JPS58124138A - Controlling method of driving auxiliary heat source in regenerative air conditioner - Google Patents

Controlling method of driving auxiliary heat source in regenerative air conditioner

Info

Publication number
JPS58124138A
JPS58124138A JP57008325A JP832582A JPS58124138A JP S58124138 A JPS58124138 A JP S58124138A JP 57008325 A JP57008325 A JP 57008325A JP 832582 A JP832582 A JP 832582A JP S58124138 A JPS58124138 A JP S58124138A
Authority
JP
Japan
Prior art keywords
heat
cold
heat exchanger
cold storage
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57008325A
Other languages
Japanese (ja)
Other versions
JPS637289B2 (en
Inventor
Kunitake Sakai
酒井 邦武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57008325A priority Critical patent/JPS58124138A/en
Publication of JPS58124138A publication Critical patent/JPS58124138A/en
Publication of JPS637289B2 publication Critical patent/JPS637289B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring

Abstract

PURPOSE:To secure stable heating operation by a method wherein the air conditioner consists of two cycles or a refrigerating cycle and a heat transfer medium cycle and the auxiliary heat source to heat cold-heat accumulating material is put into operation when the temperature of said material is below a predetermined value. CONSTITUTION:A compressor 1 is connected in series to a four-way switching valve 2, an indoor side heat exchanger 3, a solenoid valve 4 to control refrigerant flow, a pressure reducing mechanism 5, an outdoor side heat exchanger 6 and again the four-way switching valve 2 and back to the compressor 1 and in addition a by-pass circuit 7 equipped with a solenoid valve 8 and a pressure reducing mechanism 9 to by-pass the solenoid valve 4 and the pressure reducing mechanism 5 is connected between the indoor side heat exchanger 3 and the outdoor side heat exchanger 6. A cold-heat accumulator 10 to accumulate the cold-heat produced in refrigerating cycle is equipped with an auxiliary heat exchanger 12 to heat-exchange with the outdoor side heat exchanger 6. Accordingly, during the recovery operation of heat accumulated for heating and defrosting operation, when the temperature of the cold-heat accumulating material 10a in the cold-heat accumulator 10 is below a certain set value, the auxiliary heat source 14 is put into operation so as to secure the quantity of heat in the cold-heat accumulator 10, resulting in enabling to continue the stable operation and to secure the capacity during the heating operation.

Description

【発明の詳細な説明】 本発明は、冷凍サイクル中に蓄冷熱槽を有し。[Detailed description of the invention] The present invention has a cold storage heat tank in the refrigeration cycle.

かつ前記蓄冷熱槽に蓄えられた蓄冷熱を冷凍サイクル中
に回収するための熱媒回路を有する蓄熱式空気調和機の
暖房蓄冷熱回収運転あるいは除霜運転を行う場合の補助
熱源の運転制御に関するもので、特に、室外側の空気温
度がある設定値よりも低く、かつ蓄冷熱槽内の蓄冷熱材
の温度がある設定値よりも低い場合に、必要な熱量を確
保するため、蓄冷熱材を加熱する補助熱源を運転し、安
定した暖房運転および暖房能力を確保することを目的と
するものである。
and relates to operation control of an auxiliary heat source when performing heating cold storage heat recovery operation or defrosting operation of a regenerative air conditioner having a heat medium circuit for recovering cold storage heat stored in the cold storage heat tank in a refrigeration cycle. In particular, when the outdoor air temperature is lower than a certain set value and the temperature of the cold storage material in the cold storage tank is lower than a certain set value, the cold storage material is used to secure the necessary amount of heat. The purpose of this system is to operate an auxiliary heat source that heats the air, thereby ensuring stable heating operation and heating capacity.

従来の蓄熱式空気調和機における暖房蓄熱回収運転およ
び條霜運転時、室内側の負荷あるいは室外側の負荷が大
きい場合、冷凍サイクル内の熱を蓄冷熱槽に蓄熱する余
裕がないため、蓄冷熱槽に蓄えられた熱を暖房蓄熱回収
運転および除霜運転に使うことができず、安定した暖房
運転を継続することができないという欠点を有していた
During heating heat storage recovery operation and frost operation in conventional regenerative air conditioners, if the load on the indoor side or the load on the outdoor side is large, there is no room to store the heat in the refrigeration cycle in the cold storage heat tank, so the cold storage heat is The heat stored in the tank cannot be used for the heating heat storage recovery operation and the defrosting operation, and the disadvantage is that stable heating operation cannot be continued.

