JP3502155B2 - Thermal storage type air conditioner - Google Patents
Thermal storage type air conditionerInfo
- Publication number
- JP3502155B2 JP3502155B2 JP15720894A JP15720894A JP3502155B2 JP 3502155 B2 JP3502155 B2 JP 3502155B2 JP 15720894 A JP15720894 A JP 15720894A JP 15720894 A JP15720894 A JP 15720894A JP 3502155 B2 JP3502155 B2 JP 3502155B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat
- storage tank
- heat storage
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、空気を熱源とする空気
調和機において、夜間電力を利用するための蓄熱機能、
及びその制御機能を備えた蓄熱式空気調和機に関する。
【0002】
【従来の技術】蓄熱式空気調和機については、既にさま
ざまな開発がなされており、例えば、特開平1−186
507号公報に示されているような蓄熱式空気調和機が
ある。
【0003】その基本的な技術について以下述べる。図
2に示すように、室外ユニットは、圧縮機2,四方弁
3,熱源側熱交換器4,冷暖房用減圧装置5,第1補助
熱交換器14aを環状に順次接続して熱源側冷凍サイク
ルを形成し、一方、第1補助熱交換器14aと熱交換す
るように一体に形成されている第2補助熱交換器14
b,冷媒量調整タンク10,冷媒搬送ポンプPM,利用
側熱交換器15a,15bを環状に順次接続して利用側
冷凍サイクルを形成している。
【0004】更に、熱源側冷凍サイクルにおける第1補
助熱交換器14aに対して並列に設置した蓄熱用熱交換
器13aと、利用側冷凍サイクルにおける第2補助熱交
換器14bに対して並列に設置した放熱用熱交換器13
bと、蓄熱材である水16を有する蓄熱槽STRを設置
している。
【0005】そして、熱源側冷凍サイクルにおいて、第
1補助熱交換器14aと蓄熱用熱交換器13aとの回路
の切り替えは三方切替弁17a,17bにより行い、利
用側冷凍サイクルにおいて、第2補助熱交換器14bと
放熱用熱交換器13bとの回路の切り替えは三方流量弁
18a,18bにより行う。
【0006】以上のように構成された蓄熱式空気調和機
について、その動作を説明する。まず、夜間運転は、熱
源側冷凍サイクルのみの運転であり、熱源側冷凍サイク
ルにおいて四方弁3によって製氷運転、及び蓄熱(温
水)運転に切り替えられ、製氷運転時は図中の実線矢印
の方向に冷媒が流れて冷房サイクルが形成され、熱源側
熱交換器4を凝縮器、蓄熱槽STR内の蓄熱用熱交換器
13aを蒸発器として作用させて、蓄熱槽STR内の蓄
熱用熱交換器13aの周囲に氷として蓄冷される。
【0007】また、蓄熱運転時には図中の破線方向に冷
媒が流れて暖房サイクルが形成され、熱源側熱交換器4
を蒸発器、蓄熱槽STR内の蓄熱用熱交換器13aを凝
縮器として作用させて、蓄熱槽STR内の第1熱交換器
13aを介して蓄熱槽STR内に温水として蓄熱され
る。この場合、第1補助熱交換器14aは使用されな
い。
【0008】この場合、熱源側冷凍サイクルと利用側冷
凍サイクルが分離されていて、両サイクル内の冷媒が混
合することがないため、適正冷媒封入量を維持でき、か
つ、熱源側冷凍サイクルの配管長が短くて済むため、圧
縮機2内の冷凍機油が流出しても戻り易く、圧縮機2の
信頼性を高めることができる。
【0009】一方、昼間運転は熱源側冷凍サイクル、及
び利用側冷凍サイクルの両方を運転させる。
【0010】特に、利用側での熱負荷が1日のうちで比
較的大きい、いわゆるピーク負荷時の場合、三方切替弁
17a,17bの切り替えにより第1補助熱交換器14
aが熱源側冷凍サイクルに連通され、また、利用側冷凍
サイクルにおいては、三方流量弁18a,18bにより
第2補助熱源側14b、及び放熱用熱交換器13bへ流
入する冷媒量が分配されている。
【0011】夜間に蓄熱槽STR内の蓄熱材に蓄えられ
冷熱、あるいは、温熱を蓄熱槽STR内の放熱用熱交換
器13bを介して、利用側冷凍サイクル内の冷媒と熱交
換し、かつ熱源側冷凍サイクルの運転により冷却、ある
いは加熱された冷媒が第2補助熱交換器14bを介し
て、利用側冷凍サイクル内の冷媒と熱交換する。
【0012】それら二つの熱交換器で熱交換された冷媒
を冷媒搬送ポンプPMにて各室内ユニット12の利用側
熱交換器15へ搬送して室内空気と熱交換することによ
り、各室内の冷房、あるいは、暖房を行なう。
【0013】従って、この場合、熱源側冷凍サイクルに
おける冷房、あるいは暖房能力は、熱源側冷凍サイクル
の能力と、蓄熱槽STRの放熱用熱交換器13bでの放
熱能力とのほぼ和となり、冷房、あるいは暖房能力が増
大する。
【0014】以上のように、夜間の余剰電力エネルギー
を熱に変換して蓄熱しておき、昼間にその電力を利用す
ることにより、昼間の高負荷時刻における電力ピークを
抑え、電力利用の平準化が図れる。
【0015】
【発明が解決しようとする課題】しかしながら、前述の
従来例では、負荷側へは冷媒を搬送するため、2次側冷
凍サイクル運転起動時において、冷媒の冷却能力不足の
ために冷媒搬送ポンプPMへはガスまたは二相状態の冷
媒が供給されるために2次側冷凍サイクルの冷媒循環量
を速やかに増大させることができず、結果として冷房運
転の立ち上がり性能の悪化を招くだけでなく、二相状態
の冷媒を搬送する際に冷媒搬送ポンプPMの摩耗が促進
される等信頼性を損なう恐れがあるという欠点を有して
いた。
【0016】そこで、本発明は、運転立ち上がり性能が
高く、かつ安全性の高い蓄熱式空気調和機を提供するこ
とを目的とするものである。
【0017】
【課題を解決するための手段】上記課題を解決する本発
明の技術的手段は、第1蓄熱槽を介して1次側冷凍サイ
クルと2次側冷凍サイクルとからなる蓄熱式空気調和機
において、1次側伝熱管と逆止弁を有した第2蓄熱槽を
第1蓄熱槽の1次側熱交換部に対して並列に接続し、か
つ第2蓄熱槽内に冷媒タンクを埋設したものである。
【0018】
【作用】この技術的手段による作用は次のようになる。
【0019】圧縮機、四方弁、室外側熱交換器、膨張
弁、第1切替弁、冷媒対冷媒熱交換器の1次側熱交換
部、第1蓄熱槽内の1次側熱交換部とを連通した1次側
冷凍サイクルにおいて、まず、夜間に夜間電力を利用し
