の減圧機構、上記室内
熱交換器および上記圧縮機の順に循環され、氷蓄熱利用
冷房・給湯加熱同時運転時は、上記冷媒が上記圧縮機、
上記給湯用熱交換器、上記室外熱交換器、上記蓄熱槽、
上記第1の減圧機構、上記室内熱交換器および上記圧縮
機の順に循環され、温水蓄熱運転時は、上記冷媒が上記
圧縮機、上記蓄熱槽、上記第2の減圧機構、上記室外熱
交換器および上記圧縮機の順に循環され、外気を熱源と
する暖房運転時は、上記冷媒が上記圧縮機、上記室内熱
交換器、上記第1の減圧機構、上記室外熱交換器および
上記圧縮機の順に循環され、温水蓄熱利用暖房運転時
は、上記冷媒が上記圧縮機、上記室内熱交換器、上記第
1の減圧機構、上記蓄熱槽および上記圧縮機の順に循環
され、給湯加熱運転時は、上記冷媒が上記圧縮機、上記
給湯用熱交換器、上記第3の減圧機構、上記室外熱交換
器および上記圧縮機の順に循環されることを特徴とする
ものである。
In order to achieve the above object, a multifunctional heat pump system according to claim 1 is provided.
A compressor, an outdoor heat exchanger, a first pressure reducing mechanism, and an indoor heat exchanger are connected in a ring shape in this order, and the hot water is supplied by heating circulating water from a hot water storage tank circulated by a circulating pump. A heat exchanger, a second pressure reducing mechanism, a heat storage tank for both ice heat storage and hot water heat storage, and a third pressure reducing mechanism are interposed, and a refrigerant is circulated therebetween, and the ice heat storage operation is performed. At the time, the refrigerant is circulated in the order of the compressor, the outdoor heat exchanger, the second decompression mechanism, the heat storage tank, and the compressor. And the heat exchanger for hot water supply, the outdoor heat exchanger, the second decompression mechanism, the heat storage tank, and the compressor. In the cooling operation, the refrigerant flows through the compressor, the outdoor heat exchanger. Vessel, the first pressure reducing mechanism, the indoor heat exchanger, and the During the simultaneous operation of cooling and hot water supply and heating, the refrigerant flows through the compressor, the hot water supply heat exchanger, the outdoor heat exchanger, the first decompression mechanism, the indoor heat exchanger, and the compressor. The refrigerant is circulated in the order of the compressors, and during the cooling operation utilizing the ice storage, the refrigerant flows in the order of the compressor, the outdoor heat exchanger, the heat storage tank, the first pressure reducing mechanism, the indoor heat exchanger, and the compressor. During the simultaneous operation of cooling and hot water supply and heating using ice heat storage, the refrigerant is supplied to the compressor,
The hot water supply heat exchanger, the outdoor heat exchanger, the heat storage tank,
The first pressure reducing mechanism, the indoor heat exchanger, and the compressor are circulated in this order, and during the hot water heat storage operation, the refrigerant flows through the compressor, the heat storage tank, the second pressure reducing mechanism, and the outdoor heat exchanger. And the compressor is circulated in the order, during a heating operation using outside air as a heat source, the refrigerant flows in the order of the compressor, the indoor heat exchanger, the first pressure reducing mechanism, the outdoor heat exchanger, and the compressor. In the heating operation using hot water heat storage, the refrigerant is circulated in the order of the compressor, the indoor heat exchanger, the first pressure reducing mechanism, the heat storage tank, and the compressor. The refrigerant is circulated in the order of the compressor, the hot water supply heat exchanger, the third pressure reducing mechanism, the outdoor heat exchanger, and the compressor.

【0007】また、請求項2に記載の多機能ヒートポン
プシステムは、請求項1において、上記圧縮機、上記室
外熱交換器、上記第1の減圧機構、上記室内熱交換器、
上記給湯用熱交換器、上記第2の減圧機構、上記蓄熱槽
および上記第3の減圧機構は、ユニット化されているこ
とを特徴とするものである。
[0007] In the multifunctional heat pump system according to the second aspect, in the first aspect, the compressor, the outdoor heat exchanger, the first decompression mechanism, the indoor heat exchanger,
The heat exchanger for hot water supply, the second decompression mechanism, the heat storage tank, and the third decompression mechanism are unitized.

【0008】さらに、請求項3に記載の多機能ヒートポ
ンプシステムは、請求項1または請求項3において、上
記貯湯槽は、電気温水器からなることを特徴とするもの
である。
Further, a multifunctional heat pump system according to claim 3 is characterized in that, in claim 1 or 3, the hot water storage tank is formed of an electric water heater.

【0009】請求項1の発明においては、氷蓄熱運転、
氷蓄熱・給湯加熱同時運転、冷房運転、冷房・給湯加熱
同時運転、氷蓄熱利用冷房運転、氷蓄熱利用冷房・給湯
加熱同時運転、温水蓄熱運転、外気を熱源とする暖房運
転、温水蓄熱利用暖房運転および給湯加熱運転が可能と
なる。したがって、氷蓄熱および温水蓄熱を利用して夜
間電力が有効に利用されるため、空調負荷のピーク時の
電力負荷平準化および割安な電力の利用による省ランニ
ングコスト化が図られる。また、氷蓄熱および冷房時の
排熱を利用して給湯加熱されるため、省エネルギー化お
よび省コスト化が図られる。
According to the first aspect of the present invention, ice heat storage operation
Simultaneous operation of ice storage and hot water supply, cooling operation, simultaneous operation of cooling and hot water supply, cooling operation using ice storage, simultaneous operation of cooling and hot water supply using ice storage, hot water storage operation, heating operation using outside air as a heat source, heating operation using hot water storage The operation and the hot water supply heating operation can be performed. Therefore, the nighttime electric power is effectively used by using the ice heat storage and the hot water heat storage, so that the power load is leveled at the peak of the air conditioning load and the running cost is reduced by using the cheaper power. In addition, since hot water is supplied and heated by using ice heat storage and waste heat during cooling, energy saving and cost saving can be achieved.

【0010】請求項2の発明においては、圧縮機、室外
熱交換器、第1の減圧機構、室内熱交換器、給湯用熱交
換器、第2の減圧機構、蓄熱槽および第3の減圧機構が
ユニット化され一体化されているので、これらの間に冷
媒を循環させる冷媒配管が当該ユニット内に収められ、
外部には一切不要となるため、据付時や改修時の配管工
事の際に、冷媒が当該ユニットの外部に漏れることがな
い。
According to the second aspect of the present invention, the compressor, the outdoor heat exchanger, the first pressure reducing mechanism, the indoor heat exchanger, the hot water supply heat exchanger, the second pressure reducing mechanism, the heat storage tank, and the third pressure reducing mechanism. Are unitized and integrated, so a refrigerant pipe for circulating the refrigerant between them is contained in the unit,
Since it is not required outside, the refrigerant does not leak to the outside of the unit during piping work during installation or repair.

【0011】請求項3の発明においては、電気温水器を
貯湯槽としたので、電気温水器による給湯加熱を併せて
行うことが可能となる。
According to the third aspect of the present invention, since the electric water heater is used as the hot water storage tank, it is possible to simultaneously perform hot water supply heating by the electric water heater.

【0012】[0012]

【発明の実施の形態】以下、本発明の多機能ヒートポン
プシステムの一実施の態様を図面に基づいて説明する。
図1は、本実施の態様に係る多機能ヒートポンプシステ
ムの冷媒回路図である。同図において、符号1は、圧縮
機であり、この圧縮機1の吐出側には、R−22(フロ
ン)等の冷媒が流される冷媒配管2によって、乾式二重
管式の給湯用熱交換器3が接続されている。冷媒配管2
には、電磁開閉弁2Aが介装されている。給湯用熱交換
器3と、電気温水器4との間には循環ポンプ5によって
循環水が循環される。電気温水器4は、電気ヒータによ
る本来の加熱が可能であり、さらに本実施の態様では給
湯用熱交換器3による給湯加熱がなされ、この場合には
貯湯槽として機能する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the multifunctional heat pump system according to the present invention will be described below with reference to the drawings.
FIG. 1 is a refrigerant circuit diagram of the multifunctional heat pump system according to the present embodiment. In the drawing, reference numeral 1 denotes a compressor, and a dry double-pipe heat exchange for hot water supply is provided on the discharge side of the compressor 1 by a refrigerant pipe 2 through which a refrigerant such as R-22 (CFC) flows. The vessel 3 is connected. Refrigerant pipe 2
Is provided with an electromagnetic on-off valve 2A. Circulating water is circulated between the hot water supply heat exchanger 3 and the electric water heater 4 by a circulating pump 5. The electric water heater 4 can perform the original heating by the electric heater, and in the present embodiment, the hot water is supplied by the hot water supply heat exchanger 3, and in this case, functions as a hot water storage tank.