本発明は、上記従来の欠点を解消するためのものである
The present invention is intended to eliminate the above-mentioned conventional drawbacks.

以下、本発明をその一実施例を示す添付図面を参考に説
明する。
Hereinafter, the present invention will be described with reference to the accompanying drawings showing one embodiment thereof.

亨ず第1図により、冷凍サイクルについて説明する。The refrigeration cycle will now be explained with reference to FIG.

同図において、1は圧縮機、2は四方切換弁。In the figure, 1 is a compressor and 2 is a four-way switching valve.

3は室内側熱交換器、4は冷媒の流れを制御する電磁弁
、6は減圧機構、6は室外側熱交換器、7は前記電磁弁
4、減圧機構6を側路するためのバイパス回路で、電磁
弁8と減圧機構9を具備している。10は冷凍サイクル
中の冷熱を蓄えるための蓄冷熱槽で、内部には冷媒配管
が蛇行状あるいは渦巻状に配設され、周囲は例えば不凍
液を混合した水などからなる蓄冷熱材10aが満されて
いる。11は前記蓄冷熱槽10内に蓄えられた蓄冷熱を
回収するためにその一部が前記蓄冷熱槽1゜内を貫通し
た熱媒回路で、前記室外側熱交換器6と熱交換するため
の補助熱交換器12を具備している。この側熱交換器t
、12の熱交換する構造としては、放熱フィンを共用し
たり、両熱交換器造でよい。13は前記熱媒回路11内
の熱媒を循環させるための循環ポンプである。14は前
記蓄冷熱槽10内の蓄冷熱材10aを加熱するための補
助熱源である。なお1図中、ムは室内側ユニット、Bは
室外側ユニットを示している。
3 is an indoor heat exchanger, 4 is a solenoid valve that controls the flow of refrigerant, 6 is a pressure reducing mechanism, 6 is an outdoor heat exchanger, 7 is a bypass circuit for bypassing the solenoid valve 4 and the pressure reducing mechanism 6. It is equipped with a solenoid valve 8 and a pressure reducing mechanism 9. Reference numeral 10 denotes a cold storage heat storage tank for storing cold heat during the refrigeration cycle, in which refrigerant pipes are arranged in a meandering or spiral shape, and the surrounding area is filled with a cold storage heat storage material 10a made of water mixed with antifreeze, for example. ing. Reference numeral 11 denotes a heat medium circuit, a part of which passes through the inside of the cold storage heat tank 1° in order to recover the cold storage heat stored in the cold storage heat tank 10, and for exchanging heat with the outdoor heat exchanger 6. It is equipped with an auxiliary heat exchanger 12. This side heat exchanger t
, 12 may have a structure in which heat radiating fins are shared or both heat exchangers are used. 13 is a circulation pump for circulating the heat medium in the heat medium circuit 11. 14 is an auxiliary heat source for heating the cold storage heat material 10a in the cold storage heat tank 10. In Figure 1, M indicates an indoor unit and B indicates an outdoor unit.

第2図は、冷凍サイクル中の冷媒の流れを制御する電磁
弁4,8および循環ポンプ13の動作を各運転ごとに示
したものである。
FIG. 2 shows the operation of the electromagnetic valves 4 and 8 and the circulation pump 13, which control the flow of refrigerant in the refrigeration cycle, for each operation.

上記構成において、冷房通常運転時、各電磁弁4.8お
よび循環ポンプ13の制御は、第2図のA1に示すごと
く行う。これによって圧縮機1から吐出された冷媒は四
方切換弁2、室外側熱交換器6.減圧機構6.電磁弁4
、室内側熱交換器3゜四方切換弁2を通り圧縮機1へ戻
る冷凍サイクルを構成する。
In the above configuration, during normal cooling operation, each electromagnetic valve 4.8 and circulation pump 13 are controlled as shown in A1 of FIG. 2. As a result, the refrigerant discharged from the compressor 1 is transferred to the four-way switching valve 2, the outdoor heat exchanger 6. Decompression mechanism 6. Solenoid valve 4
, an indoor heat exchanger, a refrigeration cycle that passes through a 3° four-way switching valve 2 and returns to the compressor 1.