て冷媒対冷媒熱交換器を使用しない状態で、第1切替
弁、及び膨張弁の制御により、第1蓄熱槽内の熱交換部
を介して蓄熱材である水に氷、または温水として蓄冷熱
運転を行う。
【0020】また、第2蓄熱槽内の1次側伝熱管を前記
第1蓄熱槽の1次側熱交換部に対して並列に接続してお
り、製氷運転の際には第2蓄熱槽内の1次側伝熱管を介
して蓄熱材に蓄冷するが、蓄熱運転の際には逆止弁によ
り第2蓄熱槽内の1次側伝熱管には冷媒は流れない。
【0021】一方、昼間は1次側冷凍サイクルにおいて
第1切替弁の制御により第1蓄熱槽の1次側熱交換部を
使用しない状態で運転し、第1流量弁の制御により第1
蓄熱槽内の蓄冷熱を2次側冷凍サイクル内の冷媒へ熱交
換すると共に、第2流量弁の制御により冷媒対冷媒熱交
換器を介して1次側冷凍サイクルにおける蒸発、または
凝縮能力を2次側冷凍サイクル内の冷媒へ熱交換する運
転を行う。
【0022】即ち、第1蓄熱槽内に蓄冷熱として蓄えら
れた蓄熱材と冷媒との間で、第1蓄熱槽内の2次側熱交
換部を介して熱交換された冷媒と、1次側冷凍サイクル
と2次側冷凍サイクルの間で冷媒熱交換器の2次側熱交
換部を介して熱交換された冷媒を冷媒搬送ポンプにて室
内側熱交換器へ搬送して室内空気と熱交換(冷房、また
は暖房)する。
【0023】また昼間の2次側冷凍サイクルの冷房運転
起動時には、夜間に蓄冷された第2蓄熱槽内の蓄熱材に
より冷媒タンクが冷却されて冷媒タンク内冷媒圧力が低
下しているため、2次側冷凍サイクル配管内の冷媒が液
冷媒として冷媒タンク内に回収されている。
【0024】よって、冷房運転起動時に冷媒タンクから
冷媒搬送ポンプへ液冷媒が供給されやすく、2次側冷凍
サイクルの冷媒循環量を速やかに増大させることがで
き、その結果として冷房能力の立ち上がり性能が改善さ
れるだけでなく冷媒搬送ポンプの信頼性を向上させるこ
とができる。
【0025】以上の作用により、夜間電力を利用した蓄
冷熱により昼間の冷房・暖房運転が行え、電力利用の平
準化が図れるだけでなく、冷房運転においては第2蓄熱
槽内の蓄熱材により冷媒タンク内に液冷媒が蓄えられる
ため、冷房運転起動時に冷媒タンクから冷媒搬送ポンプ
へ液冷媒が供給されやすなり、冷房能力の立ち上がり性
能が改善されるだけでなく、冷媒搬送ポンプの信頼性を
向上させることができる。
【0026】
【実施例】以下、本発明による第1の実施例について、
図面を参照しながら説明する。なお、従来と同一構成に
ついては、同一符号を付して詳細な説明を省略する。
【0027】図1は本発明の第1の実施例の蓄熱式空気
調和機の冷凍サイクル図である。図1において、本発明
による第1の実施例の蓄熱式空気調和機は、室外ユニッ
ト11と室内ユニット12とからなり、室外ユニット1
1は、圧縮機2、四方弁3、室外側熱交換器4、膨張弁
5、三方弁KV1、1次側熱交換部14aと2次側熱交
換部14bとからなる冷媒対冷媒熱交換器HEX、蓄熱
材である水16と1次側熱交換部13aと2次側熱交換
部13bとからなる第1蓄熱槽STR1、蓄熱材である
水16と1次側伝熱管P1と逆止弁GVとからなる第2
蓄熱槽STR2、冷媒タンクTNK、及び冷媒搬送ポン
プPMとから構成されており、室内ユニット12は、室
内側熱交換器17から構成されている。
【0028】室外ユニット11において、圧縮機2と、
四方弁3と、室外側熱交換器4と、膨張弁5とを順次連
通し、さらに三方弁KV1を介して冷媒対冷媒熱交換器
HEXの1次側熱交換部14aと、第1蓄熱槽STR1
内の1次側熱交換部13aとを並列に連通しており、さ
らに第2蓄熱槽STR2の1次側伝熱管P1を第1蓄熱
槽STR1の1次側熱交換部13aに対して並列に連通
して1次側冷凍サイクルを形成している。
【0029】ここで逆止弁GVは、夜間製氷運転時のみ
第2蓄熱槽STR2に冷媒が流れるように設置されてい
る。
【0030】一方、第1蓄熱槽STR1内の2次側熱交
換部13b、及び第1流量弁RV1と、冷媒対冷媒熱交
換器HEXの2次側熱交換部14b、及び第2流量弁R
V2とを並列に接続し、かつ、冷媒タンクTNKと、冷
媒搬送ポンプPMと、室内側熱交換器17とを直列に接
続してなる2次側冷凍サイクルを形成しており、前記冷
媒タンクTNKは第2蓄熱槽STR2内の蓄熱材である
水16の中に1次側伝熱管P1と共に埋設されている。
【0031】以上のように構成された蓄熱式空気調和機
について、以下その動作を説明する。(表1)は、本実
施例における各場合の四方弁3、膨張弁5、三方弁KV
1、の開閉状態、及び各熱交換器の作用状態(蒸発器、
あるいは凝縮器)を示している。
【0032】
【表1】【0033】四方弁3のモ−ドについては、圧縮機2吐
出側と室外側熱交換器4とを、かつ、圧縮機2吸入側と
第1蓄熱槽STR1とを連通する場合を冷房モ−ド、圧
縮機2吐出側と第1蓄熱槽STR1とを、かつ、圧縮機
2吸入側と室外側熱交換器4とを連通する場合を暖房モ
−ドと定義する。
【0034】三方弁KV1については1次側冷凍サイク
ル内にて第1蓄熱槽STR1と膨張弁5とを連通する設
定を第1モ−ド,冷媒対冷媒熱交換器HEXと膨張弁5
とを連通する設定を第2モ−ドと定義する。
【0035】まず、夜間の製氷・蓄熱運転(1次側冷凍
サイクル)について説明する。1次側冷凍サイクルにお
いて、第1蓄熱槽STR1が作用し、冷媒対冷媒熱交換
器HEXは作用しないように三方弁KV1を切替え、2
次側冷凍サイクル内の冷媒搬送ポンプPMは停止してい
る。
【0036】夜間製氷運転;四方弁3を冷房モ−ド,膨
張弁5を所定の開度,三方弁KV1を第1モ−ドとす
る。この時、圧縮機2から送られる高温高圧の冷媒は、
室外側熱交換器4にて凝縮し、膨張弁5で減圧されて液
あるいは二相状態となり、第1蓄熱槽STR1内の1次
側熱交換部13a、及び第2蓄熱槽STR2の1次側伝
熱管P1の管内にて蒸発して蓄熱材である水16から吸
熱した後、圧縮機2へ戻る。このとき、第1蓄熱槽ST
R1内の1次側熱交換部13a、および第2蓄熱槽ST
R2の1次側伝熱管P1の管外側に氷が生成されてい
く。
【0037】夜間蓄熱運転;四方弁3を暖房モ−ド,膨
張弁5を所定の開度,三方弁KV1を第1モ−ドとす
る。この時、圧縮機2から送られる高温高圧の冷媒は、
第1蓄熱槽STR1内の1次側熱交換部13aの管内に
て凝縮して蓄熱材である水16へ放熱した後、膨張弁5
で減圧されて液あるいは二相状態となり、室外側熱交換
器4の管内にて蒸発して室外から吸熱した後、圧縮機2
へ戻る。
【0038】このとき、第1蓄熱槽STR1内の1次側
熱交換部13aを介して放熱し、第1蓄熱槽STR内で
は温水として蓄熱されるが、第2蓄熱槽STR2には逆
止弁GVの作用により蓄熱されない。
【0039】次に、昼間運転(2次側冷凍サイクル)に