【0013】給湯用熱交換器3には、冷媒配管6によっ
てプロペラ式の送風機7が併設されたプレートフィン式
の室外熱交換器8が接続されている。冷媒配管6には、
電磁開閉弁9A、電磁開閉弁9が、給湯用熱交換器3側
から順に介装されている。
A heat exchanger 3 for hot water supply is connected to a plate fin type outdoor heat exchanger 8 provided with a propeller type blower 7 by a refrigerant pipe 6. In the refrigerant pipe 6,
The solenoid on-off valve 9A and the solenoid on-off valve 9 are interposed in order from the hot water supply heat exchanger 3 side.

【0014】室外熱交換器8には、電磁開閉弁10Aが
介装された冷媒配管10が接続され、この冷媒配管10
は、3つの冷媒配管11、12、13に分岐されてい
る。分岐された冷媒配管11は、電磁開閉弁14を介し
て第1の膨張弁(第1の減圧機構)15に接続されてい
る。この第1の膨張弁15には、両吸込シロッコ式の送
風機16が併設された室内熱交換器17が接続されてい
る。室内熱交換器17には、冷媒配管18によって圧縮
機1に接続されている。冷媒配管18には電磁開閉弁1
9が介装されている。
The outdoor heat exchanger 8 is connected to a refrigerant pipe 10 provided with an electromagnetic on-off valve 10A.
Are branched into three refrigerant pipes 11, 12, and 13. The branched refrigerant pipe 11 is connected to a first expansion valve (first pressure reducing mechanism) 15 via an electromagnetic on-off valve 14. The first expansion valve 15 is connected to an indoor heat exchanger 17 provided with a double suction sirocco type blower 16. The indoor heat exchanger 17 is connected to the compressor 1 by a refrigerant pipe 18. The solenoid valve 1 is connected to the refrigerant pipe 18.
9 are interposed.

【0015】上記分岐された冷媒配管12は、第2の膨
張弁(第2の減圧機構)20に接続され、この第2の膨
張弁20には、冷媒配管21によって冷媒過冷却型の氷
蓄熱および温水蓄熱兼用の蓄熱槽22が接続されてい
る。上記分岐された冷媒配管13は、電磁開閉弁13A
を介して冷媒配管21に接続されている。
The branched refrigerant pipe 12 is connected to a second expansion valve (second pressure reducing mechanism) 20. The second expansion valve 20 is connected to a refrigerant supercooling type ice heat storage by a refrigerant pipe 21. And a heat storage tank 22 that also serves as hot water heat storage. The branched refrigerant pipe 13 is provided with an electromagnetic on-off valve 13A.
Is connected to the refrigerant pipe 21 via the

【0016】蓄熱槽22には、冷媒配管23が接続さ
れ、この冷媒配管23は、3つの冷媒配管24、25、
26に分岐されている。分岐された冷媒配管24は、電
磁開閉弁27を介して、冷媒配管11における電磁開閉
弁14と第1の膨張弁15との間に接続されている。ま
た、分岐された冷媒配管25は、電磁開閉弁28を介し
て、冷媒配管18における室内熱交換器17と電磁開閉
弁19との間に接続されている。また、分岐された冷媒
配管26は、電磁開閉弁29を介して、冷媒配管18に
おける電磁開閉弁19と圧縮機1との間に接続されてい
る。
A refrigerant pipe 23 is connected to the heat storage tank 22. The refrigerant pipe 23 has three refrigerant pipes 24, 25,
It is branched to 26. The branched refrigerant pipe 24 is connected via an electromagnetic on-off valve 27 between the electromagnetic on-off valve 14 and the first expansion valve 15 in the refrigerant pipe 11. The branched refrigerant pipe 25 is connected to the refrigerant pipe 18 between the indoor heat exchanger 17 and the electromagnetic on-off valve 19 via an electromagnetic on-off valve 28. The branched refrigerant pipe 26 is connected to the compressor 1 between the electromagnetic on-off valve 19 and the compressor 1 via an electromagnetic on-off valve 29.

【0017】上記冷媒配管6における電磁開閉弁9Aと
電磁開閉弁9との間に、冷媒配管30の一端が接続さ
れ、この冷媒配管30の他端は、冷媒配管18における
電磁開閉弁19より室内熱交換器17側に接続されてい
る。冷媒配管30には、電磁開閉弁31が介装されてい
る。また、冷媒配管6における電磁開閉弁9と室外熱交
換器8との間に、冷媒配管32の一端が接続され、この
冷媒配管32の他端は、冷媒配管26における電磁開閉
弁29より圧縮機1側に接続されている。冷媒配管32
には、電磁開閉弁33が介装されている。
One end of a refrigerant pipe 30 is connected between the solenoid on-off valve 9 A and the electromagnetic on-off valve 9 in the refrigerant pipe 6, and the other end of the refrigerant pipe 30 is connected to the interior of the refrigerant pipe 18 by an electromagnetic on-off valve 19. It is connected to the heat exchanger 17 side. An electromagnetic opening / closing valve 31 is interposed in the refrigerant pipe 30. One end of a refrigerant pipe 32 is connected between the electromagnetic on-off valve 9 and the outdoor heat exchanger 8 in the refrigerant pipe 6, and the other end of the refrigerant pipe 32 is connected to the compressor by an electromagnetic on-off valve 29 in the refrigerant pipe 26. It is connected to one side. Refrigerant pipe 32
Is provided with an electromagnetic on-off valve 33.

【0018】上記冷媒配管2における圧縮機1と電磁開
閉弁2Aとの間に、冷媒配管34の一端が接続され、こ
の冷媒配管34の他端は、冷媒配管6における電磁開閉
弁9Aと、冷媒配管6と冷媒配管30との接続部6Aと
の間に、接続部6Bとして接続されている。冷媒配管3
4には、電磁開閉弁34Aが介装されている。また、上
記接続部6Bには、冷媒配管35の一端が接続され、こ
の冷媒配管35の他端は、冷媒配管10における電磁開
閉弁10Aより室外熱交換器8の反対側に接続されてい
る。冷媒配管35には、第3の膨張弁(第3の減圧機
構)36が介装されている。
One end of a refrigerant pipe 34 is connected between the compressor 1 and the electromagnetic switching valve 2A in the refrigerant pipe 2, and the other end of the refrigerant pipe 34 is connected to the electromagnetic switching valve 9A of the refrigerant pipe 6 and the refrigerant. The connection part 6B is connected between the pipe 6 and the connection part 6A of the refrigerant pipe 30. Refrigerant piping 3
4, an electromagnetic on-off valve 34A is interposed. One end of a refrigerant pipe 35 is connected to the connection part 6B, and the other end of the refrigerant pipe 35 is connected to the refrigerant pipe 10 on the opposite side of the electromagnetic on-off valve 10A from the outdoor heat exchanger 8. A third expansion valve (third pressure reducing mechanism) 36 is interposed in the refrigerant pipe 35.

【0019】ここで、図1において、二点鎖線で囲った
部分、すなわち、圧縮機1、給湯用熱交換器3、循環ポ
ンプ5、室外熱交換器8、送風機7、第1の膨張弁1
5、室内熱交換器17、送風機16、第2の膨張弁2
0、蓄熱槽22、第3の膨張弁36、各冷媒配管および
各電磁開閉弁は、ユニットAとしてユニット化されて構
成されている。これらの機器および冷媒配管は、図2に
概略示すように、筐体Bの中に収納されている。送風機
16によって送風される空調空気は、給気ダクトCによ
って住戸内に導かれ、還気ダクトDによって戻される。
なお、同図において、Fはフィルタ、G、Hは、給湯加
熱用配管である。
Here, in FIG. 1, portions surrounded by a two-dot chain line, that is, a compressor 1, a hot water supply heat exchanger 3, a circulation pump 5, an outdoor heat exchanger 8, a blower 7, a first expansion valve 1
5, indoor heat exchanger 17, blower 16, second expansion valve 2
0, the heat storage tank 22, the third expansion valve 36, each refrigerant pipe, and each electromagnetic open / close valve are unitized and configured as a unit A. These devices and the refrigerant pipe are housed in a housing B as schematically shown in FIG. The conditioned air blown by the blower 16 is guided into the dwelling unit by the air supply duct C and returned by the return air duct D.
In the figure, F is a filter, and G and H are hot water supply heating pipes.

【0020】このように構成された多機能ヒートポンプ
システムは、制御手段によって制御され、次のように各
種の運転がなされる。以下、各種の運転について説明す
る。
The multifunctional heat pump system thus configured is controlled by the control means, and performs various operations as follows. Hereinafter, various operations will be described.