また冷房蓄冷熱運転時、各電磁弁4,8.循環ポンプ1
3の制御は第2図の墓2に示すごとく行い、蓄冷熱槽1
0を蒸発器として作動させる。つまり、圧縮機1から吐
出された冷媒は四方切換弁6ベーノ 2、室外側熱交換器θおよびバイパス回路7を通り減圧
機構9で減圧し、蓄冷熱槽10、室内側熱交換器3で蒸
発し、室内側を冷房すると同時に蓄冷熱槽1o内の蓄冷
熱材10 aを冷却し、冷熱を蓄える。蓄冷熱槽10を
出た冷媒は、電磁弁8゜室内側熱交換器3.四方切換弁
2を通り、圧縮機1へ戻る冷凍サイクルを構成する。
Also, during cooling cold storage heat operation, each solenoid valve 4, 8. Circulation pump 1
3 is controlled as shown in Figure 2, Tomb 2.
0 is operated as an evaporator. That is, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 6 vane 2, the outdoor heat exchanger θ, and the bypass circuit 7, is depressurized by the pressure reducing mechanism 9, and is evaporated in the cold storage heat tank 10 and the indoor heat exchanger 3. At the same time as cooling the indoor side, the cold storage material 10a in the cold storage tank 1o is cooled to store cold energy. The refrigerant that exits the cold storage heat tank 10 is passed through the solenoid valve 8° and the indoor heat exchanger 3. It constitutes a refrigeration cycle that passes through the four-way switching valve 2 and returns to the compressor 1.

さらに冷房蓄冷熱回収運転時、各電磁弁4,8゜循環ポ
ンプ13の制御は第2図のA3に示すごとく行い、蓄冷
熱槽1oに蓄えられた蓄冷熱を室外側熱交換器6におい
て補助熱交換器12と熱交換させる。つまり、圧縮機1
から吐出された冷媒は四方切換弁2、室外側熱交換器6
を通り、室外側の空気および蓄冷熱槽10に蓄えられた
蓄冷熱により凝縮熱を奪われて凝縮する。室外側熱交換
器6を出た冷媒は減圧機構6.電磁弁4、室内側熱交換
器3.四方切換弁2を通り、圧縮機1へ戻る冷凍サイク
ルを構成する。一方熱媒回路11における熱媒の動きは
、蓄冷熱槽10内に蓄えられている蓄冷熱を熱媒回路1
1内に回収し、循環ポン61、− プ13によって補助熱交換器12に循環させ、補助熱交
換器12と前記室外側熱交換器6と熱交換を行なわせる
。そして熱交換を終了した熱媒は。
Furthermore, during the cooling cold storage heat recovery operation, each solenoid valve 4, 8° circulation pump 13 is controlled as shown in A3 in FIG. Heat exchange is performed with the heat exchanger 12. In other words, compressor 1
The refrigerant discharged from the four-way switching valve 2 and the outdoor heat exchanger 6
The heat of condensation is taken away by the outdoor air and the cold storage heat stored in the cold storage heat tank 10, and the condensation occurs. The refrigerant that has exited the outdoor heat exchanger 6 is transferred to a pressure reducing mechanism 6. Solenoid valve 4, indoor heat exchanger 3. It constitutes a refrigeration cycle that passes through the four-way switching valve 2 and returns to the compressor 1. On the other hand, the movement of the heat medium in the heat medium circuit 11 transfers the cold storage heat stored in the cold storage heat tank 10 to the heat medium circuit 11.
1 and circulated to the auxiliary heat exchanger 12 by the circulation pumps 61 and 13, where heat exchange is performed between the auxiliary heat exchanger 12 and the outdoor heat exchanger 6. And the heating medium that has completed the heat exchange.

再び熱媒回路11を通り蓄冷熱槽10に戻るサイクルを
構成する。
This constitutes a cycle of passing through the heat medium circuit 11 again and returning to the cold storage heat tank 10.

また暖房通常運転時、各電磁弁4.8.循環ポンプ13
の制御は第2図の屋4に示すごとく行い、圧縮機1から
吐出された冷媒は、四方切換弁2゜室内側熱交換器3.
電熱 4.減圧機構5、室外側熱交換器6.四方切換弁
2を通り、圧縮機1へ戻る冷凍サイクルを構成する。
Also, during normal heating operation, each solenoid valve 4.8. Circulation pump 13
The control is performed as shown in Fig. 2, box 4, and the refrigerant discharged from the compressor 1 is passed through the four-way switching valve 2, the indoor heat exchanger 3.
Electric heat 4. Pressure reduction mechanism 5, outdoor heat exchanger 6. It constitutes a refrigeration cycle that passes through the four-way switching valve 2 and returns to the compressor 1.