ついて説明する。この場合、1次側冷凍サイクルにおい
て三方弁KV1を第1モ−ドとして冷媒対冷媒熱交換器
HEXの2次側熱交換部14aを蒸発器(凝縮器)とし
て作用させて運転を行う。
【0040】同時に、2次側冷凍サイクルにおいて、冷
媒対冷媒熱交換器HEXの2次側熱交換部14bを作用
させて運転を行う。この状態で、2次側冷凍サイクル内
の冷媒は、第1流量弁、及び第2流量弁の制御により、
第1蓄熱槽STR1内の2次側熱交換部13bにも送ら
れ、第1蓄熱槽STR1内の蓄熱材である水16と熱交
換される。
【0041】冷房時は図1中の実線矢印のように冷媒は
流れ、第1蓄熱槽STR1内の2次側熱交換部13b、
及び冷媒対冷媒熱交換器HEXの2次側熱交換部14b
を介して冷却された冷媒は、冷媒タンクTNKに送られ
る。この時冷媒タンクTNKは第2蓄熱槽STR2内に
設置されているため、冷媒タンクTNK内の冷媒は第2
蓄熱槽STR2内に蓄えられた氷により更に過冷却され
て冷媒搬送ポンプPMに供給された後、室内側熱交換器
17に送られ、そこで室内空気と熱交換して室内空気を
冷却すると共に、冷媒自身は高温のガス冷媒となって第
1蓄熱槽STR1内の2次側熱交換部13b、及び冷媒
対冷媒熱交換器HEXの2次側熱交換部14bに戻ると
いう作用を繰り返す。
【0042】特に昼間の2次側冷凍サイクルの冷房運転
起動時には、夜間に蓄冷された第2蓄熱槽STR2内の
氷16により冷媒タンクTNKが冷却されて冷媒タンク
TNK内冷媒圧力が低下しているため、2次側冷凍サイ
クル配管内の冷媒が冷媒タンクTNK内に液冷媒として
回収されている。よって、冷房運転起動時に冷媒タンク
TNKからへ冷媒搬送ポンプPMへ液冷媒が供給されや
すく、2次側冷凍サイクルの冷媒循環量を速やかに増大
させることができ、その結果として冷房能力の立ち上が
り性能が改善されるだけでなく冷媒搬送ポンプの信頼性
を向上させることができる。
【0043】また、暖房時は図1中の破線矢印のように
冷媒は流れ、第1蓄熱槽STR1内の2次側熱交換部1
3b、及び冷媒対冷媒熱交換器HEXの2次側熱交換部
14bを介して加熱された冷媒はガス冷媒となり、その
後、冷媒搬送ポンプPMにより、室内側熱交換器17に
送られ、そこで室内空気と熱交換して室内空気を加熱す
ると共に、冷媒自身は低温の液冷媒となって第1蓄熱槽
STR1内の2次側熱交換部13b、または冷媒対冷媒
熱交換器HEXの2次側熱交換部14bに戻るという作
用を繰り返す。
【0044】このようにして、昼間の室内負荷が大きい
場合も対応ができ、室内機12での冷房・暖房運転が行
われる。
【0045】以上のように本実施例の蓄熱式空気調和機
は、室外ユニット11において、圧縮機2と、四方弁3
と、室外側熱交換器4と、膨張弁5とを順次連通し、さ
らに三方弁KV1を介して冷媒対冷媒熱交換器HEXの
1次側熱交換部14aと、第1蓄熱槽STR1内の1次
側熱交換部13aとを並列に連通しており、さらに1次
側伝熱管P1と逆止弁GVを有した第2蓄熱槽STR2
を第1蓄熱槽STR1内の1次側熱交換部13aに対し
て並列に連通して1次側冷凍サイクルを形成している。
【0046】ここで前記逆止弁GVは、夜間製氷運転時
のみ第2蓄熱槽STR2に冷媒が流れるように設置され
ている。
【0047】一方、第1蓄熱槽STR1内の2次側熱交
換部13b、及び第1流量弁と、冷媒対冷媒熱交換器H
EXの2次側熱交換部14bと、及び第2流量弁とを並
列に接続し、かつ、冷媒タンクTNKと、冷媒搬送ポン
プPMと、室内側熱交換器17とを直列に接続してなる
2次側冷凍サイクルを形成しており、冷媒タンクTNK
は第2蓄熱槽STR2に埋設されている。
【0048】このように構成することにより、夜間電力
を利用した製氷(蓄熱)により冷房(暖房)運転が行
え、電力利用の平準化が図れるだけでなく、特に冷房運
転においては第2蓄熱槽STR2内の氷により冷媒タン
クTNK内に液冷媒が蓄えられるため、冷房運転起動時
の冷媒タンクTNKから冷媒搬送ポンプPMへ液冷媒が
供給されやすくなり、冷房能力の立ち上がり性能が改善
されるだけでなく冷媒搬送ポンプPMの信頼性を向上さ
せることができる。
【0049】
【発明の効果】以上説明したように本発明は、1次側伝
熱管と逆止弁を有した第2蓄熱槽を第1蓄熱槽の1次側
熱交換部に対して並列に接続し、かつ第2蓄熱槽内に冷
媒タンクを埋設している。
【0050】これにより、夜間電力を利用した製氷(蓄
熱)により冷房(暖房)運転が行え、電力利用の平準化
が図れるだけでなく、特に冷房運転起動時においては夜
間に蓄冷された第2蓄熱槽内の氷により冷媒タンクが冷
却されて冷媒タンク内冷媒圧力が低下しているため、2
次側冷凍サイクル配管内の冷媒が冷媒タンク内に液冷媒
として回収されている。よって、冷房運転起動時に冷媒
タンクから冷媒搬送ポンプへ液冷媒が供給されやすく、
2次側冷凍サイクルの冷媒循環量を速やかに増大させる
ことができ、その結果として冷房能力の立ち上がり性能
が改善されるだけでなく冷媒搬送ポンプの信頼性を向上
させることができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage function for utilizing nighttime power in an air conditioner using air as a heat source.
And a heat storage type air conditioner having the control function. 2. Description of the Related Art Various types of regenerative air conditioners have already been developed.
There is a regenerative air conditioner as disclosed in JP-A-507. [0003] The basic technology will be described below. As shown in FIG. 2, the outdoor unit includes a compressor 2, a four-way valve 3, a heat source side heat exchanger 4, a cooling / heating decompression device 5, and a first auxiliary heat exchanger 14 a which are sequentially connected in a ring shape to form a heat source side refrigeration cycle. While the second auxiliary heat exchanger 14 is integrally formed so as to exchange heat with the first auxiliary heat exchanger 14a.