【0021】(氷蓄熱運転)本運転は、通常、夏季の夜
間に運転される。図3に示すように、本運転では、電磁
開閉弁34A、電磁開閉弁9、電磁開閉弁10A、第2
の膨張弁20および電磁開閉弁29が開弁されるととも
に、他の電磁開閉弁および膨張弁は閉弁され、そして冷
媒は、実線矢印で示すように、圧縮機1、電磁開閉弁3
4A、電磁開閉弁9、室外熱交換器8、電磁開閉弁10
A、第2の膨張弁20、蓄熱槽22、電磁開閉弁29お
よび圧縮機1の順に循環される。
(Ice heat storage operation) This operation is usually performed at night in summer. As shown in FIG. 3, in this operation, the electromagnetic on-off valve 34A, the electromagnetic on-off valve 9, the electromagnetic on-off valve 10A, the second
The expansion valve 20 and the electromagnetic on-off valve 29 are opened, the other electromagnetic on-off valves and the expansion valve are closed, and the refrigerant flows into the compressor 1, the electromagnetic on-off valve 3 as shown by the solid arrow.
4A, solenoid on-off valve 9, outdoor heat exchanger 8, solenoid on-off valve 10
A, the second expansion valve 20, the heat storage tank 22, the solenoid on-off valve 29, and the compressor 1 are circulated in this order.

【0022】この間に、圧縮機1から吐出された高温・
高圧の冷媒ガスは、室外熱交換器8を通過する。室外熱
交換器8は凝縮器として機能し、高温・高圧の冷媒ガス
は、室外熱交換器8を通過する間に、凝縮して高圧の冷
媒液となった後、第2の膨張弁20により減圧されて低
圧二相状態にされる。その後、蓄熱槽22が蒸発器とし
て機能し、冷媒が蓄熱槽22を通過する間に蒸発して低
圧ガスとされる一方、蓄熱槽22には氷蓄熱される。そ
の後、冷媒ガスは圧縮機1の吸入側に戻される。
During this time, the high temperature discharged from the compressor 1
The high-pressure refrigerant gas passes through the outdoor heat exchanger 8. The outdoor heat exchanger 8 functions as a condenser, and the high-temperature and high-pressure refrigerant gas is condensed into a high-pressure refrigerant liquid while passing through the outdoor heat exchanger 8, and is then discharged by the second expansion valve 20. The pressure is reduced to a low pressure two-phase state. Thereafter, the heat storage tank 22 functions as an evaporator, and the refrigerant evaporates while passing through the heat storage tank 22 to become a low-pressure gas, while ice heat is stored in the heat storage tank 22. Thereafter, the refrigerant gas is returned to the suction side of the compressor 1.

【0023】本運転においては、夜間電力を利用して氷
蓄熱を行うので、夜間電力を有効利用することができ
る。
In this operation, ice heat is stored using nighttime electric power, so that nighttime electric power can be effectively used.

【0024】(氷蓄熱・給湯加熱同時運転)本運転は、
通常、夏季の夜間に運転される。図4に示すように、本
運転では、電磁開閉弁2A、電磁開閉弁9A、電磁開閉
弁9、電磁開閉弁10A、第2の膨張弁20および電磁
開閉弁29が開弁されるとともに、他の電磁開閉弁およ
び膨張弁は閉弁され、そして冷媒は、実線矢印で示すよ
うに、圧縮機1、電磁開閉弁2A、給湯用熱交換器3、
電磁開閉弁9A、電磁開閉弁9、室外熱交換器8、電磁
開閉弁10A、第2の膨張弁20、蓄熱槽22、電磁開
閉弁29および圧縮機1の順に循環される。
(Simultaneous operation of ice storage and hot water supply)
It is usually driven during the summer nights. As shown in FIG. 4, in this operation, the electromagnetic on-off valve 2A, the electromagnetic on-off valve 9A, the electromagnetic on-off valve 9, the electromagnetic on-off valve 10A, the second expansion valve 20, and the electromagnetic on-off valve 29 are opened, and The solenoid on-off valve and the expansion valve are closed, and the refrigerant flows through the compressor 1, the solenoid on-off valve 2A, the hot water supply heat exchanger 3,
The electromagnetic on / off valve 9A, the electromagnetic on / off valve 9, the outdoor heat exchanger 8, the electromagnetic on / off valve 10A, the second expansion valve 20, the heat storage tank 22, the electromagnetic on / off valve 29, and the compressor 1 are circulated in this order.

【0025】この間に、圧縮機1から吐出された高温・
高圧の冷媒ガスは、給湯用熱交換器3を通過し、ここで
循環ポンプ5によって循環する電気温水器4からの循環
水を加熱して給湯加熱を行い、その後室外熱交換器8を
通過する。この給湯用熱交換器3および室外熱交換器8
は凝縮器として機能し、高温・高圧の冷媒ガスは、これ
らを通過する間に、凝縮して高圧の冷媒液となった後、
第2の膨張弁20により減圧されて低圧二相状態にされ
る。その後、蓄熱槽22が蒸発器として機能し、冷媒が
蓄熱槽22を通過する間に蒸発して低圧ガスとされる一
方、蓄熱槽22には氷蓄熱される。その後、冷媒ガスは
圧縮機1の吸入側に戻される。
During this time, the high temperature discharged from the compressor 1
The high-pressure refrigerant gas passes through the hot-water supply heat exchanger 3, where the circulating water from the electric water heater 4 circulated by the circulation pump 5 is heated to perform hot-water supply heating, and then passes through the outdoor heat exchanger 8. . The hot water supply heat exchanger 3 and the outdoor heat exchanger 8
Functions as a condenser, the high-temperature and high-pressure refrigerant gas is condensed into high-pressure refrigerant liquid while passing through them,
The pressure is reduced by the second expansion valve 20 to a low-pressure two-phase state. Thereafter, the heat storage tank 22 functions as an evaporator, and the refrigerant evaporates while passing through the heat storage tank 22 to become a low-pressure gas, while ice heat is stored in the heat storage tank 22. Thereafter, the refrigerant gas is returned to the suction side of the compressor 1.

【0026】本運転においては、夜間電力を利用して氷
蓄熱を行うので、夜間電力を有効利用することができ
る。また、蓄熱槽22の利用に伴って発生する排熱を、
給湯用熱交換器3の給湯加熱に利用することができるか
ら、省エネルギおよび省コスト化を図ることができる。
In this operation, ice heat is stored by using nighttime power, so that nighttime power can be effectively used. Further, waste heat generated due to the use of the heat storage tank 22 is
Since it can be used for hot water supply heating of the hot water supply heat exchanger 3, energy saving and cost saving can be achieved.

【0027】(冷房運転)本運転は、通常、夏季に運転
される。本運転においては、通常行われている冷房運転
がなされる。図5に示すように、本運転では、電磁開閉
弁34A、電磁開閉弁9、電磁開閉弁10A、電磁開閉
弁14、第1の膨張弁15および電磁開閉弁19が開弁
されるとともに、他の電磁開閉弁および膨張弁は閉弁さ
れ、そして冷媒は、実線矢印で示すように、圧縮機1、
電磁開閉弁34A、電磁開閉弁9、室外熱交換器8、電
磁開閉弁10A、電磁開閉弁14、第1の膨張弁15、
室内熱交換器17、電磁開閉弁19および圧縮機1の順
に循環される。
(Cooling operation) This operation is usually performed in summer. In this operation, a cooling operation that is normally performed is performed. As shown in FIG. 5, in this operation, the electromagnetic on-off valve 34A, the electromagnetic on-off valve 9, the electromagnetic on-off valve 10A, the electromagnetic on-off valve 14, the first expansion valve 15, and the electromagnetic on-off valve 19 are opened, and The solenoid on-off valve and the expansion valve are closed, and the refrigerant flows through the compressor 1, as shown by the solid arrows.
Electromagnetic on-off valve 34A, electromagnetic on-off valve 9, outdoor heat exchanger 8, electromagnetic on-off valve 10A, electromagnetic on-off valve 14, first expansion valve 15,
The circulation is performed in the order of the indoor heat exchanger 17, the electromagnetic on-off valve 19, and the compressor 1.

【0028】この間に、圧縮機1から吐出された高温・
高圧の冷媒ガスは、室外熱交換器8を通過する。この室
外熱交換器8は凝縮器として機能し、高温・高圧の冷媒
ガスは、この室外熱交換器8を通過する間に、凝縮して
高圧の冷媒液となった後、第1の膨張弁15により減圧
されて低圧二相状態にされる。その後、室内熱交換器1
7が蒸発器として機能し、冷媒が室内熱交換器17を通
過する間に蒸発して低圧ガスとされる。その後、冷媒ガ
スは圧縮機1の吸入側に戻される。
During this time, the high temperature discharged from the compressor 1
The high-pressure refrigerant gas passes through the outdoor heat exchanger 8. The outdoor heat exchanger 8 functions as a condenser, and the high-temperature and high-pressure refrigerant gas is condensed into a high-pressure refrigerant liquid while passing through the outdoor heat exchanger 8, and then the first expansion valve The pressure is reduced by 15 to a low-pressure two-phase state. Then, indoor heat exchanger 1
7 functions as an evaporator, and the refrigerant evaporates while passing through the indoor heat exchanger 17 to become low-pressure gas. Thereafter, the refrigerant gas is returned to the suction side of the compressor 1.