さらに暖房蓄熱運転時、各電磁弁4,8、循環ポンプ1
3の制御は第2図の黒5に示すごとく行い、蓄冷熱槽1
0を凝縮器として作動させる。つま9.圧縮機1から吐
出された冷媒は、四方切換弁2、室内側熱交換器3.バ
イパス回路7.電磁弁8を通り蓄冷熱槽10へ入り、室
内側熱交換器3と蓄冷熱槽1oで凝縮し室内側を暖房す
ると同時に蓄冷熱槽1o内の蓄冷熱材10aと熱交換を
行い、熱を蓄冷熱材10i1に蓄える。蓄冷熱槽1oを
出た冷媒は減圧機構9、室外側熱交換器6゜四方切換弁
を通り、圧縮機1へ戻る冷凍サイクルを構成する。
Furthermore, during heating heat storage operation, each solenoid valve 4, 8, circulation pump 1
3 is controlled as shown in black 5 in Fig. 2, and the cold storage heat tank 1
0 is operated as a condenser. Toe 9. The refrigerant discharged from the compressor 1 is passed through a four-way switching valve 2, an indoor heat exchanger 3. Bypass circuit 7. It passes through the electromagnetic valve 8 and enters the cold storage heat tank 10, and is condensed in the indoor heat exchanger 3 and the cold storage heat tank 1o, heating the indoor area, and at the same time exchanges heat with the cold storage heat material 10a in the cold storage heat tank 1o to release heat. It is stored in the cold storage heat material 10i1. The refrigerant leaving the cold storage heat tank 1o passes through the pressure reducing mechanism 9, the outdoor heat exchanger 6° and the four-way switching valve, and returns to the compressor 1, forming a refrigeration cycle.

また暖房蓄熱回収運転時、各電磁弁4,8.循環ポンプ
13の制御は第2図の屋6に示すごとく行い、蓄冷熱槽
10に蓄えられた蓄冷熱を室外側熱交換器6において補
助熱交換器12と熱交換させる。つまり、圧縮機1から
吐出された冷媒は四方切換弁2.電磁弁4、減圧機構6
、室外側熱交換器6を通り、室外側の空気および蓄冷熱
槽10に蓄えられた蓄熱により蒸発熱を奪い、蒸発する
Also, during heating heat storage recovery operation, each solenoid valve 4, 8. The circulation pump 13 is controlled as shown in FIG. In other words, the refrigerant discharged from the compressor 1 is transferred to the four-way switching valve 2. Solenoid valve 4, pressure reducing mechanism 6
, passes through the outdoor heat exchanger 6, removes evaporation heat by the outdoor air and the heat stored in the cold storage heat tank 10, and evaporates.

そして室外側熱交換器6を出た冷媒は、四方切換弁2を
通り、圧縮機1へ戻る冷凍サイクルを構成する。一方熱
媒回路11における熱媒の動きは。
The refrigerant leaving the outdoor heat exchanger 6 passes through the four-way switching valve 2 and returns to the compressor 1, forming a refrigeration cycle. On the other hand, the movement of the heat medium in the heat medium circuit 11 is as follows.

蓄冷熱槽10内に蓄えられている蓄熱を熱媒回路11内
に回収し、循環ポンプ13によって補助熱交換器12に
循環させ、補助熱交換器12と室外側熱交換器6と熱交
換を行なわせる。熱交換を終了した熱媒ば、再び熱媒回
路11を通り、蓄冷熱槽10に戻るサイクルを構成する
The heat stored in the cold storage heat tank 10 is recovered into the heat medium circuit 11 and circulated to the auxiliary heat exchanger 12 by the circulation pump 13, and heat exchange is performed between the auxiliary heat exchanger 12 and the outdoor heat exchanger 6. Let them do it. After completing the heat exchange, the heat medium passes through the heat medium circuit 11 again and returns to the cold storage heat tank 10, forming a cycle.