b, the refrigerant amount adjusting tank 10, the refrigerant transport pump PM, and the use side heat exchangers 15a, 15b are sequentially connected in a ring to form a use side refrigeration cycle. Further, a heat storage heat exchanger 13a is installed in parallel with the first auxiliary heat exchanger 14a in the heat source side refrigeration cycle, and is installed in parallel with the second auxiliary heat exchanger 14b in the use side refrigeration cycle. Radiating heat exchanger 13
b and a heat storage tank STR having water 16 as a heat storage material. In the heat source side refrigeration cycle, the circuit switching between the first auxiliary heat exchanger 14a and the heat storage heat exchanger 13a is performed by three-way switching valves 17a and 17b. The switching of the circuit between the exchanger 14b and the heat-exchanging heat exchanger 13b is performed by the three-way flow valves 18a and 18b. The operation of the regenerative air conditioner configured as described above will be described. First, the nighttime operation is an operation of only the heat source side refrigeration cycle, and is switched to the ice making operation and the heat storage (hot water) operation by the four-way valve 3 in the heat source side refrigeration cycle. The refrigerant flows to form a cooling cycle, and the heat source side heat exchanger 4 acts as a condenser, and the heat storage heat exchanger 13a in the heat storage tank STR acts as an evaporator, and the heat storage heat exchanger 13a in the heat storage tank STR. Is stored as ice around the area. During the heat storage operation, the refrigerant flows in the direction of the broken line in the figure to form a heating cycle, and the heat source side heat exchanger 4
Is made to function as a condenser, and the heat is stored as hot water in the heat storage tank STR via the first heat exchanger 13a in the heat storage tank STR. In this case, the first auxiliary heat exchanger 14a is not used. In this case, since the heat source side refrigeration cycle and the use side refrigeration cycle are separated, and the refrigerants in both cycles are not mixed, an appropriate amount of refrigerant can be charged, and the piping of the heat source side refrigeration cycle can be maintained. Since the length is short, even if the refrigerating machine oil in the compressor 2 flows out, it is easy to return, and the reliability of the compressor 2 can be improved. On the other hand, in daytime operation, both the heat source side refrigeration cycle and the utilization side refrigeration cycle are operated. In particular, when the heat load on the user side is relatively large during one day, that is, during a so-called peak load, the first auxiliary heat exchanger 14 is switched by switching the three-way switching valves 17a and 17b.