【0029】(冷房・給湯加熱同時運転)本運転は、通
常、夏季に運転される。図6に示すように、本運転で
は、電磁開閉弁2A、電磁開閉弁9A、電磁開閉弁9、
電磁開閉弁10A、電磁開閉弁14、第1の膨張弁15
および電磁開閉弁19が開弁されるとともに、他の電磁
開閉弁および膨張弁は閉弁され、そして冷媒は、実線矢
印で示すように、圧縮機1、電磁開閉弁2A、給湯用熱
交換器3、電磁開閉弁9A、電磁開閉弁9、室外熱交換
器8、電磁開閉弁10A、電磁開閉弁14、第1の膨張
弁15、室内熱交換器17、電磁開閉弁19および圧縮
機1の順に循環される。
(Simultaneous Cooling / Hot Water Heating Operation) This operation is usually performed in summer. As shown in FIG. 6, in this operation, the solenoid on-off valve 2A, the solenoid on-off valve 9A, the solenoid on-off valve 9,
Electromagnetic on-off valve 10A, electromagnetic on-off valve 14, first expansion valve 15
And the electromagnetic on / off valve 19 is opened, the other electromagnetic on / off valves and the expansion valve are closed, and the refrigerant flows through the compressor 1, the electromagnetic on / off valve 2A, the hot water supply heat exchanger as indicated by solid arrows. 3, electromagnetic on / off valve 9A, electromagnetic on / off valve 9, outdoor heat exchanger 8, electromagnetic on / off valve 10A, electromagnetic on / off valve 14, first expansion valve 15, indoor heat exchanger 17, electromagnetic on / off valve 19 and compressor 1 It is cycled in order.

【0030】この間に、圧縮機1から吐出された高温・
高圧の冷媒ガスは、給湯用熱交換器3を通過し、ここで
循環ポンプ5によって循環する電気温水器4からの循環
水を加熱して給湯加熱を行い、その後室外熱交換器8を
通過する。この給湯用熱交換器3および室外熱交換器8
は凝縮器として機能し、高温・高圧の冷媒ガスは、これ
らを通過する間に、凝縮して高圧の冷媒液となった後、
第1の膨張弁15により減圧されて低圧二相状態にされ
る。その後、室内熱交換器17が蒸発器として機能し、
冷媒が室内熱交換器17を通過する間に蒸発して低圧ガ
スとされる。その後、冷媒ガスは圧縮機1の吸入側に戻
される。
During this time, the high temperature discharged from the compressor 1
The high-pressure refrigerant gas passes through the hot-water supply heat exchanger 3, where the circulating water from the electric water heater 4 circulated by the circulation pump 5 is heated to perform hot-water supply heating, and then passes through the outdoor heat exchanger 8. . The hot water supply heat exchanger 3 and the outdoor heat exchanger 8
Functions as a condenser, the high-temperature and high-pressure refrigerant gas is condensed into high-pressure refrigerant liquid while passing through them,
The pressure is reduced by the first expansion valve 15 to a low-pressure two-phase state. Thereafter, the indoor heat exchanger 17 functions as an evaporator,
The refrigerant evaporates while passing through the indoor heat exchanger 17 and becomes low-pressure gas. Thereafter, the refrigerant gas is returned to the suction side of the compressor 1.

【0031】本運転においては、室内熱交換器20で発
生する排熱を、給湯用熱交換器3の給湯加熱に利用する
ことができるから、省エネルギーおよび省コスト化を図
ることができる。
In this operation, the exhaust heat generated in the indoor heat exchanger 20 can be used for the hot water supply of the hot water supply heat exchanger 3, so that energy saving and cost saving can be achieved.

【0032】(氷蓄熱利用冷房運転)本運転は、通常、
夏季の昼間の電力ピーク時間帯(通常午後1時から午後
4時頃)に運転される。図7に示すように、本運転で
は、電磁開閉弁34A、電磁開閉弁9、電磁開閉弁10
A、電磁開閉弁13A、電磁開閉弁27、第1の膨張弁
15および電磁開閉弁19が開弁されるとともに、他の
電磁開閉弁および膨張弁は閉弁され、そして冷媒は、実
線矢印で示すように、圧縮機1、電磁開閉弁34A、電
磁開閉弁9、室外熱交換器8、電磁開閉弁10A、電磁
開閉弁13A、蓄熱槽22、電磁開閉弁27、第1の膨
張弁15、室内熱交換器17、電磁開閉弁19および圧
縮機1の順に循環される。
(Cooling operation using ice heat storage) This operation is usually performed by
It is operated during peak hours during the daytime in summer (usually from 1 pm to 4 pm). As shown in FIG. 7, in this operation, the electromagnetic on-off valve 34A, the electromagnetic on-off valve 9, the electromagnetic on-off valve 10
A, the electromagnetic on-off valve 13A, the electromagnetic on-off valve 27, the first expansion valve 15 and the electromagnetic on-off valve 19 are opened, the other electromagnetic on-off valves and expansion valves are closed, and the refrigerant is indicated by solid arrows. As shown, the compressor 1, the electromagnetic on-off valve 34A, the electromagnetic on-off valve 9, the outdoor heat exchanger 8, the electromagnetic on-off valve 10A, the electromagnetic on-off valve 13A, the heat storage tank 22, the electromagnetic on-off valve 27, the first expansion valve 15, The circulation is performed in the order of the indoor heat exchanger 17, the electromagnetic on-off valve 19, and the compressor 1.

【0033】この間に、圧縮機1から出された高温・高
圧の冷媒ガスは、室外熱交換器8および蓄熱槽22を通
過する。これら室外熱交換器8および蓄熱槽22は凝縮
器として機能し、高温・高圧の冷媒ガスは、これらを通
過する間に、凝縮して高圧の冷媒液となった後、第1の
膨張弁15により減圧されて低圧二相状態にされる。そ
の後、室内熱交換器17が蒸発器として機能し、冷媒が
室内熱交換器17を通過する間に蒸発して低圧ガスとさ
れる。その後、冷媒ガスは圧縮機1の吸入側に戻され
る。
During this time, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the outdoor heat exchanger 8 and the heat storage tank 22. The outdoor heat exchanger 8 and the heat storage tank 22 function as a condenser, and the high-temperature and high-pressure refrigerant gas is condensed into a high-pressure refrigerant liquid while passing through them, and then the first expansion valve 15 To reduce the pressure to a low-pressure two-phase state. Thereafter, the indoor heat exchanger 17 functions as an evaporator, and the refrigerant evaporates while passing through the indoor heat exchanger 17 to become low-pressure gas. Thereafter, the refrigerant gas is returned to the suction side of the compressor 1.

【0034】本運転においては、蓄熱槽22の氷蓄熱を
利用して冷媒の凝縮を行うので、冷房能力が向上すると
ともに、夜間電力により氷蓄熱されているので電力ピー
クカットを図ることができる。
In this operation, since the refrigerant is condensed by using the ice heat stored in the heat storage tank 22, the cooling capacity is improved, and the peak of the electric power can be cut because the ice is stored by the nighttime electric power.

【0035】(氷蓄熱利用冷房・給湯加熱同時運転)本
運転は、通常、夏季の昼間の電力ピーク時間帯(通常午
後1時から午後4時頃)に運転される。図8に示すよう
に、本運転では、電磁開閉弁2A、電磁開閉弁9A、電
磁開閉弁9、電磁開閉弁10A、電磁開閉弁13A、電
磁開閉弁27、第1の膨張弁15および電磁開閉弁19
が開弁されるとともに、他の電磁開閉弁および膨張弁は
閉弁され、そして冷媒は、実線矢印で示すように、圧縮
機1、電磁開閉弁2A、給湯用熱交換器3、電磁開閉弁
9A、電磁開閉弁9、室外熱交換器8、電磁開閉弁10
A、電磁開閉弁13A、蓄熱槽22、電磁開閉弁27、
第1の膨張弁15、室内熱交換器17、電磁開閉弁19
および圧縮機1の順に循環される。
(Simultaneous Cooling / Hot Water Supply Heating Operation Using Ice Storage) This operation is usually performed during the peak power hours during the daytime in summer (usually from 1:00 pm to 4:00 pm). As shown in FIG. 8, in this operation, the electromagnetic on / off valve 2A, the electromagnetic on / off valve 9A, the electromagnetic on / off valve 9, the electromagnetic on / off valve 10A, the electromagnetic on / off valve 13A, the electromagnetic on / off valve 27, the first expansion valve 15, the electromagnetic on / off Valve 19
Is opened, the other solenoid on-off valves and expansion valves are closed, and the refrigerant flows through the compressor 1, the solenoid on-off valve 2A, the hot-water supply heat exchanger 3, and the solenoid on-off valve as indicated by solid arrows. 9A, solenoid on-off valve 9, outdoor heat exchanger 8, solenoid on-off valve 10
A, electromagnetic on-off valve 13A, heat storage tank 22, electromagnetic on-off valve 27,
First expansion valve 15, indoor heat exchanger 17, electromagnetic on-off valve 19
And the compressor 1 in this order.