前記蓄冷熱槽10内の蓄冷熱材1Qaの温度がある設定
値以下であれば、前記補助熱源14を運転し、蓄冷熱材
10aに十分の熱量を蓄え、暖房運転を継続できるよう
に制御する。この温度検出手段は周知の如くサーミスタ
などの温度検出器を適宜取付ければよいものである。
If the temperature of the cold storage heat material 1Qa in the cold storage heat tank 10 is below a certain set value, the auxiliary heat source 14 is operated to store a sufficient amount of heat in the cold storage heat material 10a, and control is performed so that the heating operation can be continued. . As this temperature detection means, as is well known, a temperature detector such as a thermistor may be appropriately attached.

そして1周知の手段により室外側熱交換器6の着霜を検
出した除霜運転時、各電磁弁4,8、循環ポンプ13の
制御は第2図のA7に示すごとく行う。この場合冷媒の
循環および熱媒の循環は前記暖房蓄熱回収運転と同一で
ある。さらに蓄冷熱槽1o内の蓄冷熱材10aの温度が
ある設定値以下である場合の制御も前記暖房蓄熱回収運
転と同一となる。
During the defrosting operation when frost formation on the outdoor heat exchanger 6 is detected by a well-known means, the solenoid valves 4 and 8 and the circulation pump 13 are controlled as shown in A7 of FIG. In this case, the circulation of the refrigerant and the circulation of the heat medium are the same as in the heating heat storage and recovery operation. Furthermore, the control when the temperature of the cold heat storage material 10a in the cold storage heat storage tank 1o is below a certain set value is also the same as the heating heat storage recovery operation.

したがって、暖房蓄熱回収運転時および除霜運転時にお
いて、蓄冷熱槽1o内の蓄冷熱材10aの温度がある設
定値以下であれば、補助熱源14を動作して蓄冷熱槽1
0内に熱量を確保し、暖房運転時、安定した運転の継続
と能力の確保が行え9ベー、′ る。
Therefore, during heating heat storage recovery operation and defrosting operation, if the temperature of the cold heat storage material 10a in the cold heat storage tank 1o is below a certain set value, the auxiliary heat source 14 is operated to
It secures the amount of heat within 9 degrees, and allows stable operation and capacity during heating operation.

上記実施例より明らかなように1本発明における蓄熱式
空気調和機の補助熱源運転制御方法は、圧縮機、四方切
換弁、室内側熱交換器、減圧機構。
As is clear from the above embodiments, the auxiliary heat source operation control method for a regenerative air conditioner according to the present invention includes a compressor, a four-way switching valve, an indoor heat exchanger, and a pressure reducing mechanism.

室外側熱交換器を具備し、また蓄冷熱運転を行うための
バイパス回路、蓄冷熱材を封入した蓄冷熱槽、減圧機構
、冷媒の流れを制御する電磁弁をそれぞれ連結した冷凍
サイクルと、前記蓄冷熱運転によって前記蓄冷熱槽に蓄
えられた蓄冷熱を前記冷凍サイクル内に回収するための
熱媒回路、補助熱交換器、循環ポンプをそれぞれ連結し
た熱媒サイクルの二つのサイクルによって構成し、前記
二つのサイクルを用いた暖房蓄熱回収運転あるいは除霜
運転を行う場合、外気温度がある設定値以下で、かつ前
記蓄冷熱槽内の蓄冷熱材の温度がある設定値以下であれ
ば、蓄冷熱槽内の蓄冷熱材を加熱する補助熱源を運転し
、蓄冷熱材の温度を設定値以上に上昇させるようにした
もので1通常の冷房、暖房が行えるのはもちろんのこと
、余剰冷房能力、暖房能力は蓄冷熱槽内に貯留しておく
こと1(J  − ができ、しかもその貯留した能力を必要に応じて冷房、
暖房に供与できるため、能力の浪費が少なく、経済的で
あり、さらに補助熱源によって蓄冷熱材を設定温度に保
つため、特に能力が低下しやすい熱回収時、暖房途中の
除霜運転時の能力の確保がはかれ、安定した運転が継続
して行えるなど。
A refrigeration cycle equipped with an outdoor heat exchanger and connected to a bypass circuit for performing cold storage heat operation, a cold storage heat tank containing a cold storage heat material, a pressure reduction mechanism, and a solenoid valve for controlling the flow of refrigerant; Consisting of two cycles: a heat medium cycle each connected with a heat medium circuit, an auxiliary heat exchanger, and a circulation pump for recovering the cold storage heat stored in the cold storage heat tank by the cold storage heat operation into the refrigeration cycle, When performing heating heat storage recovery operation or defrosting operation using the above two cycles, if the outside air temperature is below a certain set value and the temperature of the cold storage heat material in the cold storage heat tank is below a certain set value, cold storage will start. This device operates an auxiliary heat source that heats the cold storage material in the heat tank to raise the temperature of the cold storage material above the set value.1 Not only can it perform normal cooling and heating, but it also has excess cooling capacity. , the heating capacity can be stored in the cold storage tank (1), and the stored capacity can be used for cooling, cooling, etc. as needed.
Since it can be used for heating, it is economical because there is less wastage of capacity.Furthermore, since the cold storage material is kept at the set temperature by an auxiliary heat source, the capacity is particularly low during heat recovery and during defrosting operation during heating, when the capacity tends to decrease. This ensures that stable operation continues.