a is communicated with the heat source side refrigeration cycle, and in the use side refrigeration cycle, the amount of refrigerant flowing into the second auxiliary heat source side 14b and the heat radiation heat exchanger 13b is distributed by the three-way flow valves 18a and 18b. . At night, the heat or heat stored in the heat storage material in the heat storage tank STR exchanges heat with the refrigerant in the use side refrigeration cycle via the heat-radiating heat exchanger 13b in the heat storage tank STR. The refrigerant cooled or heated by the operation of the side refrigeration cycle exchanges heat with the refrigerant in the utilization side refrigeration cycle via the second auxiliary heat exchanger 14b. The refrigerant exchanged by the two heat exchangers is conveyed to the use side heat exchanger 15 of each indoor unit 12 by the refrigerant conveying pump PM to exchange heat with the indoor air, thereby cooling each room. Or heating. Accordingly, in this case, the cooling or heating capacity in the heat source side refrigeration cycle is substantially the sum of the capacity of the heat source side refrigeration cycle and the heat radiation capacity of the heat storage heat exchanger 13b in the heat storage tank STR. Alternatively, the heating capacity increases. As described above, by converting surplus power energy at night into heat and storing the heat, and using the power during the day, power peaks at high load times during the day are suppressed, and power usage is leveled. Can be achieved. [0015] However, in the above-mentioned conventional example, the refrigerant is conveyed to the load side. Therefore, at the time of starting the operation of the secondary refrigeration cycle, the refrigerant is conveyed due to insufficient cooling capacity of the refrigerant. Since the gas PM or the refrigerant in the two-phase state is supplied to the pump PM, the refrigerant circulation amount of the secondary refrigeration cycle cannot be rapidly increased, and as a result, not only the start-up performance of the cooling operation deteriorates, but also However, when the refrigerant in the two-phase state is conveyed, there is a disadvantage that the wear of the refrigerant conveyance pump PM is accelerated and the reliability may be impaired. SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat storage type air conditioner having high start-up performance and high safety. The technical solution of the present invention for solving the above-mentioned problems is a regenerative air conditioning system comprising a primary refrigeration cycle and a secondary refrigeration cycle via a first heat storage tank. In the machine, a second heat storage tank having a primary heat transfer tube and a check valve is connected in parallel to a primary heat exchange part of the first heat storage tank, and a refrigerant tank is embedded in the second heat storage tank. It was done. The operation of this technical means is as follows. A compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a first switching valve, a primary heat exchange section of a refrigerant-to-refrigerant heat exchanger, and a primary heat exchange section in a first heat storage tank. In the primary refrigeration cycle, the first switching valve and the expansion valve are controlled at night without using the refrigerant-to-refrigerant heat exchanger by using the nighttime electric power. A cold storage operation is performed using ice or hot water in water as a heat storage material via a heat exchange unit. Further, a primary heat transfer tube in the second heat storage tank is connected in parallel to a primary heat exchange section of the first heat storage tank. The heat is stored in the heat storage material via the primary heat transfer tube, but the refrigerant does not flow through the primary heat transfer tube in the second heat storage tank due to the check valve during the heat storage operation. On the other hand, in the daytime, the primary refrigerating cycle is operated in a state where the primary heat exchange section of the first heat storage tank is not used by the control of the first switching valve, and the primary refrigerating cycle is controlled by the first flow rate valve.
The heat stored in the heat storage tank is exchanged with the refrigerant in the secondary refrigeration cycle, and the evaporation or condensation capacity in the primary refrigeration cycle is reduced to 2 through the refrigerant-refrigerant heat exchanger by controlling the second flow valve. An operation of exchanging heat with the refrigerant in the secondary refrigeration cycle is performed. That is, between the refrigerant and the heat storage material stored as cold storage heat in the first heat storage tank, the refrigerant heat exchanged via the secondary heat exchange section in the first heat storage tank and the primary heat storage The refrigerant that has exchanged heat between the secondary refrigeration cycle and the secondary refrigeration cycle via the secondary heat exchange section of the refrigerant heat exchanger is transported to the indoor heat exchanger by the refrigerant transport pump, and the indoor air and heat are removed. Replace (cooling or heating). When the cooling operation of the secondary refrigeration cycle is started in the daytime, the refrigerant tank is cooled by the heat storage material in the second heat storage tank which is stored at night, and the refrigerant pressure in the refrigerant tank is reduced. The refrigerant in the secondary refrigeration cycle piping is collected in the refrigerant tank as a liquid refrigerant. Therefore, when the cooling operation is started, the liquid refrigerant is easily supplied from the refrigerant tank to the refrigerant transport pump, and the amount of the circulating refrigerant in the secondary refrigeration cycle can be rapidly increased. As a result, the rising performance of the cooling capacity is improved. It is possible to improve not only the reliability but also the reliability of the refrigerant transport pump. With the above-described operation, the cooling / heating operation in the daytime can be performed by the cold storage heat using the nighttime electric power, and not only can the power use be leveled, but also in the cooling operation, the refrigerant is stored in the second heat storage tank by the heat storage material in the second heat storage tank. Since the liquid refrigerant is stored in the tank, it is easier to supply the liquid refrigerant from the refrigerant tank to the refrigerant transfer pump when the cooling operation starts, not only improving the startup performance of the cooling capacity but also improving the reliability of the refrigerant transfer pump Can be done. Hereinafter, a first embodiment according to the present invention will be described.