【0036】この間に、圧縮機1から出された高温・高
圧の冷媒ガスは、給湯用熱交換器3を通過し、ここで循
環ポンプ5によって循環する電気温水器4からの循環水
を加熱して給湯加熱を行い、その後室外熱交換器8およ
び蓄熱槽22を通過する。これら給湯用熱交換器3、室
外熱交換器8および蓄熱槽22は凝縮器として機能し、
高温・高圧の冷媒ガスは、これらを通過する間に、凝縮
して高圧の冷媒液となった後、第1の膨張弁15により
減圧されて低圧二相状態にされる。その後、室内熱交換
器17が蒸発器として機能し、冷媒が室内熱交換器17
を通過する間に蒸発して低圧ガスとされる。その後、冷
媒ガスは圧縮機1の吸入側に戻される。
During this time, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the hot water supply heat exchanger 3 where the circulating water from the electric water heater 4 circulated by the circulation pump 5 is heated. Then, the hot water is heated and then passed through the outdoor heat exchanger 8 and the heat storage tank 22. The hot water supply heat exchanger 3, the outdoor heat exchanger 8, and the heat storage tank 22 function as a condenser,
The high-temperature and high-pressure refrigerant gas is condensed into a high-pressure refrigerant liquid while passing through them, and then reduced in pressure by the first expansion valve 15 to be in a low-pressure two-phase state. Thereafter, the indoor heat exchanger 17 functions as an evaporator, and the refrigerant is supplied to the indoor heat exchanger 17.
To evaporate into low-pressure gas. Thereafter, the refrigerant gas is returned to the suction side of the compressor 1.

【0037】本運転においては、蓄熱槽22の氷蓄熱を
利用して冷媒の凝縮を行うので、冷房能力が向上すると
ともに、夜間電力により氷蓄熱されているので電力ピー
クカットを図ることができる。また、室内熱交換器17
で発生する排熱を、給湯用熱交換器3の給湯加熱に利用
することができるから、省エネルギおよび省コスト化を
図ることができる。
In this operation, since the refrigerant is condensed by using the ice heat stored in the heat storage tank 22, the cooling capacity is improved, and the power peak can be cut because the ice heat is stored by the nighttime power. In addition, the indoor heat exchanger 17
Can be used for hot water supply heating of the hot water supply heat exchanger 3, so that energy saving and cost saving can be achieved.

【0038】(温水蓄熱運転)本運転は、通常、冬季の
夜間に運転される。図9に示すように、本運転では、電
磁開閉弁34A、電磁開閉弁31、電磁開閉弁28、第
2の膨張弁20、電磁開閉弁10Aおよび電磁開閉弁3
3が開弁されるとともに、他の電磁開閉弁および膨張弁
は閉弁され、そして冷媒は、実線矢印で示すように、圧
縮機1、電磁開閉弁34A、電磁開閉弁31、電磁開閉
弁28、蓄熱槽22、第2の膨張弁20、電磁開閉弁1
0A、室外熱交換器8、電磁開閉弁33および圧縮機1
の順に循環される。
(Hot water heat storage operation) This operation is usually performed at night in winter. As shown in FIG. 9, in this operation, the electromagnetic on-off valve 34A, the electromagnetic on-off valve 31, the electromagnetic on-off valve 28, the second expansion valve 20, the electromagnetic on-off valve 10A and the electromagnetic on-off valve 3
3 is opened, the other solenoid on-off valves and expansion valves are closed, and the refrigerant flows through the compressor 1, the solenoid on-off valve 34A, the solenoid on-off valve 31, and the solenoid on-off valve 28 as indicated by solid arrows. , Heat storage tank 22, second expansion valve 20, electromagnetic on-off valve 1
0A, outdoor heat exchanger 8, solenoid on-off valve 33 and compressor 1
In order.

【0039】この間に、圧縮機1から吐出された高温・
高圧の冷媒ガスは、蓄熱槽20を通過する。この蓄熱槽
22は凝縮器として機能し、高温・高圧の冷媒ガスは、
これらを通過する間に、凝縮して高圧の冷媒液となる一
方、蓄熱槽22では温水蓄熱が行われる。その後、冷媒
は第2の膨張弁20により減圧されて低圧二相状態にさ
れる。その後、室外熱交換器8が蒸発器として機能し、
冷媒が室外熱交換器8を通過する間に蒸発して低圧ガス
とされ、その後圧縮機1の吸入側に戻される。
During this time, the high temperature discharged from the compressor 1
The high-pressure refrigerant gas passes through the heat storage tank 20. The heat storage tank 22 functions as a condenser, and the high-temperature and high-pressure refrigerant gas is
While passing through them, the refrigerant is condensed to become a high-pressure refrigerant liquid, while hot water heat is stored in the heat storage tank 22. Thereafter, the refrigerant is decompressed by the second expansion valve 20 to be in a low-pressure two-phase state. Thereafter, the outdoor heat exchanger 8 functions as an evaporator,
The refrigerant evaporates while passing through the outdoor heat exchanger 8 to become a low-pressure gas, and then returns to the suction side of the compressor 1.

【0040】本運転においては、夜間電力を利用して温
水蓄熱を行うので、夜間電力を有効利用することができ
る。また、外気を熱源として室外熱交換器8によって採
熱しこの熱を利用して、温水蓄熱を行うので、省エネル
ギーおよび省コスト化を図ることができる。
In the present operation, since the hot water is stored using the nighttime electric power, the nighttime electric power can be effectively used. Further, heat is taken by the outdoor heat exchanger 8 using the outside air as a heat source, and this heat is used to perform hot water heat storage, so that energy saving and cost saving can be achieved.

【0041】(外気を熱源とする暖房運転)本運転は、
通常、冬季の昼間に運転される。本運転においては、外
気を熱源とするヒートポンプとして作動する。図10に
示すように、本運転では、電磁開閉弁34A、電磁開閉
弁31、第1の膨張弁15、電磁開閉弁14、電磁開閉
弁10Aおよび電磁開閉弁33が開弁されるとともに、
他の電磁開閉弁および膨張弁は閉弁され、そして冷媒
は、実線矢印で示すように、圧縮機1、電磁開閉弁34
A、電磁開閉弁31、室内熱交換器17、第1の膨張弁
15、電磁開閉弁14、電磁開閉弁10A、室外熱交換
器8、電磁開閉弁33および圧縮機1の順に循環され
る。
(Heating operation using outside air as heat source)
It is usually driven during the daytime in winter. In this operation, it operates as a heat pump using outside air as a heat source. As shown in FIG. 10, in this operation, the electromagnetic on-off valve 34A, the electromagnetic on-off valve 31, the first expansion valve 15, the electromagnetic on-off valve 14, the electromagnetic on-off valve 10A and the electromagnetic on-off valve 33 are opened,
The other solenoid on-off valves and expansion valves are closed, and the refrigerant flows through the compressor 1, the solenoid on-off valve 34, as indicated by the solid arrows.
A, the electromagnetic on / off valve 31, the indoor heat exchanger 17, the first expansion valve 15, the electromagnetic on / off valve 14, the electromagnetic on / off valve 10A, the outdoor heat exchanger 8, the electromagnetic on / off valve 33, and the compressor 1 are circulated in this order.

【0042】この間に、圧縮機1から吐出された高温・
高圧の冷媒ガスは、室内熱交換器17を通過する。室内
熱交換器17は凝縮器として機能し、高温・高圧の冷媒
ガスは、この室内熱交換器17を通過する間に、凝縮し
て高圧の冷媒液となる。その後、冷媒は第1の膨張弁1
5により減圧されて低圧二相状態にされる。その後、室
外熱交換器8が蒸発器として機能し、冷媒が室外熱交換
器8を通過する間に蒸発して低圧ガスとされ、その後圧
縮機1の吸入側に戻される。
During this time, the high temperature discharged from the compressor 1
The high-pressure refrigerant gas passes through the indoor heat exchanger 17. The indoor heat exchanger 17 functions as a condenser, and the high-temperature and high-pressure refrigerant gas is condensed into a high-pressure refrigerant liquid while passing through the indoor heat exchanger 17. Thereafter, the refrigerant is supplied to the first expansion valve 1
The pressure is reduced by 5 to a low-pressure two-phase state. Thereafter, the outdoor heat exchanger 8 functions as an evaporator, and the refrigerant evaporates while passing through the outdoor heat exchanger 8 to become a low-pressure gas, and then returns to the suction side of the compressor 1.