種々の利点を有するものである。It has various advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の蓄熱式空気調和機の補助熱源運転制御
方法を実施した冷凍サイクル図、第2図は前記蓄熱式空
気調和機の冷媒の流れを制御する電磁弁と熱媒回路の熱
媒循環を行う循環ポンプの動作を示した動作図である。 1・・・・・・圧縮機、2・・・・・・四方切換弁、3
・・・・・・室内側熱交換器、4・・・・・・電磁弁、
5・・・・・・減圧機構、6・・・・・・室外側熱交換
器、7・・・・・・バイパス回路、8・・・・・・電磁
弁、9・・・・・・減圧機構、10・・・・・、・蓄冷
熱槽。 10 a・・・・・・蓄冷熱材 11・・・・・・熱媒
回路、12・・・・・・補助熱交換器、13・・・・・
・循環ポンプ、14・・・・・・補助熱源。 第1図 B 区 一一−−−、、、−J 第2図
Fig. 1 is a refrigeration cycle diagram in which the auxiliary heat source operation control method for a regenerative air conditioner of the present invention is implemented, and Fig. 2 shows the heat of the electromagnetic valve and heat medium circuit that control the flow of refrigerant in the regenerative air conditioner. FIG. 2 is an operation diagram showing the operation of a circulation pump that circulates a medium. 1... Compressor, 2... Four-way switching valve, 3
...Indoor heat exchanger, 4...Solenoid valve,
5... Pressure reduction mechanism, 6... Outdoor heat exchanger, 7... Bypass circuit, 8... Solenoid valve, 9... Decompression mechanism, 10..., cold storage heat tank. 10 a... Cold storage heat material 11... Heat medium circuit, 12... Auxiliary heat exchanger, 13...
・Circulation pump, 14...Auxiliary heat source. Figure 1B Ward 11 ---,,,-J Figure 2

Claims (1)

【特許請求の範囲】 圧縮機、四方切換弁、室内側熱交換器、減圧機構、室外
側熱交換器を具備し、また蓄冷熱運転を行うためのバイ
パス回路、蓄冷熱材を封入した蓄冷熱槽、減圧機構、冷
媒の流れを制御する電磁弁をそれぞれ連結した冷凍サイ
クルと、前記蓄冷熱運転によって前記蓄冷熱槽に蓄えら
れた蓄冷熱を前記冷凍サイクル内に回収するための熱媒
回路。 補助熱交換器、循環ポンプをそれぞれ連結した熱媒サイ
クルの二つのサイクルによって構成し、前記二つのサイ
クルを用いた暖房蓄熱回収運転あるいは除霜運転を行う
場合、外気温度がある設定値以下で、かつ前記蓄冷熱槽
内の蓄冷熱材の温度がある設定値以下であれば、蓄冷熱
槽内の蓄冷熱材を加熱する補助熱源を運転し、蓄冷熱材
の温度を設定値以上に上昇させるようにした蓄熱式空気
調和機の補助熱源運転制御方法。 2、、−。
[Claims of Claims] A cold storage heat system that is equipped with a compressor, a four-way switching valve, an indoor heat exchanger, a pressure reduction mechanism, and an outdoor heat exchanger, and also includes a bypass circuit for performing cold storage heat operation, and a cold storage heat material sealed therein. A refrigeration cycle in which a tank, a pressure reduction mechanism, and an electromagnetic valve for controlling the flow of refrigerant are connected to each other, and a heat medium circuit for recovering the cold storage heat stored in the cold storage heat tank by the cold storage heat operation into the refrigeration cycle. When the heating medium cycle is configured with two cycles, each of which is connected to an auxiliary heat exchanger and a circulation pump, and a heating heat storage recovery operation or a defrosting operation is performed using the two cycles, when the outside air temperature is below a certain set value, And if the temperature of the cold heat storage material in the cold heat storage tank is below a certain set value, an auxiliary heat source for heating the cold heat storage material in the cold heat storage tank is operated to raise the temperature of the cold heat storage material above the set value. A method for controlling the operation of an auxiliary heat source for a regenerative air conditioner. 2,,-.
JP57008325A 1982-01-21 1982-01-21 Controlling method of driving auxiliary heat source in regenerative air conditioner Granted JPS58124138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008325A JPS58124138A (en) 1982-01-21 1982-01-21 Controlling method of driving auxiliary heat source in regenerative air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008325A JPS58124138A (en) 1982-01-21 1982-01-21 Controlling method of driving auxiliary heat source in regenerative air conditioner