This will be described with reference to the drawings. In addition, about the same structure as a conventional one, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. FIG. 1 is a refrigeration cycle diagram of a regenerative air conditioner according to a first embodiment of the present invention. In FIG. 1, a regenerative air conditioner according to a first embodiment of the present invention includes an outdoor unit 11 and an indoor unit 12,
1 is a refrigerant-refrigerant heat exchanger comprising a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion valve 5, a three-way valve KV1, a primary heat exchange part 14a and a secondary heat exchange part 14b. HEX, a first heat storage tank STR1 composed of water 16 as a heat storage material, a primary heat exchange unit 13a and a secondary heat exchange unit 13b, water 16 as a heat storage material, a primary heat transfer tube P1, and a check valve The second consisting of GV
The indoor unit 12 includes a heat storage tank STR2, a refrigerant tank TNK, and a refrigerant transport pump PM. The indoor unit 12 includes an indoor heat exchanger 17. In the outdoor unit 11, the compressor 2
The four-way valve 3, the outdoor heat exchanger 4, and the expansion valve 5 are sequentially communicated with each other, and further, the three-way valve KV1, the primary heat exchange part 14a of the refrigerant-to-refrigerant heat exchanger HEX, and the first heat storage tank STR1
And the primary heat exchanger 13a of the first heat storage tank STR1 is connected in parallel with the primary heat exchanger 13a of the second heat storage tank STR2. The primary side refrigeration cycle is formed in communication. Here, the check valve GV is installed so that the refrigerant flows into the second heat storage tank STR2 only during the night ice making operation. On the other hand, the secondary heat exchange section 13b and the first flow valve RV1 in the first heat storage tank STR1, the secondary heat exchange section 14b and the second flow valve R of the refrigerant-to-refrigerant heat exchanger HEX.
V2, and a secondary refrigeration cycle formed by connecting a refrigerant tank TNK, a refrigerant transport pump PM, and an indoor heat exchanger 17 in series. Is buried together with the primary heat transfer tube P1 in water 16 which is a heat storage material in the second heat storage tank STR2. The operation of the regenerative air conditioner configured as described above will be described below. (Table 1) shows the four-way valve 3, the expansion valve 5, and the three-way valve KV in each case in this embodiment.
1, the open / closed state and the operating state of each heat exchanger (evaporator,
Or a condenser). [Table 1] The mode of the four-way valve 3 is a cooling mode when the discharge side of the compressor 2 is connected to the outdoor heat exchanger 4 and the suction side of the compressor 2 is connected to the first heat storage tank STR1. A case where the discharge side of the compressor 2 communicates with the first heat storage tank STR1 and the case where the suction side of the compressor 2 communicates with the outdoor heat exchanger 4 are defined as a heating mode. For the three-way valve KV1, the first heat storage tank STR1 and the expansion valve 5 are set in communication with the first mode in the primary side refrigeration cycle, and the refrigerant-to-refrigerant heat exchanger HEX and the expansion valve 5 are set.
Is defined as a second mode. First, the ice making and heat storage operation (primary refrigeration cycle) at night will be described. In the primary refrigeration cycle, the three-way valve KV1 is switched so that the first heat storage tank STR1 operates and the refrigerant-to-refrigerant heat exchanger HEX does not operate.
The refrigerant transport pump PM in the secondary refrigeration cycle is stopped. Night ice making operation: The four-way valve 3 is in the cooling mode, the expansion valve 5 is in the predetermined opening degree, and the three-way valve KV1 is in the first mode. At this time, the high-temperature and high-pressure refrigerant sent from the compressor 2
It is condensed in the outdoor heat exchanger 4 and decompressed by the expansion valve 5 to be in a liquid or two-phase state. The primary heat exchanger 13a in the first heat storage tank STR1 and the primary side of the second heat storage tank STR2. After evaporating in the pipe of the heat transfer pipe P <b> 1 and absorbing heat from the water 16 as the heat storage material, the flow returns to the compressor 2. At this time, the first heat storage tank ST
Primary heat exchange section 13a in R1 and second heat storage tank ST
Ice is generated outside the primary heat transfer tube P1 of R2. Night heat storage operation: The four-way valve 3 is in the heating mode, the expansion valve 5 is in the predetermined opening degree, and the three-way valve KV1 is in the first mode. At this time, the high-temperature and high-pressure refrigerant sent from the compressor 2
After being condensed in the pipe of the primary heat exchange section 13a in the first heat storage tank STR1 and radiating heat to the water 16 as the heat storage material, the expansion valve 5
After being decompressed into a liquid or two-phase state, evaporating in the pipe of the outdoor heat exchanger 4 and absorbing heat from outside, the compressor 2
Return to At this time, the heat is radiated through the primary heat exchange section 13a in the first heat storage tank STR1 and is stored as hot water in the first heat storage tank STR. No heat is stored by the action of the GV. Next, the daytime operation (secondary refrigeration cycle) will be described. In this case, in the primary refrigeration cycle, the operation is performed with the three-way valve KV1 in the first mode and the secondary heat exchange portion 14a of the refrigerant-to-refrigerant heat exchanger HEX acting as an evaporator (condenser). At the same time, in the secondary refrigeration cycle, the operation is performed by operating the secondary heat exchange section 14b of the refrigerant-to-refrigerant heat exchanger HEX. In this state, the refrigerant in the secondary refrigeration cycle is controlled by the first flow valve and the second flow valve,
The heat is also sent to the secondary heat exchange section 13b in the first heat storage tank STR1, where the heat is exchanged with water 16 as a heat storage material in the first heat storage tank STR1. During cooling, the refrigerant flows as indicated by the solid arrow in FIG. 1, and the secondary heat exchange section 13b in the first heat storage tank STR1
And the secondary-side heat exchange section 14b of the refrigerant-to-refrigerant heat exchanger HEX
Is sent to the refrigerant tank TNK. At this time, since the refrigerant tank TNK is installed in the second heat storage tank STR2, the refrigerant in the refrigerant tank TNK is in the second heat storage tank STR2.