【0043】(温水蓄熱利用暖房運転)本運転は、通
常、冬季の朝の暖房ピーク時に運転される。図11に示
すように、本運転では、電磁開閉弁34A、電磁開閉弁
31、第1の膨張弁15、電磁開閉弁14、電磁開閉弁
13Aおよび電磁開閉弁29が開弁されるとともに、他
の電磁開閉弁および膨張弁は閉弁され、そして冷媒は、
実線矢印で示すように、圧縮機1、電磁開閉弁34A、
電磁開閉弁31、室内熱交換器17、第1の膨張弁1
5、電磁開閉弁14、電磁開閉弁13A、蓄熱槽22、
電磁開閉弁29および圧縮機1の順に循環される。
(Heating operation using hot water heat storage) This operation is usually performed at the peak of heating in the morning in winter. As shown in FIG. 11, in this operation, the electromagnetic on-off valve 34A, the electromagnetic on-off valve 31, the first expansion valve 15, the electromagnetic on-off valve 14, the electromagnetic on-off valve 13A and the electromagnetic on-off valve 29 are opened, and The solenoid on-off valve and expansion valve are closed, and the refrigerant is
As indicated by solid arrows, the compressor 1, the solenoid on-off valve 34A,
Solenoid on-off valve 31, indoor heat exchanger 17, first expansion valve 1
5, electromagnetic switching valve 14, electromagnetic switching valve 13A, heat storage tank 22,
The solenoid valve 29 and the compressor 1 are circulated in this order.

【0044】この間に、圧縮機1から吐出された高温・
高圧の冷媒ガスは、室内熱交換器17を通過する。室内
熱交換器17は凝縮器として機能し、高温・高圧の冷媒
ガスは、この室内熱交換器17を通過する間に、凝縮し
て高圧の冷媒液となる。その後、冷媒は第1の膨張弁1
5により減圧されて低圧二相状態にされる。その後、蓄
熱槽22が蒸発器として機能し、冷媒がこれらを通過す
る間に蒸発して低圧ガスとされ、その後圧縮機1の吸入
側に戻される。
During this time, the high temperature discharged from the compressor 1
The high-pressure refrigerant gas passes through the indoor heat exchanger 17. The indoor heat exchanger 17 functions as a condenser, and the high-temperature and high-pressure refrigerant gas is condensed into a high-pressure refrigerant liquid while passing through the indoor heat exchanger 17. Thereafter, the refrigerant is supplied to the first expansion valve 1
The pressure is reduced by 5 to a low-pressure two-phase state. Thereafter, the heat storage tank 22 functions as an evaporator, and the refrigerant evaporates while passing therethrough to become a low-pressure gas, and thereafter is returned to the suction side of the compressor 1.

【0045】本運転においては、外気温度よりも高い温
度の蓄熱槽22の温水蓄熱を利用して冷媒の蒸発を行う
ので、暖房能力が向上するとともに、夜間電力により温
熱蓄熱されているので朝の電力ピークカットを図ること
ができる。
In this operation, the refrigerant is evaporated by using the hot water heat stored in the heat storage tank 22 at a temperature higher than the outside air temperature, so that the heating capacity is improved and the heat is stored by the nighttime electric power. Power peak cut can be achieved.

【0046】(給湯加熱運転)本運転のヒートポンプに
よる給湯加熱は、通常、中間季に利用される。図12に
示すように、本運転では、電磁開閉弁2A、電磁開閉弁
9A、第3の膨張弁36、電磁開閉弁10Aおよび電磁
開閉弁33が開弁されるとともに、他の電磁開閉弁およ
び膨張弁は閉弁され、そして冷媒は、実線矢印で示すよ
うに、圧縮機1、電磁開閉弁2A、給湯用熱交換器3、
電磁開閉弁9A、第3の膨張弁36、電磁開閉弁10
A、室外熱交換器8、電磁開閉弁33および圧縮機1の
順に循環される。
(Hot water supply heating operation) The hot water supply heating by the heat pump in this operation is usually used in the middle season. As shown in FIG. 12, in this operation, the solenoid on-off valve 2A, the solenoid on-off valve 9A, the third expansion valve 36, the solenoid on-off valve 10A and the solenoid on-off valve 33 are opened, and the other solenoid on-off valves and The expansion valve is closed, and the refrigerant flows through the compressor 1, the solenoid on-off valve 2A, the hot water supply heat exchanger 3,
Electromagnetic on-off valve 9A, third expansion valve 36, electromagnetic on-off valve 10
A, the outdoor heat exchanger 8, the solenoid on-off valve 33 and the compressor 1 are circulated in this order.

【0047】この間に、圧縮機1から吐出された高温・
高圧の冷媒ガスは、給湯用熱交換器3を通過し、ここで
循環ポンプ5によって循環する電気温水器4からの循環
水を加熱して給湯加熱を行う。この給湯用熱交換器3は
凝縮器として機能し、高温・高圧の冷媒ガスは、これら
を通過する間に、凝縮して高圧の冷媒液となる。その
後、冷媒は第3の膨張弁36により減圧されて低圧二相
状態にされる。その後、室外熱交換器8が蒸発器として
機能し、冷媒が室外熱交換器8を通過する間に蒸発して
低圧ガスとされ、その後圧縮機1の吸入側に戻される。
During this time, the high temperature discharged from the compressor 1
The high-pressure refrigerant gas passes through the hot water supply heat exchanger 3, where the circulating water from the electric water heater 4 circulated by the circulation pump 5 is heated to perform hot water supply heating. The hot water supply heat exchanger 3 functions as a condenser, and the high-temperature and high-pressure refrigerant gas is condensed into a high-pressure refrigerant liquid while passing through them. Thereafter, the refrigerant is depressurized by the third expansion valve 36 to be in a low-pressure two-phase state. Thereafter, the outdoor heat exchanger 8 functions as an evaporator, and the refrigerant evaporates while passing through the outdoor heat exchanger 8 to become a low-pressure gas, and then returns to the suction side of the compressor 1.

【0048】このような多機能ヒートポンプシステムに
あっては、氷蓄熱運転、氷蓄熱・給湯加熱同時運転、冷
房運転、冷房・給湯加熱同時運転、氷蓄熱利用冷房運
転、氷蓄熱利用冷房・給湯加熱同時運転、温水蓄熱運
転、外気を熱源とする暖房運転、温水蓄熱利用暖房運転
および給湯加熱運転を行うことが可能であるので、氷蓄
熱および温水蓄熱を利用して夜間電力を有効に利用する
ことができ、したがって空調負荷のピーク時の電力負荷
平準化および割安な電力の利用による省ランニングコス
ト化を図ることが可能になる。また、氷蓄熱および冷房
時の排熱を利用して給湯加熱することができるため、省
エネルギー化および省コスト化を図ることが可能にな
る。
In such a multifunctional heat pump system, ice heat storage operation, simultaneous operation of ice heat storage and hot water supply, cooling operation, simultaneous operation of cooling and hot water supply, cooling operation using ice heat storage, cooling and hot water supply using ice heat storage It is possible to perform simultaneous operation, hot water heat storage operation, heating operation using outside air as a heat source, heating operation using hot water heat storage, and hot water supply heating operation, so that nighttime power can be effectively used by using ice heat storage and hot water heat storage. Therefore, it is possible to level the power load at the peak of the air conditioning load and reduce running costs by using inexpensive power. In addition, since hot water supply and heating can be performed using ice heat storage and exhaust heat during cooling, energy saving and cost saving can be achieved.

【0049】さらに、圧縮機1、給湯用熱交換器3、循
環ポンプ5、室外熱交換器8、送風機7、第1の膨張弁
15、室内熱交換器17、送風機16、第2の膨張弁2
0、蓄熱槽22、第3の膨張弁36、各冷媒配管および
各電磁開閉弁が、筐体Bの中に収納されてユニットAと
してユニット化されているので、外部には一切冷媒配管
を施設する必要がないため、据付時や改修時の配管工事
の際に、冷媒がユニットAの外部に漏れるのを防止する
ことが可能になる。
Further, the compressor 1, the hot water supply heat exchanger 3, the circulation pump 5, the outdoor heat exchanger 8, the blower 7, the first expansion valve 15, the indoor heat exchanger 17, the blower 16, the second expansion valve 2
0, the heat storage tank 22, the third expansion valve 36, each refrigerant pipe, and each solenoid on-off valve are housed in the housing B and are unitized as a unit A. Therefore, it is possible to prevent the refrigerant from leaking to the outside of the unit A during piping work during installation or repair.