Publications (2)

Publication Number Publication Date
JPS58124138A true JPS58124138A (en) 1983-07-23
JPS637289B2 JPS637289B2 (en) 1988-02-16

Family

ID=11690020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008325A Granted JPS58124138A (en) 1982-01-21 1982-01-21 Controlling method of driving auxiliary heat source in regenerative air conditioner

Country Status (1)

Country Link
JP (1) JPS58124138A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363443A (en) * 1989-08-01 1991-03-19 Daikin Ind Ltd Operation controller for regenerative air conditioner
US5189887A (en) * 1989-12-29 1993-03-02 Kool-Fire Research & Development Heat condensing furnace with de-intensifier tubes
US5263892A (en) * 1991-07-03 1993-11-23 Kool-Fire Research & Development High efficiency heat exchanger system with glycol and refrigerant loops
US6543531B1 (en) * 1998-03-27 2003-04-08 Daimlerchrysler Ag Device and method for heating and cooling a compartment of a motor vehicle
KR101203581B1 (en) 2010-11-16 2012-11-21 엘지전자 주식회사 Heat pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220459A (en) * 1985-07-19 1987-01-29 Fujitsu Ltd Stand-alone transfer control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220459A (en) * 1985-07-19 1987-01-29 Fujitsu Ltd Stand-alone transfer control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363443A (en) * 1989-08-01 1991-03-19 Daikin Ind Ltd Operation controller for regenerative air conditioner
US5189887A (en) * 1989-12-29 1993-03-02 Kool-Fire Research & Development Heat condensing furnace with de-intensifier tubes
US5263892A (en) * 1991-07-03 1993-11-23 Kool-Fire Research & Development High efficiency heat exchanger system with glycol and refrigerant loops
US6543531B1 (en) * 1998-03-27 2003-04-08 Daimlerchrysler Ag Device and method for heating and cooling a compartment of a motor vehicle
KR101203581B1 (en) 2010-11-16 2012-11-21 엘지전자 주식회사 Heat pump

Also Published As

Publication number Publication date
JPS637289B2 (en) 1988-02-16

Similar Documents

Publication Publication Date Title
JP3404133B2 (en) Thermal storage type air conditioner
JPS58124138A (en) Controlling method of driving auxiliary heat source in regenerative air conditioner
JPS5885043A (en) Operation control apparatus for cold insulation type air conditioner
JPS5986846A (en) Hot water supply device of heat pump type
JPH0522837B2 (en)
JPH0849936A (en) Regenerative air-conditioner
JP3502155B2 (en) Thermal storage type air conditioner
JPH04203776A (en) Heat pump type air conditioner
JPH07109324B2 (en) Heat storage type air conditioner
JPS5935755A (en) Heat pump type hot-water supply apparatus
JPS5856528Y2 (en) Refrigeration equipment
JPH0359348B2 (en)
JP2002061897A (en) Heat storage type air conditioner
JPH0849924A (en) Heat storage type air-conditioner
JPS58124171A (en) Refrigerant circuit for heat accumulation type air conditioner
JPS6018895B2 (en) Solar heat pump air conditioner
JPS6220460B2 (en)
JPS61101769A (en) Heat pump type air-conditioning hot-water supply machine
JPH08303900A (en) Heat storage type heat pump air conditioner and operation method thereof
JPS5878056A (en) Heater for air-conditioning
JPH0432307B2 (en)
JPH06101934A (en) Air-conditioning apparatus
JPS5997468A (en) Heat accumulation type air conditioner
JPS58158470A (en) Heat recoverty device for heat accumulation type air conditioner
JPS6116896B2 (en)