After being further supercooled by the ice stored in the heat storage tank STR2 and supplied to the refrigerant transport pump PM, it is sent to the indoor heat exchanger 17, where it exchanges heat with indoor air to cool the indoor air, The refrigerant itself becomes a high-temperature gas refrigerant, and repeats the operation of returning to the secondary heat exchange unit 13b in the first heat storage tank STR1 and the secondary heat exchange unit 14b of the refrigerant-to-refrigerant heat exchanger HEX. In particular, when the cooling operation of the secondary refrigeration cycle is started in the daytime, the refrigerant tank TNK is cooled by the ice 16 in the second heat storage tank STR2 which has been stored at night, and the refrigerant pressure in the refrigerant tank TNK is reduced. Therefore, the refrigerant in the secondary-side refrigeration cycle piping is collected as a liquid refrigerant in the refrigerant tank TNK. Therefore, when the cooling operation is started, the liquid refrigerant is easily supplied from the refrigerant tank TNK to the refrigerant transport pump PM, so that the refrigerant circulation amount of the secondary refrigeration cycle can be rapidly increased, and as a result, the rising performance of the cooling capacity is improved. It is possible to improve not only the reliability but also the reliability of the refrigerant transport pump. During heating, the refrigerant flows as indicated by the dashed arrow in FIG. 1 and the secondary side heat exchange section 1 in the first heat storage tank STR1.
3b, and the refrigerant heated via the secondary-side heat exchange section 14b of the refrigerant-to-refrigerant heat exchanger HEX becomes a gaseous refrigerant, which is then sent to the indoor heat exchanger 17 by the refrigerant transport pump PM, where it is indoors. The refrigerant exchanges heat with the air to heat the indoor air, and the refrigerant itself becomes a low-temperature liquid refrigerant, and the secondary heat exchanger 13b in the first heat storage tank STR1 or the secondary side of the refrigerant-to-refrigerant heat exchanger HEX. The operation of returning to the heat exchange section 14b is repeated. In this way, it is possible to cope with a large daytime indoor load, and the indoor unit 12 performs the cooling / heating operation. As described above, in the regenerative air conditioner of this embodiment, the outdoor unit 11 includes the compressor 2 and the four-way valve 3.
, The outdoor heat exchanger 4 and the expansion valve 5 are sequentially communicated with each other, and the primary heat exchange part 14a of the refrigerant-to-refrigerant heat exchanger HEX via the three-way valve KV1 and the first heat storage tank STR1. A second heat storage tank STR2 that communicates in parallel with the primary heat exchange unit 13a, and further has a primary heat transfer tube P1 and a check valve GV.
Are connected in parallel to the primary heat exchange section 13a in the first heat storage tank STR1 to form a primary refrigeration cycle. Here, the check valve GV is installed so that the refrigerant flows into the second heat storage tank STR2 only during the night ice making operation. On the other hand, the secondary heat exchanger 13b in the first heat storage tank STR1, the first flow valve, and the refrigerant-to-refrigerant heat exchanger H
The secondary heat exchanger 14b of the EX and the second flow valve are connected in parallel, and the refrigerant tank TNK, the refrigerant transport pump PM, and the indoor heat exchanger 17 are connected in series. A secondary refrigeration cycle is formed, and the refrigerant tank TNK
Are embedded in the second heat storage tank STR2. With this configuration, the cooling (heating) operation can be performed by ice making (heat storage) using nighttime electric power, and not only can the power use be leveled, but also in the cooling operation, the second heat storage tank STR2 can be used. Since the liquid refrigerant is stored in the refrigerant tank TNK by the ice inside, the liquid refrigerant is easily supplied from the refrigerant tank TNK to the refrigerant transport pump PM at the time of starting the cooling operation, and not only the rising performance of the cooling capacity is improved, but also The reliability of the refrigerant transport pump PM can be improved. As described above, according to the present invention, the second heat storage tank having the primary heat transfer tube and the check valve is arranged in parallel with the primary heat exchange section of the first heat storage tank. They are connected and a refrigerant tank is embedded in the second heat storage tank. Thus, the cooling (heating) operation can be performed by ice making (heat storage) using the nighttime electric power, and not only the power use can be leveled, but also at the time of starting the cooling operation, the second heat storage that has been stored at nighttime can be achieved. Since the refrigerant tank is cooled by the ice in the tank and the refrigerant pressure in the refrigerant tank is reduced,
Refrigerant in the secondary refrigeration cycle piping is collected as a liquid refrigerant in the refrigerant tank. Therefore, when the cooling operation is started, the liquid refrigerant is easily supplied from the refrigerant tank to the refrigerant transport pump,
The amount of circulating refrigerant in the secondary refrigeration cycle can be quickly increased, and as a result, not only the start-up performance of the cooling capacity can be improved, but also the reliability of the refrigerant transport pump can be improved.
【図面の簡単な説明】
【図1】本発明の第1の実施例による蓄熱式空気調和機
の冷凍システム図
【図2】従来例を示す蓄熱式空気調和機の冷凍システム
図
【符号の説明】
2 圧縮機
3 四方弁
4 室外側熱交換器
5 膨張弁
13a 第1蓄熱槽の1次側熱交換部
13b 第1蓄熱槽の2次側熱交換部
14a 冷媒対冷媒熱交換器の1次側熱交換部
14b 冷媒対冷媒熱交換器の2次側熱交換部
17 室内側熱交換器
STR1 第1蓄熱槽
STR2 第2蓄熱槽
P1 1次側伝熱管
HEX 冷媒対冷媒熱交換器
TNK 冷媒タンク
PM 冷媒搬送ポンプ
KV1 三方弁
GV 逆止弁
RV1,RV2 流量弁BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a refrigeration system diagram of a regenerative air conditioner according to a first embodiment of the present invention. FIG. 2 is a refrigeration system diagram of a regenerative air conditioner showing a conventional example. 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Expansion valve 13a Primary heat exchange part 13b of first heat storage tank Secondary heat exchange part 14a of first heat storage tank Primary refrigerant to refrigerant heat exchanger Side heat exchange unit 14b Secondary heat exchange unit 17 of refrigerant-to-refrigerant heat exchanger 17 Indoor heat exchanger STR1 First heat storage tank STR2 Second heat storage tank P1 Primary heat transfer tube HEX Refrigerant-to-refrigerant heat exchanger TNK Refrigerant tank PM Refrigerant transfer pump KV1 Three-way valve GV Check valve RV1, RV2 Flow valve
───────────────────────────────────────────────────── フロントページの続き (72)発明者 町田 和彦 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (72)発明者 鈴木 皓三 東京都千代田区神田神保町2丁目2番30 号 東京電力株式会社開発研究所内 (72)発明者 杉田 吉秀 東京都千代田区神田神保町2丁目2番30 号 東京電力株式会社開発研究所内 (56)参考文献 特開 平3−51644(JP,A) 特開 平5−346248(JP,A) 特開 昭62−238953(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 13/00 351 F25B 1/00 351 F25B 1/00 399 F24F 5/00 102 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhiko Machida 3--22 Takaida Hondori, Higashi-Osaka City, Osaka Inside Matsushita Refrigerating Machinery Co., Ltd. (72) Inventor Kozo Suzuki 2-2-230 Kanda Jimbocho, Chiyoda-ku, Tokyo Tokyo Electric Power Company Development Laboratory (72) Inventor Yoshihide Sugita 2-2-230 Kanda Jimbocho, Chiyoda-ku, Tokyo Tokyo Electric Power Company Development Laboratory (56) References JP-A-3-51644 (JP, A) JP-A-5-346248 (JP, A) JP-A-62-238953 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 13/00 351 F25B 1/00 351 F25B 1 / 00 399 F24F 5/00 102
Claims (1)
と、膨張弁と、第1切替弁とを直列に接続し、1次側熱
交換部と2次側熱交換部とを有した冷媒対冷媒熱交換器
の1次側熱交換部、及び1次側熱交換部と2次側熱交換
部とを有した第1蓄熱槽の1次側熱交換部を並列に配置
して前記第1切替弁により冷媒の流路を切替え可能にし
た1次側冷凍サイクルと、前記第1蓄熱槽内の2次側熱
交換部、及び第1流量弁と、前記冷媒対冷媒熱交換器の
2次側熱交換部、及び第2流量弁とを並列に接続し、か
つ、冷媒タンクと冷媒搬送ポンプと室内側熱交換器とを
直列に接続した2次側冷凍サイクルとからなり、1次側
伝熱管と逆止弁を有した第2蓄熱槽を前記第1蓄熱槽の
1次側熱交換部に対して並列に接続し、かつ前記第2蓄
熱槽内に前記冷媒タンクを埋設した蓄熱式空気調和機。(57) [Claims 1] A primary-side heat exchange section comprising a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and a first switching valve connected in series. And a primary heat exchange section of the refrigerant-to-refrigerant heat exchanger having a secondary heat exchange section and a primary heat storage tank having a primary heat exchange section and a secondary heat exchange section. A primary refrigeration cycle in which side heat exchange sections are arranged in parallel and the flow path of the refrigerant can be switched by the first switching valve, a secondary side heat exchange section in the first heat storage tank, and a first flow rate A valve, a secondary-side heat exchange part of the refrigerant-to-refrigerant heat exchanger, and a second flow valve were connected in parallel, and a refrigerant tank, a refrigerant transfer pump, and an indoor heat exchanger were connected in series. A secondary refrigerating cycle, a second heat storage tank having a primary heat transfer tube and a check valve, connected in parallel to a primary heat exchange section of the first heat storage tank, and Thermal storage type air conditioner is embedded the coolant tank into the heat chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15720894A JP3502155B2 (en) | 1994-07-08 | 1994-07-08 | Thermal storage type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15720894A JP3502155B2 (en) | 1994-07-08 | 1994-07-08 | Thermal storage type air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0828993A JPH0828993A (en) | 1996-02-02 |
JP3502155B2 true JP3502155B2 (en) | 2004-03-02 |
Family
ID=15644577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15720894A Expired - Fee Related JP3502155B2 (en) | 1994-07-08 | 1994-07-08 | Thermal storage type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3502155B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006023716A1 (en) * | 2004-08-18 | 2006-03-02 | Ice Energy, Inc | Thermal energy storage and cooling system with secondary refrigerant isolation |
WO2007070972A1 (en) * | 2005-12-22 | 2007-06-28 | Synergy Thermal Technologies Pty Ltd | An air conditioning assembly |
JP7357915B2 (en) * | 2019-10-07 | 2023-10-10 | 伸和コントロールズ株式会社 | Hydrogen cooling equipment, hydrogen supply system and refrigerator |
-
1994
- 1994-07-08 JP JP15720894A patent/JP3502155B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0828993A (en) | 1996-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001289465A (en) | Air conditioner | |
JP2006313034A (en) | Geothermal unit | |
JP2005114253A (en) | Air conditioner | |
KR20030045175A (en) | Phase-change Heat Transfer Coupling For Aqua-ammonia Absorption Systems | |
JPH10300265A (en) | Refrigerating equipment | |
JP3502155B2 (en) | Thermal storage type air conditioner | |
JPH03294754A (en) | Air conditioner | |
JP3297467B2 (en) | Thermal storage type air conditioner | |
KR100613502B1 (en) | Heat pump type air conditioner | |
JP2851696B2 (en) | Thermal storage type air conditioner | |
JP2004293889A (en) | Ice thermal storage unit, ice thermal storage type air conditioner and its operating method | |
JPS581345B2 (en) | Air conditioning/heating/hot water equipment | |
KR20020014610A (en) | Air conditioner | |
JP2000234771A (en) | Secondary refrigerant heat-storing air-conditioning system | |
JP3236345B2 (en) | Thermal storage type air conditioner | |
JPH0849924A (en) | Heat storage type air-conditioner | |
JP2004116930A (en) | Gas heat pump type air conditioner | |
JPS59134469A (en) | Air-conditioning hot-water supply heater | |
JP3056588B2 (en) | Thermal storage type air conditioner | |
JP2002061897A (en) | Heat storage type air conditioner | |
JP2962395B2 (en) | Thermal storage type air conditioner | |
JPH02187572A (en) | Heat pump type air conditioner and hot water feeder | |
JP3058153B2 (en) | Air conditioner | |
JP3216560B2 (en) | Heat source device | |
JP2000121108A (en) | Air-conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031204 |
|
LAPS | Cancellation because of no payment of annual fees |