【0050】加えて、電気温水器4を貯湯槽として使用
したので、電気温水器として電気ヒータによる給湯加熱
を行い、これによる給湯も併せて行うことが可能であ
る。
In addition, since the electric water heater 4 is used as a hot water storage tank, it is possible to perform hot water supply heating using an electric heater as the electric water heater, and also perform hot water supply.

【0051】[0051]

【発明の効果】以上説明したように、請求項1に記載の
多機能ヒートポンプシステムによれば、氷蓄熱運転、氷
蓄熱・給湯加熱同時運転、冷房運転、冷房・給湯加熱同
時運転、氷蓄熱利用冷房運転、氷蓄熱利用冷房・給湯加
熱同時運転、温水蓄熱運転、外気を熱源とする暖房運
転、温水蓄熱利用暖房運転および給湯加熱運転を行うこ
とができるから、氷蓄熱および温水蓄熱を利用して夜間
電力を有効に利用することができるので、空調負荷のピ
ーク時の電力負荷平準化および割安な電力の利用による
省ランニングコスト化を図ることができるとともに、氷
蓄熱および冷房時の排熱を利用して給湯加熱することが
できるので、省エネルギーおよび省コスト化を図ること
ができるという効果を奏する。
As described above, according to the multifunctional heat pump system according to the first aspect, ice heat storage operation, ice heat storage / hot water supply heating simultaneous operation, cooling operation, cooling / hot water supply heating simultaneous operation, ice heat storage utilization Cooling operation, simultaneous operation of cooling and hot water supply using ice storage, hot water storage operation, heating operation using outside air as a heat source, heating operation using hot water storage, and hot water supply heating operation can be performed. Since nighttime power can be used effectively, power load leveling during peak air-conditioning loads and running costs can be reduced by using inexpensive power, while using ice heat storage and waste heat during cooling. Since the hot water supply and heating can be performed, energy saving and cost saving can be achieved.

【0052】また、請求項2に記載の多機能ヒートポン
プシステムによれば、圧縮機、室外熱交換器、減圧機
構、室内熱交換器、給湯用熱交換器、第2の減圧機構、
蓄熱槽および第3の減圧機構をユニット化し一体化した
から、これらの間に冷媒を循環させる冷媒配管を当該ユ
ニット内に収納することができ、外部には一切冷媒配管
を施設する必要がないため、据付時や改修時の配管工事
の際に、冷媒が当該ユニットの外部に漏れるのを防止す
ることができる。
Further, according to the multifunctional heat pump system of the second aspect, the compressor, the outdoor heat exchanger, the pressure reducing mechanism, the indoor heat exchanger, the hot water supply heat exchanger, the second pressure reducing mechanism,
Since the heat storage tank and the third decompression mechanism are unitized and integrated, a refrigerant pipe for circulating the refrigerant between them can be stored in the unit, and there is no need to provide any refrigerant pipe outside. In addition, it is possible to prevent the refrigerant from leaking to the outside of the unit at the time of piping work at the time of installation or repair.

【0053】さらに、請求項3に記載の多機能ヒートポ
ンプシステムによれば、電気温水器を貯湯槽としたか
ら、電気温水器による給湯加熱を併せて行うことができ
るという利点を有する。
Further, according to the multifunctional heat pump system of the third aspect, since the electric water heater is used as the hot water storage tank, there is an advantage that the hot water supply by the electric water heater can be performed together.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多機能ヒートポンプシステムの一実施
の態様を示す冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram showing one embodiment of a multifunctional heat pump system of the present invention.

【図2】本発明に係るユニットを示す概略透視斜視図で
ある。
FIG. 2 is a schematic perspective view showing a unit according to the present invention.

【図3】本発明の多機能ヒートポンプシステムの一実施
の態様を示す図であって、氷蓄熱運転時の冷媒回路図で
ある。
FIG. 3 is a diagram showing an embodiment of the multifunctional heat pump system of the present invention, and is a refrigerant circuit diagram during an ice heat storage operation.

【図4】本発明の多機能ヒートポンプシステムの一実施
の態様を示す図であって、氷蓄熱・給湯加熱同時運転時
の冷媒回路図である。
FIG. 4 is a diagram showing an embodiment of the multifunctional heat pump system of the present invention, and is a refrigerant circuit diagram during simultaneous operation of ice heat storage and hot water supply heating.

【図5】本発明の多機能ヒートポンプシステムの一実施
の態様を示す図であって、冷房運転時の冷媒回路図であ
る。
FIG. 5 is a diagram showing an embodiment of the multifunctional heat pump system of the present invention, and is a refrigerant circuit diagram during a cooling operation.

【図6】本発明の多機能ヒートポンプシステムの一実施
の態様を示す図であって、冷房・給湯加熱同時運転時の
冷媒回路図である。
FIG. 6 is a diagram showing one embodiment of the multifunctional heat pump system of the present invention, and is a refrigerant circuit diagram at the time of simultaneous cooling / hot water supply / heating operation.

【図7】本発明の多機能ヒートポンプシステムの一実施
の態様を示す図であって、氷蓄熱利用冷房運転時の冷媒
回路図である。
FIG. 7 is a diagram showing an embodiment of the multifunctional heat pump system according to the present invention, and is a refrigerant circuit diagram during cooling operation using ice storage.

【図8】本発明の多機能ヒートポンプシステムの一実施
の態様を示す図であって、氷蓄熱利用冷房・給湯加熱同
時運転時の冷媒回路図である。
FIG. 8 is a diagram showing an embodiment of the multifunctional heat pump system of the present invention, and is a refrigerant circuit diagram during simultaneous operation of cooling and hot water supply using ice storage.

【図9】本発明の多機能ヒートポンプシステムの一実施
の態様を示す図であって、温水蓄熱運転時の冷媒回路図
である。
FIG. 9 is a diagram showing an embodiment of the multifunctional heat pump system of the present invention, and is a refrigerant circuit diagram during a hot water heat storage operation.

【図10】本発明の多機能ヒートポンプシステムの一実
施の態様を示す図であって、外気を熱源とする暖房運転
時の冷媒回路図である。
FIG. 10 is a diagram showing an embodiment of the multifunctional heat pump system of the present invention, and is a refrigerant circuit diagram during a heating operation using outside air as a heat source.

【図11】本発明の多機能ヒートポンプシステムの一実
施の態様を示す図であって、温水蓄熱利用暖房運転時の
冷媒回路図である。
FIG. 11 is a diagram showing an embodiment of the multifunctional heat pump system of the present invention, and is a refrigerant circuit diagram during a heating operation utilizing hot water storage.

【図12】本発明の多機能ヒートポンプシステムの一実
施の態様を示す図であって、給湯加熱運転時の冷媒回路
図である。
FIG. 12 is a diagram showing one embodiment of the multifunctional heat pump system of the present invention, and is a refrigerant circuit diagram during a hot water supply heating operation.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 給湯用熱交換器 4 電気温水器(貯湯槽) 5 循環ポンプ 8 室外熱交換器 15 第1の膨張弁(第1の減圧機構) 17 室内熱交換器 20 第2の膨張弁(第2の減圧機構) 22 蓄熱槽 36 第3の膨張弁(第3の減圧機構) DESCRIPTION OF SYMBOLS 1 Compressor 3 Heat exchanger for hot-water supply 4 Electric water heater (hot water tank) 5 Circulation pump 8 Outdoor heat exchanger 15 1st expansion valve (1st pressure reduction mechanism) 17 Indoor heat exchanger 20 2nd expansion valve ( (Second pressure reducing mechanism) 22 heat storage tank 36 third expansion valve (third pressure reducing mechanism)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川崎 賢哉 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 (72)発明者 小林 光 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 (72)発明者 北川 寛 神奈川県厚木市飯山3150 日本ピーマック 株式会社内 (72)発明者 平井 仁 神奈川県厚木市飯山3150 日本ピーマック 株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kenya Kawasaki 1-25-1, Nishishinjuku, Shinjuku-ku, Tokyo Taisei Construction Co., Ltd. (72) Inventor Hikaru Kobayashi 1-25-1, Nishishinjuku, Shinjuku-ku, Tokyo Taisei Corporation (72) Inventor Hiroshi Kitagawa 3150 Iiyama, Atsugi-shi, Kanagawa Prefecture Inside PMAC Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と室外熱交換器と第1の減圧機構
と室内熱交換器とがこの順に環状に接続されるととも
に、循環ポンプによって循環する貯湯槽からの循環水を
加熱して給湯加熱を行う給湯用熱交換器と、第2の減圧
機構と、氷蓄熱および温水蓄熱兼用の蓄熱槽と、第3の
減圧機構とが介装され、これらの間に冷媒が循環されて
なり、かつ、 氷蓄熱運転時は、上記冷媒が上記圧縮機、上記室外熱交
換器、上記第2の減圧機構、上記蓄熱槽および上記圧縮
機の順に循環され、 氷蓄熱・給湯加熱同時運転時は、上記冷媒が上記圧縮
機、上記給湯用熱交換器、上記室外熱交換器、上記第2
の減圧機構、上記蓄熱槽および上記圧縮機の順に循環さ
れ、 冷房運転時は、上記冷媒が上記圧縮機、上記室外熱交換
器、上記第1の減圧機構、上記室内熱交換器および上記
圧縮機の順に循環され、 冷房・給湯加熱同時運転時は、上記冷媒が上記圧縮機、
上記給湯用熱交換器、上記室外熱交換器、上記第1の減
圧機構、上記室内熱交換器および上記圧縮機の順に循環
され、 氷蓄熱利用冷房運転時は、上記冷媒が上記圧縮機、上記
室外熱交換器、上記蓄熱槽、上記第1の減圧機構、上記
室内熱交換器および上記圧縮機の順に循環され、 氷蓄熱利用冷房・給湯加熱同時運転時は、上記冷媒が上
記圧縮機、上記給湯用熱交換器、上記室外熱交換器、上
記蓄熱槽、上記第1の減圧機構、上記室内熱交換器およ
び上記圧縮機の順に循環され、 温水蓄熱運転時は、上記冷媒が上記圧縮機、上記蓄熱
槽、上記第2の減圧機構、上記室外熱交換器および上記
圧縮機の順に循環され、 外気を熱源とする暖房運転時は、上記冷媒が上記圧縮
機、上記室内熱交換器、上記第1の減圧機構、上記室外
熱交換器および上記圧縮機の順に循環され、 温水蓄熱利用暖房運転時は、上記冷媒が上記圧縮機、上
記室内熱交換器、上記第1の減圧機構、上記蓄熱槽およ
び上記圧縮機の順に循環され、 給湯加熱運転時は、上記冷媒が上記圧縮機、上記給湯用
熱交換器、上記第3の減圧機構、上記室外熱交換器およ
び上記圧縮機の順に循環されることを特徴とする多機能
ヒートポンプシステム。
1. A compressor, an outdoor heat exchanger, a first decompression mechanism, and an indoor heat exchanger are connected in a ring shape in this order, and a circulating pump heats circulating water from a hot water storage tank to supply hot water. A hot water supply heat exchanger for heating, a second pressure reducing mechanism, a heat storage tank for both ice heat storage and hot water heat storage, and a third pressure reducing mechanism are interposed, and a refrigerant is circulated therebetween, And, at the time of ice heat storage operation, the refrigerant is circulated in the order of the compressor, the outdoor heat exchanger, the second pressure reducing mechanism, the heat storage tank, and the compressor. The refrigerant is the compressor, the hot water supply heat exchanger, the outdoor heat exchanger, the second
The refrigerant is circulated in the order of the pressure reducing mechanism, the heat storage tank, and the compressor. During the cooling operation, the refrigerant flows through the compressor, the outdoor heat exchanger, the first pressure reducing mechanism, the indoor heat exchanger, and the compressor. In the simultaneous operation of cooling, hot water supply and heating, the refrigerant flows into the compressor,
The heat exchanger for hot water supply, the outdoor heat exchanger, the first pressure reducing mechanism, the indoor heat exchanger, and the compressor are circulated in this order. During the cooling operation using the ice storage, the refrigerant is cooled by the compressor and the compressor. The outdoor heat exchanger, the heat storage tank, the first decompression mechanism, the indoor heat exchanger, and the compressor are circulated in this order. When the ice storage utilizing cooling / hot water supply simultaneous operation is performed, the refrigerant is supplied to the compressor and the compressor. The hot water supply heat exchanger, the outdoor heat exchanger, the heat storage tank, the first pressure reducing mechanism, the indoor heat exchanger, and the compressor are circulated in this order. The heat storage tank, the second decompression mechanism, the outdoor heat exchanger, and the compressor are circulated in this order, and during a heating operation using outside air as a heat source, the refrigerant flows through the compressor, the indoor heat exchanger, 1 decompression mechanism, the outdoor heat exchanger and the above During the heating operation using hot water heat storage, the refrigerant is circulated in the order of the compressor, the indoor heat exchanger, the first pressure reducing mechanism, the heat storage tank, and the compressor, and the hot water heating operation A multifunctional heat pump system wherein the refrigerant is circulated in the order of the compressor, the hot water supply heat exchanger, the third pressure reducing mechanism, the outdoor heat exchanger, and the compressor.
【請求項2】 上記圧縮機、上記室外熱交換器、上記第
1の減圧機構、上記室内熱交換器、上記給湯用熱交換
器、上記第2の減圧機構、上記蓄熱槽および上記第3の
減圧機構は、ユニット化されていることを特徴とする請
求項1に記載の多機能ヒートポンプシステム。
2. The compressor, the outdoor heat exchanger, the first decompression mechanism, the indoor heat exchanger, the hot water supply heat exchanger, the second decompression mechanism, the heat storage tank, and the third The multifunctional heat pump system according to claim 1, wherein the pressure reducing mechanism is unitized.
【請求項3】 上記貯湯槽は、電気温水器からなること
を特徴とする請求項1または請求項2に記載の多機能ヒ
ートポンプシステム。
3. The multifunctional heat pump system according to claim 1, wherein the hot water storage tank comprises an electric water heater.
JP35164198A 1998-12-10 1998-12-10 Multi-function heat pump system Expired - Fee Related JP3654017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35164198A JP3654017B2 (en) 1998-12-10 1998-12-10 Multi-function heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35164198A JP3654017B2 (en) 1998-12-10 1998-12-10 Multi-function heat pump system

Publications (2)

Publication Number Publication Date
JP2000179985A true JP2000179985A (en) 2000-06-30
JP3654017B2 JP3654017B2 (en) 2005-06-02

Family

ID=18418634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35164198A Expired - Fee Related JP3654017B2 (en) 1998-12-10 1998-12-10 Multi-function heat pump system

Country Status (1)

Country Link
JP (1) JP3654017B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083439A (en) * 2011-09-30 2013-05-09 Daikin Industries Ltd Hot water supply air conditioning system
US20140230477A1 (en) * 2011-09-30 2014-08-21 Daikin Industries, Ltd. Hot water supply air conditioning system
KR20170137175A (en) * 2015-05-26 2017-12-12 미쓰비시덴키 가부시키가이샤 Heat pump hot water supply system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083439A (en) * 2011-09-30 2013-05-09 Daikin Industries Ltd Hot water supply air conditioning system
US20140230477A1 (en) * 2011-09-30 2014-08-21 Daikin Industries, Ltd. Hot water supply air conditioning system
KR20170137175A (en) * 2015-05-26 2017-12-12 미쓰비시덴키 가부시키가이샤 Heat pump hot water supply system
EP3306219A4 (en) * 2015-05-26 2019-02-13 Mitsubishi Electric Corporation Heat pump hot water supply system
KR102010687B1 (en) * 2015-05-26 2019-08-13 미쓰비시덴키 가부시키가이샤 Heat Pump Hot Water System

Also Published As

Publication number Publication date
JP3654017B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
AU719697B2 (en) Thermal energy storage air conditioning system
US6735969B2 (en) Gas heat pump type air conditioning device, engine-coolant-water heating device, and operating method for gas heat pump type air conditioning device
KR20050068481A (en) Complex heating and cooling system
JPH08189713A (en) Binary refrigerating device
US5381671A (en) Air conditioning apparatus with improved ice storage therein
US6094926A (en) Electricity storage type air conditioning apparatus and cooling/heating source device therefor
KR101964946B1 (en) temperature compensated cooling system high efficiency
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP2980022B2 (en) Heat pump water heater
JP3404133B2 (en) Thermal storage type air conditioner
KR101864636B1 (en) Waste heat recovery type hybrid heat pump system
JP3654017B2 (en) Multi-function heat pump system
WO1990002300A1 (en) Heat pump for heating or cooling confined spaces, and also for heating tap water
JP2001263848A (en) Air conditioner
JPH074777A (en) Engine waste heat recovery device
JP3370501B2 (en) Cooling system
JP3536081B2 (en) Air conditioning system
JP3502155B2 (en) Thermal storage type air conditioner
JP2000257975A (en) Heat pump system
JPH10205932A (en) Air conditioner
JPH0849938A (en) Regenerative air-conditioner
JPH0658576A (en) Cooling or heating device
JPH07133946A (en) Air-conditioning system
JPH06101934A (en) Air-conditioning apparatus
JP3999874B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees